勾股定理分类习题(较难)
(完整版)勾股定理练习题(含答案)
希望教育 勾股定理练习题1. 下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B.若 a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt△ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt△ABC 的三边, 90=∠C ,则a 2+b 2=c 2.2. Rt△ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+3. 如果Rt△的两直角边长分别为k 2-1,2k (k >1),那么它的斜边长是( )A 、2kB 、k+1C 、k 2-1D 、k 2+14. 已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定6. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( )A .42B .32C .42 或 32D .37 或 337.※直角三角形的面积为,斜边上的中线长为,则这个三角形周长为( )S d (A(B(C ) (D)2dd 2d +d+8、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( )A :3B :4C :5D :79.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为( )A .17 B.3 C.17或3 D.以上都不对10.已知a 、b 、c 是三角形的三边长,如果满足则三角形的形状是( 2(6)100a -+=)A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 .12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__. 13. 一个直角三角形的三边长的平方和为200,则斜边长为14.一个三角形三边之比是6:8:10,则按角分类它是 三角形.15. 一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是__. 16. 在Rt△ABC 中,斜边AB=4,则AB 2+BC 2+AC 2=_____.17.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BBC 为直径作半圆,则这个半圆的面积是 .18.若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是 ,另外一边的平方是 .19. 一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是 .20.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.21、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗? 22.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?23.如图,要修建一个育苗棚,棚高h=3m ,棚宽a=4m ,棚的长为12m ,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?24.如图,有一只小鸟在一棵高13m 的大树树梢上捉虫子,它的伙伴在离该树12m ,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?25.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?AE答案:一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3. 解析:设另一条直角边为x ,则斜边为(x+1)利用勾股定理可得方程,可以求出x .然后再求它的周长.答案:C .4.解析:解决本题关键是要画出图形来,作图时应注意高AD 是在三角形的内部还是在三角形的外部,有两种情况,分别求解.答案:C.5. 解析: 勾股定理得到:22215817=-,另一条直角边是15,所求直角三角形面积为21158602cm ⨯⨯=.答案: 260cm .6. 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案:222c b a =+,c ,直角,斜,直角.7. 解析:本题由边长之比是6:8:10 可知满足勾股定理,即是直角三角形.答案:直角.8. 解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:︒30、︒60、︒90,3.9. 解析:由勾股定理知道:22222291215=-=-=AC AB BC ,所以以直角边9=BC 为直径的半圆面积为10.125π.答案:10.125π.10. 解析:长方形面积长×宽,即12长×3,长4=,所以一条对角线长为5.答案:cm 5.二、综合发展11. 解析:木条长的平方=门高长的平方+门宽长的平方.答案:5m .12解析:因为222252015=+,所以这三角形是直角三角形,设最长边(斜边)上的高为xcm ,由直角三角形面积关系,可得1115202522x ⨯⨯=⨯⋅,∴12=x .答案:12cm 13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,所以矩形塑料薄膜的面积是:5×20=100(m 2) .14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m ,也就是两树树梢之间的距离是13m ,两再利用时间关系式求解.答案:6.5s .15.解析:本题和14题相似,可以求出BC 的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s ,可得速度是20m/s=72km/h >70km/h .答案:这辆小汽车超速了.A 观测点。
勾股定理试题较难
1、如图,由4个全等的直角三角形拼合而成的一个大正方形,如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于多少?2、如图,三个半圆的面积分别为S 1=4.5π,S 2=8π,S 3=12.5π,把这三个半圆拼在一起,则图中的三角形一定是直角三角形吗?为什么?3、Rt △ABC 中,斜边AB=4,则AB 2+BC 2+AC 2=。
4、直角三形有一条直角边的长为11,另外两边的长也是正整数,则此三角形的周长是。
5、长方体底面边长分别为1㎝和3㎝,高为6㎝,如果一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要多长?如果从点A 开始经过4个侧面缠绕n 圈到达点B ,那么6B与点D 7、已知,AD是BC 边2=BC8、AB=17,AC=10, 9、B 1011A 、B12和宽(x A 、13、BC=4,CD=51415、,AD=n S 2 S 3精心整理16、在△ABC 中,AC=BC ,∠ACB=90°,DE 是边AB 上的两点,AD=3,BE=4,∠DCE=45°,则△ABC 的面积是多少?17、在△ABC 中,AC=BC ,∠ACB=90°,D 、EAD=a ,BE=b ,DE=c ,∠DCE=45°,则222c b a =+,为什么?18、小强用8个直角边长分别为3㎝和4但大小不相同的正方形,的中空部分刚好能容纳所拼成的小正方形,积相差多少? 19、已知长方形ABCD 和点P 。
(1)如图,当P 在BC 上的任一位置时,求证:PA 2+PC 2=PB 2+PD 2。
(2)如图,当点P 在长方形ABCD 的内部时,PA 2+PC 2=PB 2+PD 2还成立吗?为什么? (3)如图,当点P 在长方形ABCD 的外部时,PA 2+PC 2=PB 2+PD 2还成立吗?为什么? ,以AC 、BC )2≥。
勾股定理典型练习题(含答案)
勾股定理典型练习题(含答案)1.勾股定理典型练题勾股定理是几何中的一个重要定理。
在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载。
如图1所示,由边长相等的小正方形和直角三角形构成,可以用其面积关系验证勾股定理。
图2是由图1放入矩形内,已知AC = 4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为多少?已知AB = 3,得到∠BAC = 90°。
根据勾股定理,BC = 5.所以矩形KLMJ的面积为 4 × 5 + 3 × 4 = 32.因此,答案为C。
2.勾股定理典型练题XXX所示,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形。
若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是多少?根据图中所示,正方形E的边长为2,所以面积为2 × 2 = 4.因此,答案为C。
3.勾股定理典型练题如图所示,在边长为4的等边三角形ABC中,AD是BC边上的高,点E,F是AD上的两点。
则图中阴影部分的面积是多少?首先,根据勾股定理,AC = 4,BC = 4,AB = 4√2.因此,三角形ABC的面积为4√2 × 4 / 2 = 8√2.由于三角形ADE和三角形ABF相似,所以ADE的面积是ABF的面积的一半。
同理,三角形BDF和三角形BCE相似,所以BDF的面积是BCE的面积的一半。
因此,阴影部分的面积为8√2 - 2 × 2 - 2 ×1 = 8√2 - 6.因此,答案为C。
4.勾股定理典型练题如图所示,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为多少?根据图中所示,正方形a和正方形c的边长分别为√5和√11.因此,正方形b的边长为√11 - √5,所以面积为(√11 - √5)² = 6.因此,答案为C。
5.勾股定理典型练题如图所示,分别以直角△ABC的三边AB、BC、CA为直径向外作半圆,设直线AB左边阴影部分面积为S1,右边阴影部分面积为S2,则S1和S2的大小关系是什么?首先,根据勾股定理,AB = √(BC² + AC²) = 2√2.因此,半圆的面积为π × (2√2 / 2)² = 2π。
勾股定理练习题(含答案)
勾股定理练习题(含答案)1.下列说法正确的是:C.若a、b、c是Rt△ABC的三边,A=90°,则a+b=c。
2.根据勾股定理,应该选B.a+b>c。
3.根据勾股定理,斜边长为√(k-1)²+(2k)²,即√(5k²-4)。
4.根据(a-b)(a+b-c)=0,可得a=b或a+b=c,所以它的形状为等腰三角形或直角三角形。
5.设另一直角边为x,则根据勾股定理得x²+9²=(x+1)²,解得x=40/9,周长为9+40/9+41/9=120/9=40/3,选C。
6.根据勾股定理得BC=√(13²-12²)=5,所以周长为15+13+5=33,选D。
7.根据勾股定理和中线长度公式得周长为2d+2√(d²-S),选C。
