工程数学考试试卷A
《工程数学-线性代数》试卷(A)
安徽矿业职业技术学院 2011-2012学年第二学期期末考试《工程数学-线性代数》试卷(A)(时间:120分钟)课程所在系部:公共课教学部 适用专业:矿井建设与相关专业 考试形式: 闭卷(闭卷/开卷) 命 题 人:马万早说明:在本卷中,T A 表示矩阵A 的转置矩阵,A*表示矩阵A 的伴随矩阵,E 是单位矩阵,|A|表示方阵A 的行列式. 1A -表示方阵A 的逆矩阵,R (A )表示矩阵A 的秩。
一、填空题 ( 每小题2分,共20分)1. 行列式任意两行互换行列式 。
2. 设D 为一个三阶行列式,第三列元素分别为-2,3,1,其余子式分别为9,6,24,则D= 。
3. 关于线性方程组的克莱姆法则结论是 。
4. n 阶矩阵A 可逆的充要条件是 。
5. 若n 阶矩阵满足2240A A E --=,则A -1= 。
6. ()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛43214321= , ()43214321⎪⎪⎪⎪⎪⎭⎫⎝⎛= 。
7. 设向量组321,,ααα线性相关,则向量组332211,,,,,βαβαβα一定线性 。
8. 设A 为三阶矩阵,若A=3,则1-A = ,*A = 。
9. n 阶可逆矩阵A 的列向量组为n αααΛ,,21,则r(n αααΛ,,21)= 。
10. 非齐次线性方程组A n m ⨯X=b 有解的充要条件是 。
二、选择题(10分,每题2分)1.1221--k k 0≠的充要条件是( )。
(a ) k ≠1(b ) k ≠3(c ) k ≠1且k ≠3(d )k ≠1或k ≠3 2. A,B,C 为n 阶方阵,则下列各式正确的是( )(a) AB=BA (b) AB=0,则A=0或B=0 (c) (A+B )(A-B )=A 2-B2(d) AC=BC 且C 可逆,则A=B3. 设A 为n 阶可逆矩阵,则下述说法不正确的是( )(a) A ,0≠ (b) 1-A 0≠ (c) r(A)=n (d) A 的行向量组线性相关4. 设矩阵A =(a ij )n m ⨯,AX=0仅有零解的充要条件是( ) (a) A 的行向量组线性无关 (b) A 的行向量组线性相关 (c) A 的列向量组线性无关 (d) A 的列向量组线性相关5. 向量组s αααΛ,,21的秩为r,则下述说法不正确的是( )(a) s αααΛ,,21中至少有一个r 个向量的部分组线性无关(b) s αααΛ,,21中任何r 个向量的线性无关部分组与s αααΛ,,21可互相线性表示 (c) s αααΛ,,21中r 个向量的部分组皆线性无关 (d)s αααΛ,,21中r+1个向量的部分组皆线性相关三、判断题(正确的划√,错误的划х,共10分,每题2分)1.1112111221222122ka ka a ak ka ka a a =。
工程数学试卷及标准答案
1.某人打靶3发,事件Ai 表示“击中i 发”,i=0,1,2,3. 那么事件A=A1∪A2∪A3表示( )。
A. 全部击中.B. 至少有一发击中.C. 必然击中D. 击中3发 2.对于任意两个随机变量X 和Y ,若E(XY)=E(X)E(Y),则有( )。
A. X 和Y 独立。
B. X 和Y 不独立。
C. D(X+Y)=D(X)+D(Y)D. D(XY)=D(X)D(Y)3.下列各函数中可以作为某个随机变量的概率密度函数的是( )。
A . 其它1||0|)|1(2)(≤⎩⎨⎧-=x x x f 。
B. 其它2||05.0)(≤⎩⎨⎧=x x fC. 0021)(222)(<≥⎪⎪⎩⎪⎪⎨⎧=--x x e x f x σμπσ D. 其它00)(>⎩⎨⎧=-x e x f x ,4.设随机变量X ~)4,(2μN , Y ~)5,(2μN , }4{1-≤=μX P P ,}5{2+≥=μY P P , 则有( )A. 对于任意的μ, P 1=P 2B. 对于任意的μ, P 1 < P 2C. 只对个别的μ,才有P 1=P 2D. 对于任意的μ, P 1 > P 25.设X 为随机变量,其方差存在,c 为任意非零常数,则下列等式中正确的是( )A .D(X+c)=D(X). B. D(X+c)=D(X)+c. C. D(X-c)=D(X)-c D. D(cX)=cD(X)6. 设3阶矩阵A 的特征值为-1,1,2,它的伴随矩阵记为A*, 则|A*+3A –2E|= 。
7.设A= ⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--10000002~011101110x ,则x = 。
8.设有3个元件并联,已知每个元件正常工作的概率为P ,则该系统正常工作的概率为 。
9.设随机变量X 的概率密度函数为其它Ax x x f <<⎩⎨⎧=002)(,则概率=≥)21(X P 。
南京理工大学(工程数学(4.0学分)(A)(18.1.5))
7. ;
8. ;
9.数量场 在点 处方向导数最大的方向为;
10.矢量场 是场。
二、(10分)已知调和函数 ,求一个解析函数 使得 ?
第页共页
南京理工大学课程考试试卷(学生考试用)
课程名称:工程数学学分:4教学大纲编号:11024001
试卷编号:A考试方式:闭卷满分分值:100考试时间:120分钟
组卷日期:2018年1月5日组卷教师(签字):审定人(签字):
三、(8分)将函数 在下列指定的圆环域内展开成洛朗(Laurent)级数
(1) ;(2) 。
八、(4分)若函数 在圆周 内解析,在圆周上连续,且
,证明:对任意的 ,都有 成立。
所有试题的答案全部写在答题纸上,否则无效!
一、填空题(每题3分,共30分)
1.复数 的三分 ,其中C是从点 沿虚轴到点 的路径;
4.映射 将z平面上区域 映射成w平面上区域;
5.幂级数 的收敛半径R=;
四、(8分)求一个将z平面上区域 映射成w平面上区域 的映射?(请画出映射前后的示意图)
五、(20分)计算下列积分
1) ;(4分)2) ;(6分)
3) ;(4分)4) 。(6分)
六、(10分)1)设 ,计算Fourier变换 。
2)求 。
七、(10分)用Laplace变换求解常微分方程的初值问题 ?
