流体力学B 第2章(第3次课)
流体力学第二章 流体静力学
流体静力学:研究流体静止时的力学规律。 主要研究内容:研究静止流体的压强分布以及静止流体对
物体表面的作用力。 意义:流体静力学在工程中有着广泛的应用,设计挡水建
筑物、水工结构、高压容器时。都要应用流体静力学的基 本原理。 静止流体受力情况比较简单,但其分析也同样使用严格的 阿力学分析方法,掌握好这些分析方法,可为学习流体动 力学打下良好的基础。
由曲线积分
d U ( x ,y ,z ) X d x Y d y Z d z
dUUdxUdyUdz x y z
整理ppt
C2 流体静力学
2.2 流体平衡微分方程
一 欧拉平衡微分方程
可得欧拉平衡方程
f
1
p
0
d U ( x ,y ,z ) X d x Y d y Z d z
dUUdxUdyUdz x y z
这样形成在赤道处大气自下向上,然后在高空自赤道流向北极;在 北极大气自上向下,最后沿洋面自北向南吹的大气环流。通常将沿洋面 自北向南吹的风称为贸易风。
整理ppt
C2 流体静力学 五 流体静力学基本方程
2.2 流体平衡微分p 0方程z
• 单位质量流体机械能守恒式:
p z c g c z
x
h2
整理ppt
C2 流体静力学
2.1静止流体中的应力特征
特征一:应力的作用方向为作用面的内法向方向
特征二:流体中某一点的静压强 p(x,y,z) 的大小 与压强的作用面无关。
整理ppt
C2 流体静力学
2.1静止流体中的应力特征
流体特征 1:静止流体不能承受切应力,也不能承受拉应力, 只能承受压应力,即压强,压强的作用 方向为作用面的内法向方向(垂直指向作用面)。
流体力学第2章流体运动学基本概念
10
→
→
→
→
对于任一流体质点,其速度可表示为:
r x y z v i j k vx i v y j vz k t t t t 其加速度可表示为:
用拉格朗日法描述流体运动看起来比较简 单,实际上函数B(a,b,c,t)一般是不容易找到的, 往往不能用统一的函数形式描述所有质点的物
理参数的变化。所以这种方法只在少数情况下
使用,在本书中主要使用欧拉法。
13
2.2.2 欧拉法(也叫场法)
基本思想:在确定的空间点上来考察流体的流动, 将流体的运动和物理参量直接表示为空间坐标和时间的 函数,而不是沿运动的轨迹去追踪流体质点。 例:在直角坐标系的任意点(x,y,z)来考察流体流 动,该点处流体的速度、密度和压力表示为: v=v(x,y,z,t)=vx(x,y,z,t)i+ vy(x,y,z,t)j+ vz(x,y,z,t)k
15
2.2.3 质点导数
定义:流体质点的物理量对于时间的变化率。
拉格朗日法中,由于直接给出了质点的物理量的表达 式,所以很容易求得物理量的质点导数表达式。
B B(a, b, c, t ) t t
如速度的质点导数(即加速度)为:
v ( a , b, c , t ) a ( a , b, c , t ) t
v v v vy vz 又由矢量运算公式:v v vx x y z
其中矢量算子 i j k 叫哈密顿算子 x y z
18
于是质点的速度增量可以表示为:
v v ( v v )t t
流体力学第2章
px=pn 同理,由∑Fy=0,及∑Fz=0,可得py=pn,pz=pn,由此 可得出 px=py=pz=pn
第三节 流体的平衡微分方程式
一、 流体平衡微分方程
研究对象:边长为dx、dy、 dz的微元六面体。 原 理:∑F=0
质量力:Xρdxdydz,
Yρdxdydz, Zρdxdydz, 表面力:各表面的τ=0
ay cos gz az sin c
等压面是一簇平行的斜面。
dz a cos dy g a sin
在自由液面上,因y=0,z=0,所以积分常数 c=0,故自由液面方程为 a cos ay cos gz az sin 0 z y g a sin a cos arctan 自由液面与y方向的倾角为: g a sin
dp xdx ydy gdz
2 2
1. 流体静压力分布规律
z
dp xdx ydy gdz