8.根据勾股定理得OP的长度为√(3²+4²)=5,选C。
9.根据勾股定理和海伦公式得BC=√(26²-24²/25)=17,选A。
10.根据(a-6)+b-8+c-10²=0,可得a+b+c=24,所以它的形状为等边三角形。
11.根据勾股定理和面积公式得面积为(8*15)/2=60,选D。
12.根据等腰三角形的性质,顶角的平分线与底边中线重合,所以答案为底边中线,即6.5.13.根据勾股定理得斜边长为√200=10√2,选D。
14.根据三角形边长比的性质,10:8:6无法构成三角形,所以不是三角形。
15.一个三角形的三边比为5:12:13,周长为60,则其面积为多少?16.在直角三角形ABC中,斜边AB=4,则AB+BC+AC=多少?17.如图,已知直角三角形ABC中,∠C=90°,BA=15,AC=12,以直角边BC为直径作半圆,则该半圆的面积为多少?18.若三角形三个内角的比为1:2:3,最短边长为1cm,最长边长为2cm,则该三角形三个角度数分别为多少?另外一边的平方是多少?19.长方形的一边长为3cm,面积为12cm²,则其一条对角线长为多少?20.如图,一个高为4m、宽为3m的大门,需要在对角线的顶点间加固一个木条,求该木条的长度。
勾股定理练习题及答案
勾股定理练习题及答案勾股定理练习题及答案勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。
下面小编给大家带来勾股定理练习题及答案,欢迎大家阅读。
勾股定理练习题:1、在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为__________2、已知直角三角形两边的长为3和4,则此三角形的周长为__________.3、某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要 __________元.4、如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m.同时梯子的顶端B 下降至B′,那么BB′().A.小于1m B.大于1m C.等于1m D.小于或等于1m5、将一根24cm的.筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是().A.h≤17cm B.h≥8cmC.15cm≤h≤16cm D.7cm≤h≤16cm6、如图,某公园内有一棵大树,为测量树高,小明C处用侧角仪测得树顶端A的仰角为30°,已知侧角仪高DC=1。
4m,BC=30米,请帮助小明计算出树高AB.(取1。
732,结果保留三个有效数字)◆典例分析如图1,一个梯子AB长2。
5m,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1。
5m,梯子滑动后停在DE的位置上,如图2,测得BD长为0。
5m,求梯子顶端A下落了多少米.解法指导:直角三角形中,已知一直角边和斜边是勾股定理的重要应用之一.勾股定理:a2+b2=c2的各种变式:a2=c2-b2,b2=c2-a2.应牢固掌握,灵活应用.分析:先利用勾股定理求出AC与CE的长,则梯子顶端A下落的距离为AE=AC-CF.解:在Rt△ABC中,AB2=AC2+BC2∴2.52=AC2+1。
部编数学八年级下册难点特训(一)和勾股定理有关的压轴大题(解析版)含答案
难点特训(一)和勾股定理有关的压轴大题1.正方形ABCD 中,E ,F 分别为CD ,AD 上一点,CE DF =,BE ,CF 交于点G ,O 为BD 的中点.(1)求证:BCE V ≌CDF V ;(2)求证:BE CF ^;(3)求证:BG CG -2.在平面直角坐标系xOy中,点B、C的坐标分别为(0,0)、(12,0),点A在第一象限,且△ABC 是等边三角形.点D的坐标为(4,0),E是边AB上一动点,连接DE,以DE为边在DE右侧作等边△DEF.(1)求出A点坐标;(2)当点F落在边AC上时,△CDF与△BED全等吗?若全等,请给予证明;若不全等,请说明理由;(3)连接CF,当△CDF是等腰三角形时,BE=______.∵C(6,0),∵FD=FC,FT⊥CD,3.在□ABCD 中,连接BD ,若BD CD ^,点E 为边AD 上一点,连接CE .(1)如图1,点G 在BD 上,连接CG ,过G 作GH CE ^于点H ,连接DH 并延长交AB 于点M .求证:HGD DCE Ð=Ð;(2)如图1,在(1)的前提下,若HG BM =,DG DC =.求证:BM DB +=;(3)如图2,120ABC Ð=°,AB =点N 在BC 边上,4BC CN =,若CE 是DCB Ð的角平分线,线段PQ (点P 在点Q 的左侧)在线段CE 上运动,PQ =,连接BP ,NQ ,求BP PQ QN ++的最小值.4.如图,在矩形ABCD中,AB=8,BC=16,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是每秒1个单位,连接PQ、AQ、CP,设点P、Q运动的时间为t秒.(1)当t= 时,四边形ABQP是矩形;(2)当t=6时,判断四边形AQCP的形状,并说明理由;(3)直接写出以PQ为对角线的正方形面积为96时t的值;(4)整个运动当中,线段PQ扫过的面积是 .【点睛】本题考查了正方形的判定与性质、矩形的判定与性质、菱形的判定、勾股定理、平行四边形的判定、三角形面积公式以及分类讨论等知识;熟练掌握正方形的判定与性质和勾股定理是解题关键.5.已知,如图,在△ABC中,AB=AC=20cm,BD⊥AC于D,且BD=16cm.点M从点A出发,沿AC方向匀速运动,速度为4c m/s;同时点P由B点出发,沿BA方向匀速运动,速度为lc m/s,过点P的动直线PQ∥AC,交BC于点Q,连结PM,设运动时间为t(s)(0<t<5),解答下列问题:(1)线段AD=___cm;(2)求证:PB=PQ;(3)当t为何值时,以P、Q、D、M为顶点的四边形为平行四边形.根据题意得:PQ=BP=t,AM=4t,AD∴MD=AD-AM=12-4t,∵PQ∥AC,∴PQ∥MD,当PQ=MD时,四边形PQDM是平行四边形,∴t=12-4t,根据题意得:PQ=BP=t,AM=4t,AD∴MD=AM-AD=4t-12,∵PQ∥AC,∴PQ∥MD,当PQ=MD时,四边形PQDM是平行四边形,∴t=4t-12,解得:t=4(s);6.平面直角坐标系中,矩形AOBC的顶点C的坐标为(m,n),m、n满足m﹣8=(1)m=______,n=_______;(2)如图1,连接AB、OC交于点D,过点D作DM⊥DB交x轴于点M,求点M的坐标;(3)如图2,E、F分别为OB、BC上的动点,以AE、EF为边作矩形AEFQ,连接EQ、CQ,当EQ=2CQ时,求点Q的纵坐标.∵m=8,n=4,∴C(8,4),∵四边形AOBC是矩形,∴AO=4,BO=8,AD=BD,∵DM⊥DB,∵四边形AEFQ是矩形,∴AF=EQ,PF=PA12AF=,PE=PQ∴PF12EQ =,7.如图,点P为正方形ABCD的对角转AC上一动点,过点P作PE⊥PB交射线DC于点E.(1)如图1,当点E在边CD上时,求证:PB=PE;(2)如图2,当点E在DC的延长线上时,探求线段PA、PC、CE的数量关系并加以证明;(3)如图3,在(1)的条件下,连接BE交AC于点F,若正方形ABCD的边长为4,当点E为CD的中点,则PF= (请直接写出结果).8.如图,我们把对角线互相垂直的四边形叫做“垂美四边形”.(1)性质探究:如图1.已知四边形ABCD 中,AC ⊥BD .垂足为O ,求证:AB 2+CD 2=AD 2+BC 2;(2)解决问题:已知AB =BC =△ABC 的边BC 和AB 向外作等腰Rt △BCE 和等腰Rt △ABD ;①如图2,当∠ACB =90°,连接DE ,求DE 的长;②如图3.当∠ACB≠90°,点G、H分别是AD、AC中点,连接GH.若GH=,则S△ABC = .②连DC、AE相交于点F【点睛】本题主要考查了四边形的综合问题,等腰直角三角形的性质,全等三角形的性质与判定,9.已知平行四边形ABCD中,AD=2AB.(1)作∠ABC的平分线BM交AD于M,连CM.①如图1,求∠BMC的度数;②如图2,若∠ADC=90°,点P是AD延长线上一点,BP交CM于N,CG⊥BP垂足为H,交AD于G,求证:BN=CG+GN;(2)如图3,若∠ADC=60°,AB=4,E是AB的中点,P是BC边上一动点,将EP逆时针旋转90°得到线段EQ,连DQ,直接写出DQ的最小值 .310.在正方形ABCD中,点E是边BC上一动点(不含端点B、C).(1)如图1,AE⊥EP,AE=EF,连接CF.①求∠ECF的大小;②如图2,N为CF的中点,连接DN、DE,求证:DE DN;BE+DE的最小值.(2)如图3.若AD=12则AH EC =,BHE D 为等腰直角三角形,45BHE HEBÐ=Ð=°,45BHE HAE AEH Ð=Ð+Ð=°Q ,180180459045AEH FEC AEF HEB Ð+Ð=°-Ð-Ð=°-°-°=°,HAE FEC \Ð=Ð,在HAE D 和CFE D 中,HAE FEC AH ECAE EF Ð=Ðìï=íï=î,()HAE CFE SAS \D @D ,180********ECF AHE BHE \Ð=Ð=°-Ð=°-°=°,ECF \Ð的大小为135°;②延长DN 到Q 时DN QN =,连接FQ 、EN ,设FQ 交BC 的延长线于点R ,在DNC D 和QNF D 中,DN QN DNC QNF CN FN =ìïÐ=Ðíï=î,()DNC QNF SAS \D @D ,CD FQ \=,CDQ FQD Ð=Ð,//CD FQ \,而CD BR ^,则FQ BR ^,90EFR FER \Ð+Ð=°,11.在平面直角坐标系中,O 为坐标原点,A ,D 两点坐标分别为A (0,a ),D (b ,b ),且a ﹣b =.(1)求A ,D 两点坐标;(2)点B ,C 是x 轴上两动点(B 在C 左侧),且使四边形ABCD 为平行四边形.①如图,当点B ,C 分别在原点两侧时,连接DO ,过点O 作OG ⊥DO 交AB 于点G ,连接DG ,取DG 中点H ,在DO 上截取DE ,使DE =GO ,求证:4AH 2+DE 2=2AE 2;②当点B 在原点左侧时,过点O 的直线MN ⊥AB ,分别交AB ,CD 于M ,N ,试探究OM ,BM ,CN 三条线段之间的数量关系.【答案】(1)A (0,5),D (5,5);(2)见解析;(3)OM =CN +BM 或OM =BM -CN .【分析】(1)根据算术平方根有意义的条件可得50b -³,3150b -³,由此可得5b =,进而可求得5a =,由此可得A ,D 两点的坐标;(2)①延长AH 交CD 于点F ,连接GF ,GE ,先证AOG ADE △≌△,可得AG =AE ,∠GAO =∠EAD ,进而可得GE ²=2AE ²,再证AGF EAO △≌△(SAS ),可得OE = 2AH ,最后再根据OE ²+OG ²=GE ²等量代换,即可得证;②分两种情况讨论:点C 在点O 的右侧时,点C 在点O 的左侧时,画出相应的图形,作出正确的辅助线,证明KCB MAO △≌△(AAS ),由此可得结论.