大学物理第七章

合集下载

《大学物理》章节试题及答案(七)

《大学物理》章节试题及答案(七)

《大学物理》章节试题及答案第七章 恒定磁场7 -1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小B R 、B r 满足( )(A ) r R B B 2= (B ) r R B B = (C ) r R B B =2 (D )r R B B 4=分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比21==R r n n r R 因而正确答案为(C )。

7 -2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A )B r 2π2 (B ) B r 2π(C )αB r cos π22 (D ) αB r cos π2分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为(D ).7 -3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过(B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零(C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零。

因而正确答案为(B ).7 -4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( )(A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B = (B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B = (C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠ (D ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ). *7 -5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( )(A )()r I μr π2/1-- (B ) ()r I μr π2/1-(C ) r I μr π2/- (D ) r μI r π2/分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B ).7 -6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA 时,在整个环中有多少电子在运行? 已知电子的速率接近光速。

大学物理第六版第七章气体动理论基础总结

大学物理第六版第七章气体动理论基础总结

大学物理第六版第七章气体动理论基础总结
1. 气体分子模型:气体由大量无限小的分子组成,分子之间几乎没有相互作用,分子运动是无规则的。

2. 气体分子的运动:气体分子具有随机热运动,并遵循牛顿力学定律。

分子的速度和方向是随机的。

3. 气体的压强:气体分子与容器壁的碰撞会产生压强。

气体的压强与分子的速度、分子间平均自由程、分子总数等因素有关。

4. 理想气体状态方程:理想气体状态方程描述了气体的状态。

PV = nRT,其中P为气体压强,V为体积,n为物质的量,R为气体常数,T为温度。

5. 分子平均动能:气体分子的平均动能与气体的温度成正比。

分子平均动能与分子质量无关。

6. 温度和热力学温度:温度是描述物体热平衡状态的物理量。

热力学温度是温度的定量度量,它与分子平均动能的平方成正比。

7. 气体分子的速率分布:气体分子的速率分布服从麦克斯韦-波尔兹曼分布。

分子速率分布与温度相关,高温下分子速率分布图会变得更加平坦。

总结起来,第七章主要介绍了气体动理论的基本概念和定律,包括气体分子的运动、气体压强、气体状态方程、分子平均动能、温度和速率分布等内容。

大学物理课后答案第七章..

大学物理课后答案第七章..

第七章静电场中的导体和电介质、基本要求1•掌握导体静电平衡的条件及静电平衡时导体电荷的分布规律;2•学会计算电容器的电容;3•了解介质的极化现象及其微观解释;4.了解各向同性介质中D和E的关系和区别;5.了解介质中电场的高斯定理;6.理解电场能量密度的概念。

二、基本内容1.导体静电平衡(1)静电平衡条件:导体任一点的电场强度为零(2)导体处于静电平衡时:①导体是等势体,其表面是等势面;②导体表面的场强垂直于导体表面。