2 2
p0 o
2 x2 2 y2 2r 2 p gz c gz c 2 2 2
作用在流体上的力 流体的静压力及其特性 流体的平衡微分方程式 重力场中流体静力学基本方程 压力的单位和压力的测量方法 流体的相对平衡 静止流体作用力
第一节
作用在流体上的力
作用于流体上的力按作用方式可分为表面力和质量 力两类。 一、 表面力
表面力指作用在所研究的流体表面的力。它是由所研 究流体的表面与相接触的物体的相互作用而产生的。 单位是N/m2(Pa) 。 表面力按作用方向可分为:法向压力(流体压力p)- -垂直于作用面;切向应力--平行于作用面。
流体力学第二章
第一节流体流体静压强及其特性一流体静压强的定义ΔPⅠΔAⅡⅡ作用在受压面整个面积上的压力称为总压力或压力作用在单位面积上的压力是压力强度,简称压强Ap p ∆∆=(2-1-1)App A ∆∆=→∆0lim(2-1-2)当面积ΔA 无限缩小时,则得某点的静压强,为:压强的国际制单位是N/m 2或Pa ;工程单位tf/m 2是或kgf/cm 2。
第一节流体流体静压强及其特性二流体静压强的特性pABCp 1τzxydz dxdyP xP yP nP zdydzp P x x 21⋅=dzdxp P y y 21⋅=dxdyp P z z 21⋅=dAp P n n ⋅=xx f dxdydz F ⋅⋅=61ρyy f dxdydz F ⋅⋅=61ρzz f dxdydz F ⋅⋅=61ρ0)cos(=+∧-x n x F x n P P 061)cos(21=⋅+∧-⋅x n x f dxdydz x n dA p dydz p ρdydzx n dA 21)cos(=∧nx p p =压强方向的假设压强大小计算ΔhΔlΔA第一节流体流体静压强及其特性结论流体静压强的方向与作用面垂直,并指向作用面任意一点各方向的流体静压强大小相等,与作用面的方位无关第二节流体静压强的分布规律p 1p 2Gα0cos 12=⋅--αG P P 0cos 12=∆⋅--αγldA dA p dA p h p p ∆=-γ12hp p γ+=0一液体静压强的基本方程式hp p γ+=12p 0hpph11200z1h2z2z011hppγ+=)(11zzpp-+=γγ/1110zpzp+=+γγ22hppγ+=)(22zzpp-+=γγ/1220zpzp+=+γγCzp=+γ结论:压强水头,压强必须为相对压强位置水头测压管水头,同一容器的静止液体中各点测压管水头相等。
测压管水头表示单位重量流体具有的单位势能。
测压管水头线上的各点,其压强与当地大气压相等。
流体力学(2章)
IC y D yC yC A
作用点——解析法
IC y D yC yC A
xD xc
注意:坐标系及原点的选择
I xyc yc A
•
利用解析法解题过程
1)选择坐标系,注意坐标原点在受压面或受 压面的延长面与自由液面的交点 2)求力的大小 P=受压面形心处的压强×受压面的面积 3)求力的作用点
(11 z 25km)
压强的度量
绝对压强是以没有气体 分子存在的完全真空为 基准起算的压强,以符 号pabs表示。
相对压强是以当地大气 压为基准起算的压强, 以符号p表示。 相对压强和绝对压强的关系
p pabs pa
压强的度量
若绝对压强小于当地大 气压,相对压强便是负 值,又称负压。所谓真 空值(真空度)是指绝 对压强不足当地大气压 的差值,即相对压强的 负值,以符号pv表示。 相对压强和真空值的关系
h
z z B z A
( p )hp pA pB ( z A ) ( zB ) 12.6hp g g
文丘里流量计
pM p N
p1 gx
p2 g ( x z hp ) p ghp
p1 p2 ( p g g )hp gz
z
压力体
实压力体 ——压力体和液面在曲面AB的同侧,Pz方向向下
虚压力体 ——压力体和液面在曲面AB的异侧,Pz方向向上 压力体叠加 ——对于水平投影重叠的曲面,分开界定压力体, 然后相叠加,虚、实压力体重叠的部分相抵消。
问题:如果液面不是自由液面呢?