【详解】解:∵50b -³,∴5b £,∵3150b -³,∴5b ³,又∵HG=HD,∴四边形AGFD为平行四边形,∴GF=AD=AO,AD//GF,∴∠AGF+∠GAD=180°,即∠AGF+∠GAO+∠OAD=180°,∴∠AGF+∠GAO=180°-∠OAD=90°,又∵∠OAE+∠EAD=90°,∠GAO=∠EAD,∴∠AGF=∠OAE,∴AGF EAO△≌△(SAS),∴OE=AF=2AH,∵∠GOD=90°,∴OE²+OG²=GE²,∴(2AH)²+DE²=2AE²,即:4AH2+DE2=2AE2;②如图,当点C在点O的右侧时,过点C作CK⊥AB于点K,∵四边形ABCD为平行四边形,∴AD=BC,又∵AO=AD,∴AO=BC,∵MN⊥AB,CK⊥AB,∴∠AMO=∠CKB=90°,MN//CK,∴∠KBC+∠KCB=90°,∵∠AOB=90°,∴∠ABO+∠BAO=90°,∴∠KCB=∠BAO,∴KCB MAO△≌△(AAS),∴OM=KB=KM+BM,∵AB//CD,MN//CK,∴四边形MNCK为平行四边形,∴KM=CN,∴OM=CN+BM,如图,当点C在点O的左侧时,过点C作CK⊥AB于点K,同理可得:KCB MAO△≌△(AAS),∴OM=KB=BM-KM,又∵KM=CN,∴OM=BM-CN,综上所述:OM,BM,CN三条线段之间的数量关系为OM=CN+BM或OM=BM-CN.【点睛】本题考查了算术平方根有意义的条件,平行四边形的判定与性质,全等三角形的判定与性质,勾股定理,熟练掌握平行四边形和全等三角形的判定与性质是解决本题的关键.12.如图,在平面直角坐标系中,A,B两点的坐标分别为A(0,a),点B(b,0),且a,b满足:b+4,点C与点B关于y轴对称,点P,点E分别是x轴,直线AB上的两个动点.(1)则点C的坐标为 ;(2)连接PA,PE.①如图1,当点P在线段BO(不包括B,0两个端点)上运动,若△APE为直角三角形,F为斜边PA的中点,连接EF,OF,试判断EF与OF的关系,并说明理由;②如图2,当点P在线段OC(不包括O,C两个端点)上运动,若△APE为等腰三角形,M为底边AE的中点,连接MO,试探索PA与OM的数量关系,并说明理由;(3)如图3,连PA,CE,设它们所在的直线交于点G,设CE交y轴于点F,连接BG,若OP=OF,则BG的最小值为 .∵C(4,0)A(0,4)∴OA=OC=4,又OP=OF ∠AOP=∠COF=90°∴△AOP≌△COF(SAS)13.如图,在平面直角坐标系中,O为坐标原点,A点的坐标为(18,0),B点的坐标为(0,24).(1)求AB的值;(2)点C在OA上,且BC平分∠OBA,求点C的坐标;(3)在(2)的条件下,点M在第三象限,点D为y轴上的一个点,连接DM交x轴于点H,连接CM,点F为BC的中点,点E为AD的中点,AD与BC交于点G,点H为DM的中点,当∠MCG-∠DGF=∠OAB,且AD=CM时,求线段EF的长.14.若△ABC和△ADE均为等腰三角形,且AB=AC=AD=AE,当∠ABC和∠ADE互余时,称△ABC 与△ADE互为“底余等腰三角形”,△ABC的边BC上的高AH叫做△ADE的“余高”.(1)如图1,△ABC与△ADE互为“底余等腰三角形”.①若连接BD,CE,判断△ABD与△ACE是否互为“底余等腰三角形”:_______ (填“是”或“否”);②当∠BAC=90°时,若△ADE的“余高”AH DE=_______;③当0°<∠BAC<180°时,判断DE与AH之间的数量关系,并证明;(2)如图2,在四边形ABCD中,∠ABC=60°,DA⊥BA,DC⊥BC,且DA=DC.①画出△OAB与△OCD,使它们互为“底余等腰三角形”;②若△OCD的“余高”长为a,则点A到BC的距离为_______(用含a的式子表示).①如图1,连接BD 、CE ,∵AB AC AD AE ===,∴A ABC CB =Ð∠,ADE AED Ð=Ð,ABD Ð∵90ABC ADE Ð+Ð=°,∴90ACB AED Ð+Ð=°,∵四边形BCDE 的内角和为360°,∴(3609090)290ABD AEC Ð+Ð=°-°-°¸=∴ABD △与ACE △互为“底余等腰三角形”,①如图2,连接BD ,取BD 中点为点∵DA BA ^,DC BC ^,∴BAD V ,BCD △都是直角三角形,∴OA OB OD OC ===,在Rt BAD V 与Rt BCD △中,AD CD BD BD =ìí=î,∴Rt BAD Rt BCD @△△,115.如图1,点,A 点B 的坐标分别为()(),0,0,a b ,且4,b =将线段BA 绕点B 逆时针旋转90o 得到线段BC .(1)直接写出=a __,b =__ _,点C 的坐标为 _;(2)如图2,作CD x ^轴于点,D 点M 是BD 的中点,点N 在OBD V 内部,,ON DN ^求证:.ON DN +=(3)如图3,点P 是第二象限内的一个动点,若90,OPB Ð=°求线段CP 的最大值.1a \=-,4b \=,\点()1,0A -,点()0,4B ,如图,过点C 作CE BO ^于E ,Q 将线段BA 绕点B 逆时针旋转90°得到线段BC .BA BC \=,90ABC Ð=°,90ABO CBE \Ð+Ð=°,且90ABO BAO Ð+Ð=°,BAO CBE \Ð=Ð,且AB BC =,90AOB CEB Ð=Ð=°,()ABO BCE AAS \D @D 1BE AO \==,4BO CE ==,3OE \=,\点()4,3C 故答案为:1-,4,()4,3(2)连接OM ,作MF MN ^交DN 于F ,CD x ^Q 轴,4OD BO \==,45MDO \Ð=°,Q 点M 是BD 的中点,OM MD \=,90OMD OND Ð=°=Ð,NOM MDN \Ð=Ð,。
勾股定理典型分类练习题
勾股定理典型分类练习题题型一:直接考查勾股定理例1.在ABCC∠=︒.∆中,90⑴已知6BC=.求AB的长AC=,8⑵已知17AC=,求BC的长AB=,15变式1:已知,△ABC中,AB=17cm,BC=16cm,BC边上的中线AD=15cm,试说明△ABC是等腰三角形。
变式2:已知△ABC的三边a、b、c,且a+b=17,ab=60,c=13, △ABC是否是直角三角形?你能说明理由吗?题型二:利用勾股定理测量长度例1如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米?例2如图,水池中离岸边D点1.5米的C处,直立长着一根芦苇,出水部分BC的长是0.5米,把芦苇拉到岸边,它的顶端B恰好落到D点,并求水池的深度AC.题型三:勾股定理和逆定理并用例3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 41那么 △DEF 是直角三角形吗?为什么题型四:旋转中的勾股定理的运用:例4、如图,△ABC 是直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△ACP ′重合,若AP=3,求PP ′的长。
变式:如图,P 是等边三角形ABC 内一点,PA=2,PB=23,PC=4,求△ABC 的边长.分析:利用旋转变换,将△BPA 绕点B 逆时针选择60°,将三条线段集中到同一个三角形中,根据它们的数量关系,由勾股定理可知这是一个直角三角形.题型五:翻折问题例5:如图,矩形纸片ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上一点,将矩形纸片沿 AE 折叠,点B 恰好落在CD 边上的点G 处,求BE 的长.变式:如图,已知长方形ABCD 中AB=8cm,BC=10cm,在边CD 上取一点E ,将△ADE 折叠使点D 好落在BC 边上的点F ,求CE 的长.PAPCBCA BD E 1015题型6:勾股定理在实际中的应用:例6、如图,公路MN 和公路PQ 在P 点处交汇,点A 处有一所中学,AP=160米,点A 到 公路MN 的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉 机在公路MN 上沿PN 方向行驶时,学校是否会受到影响,请说明理由;如果受到影响, 已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?变式:如图,铁路上A 、B 两点相距25km, C 、D 为两村庄,若DA=10km,CB=15km ,DA ⊥AB 于A ,CB ⊥AB 于B ,现要在AB 上建一个中转站E ,使得C 、D 两村到E 站的距离相等.求E 应建在距A 多远处?关于最短性问题例5、如右图1-19,壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A 处, 它发现在自己的正上方油罐上边缘的B 处有一只害虫,便决定捕捉这只害虫,为了不 引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行 突然袭击.结果,壁虎的偷袭得到成功,获得了一顿美餐.请问壁虎至少要爬行多少路 程才能捕到害虫?(π取3.14,结果保留1位小数,可以用计算器计算)选择题1.在三边分别为下列长度的三角形中,不是直角三角形的是( ) A.5,12,13 B.4,5,7 C.2,3,5 D.1,2,32.在Rt △ABC 中,∠C=90,周长为60,斜边与一条直角边之比为13∶5,则这个三角形三边长分别是( )A.5、4、3B.13、12、5C.10、8、6D.26、24、103.下列各组线段中的三个长度①9、12、15;②7、24、25;③32、42、52;④3a 、4a 、5a (a>0);⑤m 2-n 2、2mn 、m 2+n 2(m 、n 为正整数,且m>n )其中可以构成直角三角形的有( ) A 、5组; B 、4组; C 、3组; D 、2组 4.下列结论错误的是( )A 、三个角度之比为1∶2∶3的三角形是直角三角形;B 、三条边长之比为3∶4∶5的三角形是直角三角形;C 、三条边长之比为8∶16∶17的三角形是直角三角形;D 、三个角度之比为1∶1∶2的三角形是直角三角形。
《勾股定理》练习题及答案