(3)导体处于静电平衡时,导体内部处处没有净电荷存在,电荷只能分布在导体的表面上。

2.电容(1)孤立导体的电容电容的物理意义是使导体电势升高单位电势所需的电量。

电容是导体的重要属性之一,它反映导体本身具有储存电荷和储存电能的能力。

它的大小仅由导体的几何形状、大小和周围介质决定,与导体是否带电无关。

(2)电容器的电容V A -V Bq为构成电容器两极板上所带等量异号电荷的绝对值。

V A-V B为A、B两极间电势差。

电容器电容与电容器形状、大小及两极间介质有关,与电容器是否带电无关。

(3)电容器的串并联串联的特点:各电容器的极板上所带电量相等,总电势差为各电容器上电势差之和。

等效电容由丄二丄•丄-进行计算。

C C i C2 C n并联的特点:电容器两极板间的电势差相等,不同电容器的电量不等,电容大者电量多。

等效电容为C =G • C2• |1「C n。

(4)计算电容的一般步骤①设两极带电分别为q和-q,由电荷分布求出两极间电场分布。

B②由V A -V B = J A E d l求两极板间的电势差。

A③根据电容定义求C q一V A -V B3 •电位移矢量D人为引入的辅助物理量,定义D =;0E P,D既与E有关,又与P有关。

说明D 不是单纯描述电场,也不是单纯描述电介质的极化,而是同时描述场和电介质的。

定义式无论对各向同性介质,还是各向异性介质都适用。

对于各向同性电介质,因为P = e;o E,所以D =0 r E = E。

大学物理 第7章 真空中的静电场 答案

大学物理 第7章 真空中的静电场 答案

第七章 真空中的静电场7-1 在边长为a 的正方形的四角,依次放置点电荷q,2q,-4q 和2q ,它的几何中心放置一个单位正电荷,求这个电荷受力的大小和方向。

解:如图可看出两2q 的电荷对单位正电荷的在作用力 将相互抵消,单位正电荷所受的力为)41()22(420+=a q F πε=,2520aqπε方向由q 指向-4q 。

7-2 如图,均匀带电细棒,长为L ,电荷线密度为λ。

(1)求棒的延长线上任一点P 的场强;(2)求通过棒的端点与棒垂直上任一点Q 的场强。

解:(1)如图7-2 图a ,在细棒上任取电荷元dq ,建立如图坐标,dq =λd ξ,设棒的延长线上任一点P 与坐标原点0的距离为x ,则2020)(4)(4ξπεξλξπεξλ-=-=x d x d dE则整根细棒在P 点产生的电场强度的大小为)11(4)(40020xL x x d E L--=-=⎰πελξξπελ=)(40L x x L-πελ方向沿ξ轴正向。

(2)如图7-2 图b ,设通过棒的端点与棒垂直上任一点Q 与坐标原点0的距离为y204rdxdE πελ=θπελcos 420r dxdE y =,θπελsin 420rdxdE x = 因θθθθcos ,cos ,2yr d y dx ytg x ===,习题7-1图dq ξd ξ习题7-2 图axxdx习题7-2 图by代入上式,则)cos 1(400θπελ--=y =)11(4220Ly y +--πελ,方向沿x 轴负向。

θθπελθd y dE E y y ⎰⎰==00cos 400sin 4θπελy ==2204Ly y L+πελ 7-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强。

解:如图,在半环上任取d l =Rd θ的线元,其上所带的电荷为dq=λRd θ。

对称分析E y =0。

θπεθλsin 420R Rd dE x =⎰⎰==πθπελ00sin 4RdE E x R02πελ=2022Rq επ=,如图,方向沿x 轴正向。

大学物理第七章恒定磁场

大学物理第七章恒定磁场
问题二
在均匀磁场中,有一段长度为l的导线,导线的一端固定在x=0处,另一端在x=l处自由悬 挂。当导线受到外力作用而摆动时,求摆动的周期T是多少?
问题三
在均匀磁场中,有一段长度为l的导线,导线的一端固定在x=0处,另一端在x=l处自由悬 挂。当导线受到外力作用而摆动时,求摆动的振幅A是多少?
THANK YOU
04
磁场中的电流
电流产生的磁场
安培环路定律
描述电流产生的磁场,即磁场与电流 成正比,并与电流的环绕方向有关。
毕奥-萨伐尔定律
描述电流在其周围空间产生的磁场, 与电流的大小和距离有关。
磁场对电流的作用
洛伦兹力
描述带电粒子在磁场中受到的力,该 力垂直于粒子的运动方向和磁场方向。
霍尔效应
当电流垂直于磁场通过导体时,会在 导体两侧产生电势差,这种现象称为 霍尔效应。
在磁场中画出一系列从N极指向S 极的曲线,表示磁力作用的路径 。
磁感应强度和磁场强度
磁感应强度
描述磁场对放入其中的导体的作用力,用B表示。
磁场强度
描述磁场本身的强弱,用H表示。
恒定磁场与变化磁场
恒定磁场
磁场强度不随时间变化的磁场。
变化磁场
磁场强度随时间变化的磁场。
03
磁场中的物质
物质的磁性分类
磁化现象
当物质处于磁场中时,物质内部会产生感应磁场,感应磁场 与外磁场相互作用,使物质表现出磁性。这种现象被称为磁 化现象。
磁滞效应
当外磁场变化时,物质的磁化强度不仅与外磁场有关,还与 外磁场的历史状态有关。这种现象被称为磁滞效应。磁滞效 应是磁性材料中常见的一种现象,也是制造电磁铁和电机的 重要原理。
磁场中的能量