《流体力学》第二章流体静力学
p z C g
pa 4 3 真空 1
p2 g
p=0
z1
z3
2
z=0
p 为压强水头 g
z 为位置水头
2.3 重力场中的平衡流体 重要结论
p p0 gh
(1) 在重力作用下的静止液体中,静压强随深度按线性 规律变化,即随深度的增加,静压强值成正比增大。 (2)在静止液体中,任意一点的静压强由两部分组成: 一部分是自由液面上的压强P0;另一部分是该点到自由 液面的单位面积上的液柱重量ρgh。 (3)在静止液体中,位于同一深度(h=常数)的各点的静 压强相等,即任一水平面都是等压面。
2.2 流体平衡微分方程 一、欧拉平衡方程
p dx 1 p dx 1 p dx p 2 3 x 2 2 x 2 6 x 2
2 3
2
3
p dx 1 p dx 1 p dx p 2 3 x 2 2 x 2 6 x 2
dA dA n
dF pdAn
F pdAn
A
流体静压力:作用在某一面积上的总压力; (矢量) 流体静压强:作用在某一面积上的平均压强或某一点的 (标量) 没有方向性 压强。
2.1 平衡流体上的作用力 证明:
z A
pn px
微元四面体受力分析
py
dx C x
dz O dy B y
y
p x p y p z pn
C x
pz
f
↑
z
表 面 力 质 量 力
1 d yd z 2 1 Py p y d zd x 2 1 P p d yd x z z 2 P n pn d A P x px
流体力学课后习题答案第二章
第二章 流体静力学2-1 密闭容器测压管液面高于容器内液面h=1.8m,液体密度为850kg/m3, 求液面压强。
解:08509.8 1.814994Pa p gh ρ==⨯⨯=2-2 密闭水箱,压力表测得压强为4900Pa,压力表中心比A 点高0.4米,A 点在液面下1.5m ,液面压强。
解:0()490010009.8(0.4 1.5) 49009800 1.15880PaM B A p p g h h ρ=+-=+⨯⨯-=-⨯=-2-3 水箱形状如图,底部有4个支座。
试求底面上的总压力和四个支座的支座反力,并讨论总压力和支座反力不相等的原因。
解:底面上总压力(内力,与容器内的反作用力平衡)()10009.81333352.8KN P ghA ρ==⨯⨯+⨯⨯=支座反力支座反力(合外力)3312()10009.8(31)274.4KN G g V V ρ=+=⨯⨯+=2-4盛满水的容器顶口装有活塞A ,直径d=0.4m ,容器底直径D=1.0m ,高h=1.8m 。
如活塞上加力为2520N(包括活塞自重)。
求容器底的压强和总压力。
解:压强2252010009.8 1.837.7kPa (0.4)/4G p gh A ρπ=+=+⨯⨯= 总压力 237.71/429.6KN P p A π=⋅=⨯⋅=2-5多管水银测压计用来测水箱中的表面压强。
图中高程单位为m ,试求水面的绝对压强。
解:对1-1等压面02(3.0 1.4)(2.5 1.4)p g p g ρρ+-=+-汞对3-3等压面 2(2.5 1.2)(2.3 1.2)a p g p g ρρ+-=+-汞将两式相加后整理0(2.3 1.2)(2.5 1.4)(2.5 1.2)(3.0 1.4)264.8kPap g g g g ρρρρ=-+-----=汞汞绝对压强 0.0264.8+98=362.8kPa abs a p p p =+=2-6水管A 、B 两点高差h 1=0.2m ,U 形管压差计中水银液面高差h 2=0.2m 。
流体力学教案第2章流体静力学
第二章 流体静力学§2-1作用在流体上的力、表面力、质量力在运动的实际流体中任取一块流体,其体积为V ,表面积为A ,在这块流体上任取一微元面积δA ,作用在其表面上的力为δF ,分解为⎩⎨⎧切向力法向力τδδF F n ,则法向力: AF p A δδδn 0lim →= (N/m 2)切向力:AF A δδτδτ0lim →= (N/m 2)在这块流体上,取一流体微团,其体积为δV,由于地球引力的作用,产生的重力为ρg δV 。
由于流体存在加速度a,根据达朗贝尔原理,虚加的惯性力为-ρδVa。