《勾股定理》练习题测试1 勾股定理(一)课堂学习检测一、填空题1.若一个直角三角形的两边长分别为12和5,则此三角形的第三边长为______.2.甲、乙两人同时从同一地点出发,已知甲往东走了4km ,乙往南走了3km ,此时甲、乙两人相距______km .3.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了______m 路,却踩伤了花草.4.如图,有两棵树,一棵高8m ,另一棵高2m ,两树相距8m ,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______m .二、选择题5.如图,一棵大树被台风刮断,若树在离地面3m 处折断,树顶端落在离树底部4m 处,则树折断之前高( ).(A)5m (B)7m (C)8m (D)10m6.如图,从台阶的下端点B 到上端点A 的直线距离为( ). (A)212 (B)310 (C)56 (D)58三、解答题7.在一棵树的10米高B 处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处;另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高多少米?8.在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2米,求这里的水深是多少米?综合、运用、诊断一、填空题9.如图,一电线杆AB 的高为10米,当太阳光线与地面的夹角为60°时,其影长AC 为______米.10.如图,有一个圆柱体,它的高为20,底面半径为5.如果一只蚂蚁要从圆柱体下底面的A 点,沿圆柱表面爬到与A相对的上底面B点,则蚂蚁爬的最短路线长约为______(取3)二、解答题:11.长为4 m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了______m.12.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元?9 10 11 12拓展、探究、思考13.如图,两个村庄A、B在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD =3千米,CD=3千米.现要在河边CD上建造一水厂,向A、B两村送自来水.铺设水管的工程费用为每千米20000元,请你在CD上选择水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用W.测试2 勾股定理(三)学习要求熟练应用勾股定理解决直角三角形中的问题,进一步运用方程思想解决问题.课堂学习检测一、填空题1.在△ABC中,若∠A+∠B=90°,AC=5,BC=3,则AB=______,AB边上的高CE=______.2.在△ABC中,若AB=AC=20,BC=24,则BC边上的高AD=______,AC边上的高BE=______.3.在△ABC中,若AC=BC,∠ACB=90°,AB=10,则AC=______,AB边上的高CD=______.4.在△ABC中,若AB=BC=CA=a,则△ABC的面积为______.5.在△ABC中,若∠ACB=120°,AC=BC,AB边上的高CD=3,则AC=______,AB=______,BC边上的高AE=______.二、选择题6.已知直角三角形的周长为62+,斜边为2,则该三角形的面积是( ). (A)41 (B)43 (C)21 (D)17.若等腰三角形两边长分别为4和6,则底边上的高等于( ).(A)7(B)7或41 (C)24 (D)24或7三、解答题8.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为BC 和AC 的中点,AD =5,BE =102求AB 的长.9.在数轴上画出表示10-及13的点.综合、运用、诊断10.如图,△ABC 中,∠A =90°,AC =20,AB =10,延长AB 到D ,使CD +DB =AC +AB ,求BD 的长.11.如图,将矩形ABCD 沿EF 折叠,使点D 与点B 重合,已知AB =3,AD =9,求BE 的长.12.如图,折叠矩形的一边AD ,使点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,求EC 的长.13.已知:如图,△ABC 中,∠C =90°,D 为AB 的中点,E 、F 分别在AC 、BC上,且DE ⊥DF .求证:AE 2+BF 2=EF 2.拓展、探究、思考14.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,求AC的长是多少?15.如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,……已知正方形ABCD的面积S1为1,按上述方法所作的正方形的面积依次为S2,S3,…,S n(n为正整数),那么第8个正方形的面积S8=______,第n个正方形的面积S n=______.测试3 勾股定理的逆定理学习要求掌握勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.课堂学习检测一、填空题1.如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是______三角形,我们把这个定理叫做勾股定理的______.2.在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做____________;如果把其中一个命题叫做原命题,那么另一个命题叫做它的____________.3.分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有____________.(填序号)4.在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,①若a2+b2>c2,则∠c为____________;②若a2+b2=c2,则∠c为____________;③若a2+b2<c2,则∠c为____________.5.若△ABC 中,(b -a )(b +a )=c 2,则∠B =____________;6.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是______三角形.7.若一个三角形的三边长分别为1、a 、8(其中a 为正整数),则以a -2、a 、a +2为边的三角形的面积为______.8.△ABC 的两边a ,b 分别为5,12,另一边c 为奇数,且a +b +c 是3的倍数,则c 应为______,此三角形为______.二、选择题9.下列线段不能组成直角三角形的是( ).(A)a =6,b =8,c =10 (B)3,2,1===c b a (C)43,1,45===c b a (D)6,3,2===c b a 10.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ). (A)1∶1∶2 (B)1∶3∶4 (C)9∶25∶26(D)25∶144∶169 11.已知三角形的三边长为n 、n +1、m (其中m 2=2n +1),则此三角形( ).(A)一定是等边三角形 (B)一定是等腰三角形 (C)一定是直角三角形(D)形状无法确定 综合、运用、诊断一、解答题12.如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长.13.已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD 的面积.14.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE =CB 41,求证:AF ⊥FE .15.在B 港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?拓展、探究、思考16.已知△ABC中,a2+b2+c2=10a+24b+26c-338,试判定△ABC的形状,并说明你的理由.17.已知a、b、c是△ABC的三边,且a2c2-b2c2=a4-b4,试判断三角形的形状.18.观察下列各式:32+42=52,82+62=102,152+82=172,242+102=262,…,你有没有发现其中的规律?请用含n的代数式表示此规律并证明,再根据规律写出接下来的式子.参考答案3测试1 勾股定理(二)1.13或.119 2.5. 3.2. 4.10.5.C . 6.A . 7.15米. 8.23米. 9.⋅3310 10.25. 11..2232- 12.7米,420元. 13.10万元.提示:作A 点关于CD 的对称点A ′,连结A ′B ,与CD 交点为O .测试2 勾股定理(三)1.;343415,34 2.16,19.2. 3.52,5. 4..432a 5.6,36,33. 6.C . 7.D8..132 提示:设BD =DC =m ,CE =EA =k ,则k 2+4m 2=40,4k 2+m 2=25.AB =.1324422=+k m9.,3213,31102222+=+=图略.10.BD =5.提示:设BD =x ,则CD =30-x .在Rt △ACD 中根据勾股定理列出(30-x )2=(x +10)2+202,解得x =5.11.BE =5.提示:设BE =x ,则DE =BE =x ,AE =AD -DE =9-x .在Rt △ABE 中,AB 2+AE 2=BE 2,∴32+(9-x )2=x 2.解得x =5.12.EC =3cm .提示:设EC =x ,则DE =EF =8-x ,AF =AD =10,BF =622=-AB AF ,CF =4.在Rt △CEF 中(8-x )2=x 2+42,解得x =3. 13.提示:延长FD 到M 使DM =DF ,连结AM ,EM .14.提示:过A ,C 分别作l 3的垂线,垂足分别为M ,N ,则易得△AMB ≌△BNC ,则.172,34=∴=AC AB 15.128,2n -1.测试3 勾股定理的逆定理1.直角,逆定理. 2.互逆命题,逆命题. 3.(1)(2)(3).4.①锐角;②直角;③钝角. 5.90°. 6.直角.7.24.提示:7<a <9,∴a =8. 8.13,直角三角形.提示:7<c <17.9.D . 10.C . 11.C .12.CD =9. 13..51+14.提示:连结AE,设正方形的边长为4a,计算得出AF,EF,AE的长,由AF2+EF2=AE2得结论.15.南偏东30°.16.直角三角形.提示:原式变为(a-5)2+(b-12)2+(c-13)2=0.17.等腰三角形或直角三角形.提示:原式可变形为(a2-b2)(a2+b2-c2)=0.18.352+122=372,[(n+1)2-1]2+[2(n+1)]2=[(n+1)2+1]2.(n≥1且n为整数)。
勾股定理重难点练习题
知识结构
历史
勾股定理
定理:直角三角形两直角边的平方和等于斜边的平方. 证明:赵爽弦图、毕达哥拉斯弦图、总统证法等,
都是等面积思想.
定理:如果一个三角形两条边的平方和等于第三条边的平方,
勾股定理
证明:作那一么个这直个角三三角角形形是,直利角用三勾角股形定.理、全等证明.
任何东西只要移至该灯 5 m 及 5 m 以内时,灯就会自动发光.一个身高 1.5 m
的学生从远方走过来,走到离门_______m 处时,灯刚好发光.(门的厚度忽
略不计)
【综合应用】
13. 如图所示的一块地,已知∠ADC=90°,AD=12 m,CD=9 m,AB=39 m,BC=36m,
求这块地的面积.
请你利用图 2 给出证明过程.
(3)若动点 P 满足 PA 1 ,请直接写出 PC 的值.
PB 3
AC
20. (课本第 11 页第 5 题)给你一根长绳子,没有其他工具,你能方便地得到 一个直角吗?
5
21. (课本第 13 页“做一做”)李叔叔想要检测雕像底座正面的边 AD 和边 BC 是否分别垂直于底边 AB,但他随身只带了卷尺. (1)你能替他想办法完成任务吗? (2)李叔叔量得边 AD 的长是 30 cm,边 AB 的长是 40 cm,点 B,D 之间的 距离是 50 cm,边 AD 垂直于边 AB 吗? (3)小明随身只有一个长度为 20cm 的刻度尺,他能有办法检验边 AD 是否 垂直于边 AB 吗?边 BC 与边 AB 呢?
第 7 题图
第 8 题图
8. 如图,一只蚂蚁从长为 4,宽为 3,高为 2 的长方体纸箱(有盖)的 A 点沿
纸箱爬到 B 点,那么它所爬行的最短路程是____________.