大学物理学(课后答案)第7章

大学物理学(课后答案)第7章

⼤学物理学(课后答案)第7章第七章课后习题解答、选择题7-1处于平衡状态的⼀瓶氦⽓和⼀瓶氮⽓的分⼦数密度相同,分⼦的平均平动动能也相同,则它们[](A) 温度,压强均不相同(B)温度相同,但氦⽓压强⼤于氮⽓的压强(C)温度,压强都相同(D)温度相同,但氦⽓压强⼩于氮⽓的压强3分析:理想⽓体分⼦的平均平动动能τk= kT,仅与温度有关,因此当氦⽓和氮2⽓的平均平动动能相同时,温度也相同。

⼜由理想⽓体的压强公式p =nkT ,当两者分⼦数密度相同时,它们压强也相同。

故选( C)O7-2理想⽓体处于平衡状态,设温度为T,⽓体分⼦的⾃由度为i ,则每个⽓体分⼦所具有的[](A)动能为-kT (B)动能为丄RT2 2(C)平均动能为^kT (D)平均平动动能为^RT分析:由理想⽓体分⼦的的平均平动动能3 kT和理想⽓体分⼦的的平均动能2T⼆丄kT ,故选择(C)O27-3三个容器A、B、C中装有同种理想⽓体,其分⼦数密度n相同,⽽⽅均根1/2 1/2 1/2速率之⽐为V A : V B : V C 1:2:4 ,则其压强之⽐为P A : P B : P C[](A) 1:2:4 (B) 1:4:8 (C) 1 : 4 : 16 (D) 4:2:1分析:由分⼦⽅均根速率公式= J3RT,⼜由物态⽅程p = nkT ,所以当三容器中得分⼦数密度相同时,得p1: P2: P3 =T1 :T2 :T3 =1:4:16 O故选择(C)O7-4图7-4中两条曲线分别表⽰在相同温度下氧⽓和氢⽓分⼦的速率分布曲线。

如果(VP O和(V P 分别表⽰氧⽓和氢⽓的最概然速率,则[](A)图中a表⽰氧⽓分⼦的速率分布曲线且V P O z V P H= 4(B) 图中a表⽰氧⽓分⼦的速率分布曲线且V P O/ V P H? =1/4(C) 图中b表⽰氧⽓分⼦的速率分布曲线且V P O / V P H=1/4(D) 图中b表⽰氧⽓分⼦的速率分布曲线且V P O/ V P H2 =4分析:在温度相同的情况下,由最概然速率公式'..P=I j2RT及氢⽓与氧⽓的摩尔质量M H2£M o2,可知氢⽓的最概然速率⼤于氧⽓的最概然速率,故曲线a对应于氧分⼦的速率分布曲线。