所以,流体所受的力为:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧惯性力重力或体积力质量力一般情况不考虑和表面张力摩擦力切向应力压力法向应力表面力)()()()(στP 表面力―是指作用在流体中的所取某部份流体体积表面上的力,也就是该部分体积周围的流体(既可是同一种类的流体,也可是不同种类的流体)或固体通过接触面作用在其上的力。
质量力―是指作用在流体内部所有流体质点上并与流体的体积或质量成正比的力,又称体积力。
通常,单位质量流体的质量力用→f 表示,在笛卡尔直面坐标系中:k j i zyxf f f f →→→→++=流体静力学―研究流体处于静止状态时各种物理量的分布规律及在工程实际中的应用。
所谓流体的静止状态是指流体对选用的坐标系无相对运动的状态。
δF§2-2流体的静压强及其特性在静止的流体中,任取一块流体。
当δA →0时,p 就定义为空间某点的静压强:AP p A δδδlim→=静压强的两个特性:① 流体静压强指向作用面的内法线方向。
② 流体中任意点静压强的大小只是位置的函数,即p=f (x ,y ,z )与其作用面的方向无关,又称作静压强各向同性。
证①:流体中任意点所受的力均可分为切应力和压应力。
因总体静止,0d d =yu, 故切应力0=τ,所以,只存在法向应力,当然垂直于作用面。
又:流体在拉力作用下,要发生运动,因为静止,故只存在压应力。
流体力学第二章参考答案
第二章 流体静力学2-1 将盛有液体的U 形小玻璃管装在作水平加速运动的汽车上(如图示),已知L =30 cm ,h =5cm ,试求汽车的加速度a 。
解:将坐标原点放在U 形玻璃管底部的中心。
Z 轴垂直向上,x 轴与加速度的方向一致,则玻璃管装在作水平运动的汽车上时,单位质量液体的质量力和液体的加速度分量分别为0,0,,0,0x y z x y z g g g ga a a a ===-===代入压力全微分公式得d (d d )p a x g z ρ=-+因为自由液面是等压面,即d 0p =,所以自由液面的微分式为d d a x g z =- 积分的:a z x c g=-+,斜率为a g -,即a g h L = 解得21.63m/s 6g a g h L ===2-2 一封闭水箱如图示,金属测压计测得的压强值为p =4.9kPa(相对压强),测压计中心比A 点高z =0.5m ,而A 点在液面以下h =1.5m 。
求液面的绝对压强和相对压强。
解:由0p gh p gz ρρ+=+得相对压强为30() 4.91010009.81 4.9kPa p p g z h ρ=+-=⨯-⨯⨯=-绝对压强0( 4.998)kPa=93.1kPa abs a p p p =+=-+2-3 在装满水的锥台形容器盖上,加一力F =4kN 。
容器的尺寸如图示,D =2m ,d =l m ,h =2m 。
试求(1)A 、B 、A ’、B ’各点的相对压强;(2)容器底面上的总压力。
解:(1)02 5.06kPa 4F F p D A π===,由0p p gh ρ=+得:0 5.06kPa A B p p p ===''0 5.06kPa+10009.82Pa 24.7kPa A B p p p gh ρ==+=⨯⨯=(2) 容器底面上的总压力为2'24.7kPa 77.6kN 4A D P p A π==⨯= 2-4 一封闭容器水面的绝对压强p 0=85kPa ,中间玻璃管两端开口,当既无空气通过玻璃管进入容器、又无水进人玻璃管时,试求玻璃管应该伸入水面下的深度h 。
第二章 流体静力学
d
例题3
考虑左侧水的作用
a a
a
a
b
b
b
b
c
c
c
c
ab段曲面(实 压力体)
bc段曲面(虚 压力体)
阴影部分相 互抵消
abc曲面(虚压 力体)
例题3
考虑右侧水的作用
a
b
c
bc段曲面 (实压力体)
例题3
合成
a a
a
a
b
b
b
b
c
c
c
c
左侧水的作 用
右侧水的作 用
abc曲面(虚压 力体)
例4