工程数学试题A及答案
工程数学试题A及答案一、选择题(每题3分,共30分)1. 函数\( f(x) = x^3 - 3x^2 + 2 \)的导数是:A. \( 3x^2 - 6x \)B. \( 3x^2 - 6x + 2 \)C. \( x^3 - 3x^2 + 2 \)D. \( 3x^2 - 6x + 3 \)答案:A2. 极限\( \lim_{x \to 0} \frac{\sin x}{x} \)的值是:A. 0B. 1C. \( \pi \)D. \( \infty \)答案:B3. 函数\( y = e^x \)的不定积分是:A. \( e^x + C \)B. \( \ln x + C \)C. \( x e^x + C \)D. \( \frac{1}{x} + C \)答案:A4. 微分方程\( y' + 2y = 0 \)的通解是:A. \( y = Ce^{-2x} \)B. \( y = Ce^{2x} \)C. \( y = C\sin(2x) \)D. \( y = C\cos(2x) \)答案:A5. 矩阵\( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \)的行列式是:A. 5B. -2C. 2D. -5答案:B6. 函数\( f(x) = x^2 \)在区间\( [1, 2] \)上的定积分是:A. 1B. 2C. 3D. 4答案:C7. 函数\( y = \ln x \)的二阶导数是:A. \( \frac{1}{x^2} \)B. \( \frac{1}{x} \)C. \( x \)D. \( x^2 \)答案:A8. 矩阵\( A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)的逆矩阵是:A. \( \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \)B. \( \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \)C. \( \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)D. \( \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \)答案:C9. 函数\( y = x^3 \)的不定积分是:A. \( \frac{x^4}{4} + C \)B. \( \frac{x^3}{3} + C \)C. \( \frac{x^2}{2} + C \)D. \( \frac{x}{3} + C \)答案:B10. 函数\( y = \sin x \)的不定积分是:A. \( \cos x + C \)B. \( \sin x + C \)C. \( -\cos x + C \)D. \( -\sin x + C \)答案:A二、填空题(每题4分,共20分)1. 函数\( f(x) = x^2 - 4x + 4 \)的极小值点是 \( x =\_\_\_\_\_ \)。
工程数学试题(A卷)参考答案(2015.6.29)
工程数学试题(A 卷)参考答案一. (1) 3 ; (2) 5,6; (3) 0,9; (4) 2321+x ; (5)3,121. 二. 解. (1) 因为2)(-+=x e x f x 在)1,0(上连续,并且(),]1,0[01)(,01)1(,01)0(∈∀>+='>-=<-=x e x f e f f x所以由零点定理和单调性知原方程在)1,0(内存在唯一实根.*x (4分) (2) 牛顿迭代格式为.,2,1,0,121 =+-+-=+k e x e x x kkx k x k k (8分) ⑶ 因为,])1,0[(0)(∈∀>=''x e x f x ,0)1()1(>''f f 所以牛顿迭代法收敛, 且收敛阶为2. (12分)三. 解. 用杜里特尔分解法求解。
按紧凑格式计算得562852137133321----- 于是得.56133,2800710321,152013001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=y U L ( 9分) 回代求解上三角形线性方程组,Ux y = 得原方程组的解为 .1,1,2123===x x x即 .)2,1,1(),,(321=x x x ( 12分)四.解. 雅可比迭代矩阵,050100100100)(1⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----=+=-αββαU L D B J 其特征方程为,01003||2=⎪⎭⎫ ⎝⎛-=-αβλλλJ B E ( 4分)J B 的谱半径,10||3)(αβρ=J B 所以J 法收敛的充要条件是3100||<αβ. (8分)赛德尔迭代矩阵,50500010100001000000000500100010)(211⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-=--αββαβαβαβααβU L D B G 其特征方程为,01003||2=⎪⎭⎫⎝⎛-=-αβλλλG B E (12分) G B 的谱半径,100||3)(αβρ=G B 所以G-S 法收敛的充要条件是3100||<αβ.(16分)五.解. 由条件得.0c o s 2,0)c o s ()0(,1c o s)0(220202==⎪⎭⎫⎝⎛='='=====ππx x x x P x P x P (3分) .2,0,0]0,0[)0()(22x f x f f x P ⎥⎦⎤⎢⎣⎡++=π ( 6分)作差商表.41)(222x x P π-= ( 9分).2,0,2612!3|s i n ||c o s)(|222⎥⎦⎤⎢⎣⎡∈⎪⎭⎫ ⎝⎛-≤⎪⎭⎫ ⎝⎛-=-πππξx x x x x x x P ( 12分) 记,2)(2⎪⎭⎫⎝⎛-=x x x g π 令,0)3()(=-='x x x g π 得.3,021π==x x 所以,54323)(max 3220πππππ=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=≤≤x g x 故.324|cos )(|max 3220ππ≤-≤≤x x P x ( 16分)六.解. (1) 取,)(,1)(10x x x ==ϕϕ 并设一次最佳平方逼近多项式为,bx a y += 则,1),(,21),(,11),(1001101000======⎰⎰⎰dx xe f xdx dx x ϕϕϕϕϕ,2),(,31),(,21),(10211021101-=====⎰⎰e dx e x f dx x x ϕϕϕϕϕ (6分)正规方程组为 ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡213121211e b a ( 8分) 解得⎩⎨⎧-=+-=.3012,166e b e a 故所求的最佳平方逼近多项式为.616)3012(e x e y -+-= ( 12分)七.解.9767267.09896158.09973978.0(21[161)(18++⨯+=≈⎰T dx x f ]8414709.0)8771925.09088516.09361556.09588510.0+++++ .9456908.0=. ( 6分))8771925.09361556.09767267.09973978.0(41[241)(14+++⨯+=≈⎰S dx x f ]8414709.0)9088516.09588510.09896158.0(2+++⨯+ =.9460833.0 ( 12分)。
工程数学本科试题及答案
工程数学本科试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是微分方程 \( y'' - y' - 2y = e^{2x} \) 的一个解?A. \( y = e^{-x} \)B. \( y = e^{2x} \)C. \( y = e^{x} \)D. \( y = e^{3x} \)2. 在复数域中,下列哪个表达式是正确的?A. \( |z|^2 = z \cdot \bar{z} \)B. \( |z|^2 = z + \bar{z} \)C. \( |z|^2 = z - \bar{z} \)D. \( |z|^2 = z / \bar{z} \)3. 对于向量 \( \mathbf{A} = (2, -3, 4) \) 和 \( \mathbf{B} = (1, 2, -1) \),它们的点积 \( \mathbf{A} \cdot \mathbf{B} \) 等于:A. 1B. 2C. 3D. 54. 在 \( z = x^2 + y^2 \) 中,如果 \( \frac{\partialz}{\partial x} = 2x \),那么 \( \frac{\partial z}{\partial y} \) 等于:A. \( 2y \)B. \( -2y \)C. \( 2x \)D. \( -2x \)5. 一个函数 \( f(x) \) 在点 \( x = a \) 处连续的充分必要条件是:A. \( \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) \)B. \( \lim_{x \to a} f(x) = f(a) \)C. \( f(a) \) 存在D. \( f(x) \) 在 \( x = a \) 处可导6. 微分方程 \( y' = y^2 \) 的解的形式是:A. \( y = Ce^x \)B. \( y = \frac{1}{Ce^x + 1} \)C. \( y = Ce^{-x} \)D. \( y = \frac{1}{Cx + 1} \)7. 傅里叶级数中的 \( a_n \) 系数是由以下哪个积分计算得出的?A. \( a_n = \frac{2}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \)B. \( a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \)C. \( a_n = \frac{2}{L} \int_{0}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \)D. \( a_n = \frac{1}{L} \int_{0}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \)8. 矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \) 的行列式 \( |A| \) 等于:A. 7B. 2C. 1D. -29. 函数 \( f(x) = x^3 - 6x^2 + 11x - 6 \) 的零点个数是:A. 1B. 2C. 3D. 410. 拉普拉斯变换 \( \mathcal{L} \{ f(t) \} \) 的定义是:A. \( \mathcal{L} \{ f(t) \} = \int_{0}^{\infty} e^{-st} f(t) dt \)B. \( \mathcal{L} \{ f(t) \} = \int_{-\infty}^{\infty} e^{-st} f(t) dt \)C. \( \mathcal。
浙江大学大一桥梁工程专业《工程数学》考试A卷及答案
第 1 页 共2页 第 1 页 共2页工程数学试卷 A适用专业: 考试日期:试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一. 填空题(每题3分,共计3⨯8=24分)1、设行列式123020001D =, 则D =2、设,9,3,A B A B ==三阶方阵有则 1AB -=3、设向量,101,121⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=βα 则αβ+=4、设向量111,0,11αβ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭则内积[],αβ=5、已知2BA B E =+,2112A ⎛⎫= ⎪-⎝⎭, 则 B =6、设矩阵A =220210⎛⎫ ⎪⎝⎭,则矩阵的秩()TR A =7. 设A 的列向量为123,,ααα,且1A =,则132,,ααα=8、设123012111D =,则111213A A A ++=二.选择题(3分⨯4=12分)1、 设α是矩阵A 对应于λ的特征向量,则1P AP -对应的特征向量为( )(A )1P α- (B )P α (C ) T P α (D ) α2、 设n 阶矩阵A 的行列式1A =,下列说法错误的是( )(A )存在B 使AB E = (B )1T A = (C )A 能相似于对角阵 (D) ()r A n = 3、设四阶方阵A ,B 有秩()4,()3R A R B ==,则()R AB =( )。
(A ) 1 (B ) 2 (C ) 3 (D ) 44、设A 为m n ⨯的矩阵,()R A n =,则非齐次线性方程组Ax b =的解为 ( ) (A )一定有唯一解(B )一定无解 (C )一定有无穷多解 (D )可能有解三. 设矩阵方程254621321X -⎡⎤⎡⎤+=⎢⎥⎢⎥⎣⎦⎣⎦,求矩阵X (8分)四、设矩阵31111311,11311113A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦求(1)行列式A ;(2)秩()R A (12分)第 2 页 共2页第 2 页 共2页五、已知向量组123423240,1,1,22100αααα⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,(1)求向量组的秩;(2)向量组的一个最大无关组;(3)将其余向量用最大无关组线性表示。
15~16_1_工程数学(1)试卷A
.
