有机反应-成环反应共155页
合集下载
精细有机合成—构成环状化合物的反应
75%
邻苯二甲酸二乙酯与脂肪族羧酸酯如乙酸乙酯在强碱下缩合生成 五元环化合物,得1,3-茚二酮。
1,4-二羰基化合物进行分子内羟醛加成和缩合反应,如1-苯基-1, 4-戊二酮与氢氧化钠水溶液加热回流15min,得3-苯基-2-环戊烯-1-酮:
3.1.4 环己烷和环已烯衍生物
有以下几种重要的合成方法:
O
O
3成 呋喃很容易由糠醛去羰基制得。糠醛可用农副产品稻糠、玉米
芯等以热酸处理得到。
1) 2) 3)
4) 5)
克诺尔(Knorr)合成法是合成吡咯环的重要方法,也是应用最广的 方法,原理是用一个α- 氨基酮与一个含活性亚甲基化台物缩合而得到 吡咯环。例如:
由于α-氨基酮容易自身缩合,因此采用一锅法生成α-氨基酮后立 即β-二羰基化合物进行反应的方法,可避免α-氨基酮的自身缩合。
由Knorr合成法得到的产物可水解脱羧,生成取代吡咯。许多其 他吡咯,尤其是用于卟啉合成中的吡咯,也是利用这一方法制备, 不过改变不同的取代基而已。为了方便地脱去烷氧羰基,在Knorr合 成中,用苯基和叔丁基酯取代了乙酯基。如原料中的氨苯上有烃基, 则可得到N-烃基吡咯。
(1) 1,3-消去反应
在强碱存在下,从γ-卤代酮、γ-卤代酸酯、γ—卤代脂、γ—卤代 硫醚和γ—卤代砜等具有活泼氢的化合物起γ—消去反应,脱去卤化氢 生成的。同时也可以用其他的离去基团合成三元环,例如用亚磺酸酯或 氧化三苯基膦(从环氧乙烷和磷叶立德合成环丙烷)。
用5-氯-2-戊酮可合成甲基环丙基酮:
α,β-不饱和羰基化合物是极活泼的亲二烯体系,并且代表了该合成方 法中最有价值的组分,其典型的例子有丙烯醛、丙烯酸及其酯、顺丁烯 二酸及其酸酐和丁炔二酸:
+ +
邻苯二甲酸二乙酯与脂肪族羧酸酯如乙酸乙酯在强碱下缩合生成 五元环化合物,得1,3-茚二酮。
1,4-二羰基化合物进行分子内羟醛加成和缩合反应,如1-苯基-1, 4-戊二酮与氢氧化钠水溶液加热回流15min,得3-苯基-2-环戊烯-1-酮:
3.1.4 环己烷和环已烯衍生物
有以下几种重要的合成方法:
O
O
3成 呋喃很容易由糠醛去羰基制得。糠醛可用农副产品稻糠、玉米
芯等以热酸处理得到。
1) 2) 3)
4) 5)
克诺尔(Knorr)合成法是合成吡咯环的重要方法,也是应用最广的 方法,原理是用一个α- 氨基酮与一个含活性亚甲基化台物缩合而得到 吡咯环。例如:
由于α-氨基酮容易自身缩合,因此采用一锅法生成α-氨基酮后立 即β-二羰基化合物进行反应的方法,可避免α-氨基酮的自身缩合。
由Knorr合成法得到的产物可水解脱羧,生成取代吡咯。许多其 他吡咯,尤其是用于卟啉合成中的吡咯,也是利用这一方法制备, 不过改变不同的取代基而已。为了方便地脱去烷氧羰基,在Knorr合 成中,用苯基和叔丁基酯取代了乙酯基。如原料中的氨苯上有烃基, 则可得到N-烃基吡咯。
(1) 1,3-消去反应
在强碱存在下,从γ-卤代酮、γ-卤代酸酯、γ—卤代脂、γ—卤代 硫醚和γ—卤代砜等具有活泼氢的化合物起γ—消去反应,脱去卤化氢 生成的。同时也可以用其他的离去基团合成三元环,例如用亚磺酸酯或 氧化三苯基膦(从环氧乙烷和磷叶立德合成环丙烷)。
用5-氯-2-戊酮可合成甲基环丙基酮:
α,β-不饱和羰基化合物是极活泼的亲二烯体系,并且代表了该合成方 法中最有价值的组分,其典型的例子有丙烯醛、丙烯酸及其酯、顺丁烯 二酸及其酸酐和丁炔二酸:
+ +