圆柱形压力水罐,半径R=0.5m,长l=2m,压 力表读值p=23.72kN/M2,试求(1)端部平 面盖板所受水压力;(2)上、下半圆筒所 受水压力。
分析思路
流体作用在曲面各微元面积上的压力 不是平行的,不能直接相加,而是采取 力学中“先分解,后合成”的方法确定总压 力。
§2.5 作用在曲面上的静水总压力
压力大小
dP ghd
一、静水总压力的水平分力
水平分力
dPx dP cos ghd cos ghd x
hd 为压力体体积
z
z
压力体
z
h d z
定义: 压力体相当于从曲面向上引至液 面(自由液面)的无数微小柱体的 体积总和,它是纯数学概念,与这 个体积内是否充满液体无关。
画法: (1)自由液面 (2)曲面 (3)根据静压强作用的方向找特殊点 (4)分段 (5)沿曲面的边界引垂直液面的铅垂面
空气 A 水
故A点的真空值为
p v p a p A (h2 h1 ) 1000 9.8 (2 1) 9800 Pa
流体力学讲义 第二章 流体静力学
第二章流体静力学作用在流体上的力有面积力与质量力。
静止流体中,面积力只有压应力——压强。
流体静力学主要研究流体在静止状态下的力学规律:它以压强为中心,主要阐述流体静压强的特性,静压强的分布规律,欧拉平衡微分方程,等压面概念,作用在平面上或曲面上静水总压力的计算方法,以及应用流体静力学原理来解决潜体与浮体的稳定性问题等。
第一节作用于流体上的力一、分类1.按物理性质的不同分类:重力、摩擦力、惯性力、弹性力、表面张力等。
2.按作用方式分:质量力和面积力。
二、质量力1.质量力(mass force):是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。
对于均质流体(各点密度相同的流体),质量力与流体体积成正比,其质量力又称为体积力。
单位牛顿(N)。
2.单位质量力:单位质量流体所受到的质量力。
(2-1) 单位质量力的单位:m/s2 ,与加速度单位一致。
最常见的质量力有:重力、惯性力。
问题1:比较重力场(质量力只有重力)中,水和水银所受的单位质量力f水和f水银的大小?A. f水<f水银;B. f水=f水银;C. f水>f水银;D、不一定。
问题2:试问自由落体和加速度a向x方向运动状态下的液体所受的单位质量力大小(fX. fY. fZ)分别为多少?自由落体:X=Y=0,Z=0。
加速运动:X=-a,Y=0,Z=-g。
三、面积力1.面积力(surface force):又称表面力,是毗邻流体或其它物体作用在隔离体表面上的直接施加的接触力。
它的大小与作用面面积成正比。
表面力按作用方向可分为:压力:垂直于作用面。
切力:平行于作用面。
2.应力:单位面积上的表面力,单位:或图2-1压强(2-2)切应力(2-3) 考考你1.静止的流体受到哪几种力的作用?重力与压应力,无法承受剪切力。
2.理想流体受到哪几种力的作用?重力与压应力,因为无粘性,故无剪切力。
第二节流体静压强特性一、静止流体中任一点应力的特性1.静止流体表面应力只能是压应力或压强,且静水压强方向与作用面的内法线方向重合。
名师讲义【中国计量大学】工程流体力学第二章 流体静力学
用dx、dy、dz除以上式,并化简得
X 1 p 0 (1) x
同理
Y 1 p 0 (2) —欧拉平衡微分方程(2.4)
y
Z 1 p 0 (3)
z
意义:平衡流体所受的质量力分量等于表面力分量。该
方程用于可压、不可压流体,理想和黏性流体。是流体静 力学最基本的方程。
9
现代设计制造研究所
18
现代设计制造研究所
静止液体中的压强计算和等压面
等压面
1、在重力作用下,不可压缩静止流体中的等
高面为等压面; 2、自由表面。
p p0 gz0 z p0 gh
静压强分布
19
现代设计制造研究所
静止液体中的压强计算和等压面
习题1:水池中盛水如图。已知液面压强 p0 98.07kN / m2,
解:圆柱体底面上各点所受到的计示 压强为:
F mg 100 5.1 9.807
pe d 2 / 4 0.7854 (0.12)2 13263(Pa)
pa F
H h
pe g(h H )
1
H pe h 0.8524(m)
g
w 1
d
24