⎡5⎤
⎡−1⎤
7、设向量
u
=
⎢ ⎢
2
⎥ ⎥
与
v
=
⎢ ⎢
4
⎥ ⎥
正交,则
λ
=
.
⎢⎣−1⎥⎦
⎢⎣ λ ⎥⎦
8、矩阵
A
=
⎡4 ⎢⎣2
−3⎤ −1⎥⎦ 的特征值为
,对应的特征向量为
.
9、二次型 f (x1, x2 , x3 ) = 3x12 + x22 + 5x32 + 8x2 x3 对应的矩阵 A =
,
八、(10 分) 设 u1, u2 , u3 是两两正交的 3 维单位向量,令 A = E − 2u1u1T , 其中 E 是单位阵. (1)验证 u1, u2 , u3 是 A 的特征向量,并指出对应的特征值 λ1, λ2 , λ3 ; (2)给出正交变换 x = P y ,将二次型 f ( x) = xT Ax 化为标准形,并写出新的二次型; (3)证明 A = λ1u1u1T + λ 2u2u2T + λ3u3u3T .
的是
.
⎡ 1 −1 5 ⎤
5、设矩阵
A
=
⎢ ⎢
2
0
7
⎥ ⎥
,
则方程 Ax
= 0 的通解为
.
⎢⎣−3 −5 −3⎥⎦
6、设向量 u,v 是方程 ( A − λ E) x = b 的两个不同的解, E 是单位阵, 则 u 、 v 、 u + v 、
u − v 中一定是矩阵 A 对应特征值 λ 的特征向量为
东华大学 2015--2016 学年第一学期期末试题 A 卷
踏实学习,弘扬正气;诚信做人,诚实考试;作弊可耻,后果自负。
14~15_2_工程数学(1)试卷A
东华大学 2014--2015 学年第二学期期末试题A 卷踏实学习,弘扬正气;诚信做人,诚实考试;作弊可耻,后果自负。
考试科目 工程数学(1) 使用专业 卓越工程教师 班号____ 学号 姓名 考试教室 一 二 三 四 五 六 七 八 九 总分 试题 得分一、填空题(每小题4分,共40分).1、设ABC Δ的三个顶点分别是(1,0),(2,5),(1,3),A B C − 则ABC Δ的面积为 .2、已知2424,1236A B −⎛⎞⎛⎞==⎜⎟⎜⎟−−−⎝⎠⎝⎠,则AB = .3、若向量组123(,1,1),(1,,1),(1,1,)TTTαλαλαλ===的秩为2,则=λ . 4、设三阶矩阵A 的特征值为1,1,4,−则2A E −特征值为 ,2A E −= .5、设矩阵322232223A ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠, 则行列式A = ,伴随矩阵*A 的逆阵*1()A −= .6、设=Ax b ,其中1213A −⎛⎞=⎜⎟−⎝⎠, 12b ⎛⎞=⎜⎟⎝⎠,则=x . 7、行列式1201035001561234= . 8、设A 为43×矩阵,0≠b ,且()3R A =,则线性方程组b Ax = . (有唯一解; 有无穷多解; 无解; 可能无解)9、设111232121A ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠,则解空间{}x Ax O =的基为 ,维数为 . 10、矩阵21102043A t −⎛⎞⎜⎟=⎜⎟⎜⎟−⎝⎠的特征值为 ,又当t = 时,矩阵A 可对角化.二、(7分)已知行列式213142751D−=−,求D的第三行余子式313233,,M M M的和.三、(7分)设301111114A⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠,且2,AB A B=+用初等行变换法求矩阵.B四、(7分)确定向量312b⎛⎞⎜⎟=−⎜⎟⎜⎟⎝⎠是否为1231020,1,2110a a a⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟===−⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠的线性组合?若是,求出其表示式.五、(8分)设向量12,1⎛⎞⎜⎟=⎜⎟⎜⎟−⎝⎠α求与α正交的所有向量x y z ⎛⎞⎜⎟⎜⎟⎜⎟⎝⎠。
工程数学试卷及答案
一、 选择填空题1. 某数x 的有四位有效数字且绝对误差限是4105.0-⨯的近似值是(A ) (A )0.693 (B)0.6930 (C )0.06930 (D)0.006930 2. n 次拉格朗日插值多项式的余项是( A)(A))()!1()()(1)1(x n f x R n n n +++=ωξ (B)()()()()!n n n f R x x n ξω= (C))!1()()()1(+=+n f x R n n ξ (D)()()()!n n f R x n ξ=3. 求积公式)1()1()(11f f dx x f +-≈⎰-具有(A )次代数精度(A )1 (B )2 (C )4 (D )34. 用牛顿法计算)0(>a a n ,构造迭代公式时,下列方程不可用的是(A )(A )0)(=-≡n a x x f (B )0)(=-≡n a x x f (C )0)(=-≡nx a x f (D )01)(=-≡nx ax f 5. 由数据0051152252171 022 42......x y --- 所确定的插值多项式是次数不大于( D )的多项式.(A )二次 (B )三次 (C )四次 (D )五次 6. 在牛顿—柯特斯公式()()()()nbn i i ai f x dx b a C f x =≈-∑⎰中,当系数()n i C 有负值时,公式的稳定性不能保证,所以实际应用中,当n ( B )时的牛顿—柯特斯公式不使用。
(A )10≥ (B )8≥ (C )6≥ (D )4≥ 7. 经过点)3,2(),2,1(),1,0(C B A 的插值多项式=)(x P ( B ) 8. (A )x (B ) 1+x (C )12+x (D )12+x 9. 给定向量Tx )4,3,2(-=,则∞xx x,,21分别为( A )(A )4,29,9 (B )5,29,9 (C )4,29,5.8 (D )5,29,5.8 10. 精确值x =36.85用四舍五入保留三位有效数字的近似数为 36.9 。
工程数学考试试卷A
广东海洋大学2015—2016学年第一学期 《工程数学》课程考试试题 课程号: (2015-2016-1)-16621001x2 -163006-1√ 考试 √ A 卷 √ 闭卷 □ 考查 B 卷 □ 开卷(每题2分,共20分)1、事件表达式B A ⋂的意思是( ) (A)事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C)事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生 2、投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为( ) (A)5/18 (B)13 (C)12 (D)以上都不对 3、设随机事件A 与B 互不相容,且P(A)>0,P(B)>0,则( ) 。
(A) P (A)=1- P(B) (B) P(AB)=P(A)P(B) (C)P(B A )=1 (D) P(AB )=1 4、设随机变量X 、Y 都服从区间[0,1]上的均匀分布,则E(X+Y)= ( ) (A)1/6 (B) 1/2 (C) 1 (D)2 5、=⎰=-12z ( ) (A)2πi (B)0 (C)4πi (D)以上都不对 6、下列说法正确的是( ) (A)如果)(0z f '存在,则f (z)在z 0处解析 (B)如果u (x,y)和v(x,y)在区域D 内可微,则),(),()(y x iv y x u z f +=在区域D 内解析 (C)如果f (z)在区域D 内解析,则)(z f 在区域D 内一定不解析 (D)如果f (z)在区域D 内处处可导,则f (z)在区域D 内解析 7、解析函数f(z)的实部为u=e x siny ,根据柯西-黎曼方程求出其虚部为( )。
(A) e x cosy+C (B) -e x cosy+C (C) e -x cosy+C (D)e x siny+C 8、单位脉冲函数δ(t)的Fourier 变换为( ) (A) π[δ(ω+ω0)+ δ(ω-ω0)] (B)1(C) πj[δ(ω+ω0)+ δ(ω-ω0)] (D)1/(j ω)+ πδ(ω)9、设f(t)=cosat(其中a 为常数),则f(t)的Lapalace 变换为( )(A)1/(s 2+a) (B) 1/(s 2+a 2) (C) s/(s 2+a 2) (D)1/(s+a)10、若f(t)的Fourier 变换为F(ω),则f (t+1)的Fourier 变换为( ) 班级:姓名: 学号: 试题共 2页加白纸1张密封线GDOU-B-11-302(A)e j ωF(ω) (B)e -j ωF(ω) (C)F(ω+1) (D)F(ω-1)3、已知随机变量X 的概率密度函数为⎩⎨⎧≤≤+=其它,020,1)(x kx x f ,则k= 。
工程数学A卷答案及评分标准
临沂大学2011—2012学年度第二学期《工程数学》A 卷答案及评分标准(适用于2009级机械设计制造及其自动化专业2+2、2011 级3+2专升本学生,开卷考试,时间120分钟)一、选择题:(共10小题,每小题2分,共20分)请将下列各题正确的答案填入下表中。