高等有机合成化学 025 成环反应
鲁齐卡(Luzicka)利用,-二羧酸与ThO2共热的方法,首先合 成了大环酮,该方法又称为Luzicka环化反应。其中最大的环 达到34元。5、6元环的产率可达80%,9 13元环产率非常 低(0.5%左右),13元环以上产率一般是5-6%。
CO2H (CH2)n ThO2
CO2H
(CH2)n C O
CO2C2H5 1) Na, xylene CO2C2H5 2)H2O
O
66% OH
2019/10/8
31
3.5.6 杂环的形成
成环原子中含有碳以外的元素时,称为杂环。
杂环种类繁多,数量极大,约占有机化合物总数的1/3 以上,是有机化学中最庞大的领域。
在自然界中广泛存在杂环化合物。例如,碳水化合物、 叶绿素、血红素和绝大多数生物碱都是杂环化合物,酶、 辅酶以及生物体内也大多含杂环结构。
总体说来,五元环一般是通过分子内环化反应而制 备的。1,4-、1,5-二羰基化合物分子内的羟醛缩 合或酯缩合反应是形成五元环最一般的方法。如 果所用的二羰基化合物本身是环结构的,反应结 果可得稠合的五元环化合物。
2019/10/8
16
例如2-甲基-1,3-环戊二酮可用下列方法合成:
O
t BuOK O
O
CH3COCH2CH2N(CH3)3I
1) 2)
NaNH2 H2O
O
O
CH2=CHCOCH3 C2H5ONa/C2H5OH
O
OH
O
2019/10/8
O
O
20
形成六元环最重要的方法是双烯合成反应。 该反应又称为Diels-Alder反应。 是共轭双烯与烯烃在加热条件下在两头彼此加成,得环
己烯衍生物。 其中,共轭双烯称为双烯组分,烯烃称为亲双烯组分。 反应按协同方式进行。两种组分通过六元环过渡态一步
精细有机合成—构成环状化合物的反应
由于α-氨基酮容易自身缩合,因此采用一锅法生成α-氨基酮后立 即β-二羰基化合物进行反应的方法,可避免α-氨基酮的自身缩合。
由Knorr合成法得到的产物可水解脱羧,生成取代吡咯。许多其 他吡咯,尤其是用于卟啉合成中的吡咯,也是利用这一方法制备, 不过改变不同的取代基而已。为了方便地脱去烷氧羰基,在Knorr合 成中,用苯基和叔丁基酯取代了乙酯基。如原料中的氨苯上有烃基, 则可得到N-烃基吡咯。
α,β-不饱和羰基化合物是极活泼的亲二烯体系,并且代表了该合成方 法中最有价值的组分,其典型的例子有丙烯醛、丙烯酸及其酯、顺丁烯 二酸及其酸酐和丁炔二酸:
+ +
+
+
(2) Robinson增环反应 活泼亚甲基化合物与α,β-不饱和酮、酯、腈等起Michael反应,然后起
醇醛缩合反应称之为Robinson增环反应,常用于合成环状化合物。在合 成六元环烃,特别在甾体化合物的合成上具有重要作用。这种方法分两个 阶段进行。先起Michael加成反应,接着起分子内的羟醛缩合反应,增环 生成环己酮。一般采用催化量的碱,主要得到1,4-加成产物,采用当量碱 则主要得到环合产物.这样可以利用两步合一的反应方便地合成六元环。
二卤环丙烷用AgNO3处理,可转化为烯丙基化合物,这是用卡 宾增长碳链的另一种方法。
卡宾与杂环体系的烯键加成,形成扩环产物,这在合成上十分有用:
3.1.2 四元环衍生物 用1,3-二卤代烷对活性亚甲基化合物进行分子内烷基化,例如
在强碱存在下,丙二酸酯与1,3二溴丙烷成环,生成环丁烷衍生物。
四元环除由丙二酸酯法合成外,还可以由[2+2]环加成反应合成。[2+2] 环加成是由两个烯分子组成四元环的反应。简单的烯烃在加热时不能生成 环丁烷衍生物,丙烯腈容易二聚成顺-和反-1,2—二氰基环丁烷:
由Knorr合成法得到的产物可水解脱羧,生成取代吡咯。许多其 他吡咯,尤其是用于卟啉合成中的吡咯,也是利用这一方法制备, 不过改变不同的取代基而已。为了方便地脱去烷氧羰基,在Knorr合 成中,用苯基和叔丁基酯取代了乙酯基。如原料中的氨苯上有烃基, 则可得到N-烃基吡咯。
α,β-不饱和羰基化合物是极活泼的亲二烯体系,并且代表了该合成方 法中最有价值的组分,其典型的例子有丙烯醛、丙烯酸及其酯、顺丁烯 二酸及其酸酐和丁炔二酸:
+ +
+
+
(2) Robinson增环反应 活泼亚甲基化合物与α,β-不饱和酮、酯、腈等起Michael反应,然后起
醇醛缩合反应称之为Robinson增环反应,常用于合成环状化合物。在合 成六元环烃,特别在甾体化合物的合成上具有重要作用。这种方法分两个 阶段进行。先起Michael加成反应,接着起分子内的羟醛缩合反应,增环 生成环己酮。一般采用催化量的碱,主要得到1,4-加成产物,采用当量碱 则主要得到环合产物.这样可以利用两步合一的反应方便地合成六元环。
二卤环丙烷用AgNO3处理,可转化为烯丙基化合物,这是用卡 宾增长碳链的另一种方法。
卡宾与杂环体系的烯键加成,形成扩环产物,这在合成上十分有用:
3.1.2 四元环衍生物 用1,3-二卤代烷对活性亚甲基化合物进行分子内烷基化,例如
在强碱存在下,丙二酸酯与1,3二溴丙烷成环,生成环丁烷衍生物。
四元环除由丙二酸酯法合成外,还可以由[2+2]环加成反应合成。[2+2] 环加成是由两个烯分子组成四元环的反应。简单的烯烃在加热时不能生成 环丁烷衍生物,丙烯腈容易二聚成顺-和反-1,2—二氰基环丁烷:
《有机反应成环反应》课件
用于材料合成的案例
寻找新的品种合成化合物
发现新化合物和新药物的方法之一是利用多样性策略和高通量策略,对产品 进行分析和优化。
环化反应应用于材料合成的案例
纳米颗粒的合成和形貌调控中,在实现分散均匀的同时,制备具有特殊功能 的纳米材料较为广泛。
环化反应的发展趋势和研究展望
实例
对硝基苯和咪唑在氢氧化钠存在下反应,形成偶 氮酚盐后,再用盐酸进行酸化,就可得到咪唑衍 生物。
烯酮双键的环化反应
羰基烯醇反应合成环状酯
反应条件温和,对配位基、取代基宽容度大。
迈克尔加成反应
以无机碱或碱性氧化剂为催化剂,环合成多肽、天 然产物等化合物的前体。茚、噻吩的扩环反应是 Cope反应,无溶剂条件下进行。
芳香环化反应
电荷不稳定
芳香族化合物含不饱和稠环,用Br2不能发生加 成反应。可加热(或加有硝基的氧化剂)产生氮 酸盐,再加酸得到带芳香酰基的羧酸。
常用反应条件
芳香环化反应需要高温高压和催化剂(如CuCl 或FeCl3)等条件,需要严格控制反应条件。
重要性
芳香环化反应是有机合成中最常用的方法之一, 可以制备出众多重要的芳香族化合物,如间苯二 酚、对苯二酚等。
Biox-PS合成法
这种方法使用无菌条件合成七元环,其光学纯度比合成得到的大多数天然生物英类似化合物 高。
化学合成中产生的戊二酸、合成色环以及 生物活性天然产物的有机合成
二羧酐通过Gille口反应合成色环
该方法可以合成多种罕见色环物质,具有高效、高 选择性和环境友好等特点。
动态制备戊二酸
这种方法是通过一套催化剂体系实现的,其中涉 及一些普遍具有环境友好性和广泛应用的配体和 前驱体。
亲核反应法
包括环全加成和带薪的环开放反应。方法优点是 反应条件温和,易于量规控制。