《勾股定理》典型习题测试题专项练习
《勾股定理》典型例题(偏难)考点一:利用勾股定理求面积1、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S2、S 3,则它们之间的关系是( )A. S 1- S 2= S 3B. S 1+ S 2= S 3C. S 2+S 3< S 1D. S 2- S 3=S 12、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。
3、(难)在直线上依次摆放着七个正方形(如图4所示)。
已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是、=_____________。
考点二:在直角三角形中,已知两边求第三边1、把直角三角形的两条直角边同时扩大到原来的2倍,则斜边扩大到原来的( ) A . 2倍B . 4倍C . 6倍D . 8倍2、如果直角三角形的两直角边长分别为1n 2-,2n (n>1),那么它的斜边长是( ) A 、2nB 、n+1C 、n 2-1D 、1n 2+3、已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( ) A 、242c mB 、36 2c mC 、482c mD 、602c m4.已知x 、y 为正数,且│x 2-4│+(y 2-3)2=0,如果以x 、y 的长为直角边作一个直角三S 3S 2S1角形,那么以这个直角三角形的斜边为边长的正方形的面积为()A、5B、25C、7D、155.已知在△ABC中,AB=13cm,AC=15cm,高AD=12cm,求△ABC的周长。
(提示:两种情况)考点三:应用勾股定理在等腰三角形中求底边上的高例、如图1所示,等腰中,,是底边上的高,若,求①AD的长;②ΔABC的面积.考点四:勾股数的应用、利用勾股定理逆定理判断三角形的形状、最大、最小角的问题1、下面的三角形中:①△ABC中,∠C=∠A-∠B;②△ABC中,∠A:∠B:∠C=1:2:3;③△ABC中,a:b:c=3:4:5;④△ABC中,三边长分别为8,15,17.其中是直角三角形的个数有().A.1个 B.2个 C.3个 D.4个,则这个三角形一定是()2、若三角形的三边之比为:A.等腰三角形B.直角三角形C.等腰直角三角形D.不等边三角形3、已知a,b,c为△ABC三边,且满足(a2-b2)(a2+b2-c2)=0,则它的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形4、若△ABC的三边长a,b,c满足222+++=++,试判断△ABC的形状。
勾股定理习题大全(超全)
勾股定理评估试卷(1)第一阶段1.直角三角形一直角边长为12,另两条边长均为自然数,则其周长为().(A) 30(B) 28 (C) 56 (D) 不能确定2.直角三角形的斜边比一直角边长 2 cm,另一直角边长为 6 cm.则它的斜边长(A) 4 cm (B) 8 cm (C) 10 cm (D) 12 cm3.已知一个Rt△的两边长分别为3和4,则第三边长的平方是(4.5.6.7.8. (A) 25(B) 14(C) 7 (D) 7或25等腰三角形的腰长为10,底长为12,则其底边上的高为()(A) 13 (B) 8 (C) 25 (D)64五根小木棒,其长度分别为正确的是((A)15,20,(B)将直角三角形的三条边长同时扩大同一倍数(A) 钝角三角形(B) 锐角三角形如图小方格都是边长为(A) 25(B)24,25,现将他们摆成两个直角三角形,其中72425 2015(C),得到的三角形是(C) 直角三角形1的正方形,则四边形12.5 (C) 9三角形的三边长为(a • b)2二c2• 2ab ,则这个三角形是(A)等边三角形(B)钝角三角形(C) 直角三角形(D)锐角三角形(D)等腰三角形.ABCD的面积是(D) 8.5(7//N79. △ ABC是某市在拆除违章建筑后的一块三角形空地.已知/ C=90°, AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a元计算,那么共需要资金((A) 50 a 元(B) 600 a 元(C) 1200 a 元(D)1500 a元10•如图,AB丄CD于B,A ABD和厶BCE都是等腰直角三角形,如果CD=17 BE=5,那么AC的长为((A ) 12(B ) 7 (C ) 5 (D ) 1311.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯12.在直角三角形 ABC 中,斜边AB =2,贝U AB 2+AC 2+BC 2= __________13. 直角三角形的三边长为连续偶数,则其周长为 __________________ .14. 如图,在△ ABC 中,/ C=90 , BC=3, AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是 _____________12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞 ________________ 米. 16. 如图,△ ABC 中,/ C=90°, AB 垂直平分线交 BC 于D若 BC=8 , AD=5,贝H AC 等于 ______________ . 17. 如图,四边形 ABCD 是正方形,AE 垂直于BE ,且AE =3, BE =4,阴影部分的面积是 _________ .18. 如图,所有的四边形都是正方形, 所有的三角形都是直角 三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,2C ,D 的面积之和为 ___________ cm .B 3米C 3^(第10题)、填空题(每小题 3分,24 分)(第 11 题)(第14题),地毯的长度至少需(第 17 题)15.如图,校园内有两棵树,相距等腰三角形的腰长为13,底边长为10,则顶角的平分线为 _________ .一个三角形的三边之比为5: 12: 13,它的周长为60,则它的面积是 _______ . 已知a, b, c ABC 三边,且满足(a 2— b 2)( a 2+b 2— c 2) = 0,则它的形状为( ) A. 直角三角形 B.等腰三角形 C.等腰直角三角形 D.等腰三角形或直角三角形如图,一圆柱高8cm,底面半径2cm,—只蚂蚁从点A 爬到点B 处吃食,要爬行的最 短路程(二取3)是().在 Rt △ ABC 中,斜边 AB=2 贝U AB + BC + AC= _ rRt △一直角边的长为11,另两边为自然数,则Rt △的周长为( )A 、121B 、120C 、132D 不能确定 如图,正方形网格中的△ ABC 若小方格边长为1,则厶ABC 是 () A.直角三角形B.锐角三角形C.钝角三角形 D.以上答案都不对26. 如果Rt △的两直角边长分别为n 2— 1, 2n (n >1),那么它的斜边长是( ) 2 2A 、2nB n+1C 、n — 1D n+127. 在厶ABC 中, ■ C =90 ,若a • b = 7, △ ABC 的面积等于6,则边长c=— 如图△ ABC 中, ACB =90 ,AC =12,BC =5,A^AC,BM = BC 贝U MN=下列说法正确的是( )2 2 2A. 若a 、b 、c 是厶ABC 的三边,贝U a + b = cB. 若 a 、b 、c 是 Rt △ ABC 的三边,贝U a 2+ b 2= c 2C. 若 a 、b 、c 是 Rt △ ABC 的三边,.A =90,则 a 2+ b 2= c 2D. 若 a 、b 、c 是 Rt △ ABC 的三边,.c =90,则 a 2+ b 2= c2(B ) 10cm (0 14cm (D )无法确定(A ) 20cmB一个直角三角形中,两直角边长分别为A .斜边长为253和4,下列说法正确的是(.三角形周长为25C.斜边长为5 •三角形面积为20如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC中,边长为无理数的边数是(A. 0 B如图,数轴上的点A所表示的数为x,则x2—10的立方根为()A . ,2-10B . -、、2-10C ..-2把直角三角形的两条直角边同时扩大到原来的2倍,则斜边扩大到原来的()A. 2倍 B. 4倍 C. D.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1当它把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为A . 8cmB . 10cmC . 12cmD . 14cm△ ABC中, AB= 15, AC= 13,高A— 12,则厶ABC勺周长为(A . 42B . 32C . 42 或D. 37 或33如图,直线I上有三个正方形a, b, c,若a, c的面积分别为5和11,则b的面积为()(A) 4(B) 6(C) 16 (D) 55)第二阶段一、选择题1、有六根细木棒,它们的长度分别是2、4、6 8、10、12 (单位:cm),从中取出三根首尾顺次连结搭成一个直角三角形,则这三根细木棒的长度分别为()(A)2、4、8 (B)4、8、10 (C)6、8、10 (D)8、10、122、木工师傅想利用木条制作一个直角三角形的工具,那么他要选择的三根木条的长度应符合下列哪一组数据?()A.25,48,80 B . 15, 17, 62 C . 25, 59, 74 D . 32, 60, 683、如果直角三角形的三条边2, 4, a,那么a的取值可以有()(A)0 个(B) 1 个(C) 2 个(D) 3 个4、已知直角三角形中30°角所对的直角边长是2厘米,则斜边的长是()(A)2厘米(B)4厘米(C)6厘米(D)8厘米5、如图,直角三角形三边上的半圆的面积依次从小到大记作S1、S2、S3,则S1、S2、S3之间的关系是((A) S1 +S2 >S3 (B)S1 +S2 <S3(C) S| +S2 =S3 (D)S1 2+S2 2=S3 2T-fi-R 、填空题1、若直角三角形斜边长为6,则这个三角形斜边上的中线长为________ .2、如果直角三角形的两条直角边的长分别是5cm和12cm那么这个直角三角形斜边上的中线长等于cm .3、如图,CD是Rt/ABC斜边AB上的中线,若CD=4贝U AB= _______ .4、在厶ABC中,/ A:Z B:Z C= 1: 2: 3.已知BO3cm,贝U AB= _cm5、如图,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单 位:mm 计算两圆孔中心 A 和B 的距离为6如图:有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟 从一棵树的树梢飞到另一棵树的树梢,至少飞了 _________ 米.7、如图,为了求出湖两岸 A B 两点之间的距离,观测者从测点 A 、B 分别测得 / BAC= 90°, / ABC= 30°,又量得BC= 160 m 则A 、B 两点之间的距离为 m8、利用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦 图.从图中可以看到:大正方形面积二小正方形面积+四个直角三角形面积. 因而__________ + __________ .化简后即为 c = ____________ .60 *一140」第5题图8米2米8米第6题图(结果保留根号)c11、已知第一个等腰直角三角形的面积为1,以第一个等腰直角三角形的斜边为直角边画第二个等腰直角三角形,又以第二个等腰直角三角形的斜边为直角边画第三个等腰直角三角形,以此类推,第13个等腰直角三角形的面积是.12、如图,梯子AB靠在墙上,梯子的底端A到墙根0的距离为2米,梯子的顶端B到地面的距离为7米•现将梯子的底端A向外移动到A',使梯子的底端A到墙根0的距离等于3米,同时梯子的顶端B下降至B,那么BB等于1米;②大于1米;③小于1米.其中正确结论的序号是.13、观察下面各组数:(3, 4,5)、(5,12,13)、(7,24,25)、(9, 40, 41)、…,可发现:4二叮,12二曹,24二字,…,若设某组数的第一个数为k,则这组数为(k, ________ , _____ )。