二、填空题:(共10空,每空2分,共20分)1、-125 2、-2 3、2 4、4 5、13a =,0b =6、0.187、0.18、67\49、 8 三、计算题:(共5小题,第1题8分,第2、3、4题各10分,第5题12分,共50分)1、解:对系数矩阵作初等行变换,有:110011*********~001010011100010⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭得:1253540x x x x x x =--⎧⎪=-⎨⎪=⎩ 4分 令251,0x x == 得:()11,1,0,0,0Tη=- 1分 令250,1x x == 得:()11,0,1,0,1Tη=-- 1分 基础解系为12,ηη 1分 通解为1122k k ηη+ k 1,k 2为任意常数 1分2、解:(1)()1f x dx +∞-∞=⎰所以2221cx dx +-=⎰则316c =2分 (2)()()22323016E X x f x dx x dx +∞+-∞-===⎰⎰2分()()22242312165E X x f x dx x dx +∞+-∞-===⎰⎰()()()22125D XE X E X =-=⎡⎤⎣⎦ (3)()(){}12||||15P X E X D X P X ⎧⎫-<=<=⎨⎬⎩⎭ 2分3、解:()12341122112202150215~203100111104000r A αααα⎛⎫⎛⎫⎪ ⎪⎪ ⎪== ⎪ ⎪-- ⎪ ⎪⎝⎭⎝⎭4分一个最大无关组为:123,,ααα 2分41233αααα=+- 2分4、(1) 由()F x 右连续性得()()00F F +=,即0A B +=, 又由()1F +∞=得,1A =,解得1,1A B ==- 5分(2) ()22,0()0,xxe x f x F x -⎧⎪>'==⎨⎪⎩其它, 3分 (3) )2PX <<()2F F=-12ee --=- 2分5、解:(1)因为A~B ,故其特征多项式相同。
工程数学(本)
一、单项选择题1. 设2321321321=c c c b b b a a a ,则=---321332211321333c c c b a b a b a a a a (A ). A . 2- 2. 设A 是n s ⨯矩阵,B 是m s ⨯矩阵,则下列运算中有意义的是( D ).D . AB '3. 已知⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=21101210,20101B a A ,若⎥⎦⎤⎢⎣⎡=1311AB ,则=a ( B ). B . 1- 4.B A ,都是n 阶矩阵()1>n ,则下列命题正确的是 ( D ) .D .B A AB = 5. 若A 是对称矩阵,则等式(C )成立. C . A A =' 6. 若⎥⎦⎤⎢⎣⎡=5321A ,则=*A (D ). D . ⎥⎦⎤⎢⎣⎡--1325 7. 若⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=4321432143214321A ,则秩=)(A (B ). B . 1 8. 向量组10001200123012341111⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,的秩是(A ). A . 49. 向量组]532[,]211[,]422[,]321[4321'='='='=αααα的一个极大无关组可取为(B ).B .21,αα10. 向量组[][][]1,2,1,5,3,2,2,0,1321==-=ααα,则=-+32132ααα(B ).[]2,3,1-- 11. 线性方程组⎩⎨⎧=+=+013221x x x x 解的情况是(D )D . 有无穷多解12. 若线性方程组AX =0只有零解,则线性方程组AX b =(C ).C . 可能无解13. 若n 元线性方程组AX =0有非零解,则( A )成立.A . r A n ()< 14. 下列事件运算关系正确的是( A ).A . BA A B B +=15. 对于随机事件A B ,,下列运算公式( A )成立.A . )()()()(AB P B P A P B A P -+=+16. 袋中有3个红球,2个白球,第一次取出一球后放回,第二次再取一球,则两球都是红球的概率是(D ).25917. 若随机事件A ,B 满足AB =∅,则结论(B )成立.A 与B 互不相容18. 若A B ,满足(C ),则A 与B 是相互独立.C . )()()(B P A P AB P = 19. 下列数组中,(C )中的数组可以作为离散型随机变量的概率分布.163161412120. 设⎥⎦⎤⎢⎣⎡2.04.03.01.03210~X ,则=<)2(X P (B ). B .0.4 21. 随机变量)21,3(~B X ,则=≤)2(X P (D ). D . 87 22. 已知)2,2(~2N X ,若)1,0(~N b aX +,那么(C ).1,21-==b a23. 若)4,2(~N X ,Y =(C ),则Y N ~(,)01. C . 22-X24. 设n x x x ,,,21 是来自正态总体22,)(,(σμσμN 均未知)的样本,则( A )是统计量.A . 1x 25. 设x x x n 12,,, 是来自正态总体N (,)μσ2的样本,则(D )是μ无偏估计.D .321535151x x x ++ ⒈设a a a b b b c c c 1231231232=,则a a a a b a b a b c c c 123112233123232323---=(D ).D. -6 ⒉若000100002001001a a=,则a =(A )⒊乘积矩阵1124103521-⎡⎣⎢⎤⎦⎥-⎡⎣⎢⎤⎦⎥中元素c 23=(C ).C. 10 ⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是( B )⒌设A B ,均为n 阶方阵,k >0且k ≠1,则下列等式正确的是(D )⒍下列结论正确的是( A ).若A 是正交矩阵,则A -1也是正交矩阵⒎矩阵1325⎡⎣⎢⎤⎦⎥的伴随矩阵为( C ).5321--⎡⎣⎢⎤⎦⎥⒏方阵A 可逆的充分必要条件是(B) ⒐设A B C ,,均为n 阶可逆矩阵,则()ACB '=-1(D ).()B C A ---'111⒑设A B C ,,均为n 阶可逆矩阵,则下列等式成立的是(A ).()A B A AB B +=++2222⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为(C ).[,,]--'1122 ⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪(B ).有唯一解⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为( A ).A. 3⒋设向量组为αααα12341100001110101111=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,则(B )⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D ⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ).可能无解⒎以下结论正确的是(D ).齐次线性方程组一定有解⒏若向量组ααα12,,, s 线性相关,则向量组内(A )可被该向量组内其余向量线性表出.至少有一个向量 10.设A,B,P为n 阶矩阵,若等式(C )成立,则称A和B相似.B PAP =-1 ⒈A B ,为两个事件,则(B )成立.()A B B A +-⊂⒉如果(C )成立,则事件A 与B 互为对立事件.AB =∅且AB U =⒊10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中恰有1人中奖的概率为(D ).307032⨯⨯.. 4. 对于事件A B ,,命题(C )⒌某随机试验的成功率为)10(<<p p ,则在3次重复试验中至少失败1次的概率为(D ).)1()1()1(223p p p p p -+-+-6.设随机变量X B n p ~(,),且E X D X ().,().==48096,则参数n 与p 分别是(A ). A. 6, 0.87.设f x ()为连续型随机变量X 的密度函数,则对任意的a b a b ,()<,E X ()=(A ).xf x x ()d -∞+∞⎰8.在下列函数中可以作为分布密度函数的是(B )9.设连续型随机变量X 的密度函数为f x (),分布函数为F x (),则对任意的区间(,)a b ,则=<<)(b X a P ( D ).f x x ab()d ⎰10.设X 为随机变量,E X D X (),()==μσ2,当(C )时,有E Y D Y (),()==01.⒈设x x x n 12,,, 是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则(A )是统计量.x 1⒉设x x x 123,,是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则统计量(D )不是μ的无偏估计.x x x 123--1. 若0351021011=---x ,则=x (A ).A . 3 2. 已知2维向量组4321,,,αααα,则),,,(4321ααααr 至多是(B ). A 1 B 2 C 3 D 43. 设B A ,为n 阶矩阵,则下列等式成立的是(C ).B A B A '+'='+)(4. 若A B ,满足(B ),则A 与B 是相互独立.)()()(B P A P AB P =5. 