寻找新的品种合成化合物
发现新化合物和新药物的方法之一是利用多样性策略和高通量策略,对产品 进行分析和优化。
环化反应应用于材料合成的案例
纳米颗粒的合成和形貌调控中,在实现分散均匀的同时,制备具有特殊功能 的纳米材料较为广泛。
环化反应的发展趋势和研究展望
实例
对硝基苯和咪唑在氢氧化钠存在下反应,形成偶 氮酚盐后,再用盐酸进行酸化,就可得到咪唑衍 生物。
烯酮双键的环化反应
羰基烯醇反应合成环状酯
反应条件温和,对配位基、取代基宽容度大。
迈克尔加成反应
以无机碱或碱性氧化剂为催化剂,环合成多肽、天 然产物等化合物的前体。茚、噻吩的扩环反应是 Cope反应,无溶剂条件下进行。
芳香环化反应
电荷不稳定
芳香族化合物含不饱和稠环,用Br2不能发生加 成反应。可加热(或加有硝基的氧化剂)产生氮 酸盐,再加酸得到带芳香酰基的羧酸。
常用反应条件
芳香环化反应需要高温高压和催化剂(如CuCl 或FeCl3)等条件,需要严格控制反应条件。
重要性
芳香环化反应是有机合成中最常用的方法之一, 可以制备出众多重要的芳香族化合物,如间苯二 酚、对苯二酚等。
Biox-PS合成法
这种方法使用无菌条件合成七元环,其光学纯度比合成得到的大多数天然生物英类似化合物 高。
化学合成中产生的戊二酸、合成色环以及 生物活性天然产物的有机合成
二羧酐通过Gille口反应合成色环
该方法可以合成多种罕见色环物质,具有高效、高 选择性和环境友好等特点。
动态制备戊二酸
这种方法是通过一套催化剂体系实现的,其中涉 及一些普遍具有环境友好性和广泛应用的配体和 前驱体。
亲核反应法
包括环全加成和带薪的环开放反应。方法优点是 反应条件温和,易于量规控制。
《有机反应成环反应》PPT课件
CH3
H
CH3
H
h
CHC3 H3 H
H
H CH3 H
CH3
III. 二酯用Na核非质子溶剂的成环,可用于四元环
COOC2H5 COOC2H5
1.Na 2.(CH3)3SiCl
OSi(CH3)3 CH3OH
OH
OSi(CH3)3
O
5.五元环衍生物 (1)双官能团化合物缩合
C2H5OOC 1,6
COOC2H5 C2H5ONa
立体化学 D-A反应具有高度的立体选择性。
二烯体和亲二烯体的立体化学特征被保留在加合物的结构 中。
顺式加成规则:在D-A反应中,两个反应物取 代基的定向被保留在生成的加合物中。即亲二 烯体是反式二取代乙烯的衍生物时,在加合物 中,两个取代基仍处于反式;如果在亲二烯体 中两个取代基处于顺式,则在加合物中它们仍 以顺式存在。
个新反应。该反应在制备航天飞机上获得广泛应用, 其优点是副产物是挥发性的烯烃,如乙烯
反应类型: 烯烃复分解反应包括: 开环复分解聚合(ROMP,用于合成聚合物);
闭环复分解反应(RCM,用于成环);
开环复分解反应(ROM,用于合成链状烯烃)
交叉复分解反应(用于合成链状烯烃
前三种反应容易进行,后一种变化的关键是避 免两种原料烯烃的自身解反应。最近的发展已 使之可以选择性地进行,成为有合成价值的反 应。
常见的具有代表性二烯化合物有:链状二烯及其衍生物,如丁二烯及其衍生物;环内二烯 和某些环外二烯及其衍生物,如环戊二烯和1-乙烯基环已烯等;稠环芳烃,如蒽等。