勾股定理综合难题 附答案(超好 打印版)
CBA D E FCA BE D练习题1 如图,圆柱的高为10 cm ,底面半径为2 cm.,在下底面的A 点处有一只蚂蚁,它想吃到上底面上与A 点相对的B 点处,需要爬行的最短路程是多少?2 如图,长方体的高为3 cm ,底面是边长为2 cm 的正方形. 现有一小虫从顶点A 出发,沿长方体侧面到达顶点C 处,小虫走的路程最短为多少厘米? 答案AB=5ACB3、一只蚂蚁从棱长为1的正方体纸箱的B’点沿纸箱爬到D 点,那么它所行的最短路线的长是_____________。
4、如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,•长BC•为10cm .当小红折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).想一想,此时EC 有多长?•5.如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,则EB 的长是( ). A .3B .4C .5D .56.已知:如图,在△ABC 中,∠C=90°,∠B=30°,AB 的垂直平分线交BC 于D ,垂足为E ,D=4cm . 求AC 的长.7、如图,有一个直角三角形纸片,两直角边AC=6,BC=8, 现将直角边AC 沿直线AD 折叠,使其落在斜边AB 上,且 与AE 重合,则CD 的长为8、如图,在矩形ABCD 中,,6=AB 将矩形ABCD 折叠,使点B 与点D 重合,C 落在C '处,若21::=BE AE ,则折 痕EF 的长为 。
9、如图,已知:点E 是正方形ABCD 的BC 边上的点,现将△DCE 沿折痕DE 向上翻折,使DC 落在对角线DB 上,则EB ∶CE =_________.BCAFE DCBAB ’C ’B ′A ′C ′DCBA D10、如图,AD 是△ABC 的中线,∠ADC =45o ,把△ADC 沿AD 对折,点C 落在C´的位置,若BC =2,则BC´=_________.11.如图1,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A.2cm B.3 cm C.4 cm D.5 cm12、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?13、如图,在△ABC 中,∠B=90,AB=BC=6,把△ABC 进行折叠,使点A 与点D 重合,BD:DC=1:2,折痕为EF , 点E 在AB 上,点F 在AC 上,求EC 的长。
八年级下册数学同步练习题库:勾股定理(简答题:较难)
勾股定理(简答题:较难)1、已知如图,正方形ABCD在第一象限,边长为4,顶点A、B分别在y轴与x轴正半轴上运动,点P为正方形ABCD对角线AC、BD的交点.⑴当点A坐标为(0,2)时,求点C坐标;⑵试说明点A、O、B、P四点在同一个圆上;⑶正方形在运动过程中,直接写出线段OC的最大值.2、如图,在等腰△ABC中,AD是底边BC边上的高,点E是AD上的一点.(1)求证:△BEC是等腰三角形.(2)若AB=AC=13,BC=10,点E是AD的中点,求BE的长.3、如图,△ABC中,∠ACB=90°,AC=4,BC=3,点P是AB边上一动点.当△PCB是等腰三角形时,求AP的长度.4、在小学,我们已经初步了解到,长方形的对边平行且相等,每个角都是90°.如图,长方形ABCD中,AD=9cm,AB=4cm,E为边AD上一动点,从点D出发,以1cm/s向终点A运动,同时动点P从点B出发,以acm/s向终点C运动,运动的时间为ts.(1)当t=3时,①求线段CE的长;②当EP平分∠AEC时,求a的值;(2)若a=1,且△CEP是以CE为腰的等腰三角形,求t的值;(3)连接DP,直接写出点C与点E关于DP对称时的a与t的值.5、如图,在△ABC中,AB=AC=4,P为BC边上任意一点.(1)求证:AP2+PB·PC=16.(2)若BC边上有100个不同的点(不与点B,C重合)P1,P2,…,P100,设m i=AP i2+P i B·P i C(i=1,2,…,100).求m1+m2+…+m100的值.6、若数组3,4,5;5,12,13;7,24,25;9,40,41;……;每一组数都是某一个直角三角形的三边,称每一组数为勾股数.若奇数n•为直角三角形的一直角边,用含n的代数式表示斜边和另一直角边.并写出接下来的两组勾股数.7、【问题探究】()如图①,点是正高上的一定点,请在上找一点,使,并说明理由.()如图②,点是边长为的正高上的一动点,求的最小值.【问题解决】()如图③,、两地相距,是笔直第沿东西方向向两边延伸的一条铁路.今计划在铁路线上修一个中转站,再在间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍.那么,为使通过铁路由到再通过公路由到的总运费达到最小值,请确定中转站\的位置,并求出的长.(结果保留根号)8、如图是一块直角三角形的绿地,量得直角边BC为6cm,AC为8cm,现在要将原绿地扩充后成三角形,且扩充的部分是以AC为直角边的直角三角形,求扩充后的等腰三角形绿地的周长.9、如图,在6×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,当点P运动到点C时,两个点都停止运动.求运动时间t为多少秒时,△PQB成为以PQ为腰的等腰三角形?10、一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法.如图2,火柴盒的一个侧面ABCD倒下到AEFG的位置,连结CF,AB=a,BC=b,AC=c.(1)请你结合图1用文字和符号语言分别叙述勾股定理;(2)请利用直角梯形BCFG的面积证明勾股定理:.11、已知:l1∥l2∥l3∥l4,平行线l1与l2、l2与l3、l3与l4之间的距离分别为d1、d2、d3,且d1=d3=1,d2=2.我们把四个顶点分别在l1、l2、l3、l4这四条平行线上的四边形称为“格线四边形”.(1)如图1,正方形ABCD为“格线四边形”,则正方形ABCD的边长为.(2)矩形ABCD为“格线四边形”,其长:宽=2:1,求矩形ABCD的宽.(可用备用图)(3)如图1,EG过正方形ABCD的顶点D且垂直l1于点E,分别交l2,l4于点F,G.将∠AEG绕点A顺时针旋转30°得到∠AE′D′(如图2),点D′在直线l3上,以AD′为边在E′D′左侧作菱形AB′C′D′,使B′,C′分别在直线l2,l4上,求菱形AB′C′D′的边长.11、(本题12分)如图,在平面直角坐标系xOy中,一次函数(m为常数)的图象与x轴交于点A(-3,0),与y轴交于点C,以直线x=1为对称轴的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)经过A、C两点,并与x轴的正半轴交于点B(1) 求m的值及抛物线的函数表达式;(2) 是否存在抛物线上一动点Q,使得△ACQ是以AC为直角边的直角三角形?若存在,求出点Q的横坐标;若存在,请说明理由;(3) 若P是抛物线对称轴上一动点,且使△ACP周长最小,过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试问是否为定值,如果是,请求出结果,如果不是请说明理由. (参考公式:在平面直角坐标之中,若A((x1,y1),B(x2,y2),则A,B两点间的距离为)12、(本题8分)如图,轴于点,,反比例函数与OA、AB分别相交于点D、C,且点D为OA的中点.(1)求反比例函数的解析式;(2)过点B的直线与反比例函数图象交于第三象限内一点F,求四边形的面积.14、如图,书桌上的一种新型台历和一块主板AB、一个架板AC和环扣(不计宽度,记为点A)组成,其侧面示意图为△ABC,测得AC⊥BC,AB=5cm,AC=4cm,现为了书写记事方便,须调整台历的摆放,移动点C至C′,当∠C′=30°时,求移动的距离即CC′的长(或用计算器计算,结果取整数,其中=1.732, =4.583)15、已知:如图①,在平面直角坐标系xOy中,A(0,5),C(,0),AOCD为矩形,AE垂直于对角线OD于E,点F是点E关于y轴的对称点,连AF、OF.(1)求AF和OF的长;(2)如图②,将△OAF绕点O顺时针旋转一个角α(0°<α<180°),记旋转中的△OAF为△OA′F′,在旋转过程中,设A′F′所在的直线与线段AD交于点P,与线段OD交于点Q,是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时点P坐标;若不存在,请说明理由.16、矩形ABCD的对角线相交于点O,AC=,CD=1,(1)尺规作图:作∠ABC的平分线交AD于点E,连结CE;(2)判断线段BE与CE的关系,并证明你的判断.17、如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上,且AB=12cm(1)若OB=6cm.①求点C的坐标;②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;(2)点C与点O的距离的最大值= cm.18、在△ABC中,AB=AC,∠BAC=2∠DAE=2α.(1)如图1,若点D关于直线AE的对称点为F,求证:△ADF∽△ABC;(2)如图2,在(1)的条件下,若α=45°,求证:DE2=BD2+CE2;(3)如图3,若α=45°,点E在BC的延长线上,则等式DE2=BD2+CE2还能成立吗?请说明理由.19、(本题满分12分)已知:点E为AB边上的一个动点.(1)如图1,若△ABC是等边三角形,以CE为边在BC的同侧作等边△DEC ,连结AD.试比较∠DAC与∠B的大小,并说明理由;(2)如图2,若△ABC中,AB=AC,以CE为底边在BC的同侧作等腰△DEC ,且△DEC∽△ABC,连结AD.试判断AD与BC的位置关系,并说明理由;(3)如图3,若四边形ABCD是边长为2的正方形,以CE为边在BC的同侧作正方形ECGF.①试说明点G一定在AD的延长线上;②当点E在AB边上由点B运动至点A时,点F随之运动,求点F的运动路径长.20、(本题满分8分)如图,在△ABC中,CA=CB,以BC为直径的圆⊙O交AC于点G,交AB于点D,过点D作⊙O的切线,交CB的延长线于点E,交AC于点F.(1)求证:DF⊥AC;(2)如果⊙O的半径为5,AB=12,求cos E.21、如图,△ABC中,BE平分∠ABC交AC边于点E,过点E作DE∥BC交AB于点D,(1)求证:△BDE为等腰三角形;(2)若点D为AB中点,AB=6,求线段BC的长;(3)在(2)条件下,若∠BAC=600,动点P从点B出发,以每秒1个单位的速度沿射线BC运动,当△PBE为等腰三角形时t的值(请直接写出).22、如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC.(1)求证:∠PCB+∠BAP=180º.(温馨提示过P作PD⊥BA交于D点)(2)若BC=12cm,AB=6cm,PA=5cm,求BP的长.23、在平面直角坐标系中,A,B 点的坐标分别为(0,4),(-4,0) ,点坐标为,点是射线BO 上的动点,满足BE=1.5OP ,以,为邻边作PEOQ.(1)当m=2时,求出PE的长度;(2)当m﹥0时,是否存在m的值,使得PEOQ的面积等于△ABO面积的,若存在求出m的值,若不存在,请说明理由;(3)当点Q在第四象限时,点Q关于E点的对称点为Q′,点Q ′刚好落在AB上时,求m的值(直接写出答案).24、(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE,易证△BCE≌△ACD.则①∠BEC=______°;②线段AD、BE之间的数量关系是______.(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A、D、E在同一直线上,若AE=15,DE=7,求AB的长度.(3)探究发现:如图3,P为等边△ABC内一点,且∠APC=150°,且∠APD=30°,AP=5,CP=4,DP=8,求BD的长.25、如图,将边长为15的正方形OEFP置于直角坐标系中,OE、OP分别与x轴、y轴的正半轴重合,边长为的等边△ABC的边BC垂直于x轴,△ABC从点A与点O重合的位置开始,以每秒1个单位长的速度先向右平移,当BC边与直线EF重合时,继续以同样的速度向上平移,当点C与点F重合时,△ABC停止移动.