现代设计制造研究所
流体静压强的测量
1. 静压强的单位
物理意义:在重力作用下的连续均质不可压静止流体
中,各点单位重量流体的总势能保持不变(能量守恒)。
16
现代设计制造研究所
静止液体中的压强计算和等压面
p gz C
p gz p0
C由边界条件确定。如果假定在液
面上,Z=0,p=p0,则C=p0。
p p0 gz
如果选取h的坐标方向与z轴相反,则: p p0 gh
积分 p gz c
经典:流体力学-第二章-水静力学
压力体可分为实压力体和虚压力体
实压力体判定方法: 绘出的压力体图形与实际的水体居于受压曲面同侧(重叠),
为实压力体。方向向下。
虚压力体判定方法: 绘出的压力体图形与实际的水体分居受压曲面两侧(不重叠),
为虚压力体。方向向上。
对于复式断面,先根据压力体的三个面围出压力体,再根据上述原 则判定虚、实。
第二章流体静力学25作用在平面上的静水总压力一用解析法求任意平面上的静水总压力二用压力图法求矩形平面上的静水总压力26作用在曲面上的静水总压力一曲面上静水压力二压力体27浮力与浮潜体的稳定一浮力二潜体的平衡与稳定性三浮体的平衡及稳定性第四讲25作用在平面上的静水总压力工程实践中需要解决作用在结构物表面上的液体静压力的问题
2.合力P对Ox轴取力矩
总压力P对Ox轴的力矩为: P y D g sa ix n y S D g sa i c A n y y D
3.据力矩定理
得:
yD
Ix Sx
Ix yc A
6
yD
Ix Sx
Ix yc A
上式表明:平面上静水总压力作用点D的纵坐标yD等于受压面面积A对Ox 轴的惯性矩与静矩之比。
其中
为图形对形心轴
的静矩,其值应等于零,则得
IyIyca2A
结论:同一平面内对所有相互平行的坐标轴的惯性矩,对形心轴的最小 。 在使用惯性矩移轴公式时应注意a ,b的正负号。
8
故对于本问题有: Ix Ay 2 d A A (y c a )2 d A Ay c 2 d A 2 y cA a d A a A 2 d A Ix Ic y c2 A
2.液体总压力P的铅直分力Pz:
B' F' E'A'
第二章 流体力学
2 ghA vB 2 1 S B S A) (
因
S A S B
vB 2 gh
小孔在水面下多深处,射程最远?
(2) 虹吸现象
分析: 起始 PA PB P 0
水升至B处的起始条件为
B
A
C
hA
hB
PAB ghBA
方法: C处吸气,增大B处空气流速,减小B处压强。
hc
B A
由伯努利方程
从U形管中左右两边液面高度差可知
1 2 PB v PA 2
PB PA gh
h
由上两式得
比多管
为 U 形管中液体密度, 为流体密度。
较适合于测定气体的流速。
h
v 2 gh
常用如图示形式的比多管测液体的流速
A B
1 2 v PA PB gh 2
2. 流体体元 [流体质点](fluid dot)
宏观小,微观大的流体微团。
3. 稳定流动 [定常流动] (Steady flow)
流体质点所经过的空间各点,流速不随时间变化
即:
v v (x,y,z) v (x,y,z,t)
Note: 定常流动不意味着匀速流动。
4. 流线(Stream line)
例:
如图所示为一虹吸装置,h1 和h2 及 流体密度 已知,
求 a、b、c、d 各处压强及流速。
h1 ab
c h2 d
解
pa pd p0 ,va 0
h1 ab
对a 、d 两点有:
c h2 d
过 a、b、c、d 取一流管 求流速
1 2 g (h2 h1 ) vd 2
解得 vd
流体力学第二章 基本方程
一、拉格朗日观点下的连续方程
d ( m) 0
dt
d ( )
dt
1 d 1 d ( ) 0 dt dt d V 0
dt
(2.1.1) (2.1.2) (2.1.3) (2.1.4)
V 称为速度散度,表示体膨涨速度。 V 0表示流体微团在运动过程中发生体积
沿变深度矩形截面河道水面上有波动运动,求 此波动应满足的连续方程
解:设x轴取在河道方向静止水面上
自静止水面起的深度为H(x),自由表面离静 止 水面为(x,t) ,河截面水流速度为 u(x,t) , 河宽b不变,水密度为常数 。