亲二烯体的活性 亲二烯体的活性依赖于反应的电子要求。在亲二烯体中,有吸电基时, 使反应加速进行。例如,四氰基乙烯作为亲二烯体比环戊二烯要快4.6×108倍。亲二烯 体中最活泼的是:苯醌、顺丁烯二酸酐、硝基取代的烯烃、α、β-不饱和酯(酮和腈)。 但是,当二烯体本身缺乏电子时,则亲二烯体中有供电基反而对加成有利。例如,六氯 环戊二烯与苯乙烯的加成,当苯乙烯分子中有供电基时,加速反应的进行。最常见的亲 二烯体有烯烃衍生物和炔烃衍生物等。
有机合成 第八章 环化反应 ppt课件
阳离子环化反应:
➢ 利用阳离子中间体进行合环的环化反应 ➢ 该类环和的应用较广泛,萜类化合物和甾体的
合成中很多都是通过阳离子环化制备的 ➢ 阳离子常使用碳正离子,其容易重排生成更稳
定的化合物,因此能形成稳定的叔碳正离子及 其他稳定的正离子的产物的产率较高
80%HOAc-H2O
叔碳正离子,已经
处于PP稳T课定件 状态,不再重排
PPT课件
30
Trost的发展
由于合成六元环反应可以通过D-A反应很容 易的得到,Trost发现,使用三甲撑甲烷 (TMM)与烯烃可以发生3+2环加成,
三甲撑甲烷的形成
Trost方法的应用
PPT课件
31
四元环的建立
四元环的环张力比较大,合成较困难。主 要使用2+2的环加成。
➢ 烯烃与烯烃的反应 ➢ 烯烃与累积双键的反应 ➢ 烯烃与碳杂原子间重键的反应
结构和与底物之间存在弱相互作用的特点进行的 控制合成,最初使用大的阳离子为模板:
有机化学, 2004, 24 , 1633~1636
PPT课件
35
利用配位作用的大环合成
烯烃复分 解反应
底物
模板
弱相互作用
氢键、电荷吸引、 配位作用等
催化剂:Cl2(PCy3)2Ru=CHPh
Angew. Chem. Int. Ed. 2003, 42, 228
➢ Woodward在研究天然产物合成时发现,只有 取代基构型满足顺式的双烯体才能发生电环化 反应和D-A反应
➢ Hoffman提出:
分子轨道存在正性和负性部分
在发生的反应中分子轨道的对称性守恒(正对正, 负对负),称为Woodward-Hoffman规则
➢ 利用阳离子中间体进行合环的环化反应 ➢ 该类环和的应用较广泛,萜类化合物和甾体的
合成中很多都是通过阳离子环化制备的 ➢ 阳离子常使用碳正离子,其容易重排生成更稳
定的化合物,因此能形成稳定的叔碳正离子及 其他稳定的正离子的产物的产率较高
80%HOAc-H2O
叔碳正离子,已经
处于PP稳T课定件 状态,不再重排
PPT课件
30
Trost的发展
由于合成六元环反应可以通过D-A反应很容 易的得到,Trost发现,使用三甲撑甲烷 (TMM)与烯烃可以发生3+2环加成,
三甲撑甲烷的形成
Trost方法的应用
PPT课件
31
四元环的建立
四元环的环张力比较大,合成较困难。主 要使用2+2的环加成。
➢ 烯烃与烯烃的反应 ➢ 烯烃与累积双键的反应 ➢ 烯烃与碳杂原子间重键的反应
结构和与底物之间存在弱相互作用的特点进行的 控制合成,最初使用大的阳离子为模板:
有机化学, 2004, 24 , 1633~1636
PPT课件
35
利用配位作用的大环合成
烯烃复分 解反应
底物
模板
弱相互作用
氢键、电荷吸引、 配位作用等
催化剂:Cl2(PCy3)2Ru=CHPh
Angew. Chem. Int. Ed. 2003, 42, 228
➢ Woodward在研究天然产物合成时发现,只有 取代基构型满足顺式的双烯体才能发生电环化 反应和D-A反应
➢ Hoffman提出:
分子轨道存在正性和负性部分
在发生的反应中分子轨道的对称性守恒(正对正, 负对负),称为Woodward-Hoffman规则
高等有机合成化学 025 成环反应