若随机变量X 的期望和方差分别为)(X E 和)(X D ,则等式(D )成立.22)]([)()(X E X E X D -=1. 设A 为43⨯矩阵,B 为25⨯矩阵,当C 为(B )矩阵时,乘积B C A ''有意义.42⨯2. 向量组[][][][]αααα1234000*********====,,,,,,,,,,,的极大线性无关组是(A ).ααα234,, 3. 若线性方程组的增广矩阵为⎥⎦⎤⎢⎣⎡=41221λA ,则当λ=(D )时线性方程组有无穷多解.124. 掷两颗均匀的骰子,事件“点数之和为4”的概率是(C ). 1215. 在对单正态总体N (,)μσ2的假设检验问题中,T检验法解决的问题是(B ).未知方差,检验均值二、填空题1. 1111111---x x 是关于x 的一个多项式,该式中一次项x 系数是 2 .2. 设B A ,是3阶矩阵,其中2,3==B A ,则='-12B A 12 .3. 设D C B A ,,,均为n 阶矩阵,其中C B ,可逆,则矩阵方程D BXC A =+的解=X 11)(---C A D B .4. 若方阵A 满足A A '=,则A 是对称矩阵.5.设矩阵⎥⎦⎤⎢⎣⎡=1111A ,则r A ()= 1 . 6. =⎥⎦⎤⎢⎣⎡-12514⎥⎦⎤⎢⎣⎡--451231. 7. 向量组)01(),110(),011(321k ===ααα线性相关,则_____=k .1-8.含有零向量的向量组一定是线性 相关 的.9. 若n 元线性方程组0=AX 满足r A n ()<,则该线性方程组有非零解.10. 线性方程组b AX =中的一般解的自由元的个数是2,其中A 是54⨯矩阵,则方程组增广矩阵)(b A r = 3 . 11. 齐次线性方程组0=AX 的系数矩阵经初等行变换化为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→→000020103211 A则方程组的一般解为 4342431,(22x x x x x x x ⎩⎨⎧=--= .是自由未知量)12. 当λ= 1 时,方程组⎩⎨⎧-=--=+112121x x x x λ有无穷多解.13. 若5.0)(,1.0)(,9.0)(===+B A P B A P B A P ,则)(AB P 3.0 . 14. 设A ,B 为两个事件,若)()()(B P A P AB P =,则称A 与B 相互独立 .15. 设随机变量⎥⎦⎤⎢⎣⎡-25.03.0101~a X ,则a =45.0.16. 设随机变量的概率密度函数为⎪⎩⎪⎨⎧≤≤+=其它,010,1)(2x x kx f ,则常数k =π4.17. 设随机变量⎥⎦⎤⎢⎣⎡5.02.03.0210~X ,则=≠)1(X P 8.0.18. 设随机变量X 的概率密度函数为⎩⎨⎧≤≤=其它103)(2x x x f , 则=<)21(X P 81.19. 已知随机变量⎥⎦⎤⎢⎣⎡-5.05.05.05.05201~X ,那么=)(X E 3 .20. 设随机变量)15.0,100(~B X ,则=)(X E 15 . 21. 设随机变量X 的期望存在,则E X E X (())-= 0 .22. 设随机变量X ,若5)(,2)(2==X E X D ,则=)(X E 3.23. 不含未知参数的样本函数称为统计量.24. 设1021,,,x x x 是来自正态总体)4,(μN 的一个样本,则~101101∑=i i x )104,(μN .25. 若参数θ的两个无偏估计量1ˆθ和2ˆθ满足)ˆ()ˆ(21θθD D >,则称2ˆθ比1ˆθ更 有效 .⒈210140001---= 7 .⒉---11111111x 是关于x 的一个一次多项式,则该多项式一次项的系数是 2 . ⒊若A 为34⨯矩阵,B 为25⨯矩阵,切乘积AC B ''有意义,则C 为 5×4 矩阵.⒋二阶矩阵A =⎡⎣⎢⎤⎦⎥=11015⎥⎦⎤⎢⎣⎡1051.⒌设A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=--⎡⎣⎢⎤⎦⎥124034120314,,则()A B +''=⎥⎦⎤⎢⎣⎡--815360 ⒍设A B ,均为3阶矩阵,且A B ==-3,则-=2AB 72 .⒎设A B ,均为3阶矩阵,且A B =-=-13,,则-'=-312()A B -3 .⒏若A a =⎡⎣⎢⎤⎦⎥101为正交矩阵,则a = 0 .⒐矩阵212402033--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥的秩为 2 .⒑设⒈当λ= 1 时,齐次线性方程组x x x x 12120+=+=⎧⎨⎩λ有非零解.⒉向量组[][]αα12000111==,,,,,线性 相关 .⒊向量组[][][][]123120100000,,,,,,,,,,,的秩是 3 . ⒋设齐次线性方程组ααα1122330x x x ++=的系数行列式ααα1230=,则这个方程组有 无穷多 解,且系数列向量ααα123,,是线性 相关 的.⒌向量组[][][]ααα123100100===,,,,,的极大线性无关组是21,αα. ⒍向量组ααα12,,, s 的秩与矩阵[]ααα12,,, s 的秩 相同 .⒎设线性方程组AX =0中有5个未知量,且秩()A =3,则其基础解系中线性无关的解向量有 2 个. ⒏设线性方程组AX b =有解,X 0是它的一个特解,且AX =0的基础解系为X X 12,,则AX b =的通解为22110X k X k X ++.9.若λ是A的特征值,则λ是方程0=-A I λ 的根.10.若矩阵A满足A A '=-1 ,则称A为正交矩阵.是两个可逆矩阵,则A O O A 121⎡⎣⎢⎤⎦⎥=-⎥⎦⎤⎢⎣⎡--1211A O O A . ⒈从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数,则这个三位数是偶数的概率为52. 2.已知P A P B ().,().==0305,则当事件A B ,互不相容时,P A B ()+= 0.8 ,P AB ()= 0.3 . 3.A B ,为两个事件,且B A ⊂,则P A B ()+=()A P . 4. 已知P AB P AB P A p ()(),()==,则P B ()=P -1.5. 若事件A B ,相互独立,且P A p P B q (),()==,则P A B ()+=pq q p -+.6. 已知P A P B ().,().==0305,则当事件A B ,相互独立时,P A B ()+= 0.65 ,P A B ()= 0.3 . 7.设随机变量X U ~(,)01,则X 的分布函数F x ()=⎪⎩⎪⎨⎧≥<<≤111000x x x x .8.若X B ~(,.)2003,则E X ()= 6 .9.若X N ~(,)μσ2,则P X ()-≤=μσ3)3(2Φ.10.E X E X Y E Y [(())(())]--称为二维随机变量(,)X Y 的 协方差 .1.统计量就是 不含未知参数的样本函数 .2.参数估计的两种方法是 点估计 和 区间估计 .常用的参数点估计有 矩估计法 和 最大似然估计 两种方法.3.比较估计量好坏的两个重要标准是 无偏性 , 有效性 .4.设x x x n 12,,, 是来自正态总体N (,)μσ2(σ2已知)的样本值,按给定的显著性水平α检验H H 0010:;:μμμμ=≠,需选取统计量nx U /0σμ-=.5.假设检验中的显著性水平α为事件u x >-||0μ(u 为临界值)发生的概率.1. 设B A ,均为n 阶可逆矩阵,逆矩阵分别为11,--B A ,则='--11)(A BB A )(1'-2. 向量组),0,1(),1,1,0(),0,1,1(321k ===ααα线性相关,则_____=k .1-3. 已知2.0)(,8.0)(==AB P A P ,则=-)(B A P 6.0.4. 已知随机变量⎥⎦⎤⎢⎣⎡-5.01.01.03.05201~X ,那么=)(X E 4.2.5. 设1021,,,x x x 是来自正态总体)4,(μN 的一个样本,则~101101∑=i ix )104,(μN . 1. 设B A ,均为3阶矩阵,且3==B A ,则=--12AB 8-.2.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=070040111A ,则_________________)(=A r .2 3. 设A B C ,,是三个事件,那么A 发生,但C B ,至少有一个不发生的事件表示为)(C B A +.4. 设随机变量)15.0,100(~B X ,则=)(X E 15.5. 设n x x x ,,,21 是来自正态总体N (,)μσ2的一个样本,∑==ni ix n x 11,则=)(x D n2σ.三、计算题1. 已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=244213001,543322011B A ,证明B A -可逆,并求1)(--B A . 解: ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-301111010B A , 因为023111301111010≠=---=--=-B A ,所以B A - 可逆 且⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--=--212121001212323)(1B A 2. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=423532211A ,求(1)A ,(2)1-A .解: (1)1100110211210110211423532211=---=---=---=A (2)利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---103210012110001211100423010532001211 →-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥112100011210001511112100011210001511→------⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥110922010721001511100201010721001511即 A -=-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥121721511 3. 设矩阵A B =--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥101011111122212221,,求A -1及A BA -1.解: 利用初等行变换得101100011010111001101100011010012101--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥ →⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥10110001101000311110110011010001131313 →--⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥→----⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥101100010132313001131313100231313010132313001131313 即 A -=----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥1132******** 由矩阵乘法得A BA -=----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥1132111211111222122211010111114. 已知B AX X +=,其中02323347,5858901A B --⎡⎤⎡⎤⎢⎥⎢⎥=---=⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦,求X . 解:由方程B AX X +=,得()I A X B -=,且1233575810I A ⎡⎤⎢⎥-=⎢⎥⎢⎥⎣⎦利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1055200132100013211001085010753001321 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→121100255010364021121100013210001321 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→121100255010146001 即 1()I A --=641552121--⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦ 由矩阵乘法得164123813()55258152312101812X I A B ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-=-=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦5. 设矩阵11512112353181913978A --⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦,求矩阵A 的秩. 解:用初等行变换将矩阵化为阶梯形⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----68144034720347202151187931918135321121511 11512027430000000000--⎡⎤⎢⎥-⎢⎥→⎢⎥⎢⎥⎣⎦ 由此可知矩阵的秩为2.6. 求向量组[]11,3,2,1,1α=---,[]23,8,4,1,0α=---,[]32,1,4,2,1α=--,[]41,2,6,1,2α=---的秩,并求该向量组的一个极大无关组.解:将向量组组成的矩阵化为阶梯形1321138410214211261213211012230580305803-----------⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥→--------⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥1321101223002101200000---⎡⎤⎢⎥-⎢⎥→⎢⎥-⎢⎥⎣⎦ 由此可知该向量组的秩为3,且321,,ααα是一个极大无关组.7. 分别说明当a b ,取何值时,线性方程组x x x x x x x x x x x x x x x ax b12341234123412343127224321248-+-=-+-+=--++=-++=⎧⎨⎪⎪⎩⎪⎪无解、有唯一解、有无穷多解.在有无穷多解的情况下求出一般解. 解: 将方程组的增广矩阵化为阶梯形13111272121432124813111010100123002622-------⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥→----+-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥a b a b →---+-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥→-----⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥1311101010*******64213111010100022000022a b a b …当a b =≠22,时,方程组无解。
工程数学期末考试试题与标准答案及评分标准模板
《工程数学》试题(A 卷)(考试时间: 90 分钟)一、选择题(共30分,共10小题,每小题3分)1.函数293x x xy -++=的定义域是( ). A.{}3|-≥x x ; B.{}3|≤x x ;C.{}33|≤≤-x x ; D .{}33|≤<-x x . 2.函数x y =在0=x 处( ) .A.连续且可导;B.不连续且不可导; C 不可导但连续;D.不连续但可导. 3.x x arctan lim +∞→=﹙ ).A.0;B.不存在 ;C. 2π-; D.2π. 4.若11,1,22()3,1,1,1x x f x x x ⎧+<⎪⎪==⎨⎪>⎪⎩,则1lim ()x f x →=( ). A.2; B. 1; C.1-; D.不存在. 5.函数11)(-=x x f 的水平渐近线是( ). A. 1=x ; B. 1-=y ; C. 0=x ; D. 0=y . 6.函数()y f x =在x 处可导是该点可微的( )条件.A.必要;B.充分;C.充要;D.无关.7.若),)(b a x f 在(内二阶可导,且0)(,0)(<''<'x f x f ,则在),(b a 内函数( ). A.单调减,凸函数; B. 单调增,凸函数; C. 单调减,凹函数; D. 单调增,凹函数.8.函数22,1(),1x x f x x x >⎧=⎨≤⎩,在点1x =处( ).A.不连续;B.连续;C. ()2f x '=可导且;D.无法判断. 9.设函数()f x ,()g x 在[,]a b 上连续,且()()f x g x ≥,则( ).A.()d ()d bbaaf x xg x x ≥⎰⎰ ; B.()d ()d bbaaf x xg x x ≤⎰⎰;C.()d ()d f x x g x x ≥⎰⎰ ; D.()d ()d f x x g x x ≤⎰⎰.10. 曲线x y x y ==与2所围成的平面图形绕x 轴旋转而成的旋转体的体积为( ).A. ⎰-124d )(x x x π; B. ⎰-142d )(x x x π;C.⎰-12d )(y y y π; D. ⎰-12d )(y y y π.二、填空题(共20分,共5小题,每小题4分)1.函数654)(22+--=x x x x f ,则2=x 是_______间断点,3=x 是 _______间断点.2. 复合而成和是由函数函数 e arcsin x y =. 3.点()1,0是曲线b ax x y +-=233 的拐点,则=a ______,=b ______. 4. 设 ()f x 的一个原函数为1x,则=)(x f . 5. ⎪⎩⎪⎨⎧==tty x 2ee,=x y d d __________.2.已知y x x y '+=求,cos sin 22.三、计算题(共42分,共6小题,每小题7分)1.