取一长为δx的控制体,体积为 (H )b x
单位时间流入质量:(H )bu
在 δt 时间内沿x方向净流出控制体(流出质量 减去流入质量)的质量为
(2.1.7)
按质量守恒定律,在 时间内沿三个方向净流 出控制体的总质量应等于控制体内减少的质量:
(2.1.8)
取极限后可得
即:
(V ) 0
t
(2.1.9) (2.1.10)
( 2.1.10)式为欧拉形式的连续性方程。
单位时间流出质量:
(H
)bu
x
( H
)bux
净流出质量为:
(H )bux
x
单位时间控制体质量减少为: (H )b x
由质量守恒:
t
b (H ) x b (H )u x
t
x
(H )u 0
t x
(2.1.16)
§2. 作用于流体的力、应力张量
一、质量力和表面力: 1. 质量力 质量力为穿越空间作用在所有流体元上的非 接触力,如重力、万有引力、电磁力等。
流体力学 第2章 工程流体力学2-3平面和曲面上的总压力
dFP ghdA
将dFp 分解为平行于x轴和平行于z轴的两个分力:
dFpx dFp cos ghdAcos ghdA x dFpz dFp sin ghdAsin ghdA z
Ax和Az分别为二维曲面A在垂直于x、z轴的坐标平面的投影面积。
(1) 水平分力
F= dF=ρ gsinθ ydA
A A
AydA Fra bibliotek yc Ayc 为平面A的形心C点处的y坐标
hc yc sin 为形心的淹深
1. 总压力的大小 液体作用在平面A上的总压力为:
F gyc sin A ghc A pc A
pc 为形心处的压强,表明液体作用在平面A上的总压力大小 等于形心压强乘以面积 。方向垂直指向平面。
O B a
A
p a O A B b
p a O A B c
虚压力体:b;对应的垂直
分力方向向上。
压力体的大小均为:
Vp VOAB
复杂曲面的压力体,可以采用分段叠加的方法画出。
g b c d
实压力体?
虚压力体?
1. 总压力的大小
任意形状倾斜放置的平面,与液面的夹 角为,面积为A。平面在oxy平面内, 原点O在自由液面上,y轴沿斜平面向下。 z轴和平面相垂直。 在平面A上取微元面积dA,淹深为 h y sin
作用在dA 和A上的总压力为:
dF ghdA gy sin dA
在几何上,平面A 对ox 轴的面积矩
C平行于Ox轴且通过形心C。
yD
Ix yC A
I cx y D yC yC A
y D yc
同理可得
xD xC
流体力学第二章
对于液面与上边线平齐的矩形平面而言,压力中心坐标为
yD
=yC
+ JC = yCA
l+ bl3/12 = 2 (l/2)bl
2 3l
根据合力矩定理,对 o点取矩可得
Pl=P1
l1 3
-P2
l2 3
=P13sHin1α-P23sHin2α
代入已知数据可解得 l=2.54m
这就是作用在闸门上的总压力的作用点距闸门下端的距离。
— 5—
蔡增基《流体力学》考点精讲及复习思路
解 作用在闸门上的总压力为左右两边液体总压力之差,即 P =P1 -P2。 因为 hC1 =H1/2,A1 =bH1/sinα, hC2 =H2/2,A2 =bl2 =bH2/sinα, 所以 P =ρghC1A1 -ρghC2A2
=ρgH21bsHin1α-ρgH22bsHin2α =97030N。
槡P2x +P2y +P2z
总压力的大小为:P =Pxi+Pyj+Pzk (2)压力体 压力体是由受力曲面、液体自由表面(或其延长面)以及两者间
∫ 的铅垂面所围成的封闭体积。压力体是从积分 AhdAz得到的一个体
积,是一个纯数学的概念,与体积内有无液体无关。
— 6—
实压力体 如果压力体与形成压力的液体在曲面的同侧,则称这样的压力体为实压力体,用(+)来表示,其 方向垂直向下。 虚压力体 如果压力体与形成压力的液体在曲面的异侧,则称这样的压力体为虚压力体,用(-)来表示,其 方向垂直向上。 需要注意的是:以上的两个压力体给人的感觉是实压力体就是内部充满液体的压力体,虚压力体 就是内部没有液体的压力体。其实压力体的虚实与其内部是否充满液体无关 压力体的合成