设运动时间为x秒,△PAC的面积为y.(1)当x为何值时,P、A、B三点在同一直线上,求出此时A点的坐标;(2)在△ABC向右平移的过程中,当x分别取何值时,y取最大值和最小值?最大值和最小值分别是多少?(3)在△ABC向上移动的过程中,当x分别取何值时,y取最大值和最小值?最大值和最小值分别是多少?.26、如图,在中,,点在上,,过点作,垂足为,经过,,三点.Ⅰ求证:是的直径;Ⅱ判断与的位置关系,并加以证明;Ⅲ若的半径为,,则 = .(只填结果)27、在△ABC中,AB=AC,∠BAC=2∠DAE=2α.(1)如图1,若点D关于直线AE的对称点为F,求证:△ADF∽△ABC;(2)如图2,在(1)的条件下,若α=45°,求证:DE2=BD2+CE2;(3)如图3,若α=45°,点E在BC的延长线上,则等式DE2=BD2+CE2还能成立吗?请说明理由.28、如图,在△ABC中,∠B=45°,AD⊥BC于点D,以D为圆心DC为半径作⊙D交AD于点G,过点G 作⊙D的切线交AB于点F,且F恰好为AB中点.(1)求tan∠ACD的值.(2)连结CG并延长交AB于点H,若AH=2,求AC的长.29、如图,菱形OABC的边OC在x轴正半轴上,点B的坐标为(8,4).(1)请求出菱形的边长;(2)若反比例函数经过菱形对角线的交点D,且与边BC交于点E,请求出点E的坐标.30、已知是一段圆弧上的两点,有在直线的同侧,分别过这两点作的垂线,垂足为,是上一动点,连结,且.(1)如图①,如果,且,求的长.(2)(i)如图②,若点E恰为这段圆弧的圆心,则线段之间有怎样的等量关系?请写出你的结论并予以证明.(ii)再探究:当分别在直线两侧且,而其余条件不变时,线段之间又有怎样的等量关系?请直接写出结论,不必证明.31、在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm,现有动点P从点A出发,沿AC向点C方向运动,动点Q从点C出发,沿线段CB也向点B方向运动,如果点P的速度是4cm/秒,点Q的速度是2cm/秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动.设运动时间为t秒.求:(1)当t=3秒时,这时,P,Q两点之间的距离是多少?(2)若△CPQ的面积为S,求S关于t的函数关系式.(3)当t为多少秒时,以点C,P,Q为顶点的三角形与△ABC相似?32、已知三个全等的等边三角形如图1所示放置,其中点B、C、E在同一直线上,(1)写出两个不同类型的结论;(2)连接BD,P为BD上的动点(D点除外),DP绕点D逆时针旋转60º到DQ,如图2,连接PC,QE,①判断CP与QE的大小关系,并说明理由;②若等边三角形的边长为2,连接AP,在BD上是否存在点P,使AP+CP+DP的值最小,并求最小值.33、如图所示,已知四边形OABC是菱形,OC在x轴上,B(18,6),反比例函数(k≠0)的图象经过点A,与OB交于点E.(1)求出k;(2)求OE:EB;34、如图,已知四边形OABC是菱形,OC在x轴上,B(18,6),反比例函数y= (k≠0)的图象经过点A,与OB交于点E.(1)求出k的值;(2)求OE∶EB的值.35、如图,矩形ABCD的顶点AB在x轴上,点D的坐标为(3,4),点E在边BC上,△CDE沿DE翻折后点C恰好落在x轴上点F处,若△ODF为等腰三角形,点C的坐标为_______.36、在△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如图1,则有;若△ABC为锐角三角形时,小明猜想:,理由如下:如图2,过点A作AD⊥CB于点D,设CD=x.在Rt△ADC 中,,在Rt△ADB中,,∴.∵a>0,x>0,∴2ax>0,∴,∴当△ABC为锐角三角形时.所以小明的猜想是正确的.(1)请你猜想,当△ABC为钝角三角形时,与的大小关系.(2)温馨提示:在图3中,作BC边上的高.(3)证明你猜想的结论是否正确.37、如图,在△ABC中,点D为BC上一点,过A,B,D三点作⊙O,AE是⊙O的直径,AC是⊙O的切线,AD=DC,连结DE.(1)求证:AB=AC;(2)若,AC=,求△ADE的周长.38、如图,在Rt△ABC中,∠B=90°,BC=5,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求AB,AC的长;(2)求证:AE=DF;(3)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(4)当t为何值时,△DEF为直角三角形?请说明理由.39、如图,在△ACD中,AD=9,CD=,△ABC中,AB=AC.若∠CAB=60°,∠ADC=30°,在△ACD外作等边△ADD′①求证:BD=CD′②求BD的长。
勾股定理综合性难题(习题)
勾股定理复习1、直角三角形的面积为S ,斜边上的中线长为d ,那么这个三角形周长为〔 〕〔A 〕22d S d ++ 〔B 〕2d S d -- 〔C 〕222d S d ++ 〔D 〕22d S d ++2.如图,A 、B 两个村子在河CD 的同侧,A 、B 两村到河的距离分别为AC=1km ,BD=3km ,CD=3km ,现在河边CD 上建一水厂向A 、B 两村输送自来水,铺设水管的费用为20000元/千米,请你在CD 选择水厂位置O ,使铺设水管的费用最省,并求出铺设水管的总费用F 。
3.△ABC 中,BC a =,AC b =,AB c =,假设∠C=90°,如图〔1〕,根据勾股定理,那么222c b a =+,假设△ABC 不是直角三角形,如图〔2〕和图〔3〕,请你类比勾股定理,试猜测22b a +与2c 的关系,并证明你的结论.4.如图,A 市气象站测得台风中心在A 市正东方向300千米的B 处,以107 千米/时的速度向北偏西60°的BF 方向移动,距台风中心200•千米范围内是受台风影响的区域. 〔1〕A 市是否会受到台风的影响?写出你的结论并给予说明; 〔2〕如果A 市受这次台风影响,那么受台风影响的时间有多长?课堂练习:1、将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如下图,设筷子露在杯子外面的长度为hcm,那么h的取值范围是〔〕.A.h≤17cm B.h≥8cm C.15cm≤h≤16cm D.7cm≤h≤16cm2 如图,:,,于P. 求证:.3 :如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求:四边形ABCD的面积。
4.一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?【答案】由于厂门宽度是否足够卡车通过,只要看当卡车位于厂门正中间时其高度是否小于CH.如下图,点D在离厂门中线0.8米处,且CD⊥AB,与地面交于H.解:OC=1米(大门宽度一半),OD=0.8米〔卡车宽度一半〕在Rt△OCD中,由勾股定理得:CD===0.6米,CH=0.6+2.3=2.9〔米〕>2.5〔米〕.因此高度上有0.4米的余量,所以卡车能通过厂门.5、如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m。
勾股定理分类习题(较难)
勾股定理分类习题(较难)一、判断直角三角形问题:1、.满足下列条件的△ABC ,不是直角三角形的是,不是直角三角形的是A.b 2=c 2-a 2 B.a ∶b ∶c =3∶4∶5 C.∠C =∠A -∠B D.∠A ∶∠B ∶∠C =12∶13∶15 2、若一个三角形的三边长的平方分别为:32,42,x 2则此三角形是直角三角形的x 2的值是的值是A.42 B.52 C.7 D.52或7 3、如果△ABC 的三边分别为m 2-1,2 m ,m 2+1(m >1)那么那么A.△ABC 是直角三角形,且斜边长为m 2+1 B.△ABC 是直角三角形,且斜边长2 为mC.△ABC 是直角三角形,但斜边长需由m 的大小确定的大小确定D.△ABC 不是直角三角形不是直角三角形 4、已知Rt Rt△△ABC 中,∠中,∠C=90C=90C=90°,若°,若a+b=14cm a+b=14cm,,c=10cm c=10cm,则,则Rt Rt△△ABC 的面积是(的面积是( ) A 、24cm 2B 、36cm 2C 、48cm 2D 、60cm 25、下面几组数、下面几组数::①7,8,9;7,8,9;②②12,9,15;12,9,15;③③m 2+ n 2, m 2– n 2, 2mn(m,n 均为正整数均为正整数,m ,m >n);n);④④2a ,12+a ,22+a .其中能组成直角三角形的三边长的是能组成直角三角形的三边长的是( )A.( )A.( )A.①②①②①②;B.;B.;B.①③①③①③;C.;C.;C.②③②③②③;D.;D.;D.③④③④③④6、 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是则这个三角形是( ) ( )A. A. 等边三角形等边三角形等边三角形;B. ; B. ; B. 钝角三角形钝角三角形钝角三角形;C. ; C. ; C. 直角三角形直角三角形直角三角形;D. ; D. ; D. 锐角三角形锐角三角形锐角三角形. .7、已知0)10(862=-+-+-z y x , ,则由此则由此z y x ,,为三边的三角形是为三边的三角形是 三角形三角形三角形. .8、阅读下列解题过程:已知a ,b ,c 为△ABC 的三边,且满足a 2c 2-b 2c 2=a 4-b 4,试判定△ABC 的形状. 解:∵解:∵ a 2c 2-b 2c 2=a 4-b 4 ①∴c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2) ② ∴c 2=a 2+b 2 ③ ∴△ABC 是直角三角形是直角三角形问:上述解题过程,从哪一步开始出现错误?请写出该步的序号:_________;错误的原因为_________;本题正确的结论是_________. 9、已知a ,b ,c 为△ABC 三边,且满足a 2+b 2+c 2+338=10a +24b +26c .试判断△ABC 的形状. 10、若△ABC 的三边长为a ,b ,c ,根据下列条件判断△ABC 的形状. (1)a 2+b 2+c 2+200=12a +16b +20c (2)a 3-a 2b +ab 2-ac 2+bc 2-b 3=0 CADB11、已知,△ABC 中,AB=17cm ,BC=16cm ,BC 边上的中线AD=15cm ,试说明△ABC 是等腰三角形。
勾股定理练习题(含答案)
勾股定理练习题一、基础达标:1. 下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B 。
若 a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt△ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt△ABC 的三边, 90=∠C ,则a 2+b 2=c 2. 2。
Rt △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+B 。
c b a >+C 。
c b a <+ D. 222c b a =+3. 如果Rt △的两直角边长分别为k 2-1,2k (k 〉1),那么它的斜边长是( )A 、2kB 、k+1C 、k 2-1D 、k 2+1 4。
已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形 5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定6. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( )A .42B .32C .42 或 32D .37 或 337。
※直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( )(A 2d (B d(C )2d (D )d8、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( )A :3 B :4 C :5 D :79.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为( )A .17B 。