求x x x2)51(lim +∞→ 2.已知y x x y '+=求,cos sin 22. 3. 已知.d ,2cos e 2y x y x 求= 4.求x x x d e 2⎰. 5.求⎰exdx x 1ln .6.求由曲线2,,1===x x y xy 围成的平面图形的面积. 四、证明题(共8分,共1小题,每小题8分)1.证明不等式()()0,1ln 1><+<+x x x xx.《工程数学》试题(B 卷)(考试时间: 90 分钟)一、选择题(共30分,共10小题,每小题3分)1.函数242y x x x-++=的定义域是( )..A {}2|-≥x x ; B.{}2|≤x x ;C.{}22|≤≤-x x ; D . {}22|≤<-x x2. 当0→x 时,下列变量为无穷小的是( )A.;cos x x B. ;sin xxC.;12-xD..sin 1x - 3.x x arctan lim ∞→=﹙ ﹚.A.0 ;B.不存在 ;C. —2π ; D.2π. 4.若⎩⎨⎧>-≤=1,21,)(2x x x x x f ,则1lim ()x f x →=( ).2;A .1;B .1;C - .;D 不存在5.函数xx f 1)(=的水平渐近线是( ). A. 1=x B. 1-=y C. 0=x D. 0=y6.函数()y f x =在x 处可导是该点连续的( )条件.;A 必要 .;B 充分 .;C 充要 .;D 无关7.若),)(b a x f 在(内二阶可导,且0)(,0)(///>>x f x f ,则在),(b a 内函数( ).A.单调减,凸函数B. 单调增,凸函数C. 单调减,凹函数D. 单调增,凹函数8.函数⎪⎩⎪⎨⎧>+≤=1,21211,)(2x x x x x f ,在点1x =处( )A.连续且可导;B.不连续且不可导; C 不可导但连续;D.不连续但可导.9.设函数()f x 在[,]a b 上连续,则( )dx x f dx x f A b ab a⎰⎰≤)()(. dx x f dx x f B bab a⎰⎰≥)()(.dx x f dx x f C b ab a⎰⎰=)()(. dx x f dx x f D bab a⎰⎰>)()(.10. 曲线12==x x y 与及x 轴所围成的平面图形绕x 轴旋转而成的旋转体的体积为( ) A. ⎰14dx x πB. ⎰102dx x π C. ⎰10ydy π D. ⎰12dy y π二、填空题(共20分,共5小题,每小题4分)1.函数231)(22+--=x x x x f ,则2=x 是_______间断点,1=x 是 _______间断点. 2. 复合而成和是由函数函数 sin x e y =. 3.点(1,3)是曲线y=23bx ax + 的拐点,则a=______,b=______. 4. 设 ()f x 的一个原函数为x sin ,则=)(x f .5. ⎩⎨⎧==3x bt y at ,=dxdy__________. 三、计算题(共42分,共6小题,每小题7分)1.x x x2)31(lim +∞→2.已知')),ln(ln(ln y x y 求=.3. 已知.dy ,2sin 求x x y =4.求dx xe x ⎰.5.求⎰-224dx x .6.求由曲线0,1,2===y x x y 围成的平面图形的面积.四、证明题(共8分,共1小题,每小题8分)1.证明:当x x x 211,0+>+>时一、单项选择题(共30分,共10小题,每小题3分)1、D2、C3、D4、B5、D6、C7、A8、A9、A 10、B 二、填空题(共20分,共5小题,每小题4分)1、可去(或者第一类);无穷(或者第二类)2、x u e y u arcsin ,==;3、a=0,b=1;4、21x-;5、t2e . 三、计算题(共42分,共6小题,每小题7分)1..7(5())5111(lim (3()5111(lim )51(lim 101051)51(102分)分)分)e x x xx x x x x x =+=+=+∞→∞→∞→ 2..7(sin 2cos sin 24()(sin )(sin sin 22'22''分)分)x x x x x x x x y -=-= 3..7()2sin 2(cos 23(2cos 2cos 222分)分)dx x x e x d e xde dy x x x -=+= 4. C e x d e dx e x dx xe x x x x +===⎰⎰⎰2222215)((213()(212'2分)分).(7分) 5.1ln ex xdx ⎰=211ln 2exdx ⎰(3分)=2221111111ln 2244ee x x x dx e x -⋅=+⎰(7分).6..72ln 235(|)ln 21(3()1(21221分)(分)分)-=-=-=⎰x x dx x x S 四、证明题(共8分,共1小题,每小题8分)1、证:令f(x)=ln(1+x), 在[]x 0,上连续,在(0,x )内可导, )(x f '=x11+,(2分) 由拉格朗日中值定理,在(0,x )内至少存在一点ξ,使得ξ+=-+-+110)01ln()x 1ln x ((4分) 有 ln(1+x)=ξ+1x ,又 0<x <ξ, 1<1+x +<1ξ, x xx x <+<+ξ11,(7分) 所以,x x xx<+<+)1ln(1 (8分)一、单项选择题(共30分,共10小题,每小题3分)1、D2、C3、B4、B5、D6、B7、D8、C9、A 10、A . 二、填空题(共20分,共5小题,每小题4分)1、无穷(或者第二类);可去(或者第一类)2、x u e y u sin ,==;3、29,23=-=b a ;4、x cos ;5、abt 23.三、计算题(共42分,共6小题,每小题7分)1..7(5())3111(lim (3()3111(lim )31(lim 6631)31(62分)分)分)e x x xx x x x x x =+=+=+∞→∞→∞→ 2..7(1ln 1)ln(ln 16()(ln ln 1)ln(ln 13())(ln(ln )ln(ln 1'''分)分)分)xx x x x x x x y ===3..7()2cos 22(sin 3(2sin 2sin 分)分)dx x x x x xd xdx dy +=+=4. .7(4()(''分)分)C e xe dx e x xe dx ex dx xe x x x x x x +-=-==⎰⎰⎰5.令2,2;0,0,cos 2sin 2π======t x t x tdt dx t x 当当则.(1分)⎰-224dx x =tdt ⎰202cos 4π(3分)=⎰+20)2cos 1(2πdt t (4分)=20|)2sin 21(2πt t +(6分)=π.(7分))6..7315(|313(10312分)(分)分)===⎰x dx x S 四、证明题(共8分,共1小题,每小题8分)1、证:令x x x f 211)(+-+=, )(x f '=02x1121>+-+x ,0>x (3分)0)0()(,0],0[)(=>>f x f x x x f 单调递增,在,(6分) ,0211)(>+-+=x x x f 即x x 211+>+.(8分)。
高等工程数学I 试题(A)与答案(2019.11.23)
2019年高等工程数学试题答案一、(15分)设210120003⎛⎫⎪= ⎪ ⎪⎝⎭A ,计算()ρA 、225max =x Ax 及()2cond A 。
解:12321012001;3003λλλλλλλ---=--=⇒===-I A ()3ρ=A 2||||()3是正规矩阵ρ∴== A A A 2222515max 5max 5155==∞===x x xAx AA ()2331是正规矩阵∴== A cond A 二、(10分)讲述一下求解矩阵A 的最靠近*λ的特征值的思路、步骤。
答:**对使用逆幂法,求出其按模最小的特征值再加上。
λλ-A I 000u v =≠任取*11()max()k k k k k u A I v u v u λ--⎧=-⎪⎨=⎪⎩*1()max()k k kk k A I u v u v u λ-⎧-=⎪⎨=⎪⎩即**()A I P A I LUλλ--=对进行选列主元的三角分解有1max()k k k kk k k Ly PvUu y u v u -⎧⎪=⎪⎪∴=⎨⎪⎪=⎪⎩1max()max()k ik i u x v x λλ*⎧→⎪⎪⎨⎪→⎪⎩-有三、(18分)已知矩阵200226044-⎛⎫⎪= ⎪ ⎪⎝⎭A ,求P 使得1-P AP 为A 的Jordan 标准型,同时需要求出A 的Jordan 标准型。
解:200226044λλλλ+-=-----I A ()()23+28λλ=-D 211D D ==()()23+28λλ=-d 211d d ==初等因子:()()2+2 8,λλ-Jordan 标准形:2128-⎛⎫ ⎪=- ⎪ ⎪⎝⎭J 1123212,[]8令--⎛⎫⎪==-= ⎪ ⎪⎝⎭P AP J P p p p 11121223332[032]512[0]228[011]∴=-∴=-=-=-==TT TAp p p Ap p p p Ap p p 15002131,2201使得-⎛⎫⎪ ⎪⎪∴=-= ⎪ ⎪- ⎪⎝⎭P P AP J四、(20分)已知241111212,212211⎛⎫⎛⎫⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭A b ,(1)求A 的满秩分解;(2)求A +;(3)判断Ax b =是否有解,有解时求极小范数解,无解时求极小范数最小二乘解。