0.075m处,试求该正方形平板的上缘在液面下的深度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即:
f dl 0
说明:在等压面上,质量力总是与等压面垂直。 注:适用于一切静止流体 (包括绝对静止流体、相对静止流体;理想 流体、粘性流体;可压流体、不可压流体)
§2.3 重力场中静止流 体内部的压强
2.3.1 不可压缩流体 2.3.2 标大气
区别于容器壁面受力方向。
与作用面的方向无关。 2.压强大小: 压强与空间方位无关,仅是点坐标的函数。
§2.2 静止流体平衡方程
一、平衡方程
在流体内部取微元六面体, 分析受力 x方向的表面力:
pdydz
p p dxdydz ( p dx )dydz x x
x
z
p
f x dy
P0 P2
P1 Z1 Z2
等压面为系列的水平面。 同一种液体相通,同一水平 面内压强相等。 ---连通器原理
绝对压强、相对压强、表压、真空
绝对压强: 以完全真空为基准计量的压强。 相对压强: 以当地大气压强为基准计量的压强 相对压强 = 绝对压强 - 大气压 (可正可负)
p pa “+”
p pa
第二章 流体静力学
§2.1 §2.2 §2.3 §2.4 §2.5 §2.6 静止流体的压强特点 静止流体平衡方程 重力场中静止流体内部的压强 非惯性坐标系中的静止流体 静止流体对平板的作用力 静止流体对曲面的作用力
§2.7 浮力 §2.8 流体静压强的测量
概述
研究流体处于平衡状态规律的学科。 流体静力学:
h:淹深
p pa gz
a
或: z
P C g
p p
gh
流体静力学基本方程式
讨论:
z :单位重力流体的位势能
p g
:单位重力流体的压强势能
之和为总势能 (保持不变)
在静止液体中任取两点l和2, 对1、2两点列平衡方程得:
z1 p1 p z2 2 g g
二、压差公式:
将平衡方程各项依次乘dx、dy、dz,然后相加得:
p p p dx dy dz ρ(f x dx f y dy f z dz) x y z
在数学中,若:p f ( x, y, z ) 则:
p 的全微分: dp p dx p dy p dz
绝对静止流体 (相对于惯性坐标系静止)
相对静止流体 (相对于非惯性坐标系静止)
特点:流体内部无切向应力,只有法向应力,即压强。 研究重点: 压强分布规律
面上受力:
平面
曲面
§2.1 静止流体的压强特点
表面力没有切向应力,只有法向应力,即压强。 沿作用面的内法线方向。 1.压强方向: 即:垂直于作用面指向流体内部。
完全气体状态方程:
p RT
p f ( z)
p p dx x
dz dx
x方向的质量力: f x dxdydz
p Fx 0 f x dxdydz dxdydz 0 x
p f x x p p ρf y, ρf z y z
o
y
整理得:
矢量形式: gradp f
同理:
静止流体平衡方程 (欧拉平衡微分方程)
pe p pa 表压
p
表压
p > pa
大气压
“-” pv pa p 真空
o
p = pa
绝对压强
真空
p < pa
测压计原理
U形管测压计 微压计
绝对压强 完全真空
p=0
二、标准大气
(ρ≠常数)
大致与北半球中纬度全年平均的大气条件相符合。 1、完全气体; 2、海平面上T0=15℃ ,压强 p0=1atm; 3、0~11km ,对流层,T=T0-0.065z; 4、11~24Km , 同温层,T=-56 ℃ 由压差公式:dp gdz
§2.3 重力场中静止流体内部的压强
一、不可压缩流体 (ρ=常数)
质量力(只有重力): Z
pa
p pa
f x 0,f y 0,f z g
带入压差公式得: dp gdz
٠ gh
h
积分得: p gz C
边界条件: z 0,p pa C pa
x y z
dp ( f x dx f y dy f z dz)
压差公式
在圆柱坐标系中: dp ( f r dr f rd f z dz) 公式特点:把压强变化和质量力建立起联系。
三、等压面方程:
即:dp 0 压强p = 常数,
f x dx f y dy f z dz 0 等压面方程 f f xi f y j f z k