大学物理A层次-第七章统计物理初步

大学物理A层次-第七章统计物理初步
统计分布可以用概率密度函数 、分布函数、累积分布函数等 多种方式表示。
统计分布的分类
根据微观粒子系统的不同特性 和条件,统计分布可以分为玻 尔兹曼分布、费米分布、玻色 分布等。
涨落的概念
涨落的定义
涨落是指微观粒子系统在某些物 理量上的随机偏离其平均值的现 象,是统计物理中研究的重要问 题之一。
涨落的来源
在平衡态下,系统各个可能的微观状态出现的概率相等。
分布函数与概率密度
分布函数描述系统处于某个宏观状态的概率,而概率密度则描述系统处于某个微观状态的概率。通过概 率论的方法,可以推导出各种分布函数和概率密度的表达式,进而研究系统的统计性质。
03
热力学基础
热力学的基本概念
01
02
03
04
温度
描述物体热状态的物理量,是 物体分子热运动的平均动能的 标志。
热量
在热传递过程中,物体之间内 能的转移量。
内能
物体内部所有分子热运动的动 能和分子势能的总和。
热力学系统
由大量相互作用的粒子组成的 宏观物体,简称系统。
热力学的基本定律
热力学第零定律
如果两个系统分别与第三个系统达到热平衡,那么这两个系统彼此之间也必定处于热平衡 。
热力学第一定律
热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转 换过程中,能量的总值保持不变。
热传导
通过统计物理方法,可以研究固体中的热传导机制,如声子热传 导和电子热传导。
相变
统计物理对于理解固体中的相变现象非常重要,如熔化、凝固和 升华等。
统计物理在液体物理学中的应用
液体结构
统计物理方法可用于研究液体的微观结构和分子间的 相互作用。

大学物理第七章静电场思维导图

大学物理第七章静电场思维导图

绝缘体在静电场中表现特性
电荷保持
绝缘体不易导电,因此在静电场中,绝缘体上的电荷 难以移动或消失,能够长时间保持电荷。
极化现象
在静电场作用下,绝缘体中的正负电荷中心会发生相 对位移,形成电偶极子,从而产生极化现象。
介电常数
绝缘体的介电常数反映了其在静电场中的极化程度。 介电常数越大,绝缘体的极化能力越强。
导体和绝缘体之间相互作用
静电感应现象
当导体靠近绝缘体时,由于静电感应作用,导体会在靠近绝缘体的一侧感应出异号电荷,而绝缘体也会因为 极化作用在靠近导体的一侧出现束缚电荷。
电荷转移
在特定条件下,如导体与绝缘体接触或存在电位差时,可能会发生电荷转移现象。例如,在雷电天气中,云 层中的电荷可能会通过空气中的绝缘体(如水滴)转移到地面上的导体上。
电荷与电场关系
电荷
带正负电的粒子,是电场的源。
电场
电荷周围存在的一种特殊物质, 对放入其中的电荷有力的作用。
电荷与电场关系
电荷产生电场,电场对电荷有 力的作用。
电场强度与电势差
电场强度
描述电场的力的性质的物理量,表示电场的强弱和方向。
电势差
描述电场的能的性质的物理量,表示两点间电势的差值。
关系
电场强度与电势差密切相关,电场强度的方向是电势降低最快的 方向。
静电场中的导体和绝缘体
导体
内部存在自由电荷,能够导电的 物体。在静电场中,导体内部电 场为零,电荷分布在导体表面。
绝缘体
内部几乎没有自由电荷,不能导 电的物体。在静电场中,绝缘体 内部和表面都可能存在电荷。
静电感应
当导体靠近带电体时,由于静电 感应作用,导体内部电荷重新分 布,使得导体两端出现等量异号 电荷的现象。