工程数学试题及答案
一、选择题(每小题3分,共15分)
1、B2、C3、D4、A5、A
二、填空题(每小题3分,共15分)
6、97、18、1–(1–P)39、3/410、12
三、计算题(每题10分,共50分)
1、解答:函数f(t)的付氏变换为:
F(w)= (3分)
= (2分)
由付氏积分公式有
f(t)= F(w)]= (2分)
7、设A= ,则 =。
8、设有3个元件并联,已知每个元件正常工作的概率为P,则该系统正常工作的概率为。
9、设随机变量 的概率密度函数为 ,则概率 。
10、设二维连续型随机变量 的联合概率密度函数为 ,则系数 。
三、计算题(每小题10分,共50分)
1、求函数 的傅氏变换(这里 ),并由此证明:
2、发报台分别以概率0、6和0、4发出信号“1”和“0”。由于通讯系统受到干扰,当发出信号“1”
(3)A对称,故A必相似于对角阵Λ,
Λ=diag(║a║2, 0,…,0) (2分)
五、应用题(共10分)
解答:
设y为预备出口的该商品的数量,这个数量可只介于2000与4000之间,用Z表示国家的收益(万元),(1分)
则有 (4分)
因 X服从R(2000,4000), 故有
(1分)
所以
=–( y2–7000y + 4•106) /1000(3分)
时,收报台未必收到信号“1”,而是分别以概率0、8和0、2收到信号“1”和“0”;同时,当发出信号“0”时,收报台分别以概率0、9和0、1收到信号“0”和“1”。求
(1)收报台收到信号“1”的概率;
(2)当收报台收到信号“1”时,发报台确是发出信号“1”的概率。
中国矿业大学11-12(上)《工程数学A》试题(A)卷
11-12学年第一学期《工程数学A 》试题(A )卷一、填空题(每空4分,共40分)1) ()()f t u t =的傅氏变换为 .2) 函数3232()(3)f z my nx y i x xy =++−为解析函数,则m = .3) 201lim(sin d )t t t t i t t j e k →++=∫ . 4) 矢量场k z j y i x A ++=从下向上通过有向曲面22z x y =+(02)z <<的通量为 .5) 函数()sin t f t e t =的拉氏变换为 .6) 矢量场222A xi x y j yzk =−+ 在点)1,2,1(−M 处散度为 . 7) 设()tan f z z =则Res[(),]2f z π= . 8) 函数20()sin 2d t t f t te t t −=∫的拉氏变换为 . 9) C 是直线OA ,O 为原点,A 为i +2, 则d C z z =∫ .10) 复数ln i i = .二、(10分)求矢量场22()A x i y j x y zk =+++ 通过点)1,1,2(−M 的矢量线方程. 三、(10分)求常系数二阶线性微分方程t e t y t y t y −=+′−′′2)()(2)(满足条件0)0(,0)0(=′=y y 的解.四、(10分)求函数222()(413)s F s s s +=++的拉氏逆变换.五、(10分)证明矢量场k yz x j y z x i xyz A 22222)cos (2+++=为保守场,并求积分∫⋅B Al A d ,其中(1,0,1),(2,1,3)A B . 六、(10分)将函数21()(1)f z z z =−在圆环域1|1|z <−<+∞展开成洛朗级数. 七、(10分)用留数计算积分201d 5cos t tπ+∫.。
南京理工大学(工程数学(4.0学分)(A)(16.1.12))
课程名称:工程数学学分:4.0教学大纲编号:11024001
试卷编号:A考试方式:闭卷满分分值:80考试时间:120分钟
组卷日期:2016年1月12日组卷教师(签字):命题组审定人(签字):
三.(每小题5分,共15分):
1.计算积分 ,其中 是0到 的直线段;
2.求积分 ,从而证明 ;
3.计算积分 。
四.(7分)将函数 在下列圆环域内展开成洛朗级数:
1. ;2. 。
五.计算下列各题(每小题5分,共10分):
1.设 ,求 的Fourier变换 ;
2.设 ,求 的Laplace变换 。
六.(7分)用积分变换法求解微分积分方程 。
七.(7分)求一映射 ,将z平面的区域: 映射成w平面
上的区域: 。
八.(6分)设 与 是区域 内的调和函数, , ,证明 是 内的解析函数。
所有解答必须写在答题纸上,写在试卷上无效!
一.填空题(每小题2分,共20分) ,则 ;
4. ;
5.映射 将 映射成 ,并满足 ,则映射
;
6. ;
7.设 ,则Laplace逆变换 ;
8.曲线 在 处的切向量为;
9.矢量场 在点 处沿方向
的环量面密度为;
10.设 , 为矢径 的模, 为拉普拉斯算子,则在点(1,1,1)处 。
二.(8分)证明矢量场 是有势场,并求其势函数。
第1页共1页
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东海洋大学2015—2016学年第一学期 《工程数学》课程考试试题 课程号: (2015-2016-1)-16621001x2 -163006-1 √ 考试 √ A 卷 √ 闭卷 □ 考查 B 卷 □ 开卷 题 号 一 二 三 四 五 六 七 八 九 十 总分 阅卷教师 各题分数 20 20 60 100 实得分数 一、单项选择题(每题2分,共20分) 1、事件表达式B A ⋂的意思是( ) (A)事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C)事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生 2、投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为( ) (A)5/18 (B)13 (C)12 (D)以上都不对 3、设随机事件A 与B 互不相容,且P(A)>0,P(B)>0,则( ) 。
(A) P (A)=1- P(B) (B) P(AB)=P(A)P(B) (C)P(B A )=1 (D) P(AB )=1 4、设随机变量X 、Y 都服从区间[0,1]上的均匀分布,则E(X+Y)= ( ) (A)1/6 (B) 1/2 (C) 1 (D)2 5、=-⎰=-122)2(z z dz ( ) (A)2πi (B)0 (C)4πi (D)以上都不对 6、下列说法正确的是( ) (A)如果)(0z f '存在,则f (z)在z 0处解析 (B)如果u (x,y)和v(x,y)在区域D 内可微,则),(),()(y x iv y x u z f +=在区域D 内解析 (C)如果f (z)在区域D 内解析,则)(z f 在区域D 内一定不解析 (D)如果f (z)在区域D 内处处可导,则f (z)在区域D 内解析 7、解析函数f(z)的实部为u=e x siny ,根据柯西-黎曼方程求出其虚部为( )。
(A) e x cosy+C (B) -e x cosy+C (C) e -x cosy+C (D)e x siny+C 8、单位脉冲函数δ(t)的Fourier 变换为( ) (A) π[δ(ω+ω0)+ δ(ω-ω0)] (B)1
(C) πj[δ(ω+ω0)+ δ(ω-ω0)] (D)1/(j ω)+ πδ(ω)
9、设f(t)=cosat(其中a 为常数),则f(t)的Lapalace 变换为( )
(A)1/(s 2+a) (B) 1/(s 2+a 2) (C) s/(s 2+a 2) (D)1/(s+a)
10、若f(t)的Fourier 变换为F(ω),则f (t+1)的Fourier 变换为( ) 班
级
:
姓名: 学号: 试题共 2
页
加
白纸
1
张
密
封
线
GDOU-B-11-302
(A)e j ωF(ω) (B)e -j ωF(ω) (C)F(ω+1) (D)F(ω-1)
二、填空题(每空2分,共20分)
3、已知随机变量X 的概率密度函数为⎩
⎨⎧≤≤+=其它,020,1)(x kx x f ,则k= 。
4、设A 、B 是相互独立的随机事件,P(A)=0.5, P(B)=0.7, 则P(B A ⋃)= 。
5、设Γ为包围a 的任一简单闭曲线,n 为整数,则=-⎰Γdz a z n
)(1 。
6、i 31--的三角表达形式= 。
7、函数e z 的周期为 。
8、函数f(t)=u(t)的Fourier 变换为 。
9、设f(t)=t 2-u(t),则f(t)的Lapalace 变换为 。
10、函数f(t)= t 的Lapalace 变换为 。
三、计算题(每题10分,共60分)
1、设二维随机变量(X,Y)的概率密度为⎩
⎨⎧≤≤≤≤-=.,0,0 ,10),2( ),(其他x y x x cy y x f , (1)确定常数C 。
(2)求边缘概率密度。
2、甲乙两人约定中午12时30分在某地会面.如果甲来到的时间在12:15到12:45之间是均匀分布. 乙独立地到达,而且到达时间在12:00到13:00之间是均匀分布. 试求先到的人等待另一人到达的时间不超过5分钟的概率。
3、设)()(2222y dxy cx i by axy x z f +++++=,则常数a 、b 、c 、d 取何值时,f(z)在复平面内处处解析。
4、计算积分dz z z i z ⎰
=-+21
2)1(1。
5、利用拉氏变换求积分方程1)()(0
=+'⎰ττd y t y t 满足初始条件y(0)=0的解。
6、若,0
,0,0)(,0,10,0)(21⎩⎨⎧≥<=⎩⎨⎧≥<=-t e t t f t t t f t 求f 1(t)与f 2(t)的卷积。