3C 。
17或3D 。
以上都不对10.已知a 、b 、c 是三角形的三边长,如果满足2(6)100a c --=则三角形的形状是( )A :底与边不相等的等腰三角形 B:等边三角形C:钝角三角形 D :直角三角形11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 .12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__。
勾股定理培优练习(较难)
1.在△ABC中,∠C=90°,AB=7,BC=5,边AC长为2.若直角三角形的两直角边长为a,b,且满足+ =0,则该直角三角形的斜边长为3.图1是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的面积分别为2,5,1,2.则最大的正方形E的面积是图1 图2 图3 图4 图5 4.如图2在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为5.如图3,在四边形ABCD中,AB∥DC,∠B=90°,连结AC,∠DAC=∠BAC.如果BC=4cm,AD=5cm,那么AB=cm6.如图4,在△ABC中,AB =AC=5,BC=8,D是线段BC上的动点(不含端点B.C).若线段AD长为正整数,则点D的个数共有个7.如图5,圆柱形容器高为1.2m,底面周长为1m.在容器内壁离容器底部0.3m的点B处有一只蚊子,此时一只壁虎正好在容器的外壁、离容器上沿0.3m与蚊子相对的点A处.那么壁虎捕捉到蚊子爬行的最短路程为m. (容器厚度忽略不计)8.如图6,勾股定理是几何中的一个重要定理.在我国古算书中就有"若勾三,股四,则弦五"的记载. 如图6①是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理. 图②是由图①放入矩形内得到的,若∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为9.如图7.折叠长方形纸片ABCD,使点B落在AD上的点E处,折痕的两端点分别在AB,BC上(含端点) ."AB=6,BC=10,设AE=x,则x的取值范围是10 如图8,点E在正方形ABCD内,∠AEB = 90°,AE=6,BE=8,则阴影部分的面积是()(A) 48 (B)60 (C) 76 D.8011.如图9,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=.在直线a上找一点M,在直线b上找一点N,满足MN⊥a,且AM十MN十NB的长度和最短,此时AM+NB等于()A 6 B 8 C 10 D 12图6 图7 图8 图912.如图10,在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB和直线MN,点A,B,M,N均在小正方形的顶点上(1)在方格纸中画四边形ABCD(四边形的各顶点均在小正方形的顶点上),使四边形ABCD是以直线MN为对称轴的轴对称图形,点A的对称点为点D,点B的对称点为点C.(2 )请直接写出四边形ABCD的周长.13,如图11,Rt△ABC中.∠C=90°,AD平分∠CAB,DE⊥AB于点E ,若AC=6,BC=8.(1)求DE的长.(2)求△ABD的面积.14.在△ABC中,AB=AC=5,BC= 6,以AC为一边作正方形ACDE,过点D作DF⊥B C交直线BC于点F,连结AF,请你画出图形,求出AF的长,并画出体现解法的辅助线.。
勾股定理练习题及答案(共6套)
勾股定理课时练(1)1. 在直角三角形ABC 中,斜边AB=1,则AB 222AC BC ++的值是( )A.2B.4C.6D.82.如图18-2-4所示,有一个形状为直角梯形的零件ABCD ,AD ∥BC ,斜腰DC 的长为10 cm ,∠D=120°,则该零件另一腰AB 的长是______ cm (结果不取近似值).3. 直角三角形两直角边长分别为5和12,则它斜边上的高为_______.4.一根旗杆于离地面12m 处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m ,旗杆在断裂之前高多少m ?5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是 米.6.,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米?7. 如图所示,无盖玻璃容器,高18cm ,底面周长为60cm,在外侧距下底1cm 的点C 处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm 的F 处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度.8. 一个零件的形状如图所示,已知AC=3cm ,AB=4cm ,BD=12cm 。
求CD 的长.9. 如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB 的长.4km 的A 处牧马,而他正位于北7km 处,他想把他的马牵到小河边去饮 5m,长13m ,宽2m 的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?12. 甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗? 第一课时答案:1.A ,提示:根据勾股定理得122=+AC BC ,所以AB222AC BC ++=1+1=2;2.4,提示:由勾股定理可得斜边的长为5m ,而3+4-5=2m ,所以他们少走了4步.3.1360,提示:设斜边的高为x ,根据勾股定理求斜边为1316951222==+ ,再利用面积法得,1360,132112521=⨯⨯=⨯⨯x x ;4. 解:依题意,AB=16m,AC=12m ,,由勾股定理,2222201216=+=,m ), 32m 高. 6. ,AC=4000米,∠C=90°,AB=5000米,由勾股定理得BC=30004000500022=-(米),所以飞机飞行的速度为5403600203=(千米/小时)7. 解:将曲线沿AB 展开,如图所示,过点C 作在R 90=,EF=18-1-1=16(cm ), CE=)(3060.21cm =⨯,由勾股定理,得CF=)(3416302222cm EF CE =+=+ABC 中,根据勾股定理,得 在直角三角形CBD 中,根据勾股定理,得CD 2=BC 2+BD 2=25+122=169,所以CD=13. 9. 解:延长BC 、AD 交于点E.(如图所示) ∵∠B=90°,∠A=60°,∴∠E=30°又∵CD=3,∴CE=6,∴BE=8,设AB=x ,则AE=2x ,由勾股定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理分类习题(较难)
一、判断直角三角形问题:
1、.满足下列条件的△ABC ,不是直角三角形的是
A.b 2=c 2-a 2
B.a ∶b ∶c =3∶4∶5
C.∠C =∠A -∠B
D.∠A ∶∠B ∶∠C =12∶13∶15 2、若一个三角形的三边长的平方分别为:32,42,x 2则此三角形是直角三角形的x 2的值是
A.42
B.52
C.7
D.52或7
3、如果△ABC 的三边分别为m 2-1,2 m ,m 2+1(m >1)那么
A.△ABC 是直角三角形,且斜边长为m 2+1
B.△ABC 是直角三角形,且斜边长2 为m
C.△ABC 是直角三角形,但斜边长需由m 的大小确定
D.△ABC 不是直角三角形 4、已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( ) A 、24cm 2
B 、36cm 2
C 、48cm 2
D 、60cm 2
5、下面几组数:①7,8,9;②12,9,15;③m 2
+ n 2
, m 2
– n 2
, 2mn(m,n 均为正整数,m >n);④2
a ,12
+a ,22
+a .其中能组成直角三角形的三边长的是( )A.①②;B.①③;C.②③;D.③④ 6、 三角形的三边长为ab c b a 2)(2
2
+=+,则这个三角形是( )
A. 等边三角形;
B. 钝角三角形;
C. 直角三角形;
D. 锐角三角形. 7、已知0)10(862=-+-+-z y x ,则由此z y x ,,为三边的三角形是 三角形.
8、阅读下列解题过程:已知a ,b ,c 为△ABC 的三边,且满足a 2c 2-b 2c 2=a 4-b 4,试判定△ABC 的形状.
解:∵ a 2c 2-b 2c 2=a 4-b 4 ① ∴c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2) ② ∴c 2=a 2+b 2 ③ ∴△ABC 是直角三角形
问:上述解题过程,从哪一步开始出现错误?请写出该步的序号:_________;错误的原因为_________;本题正确的结论是_________.
9、已知a ,b ,c 为△ABC 三边,且满足a 2+b 2+c 2+338=10a +24b +26c .试判断△ABC 的形状.
10、若△ABC 的三边长为a ,b ,c ,根据下列条件判断△ABC 的形状.
(1)a 2+b 2+c 2+200=12a +16b +20c (2)a 3-a 2b +ab 2-ac 2+bc 2-b 3=0
11、已知,△ABC 中,AB=17cm ,BC=16cm ,BC 边上的中线AD=15cm ,试说明△ABC 是等腰三角形。
二、求面积问题
1、某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( ) A 、450a 元
B 、225a 元
C 、150a 元
D 、300a 元
2、已知一直角三角形的三边长都是正整数,其中斜边长13,并且周长为30,求其面积。
3、已知,如图,四边形ABCD 中,AB=3cm ,AD=4cm ,BC=13cm ,CD=12cm ,且∠A=90°,求四边形ABCD 的面积。
4、如图所示的一块地,∠ADC=90°,AD=12m ,CD=9m ,AB=39m ,BC=36m ,求这块地的面积。
5、在∆ABC 中,AB=15,AC=13,BC 边上的高AD=12,试求∆ABC 的周长。
A
B
C
D
150°
20m
30m
6、小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度。
三、折叠问题
1、已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( ) A 、6cm 2
B 、8cm 2
C 、10cm 2
D 、12cm 2
2、 如图,有一个直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?
3、已知,如图,折叠长方形(四个角都是直角,对边相等)的一边AD 使点D 落在BC 边的点F 处,已知AB = 8cm ,BC = 10 cm ,求EC 的长
四、最短距离问题
1、如图,长方体的长为15 cm ,宽为10 cm ,高为20 cm ,点B 离点C 5 cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是多少?
A
第11题图
D
E
2、如图4,一个无盖的圆柱纸盒:高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(π取3)是( )
A.20cm;
B.10cm;
C.14cm;
D.无法确定.
五、勾股定理证明问题
1、4个直角三角形拼成右边图形,你能根据图形面积得到勾股定理吗?
2、(8分)如图,在边长为c 的正方形中,有四个斜边为c 的全等直角三角形,已知其直角边长为a ,b.利用这个图试说明勾股定理?
附加题:
1. 如图在Rt ∆ABC 中,CD 是AB 边上的高,若AD=8,BD=2 ,则CD=
2、如图,在△ABC 中,AB=AC ,P 为BC 上任意一点,请用学过的知识说明:AB 2-AP 2
=PB ×PC 。
D
C
B
A
A
B
P
C
第28题图
第26题图。