鲁齐卡(Luzicka)利用,-二羧酸与ThO2共热的方法,首先合 成了大环酮,该方法又称为Luzicka环化反应。其中最大的环 达到34元。5、6元环的产率可达80%,9 13元环产率非常 低(0.5%左右),13元环以上产率一般是5-6%。
CO2H (CH2)n ThO2
CO2H
(CH2)n C O
NH 1)OH-
O
O
2)H+
2019/10/8
19
另一个形成六元环的反应是Robinson增环反应。环酮与 ,-不饱和酮或-氨基酮的季铵盐,在曼尼希碱存在下经历 Michael加成反应,首先在酮的-位引入烃基,然后再进一 步发生分子内羟醛缩合,形成一个与原料并接的稠六元环化 合物,后者失水而成双环,-不饱和酮。一些典型实例如下:
O 1)OH- 73%
COOR
2)
ROOC O
t BuOKROOOC
1C) COHO3RNO2 O
ROOC COOH AlCl3 HOOC
OROOC Cl
O O
O
1)OH- 73%
2)
OH2OΒιβλιοθήκη OOHOOC
2)C12)HC5HC3ONCOl2 OO
COOH AlCl3
COl
OO O
OCl
O Cl
80% O
Cl H3C
(CH3)2C=CHCH2CH2
NaNH2
:
70%
H
H3C
CH2CH2CH2CONH2 (CH3)2C=CHCH2CH2
O N
66%
H3C
H3C
O
COCHN2
H3C
H3C
2019/10/8
10
有机反应-成环反应155页PPT
有机反应-成环反应
11、用道德的示范来造就一个人,显然比用法律来约束他更有价值。—— 希腊
12、法律是无私的,对谁都一视同仁。在每件事上,她都不徇私情。—— 托马斯
13、公正的法律限制不了好的自由,因为好人不会去做法律不允许的事 情。——弗劳德
14、法律是为了保护无辜而制定的。——爱略特 15、像房子一样,法律和法律都是相互依存的。——伯克
ห้องสมุดไป่ตู้
谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
11、用道德的示范来造就一个人,显然比用法律来约束他更有价值。—— 希腊
12、法律是无私的,对谁都一视同仁。在每件事上,她都不徇私情。—— 托马斯
13、公正的法律限制不了好的自由,因为好人不会去做法律不允许的事 情。——弗劳德
14、法律是为了保护无辜而制定的。——爱略特 15、像房子一样,法律和法律都是相互依存的。——伯克
ห้องสมุดไป่ตู้
谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头死去何所道,托体同山阿。 57、春秋多佳日,登高赋新诗。 58、种豆南山下,草盛豆苗稀。晨兴 理荒秽 ,带月 荷锄归 。道狭 草木长 ,夕露 沾我衣 。衣沾 不足惜 ,但使 愿无违 。 59、相见无杂言,但道桑麻长。 60、迢迢新秋夕,亭亭月将圆。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头死去何所道,托体同山阿。 57、春秋多佳日,登高赋新诗。 58、种豆南山下,草盛豆苗稀。晨兴 理荒秽 ,带月 荷锄归 。道狭 草木长 ,夕露 沾我衣 。衣沾 不足惜 ,但使 愿无违 。 59、相见无杂言,但道桑麻长。 60、迢迢新秋夕,亭亭月将圆。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