大学物理稳恒磁场理论及习题解读

大学物理稳恒磁场理论及习题解读

250 0 方向垂直A面
B
BC
0 N C I C
2 RC

0 20 5
2 0.10
O BA
5000 方向垂直C面
B
2 BA
2 BC
7.02 10 T 方向 : tan
4
1
BC 63.4 BA
NIZQ
第14页
大学物理学
恒定磁场
NIZQ
问题: 磁现象产生的原因是什么?
第 2页
大学物理学
恒定磁场
• 电流的磁效应 1820年奥斯特实验表明: 电流对磁极有 力的作用. 1820年 9月 11日在法国科学院演示的奥 斯特的实验 ,引起了安培的兴趣 .一周之后 安培发现了电流间也存在着相互作用力.
此后安培又提出了著名的安 培定律 : 磁体附近的载流导线 会受到力的作用而发生运动.
NIZQ
第 3页
大学物理学
恒定磁场
结论: 磁现象与电荷的运动有着密切的关系 . 运动电荷既能产 生磁效应,也受到磁力的作用. 安培把磁性归结为电流之间的相互作用 . 1822年安培提 出了分子电流假说:
• 一切磁现象起源于电荷的运动.
• 磁性物质的分子中存在分子电流, 每个分子电流相当于一基元磁体。
写成矢量表示:
0 Idl sin
2 4π r 0 Idl r dB 4π r 3
真空中的磁导率: 0= 410-7亨利· 米-1 (H· m-1)
NIZQ
第 8页
大学物理学
恒定磁场
• 毕奥—萨伐尔定律的应用 恒定磁场的计算: 1.选取电流元或某些典型电流分布为积分元. 2.由毕-萨定律写出积分元的磁场dB .

大学物理普通物理学chapter-7

大学物理普通物理学chapter-7

e r 12
k
q1q2 r3
r12
k 1 9109 N m2/C2 4πε0
0 = 8.8510-12 C2 ·N-1·m-2
真空介电常量
F1 2
F21
1
4π 0
q1q 2 r2
er12
1
4π 0
q1q 2 r3
r1 2
返回 退出
F1 2
F21
1
4π 0
q1q 2 r2
er12
• 电场中各处的力学性质不同。
2. 在电场中的同一点上放不同的
试验 电荷。

F q0
与q0无关。
电场强度(intensity
of electric field):
F
E
q0
返回 退出
F
E
q0
场强的大小: F/q0 场强的方向:正电荷在该处所受 电场力的方向。
讨论
1.
矢量场
E
E
r
E
x,y ,z
返回 退出
使用Matlab求解得到的两个 超越方程 F=0的位置x =0.94m 排斥力最大的位置x =1.25m
返回 退出
补充例7-1 设原子核中的两个质子相距4.0×10-15 m, 求此两个质子之间的静电力。
解:两个质子之间的静电力是斥力:
Fe
1
4π 0
q1q 2 r2
9.0 109
按库仑定律,电子和质子之间的静电力为
Fe
1 4πε 0
e2 r2
8.89
109
(1.60 1019 )2 (0.529 1010 )2
8.22108 (N)
返回 退出

《大学物理期末复习》物理第七章知识点

《大学物理期末复习》物理第七章知识点

大学物理第七章复习提纲 ( 静电场和恒定电场) 一:基本知识点1. 电子的电量为: C 1910602.1-⨯± ;2. 电荷守恒定律;p1293. 库伦定律;p1304. 电场的叠加原理;p1315. 电偶极子的概念:(l Q p =称为电偶极矩);p1336. 计算电场强度(重要) p135-p136的每道题都很重要a) 无限长均匀带电直线的场强公式:i xE o 2πελ=; b) 无限大均匀带电平面所产生电场的场强:o 2o 22εσπεi RQ i E ==; 7.电通量概念高斯定理;a) 电通量定义为:穿过某一曲面的电场线条数。

b) 在真空中的静电场内,通过任意闭合曲面的电通量,等于该曲面所包围的电量的代数和的 1/0ε 倍。

8.高斯定理应用;a) 高斯面必须是封闭曲面。

b) 穿过高斯面的电通量与面内电荷分布无关,与面外电荷无关。

c) 高斯面上各点的场强是空间全部电荷产生的总场强。

d) 高斯定理给出了穿过高斯面的电通量与面内电荷的代数和的直接关系;不是高斯面上电场强度与面内电荷的代数和的直接关系。

e) 点对称,轴对称,球对称均可尝试使用高斯定理求解,具体步骤见 p138-p139例题;9.场强环路定理: 在静电场中,电场强度沿任意闭合路径的积分等于零,即电场是无旋场;10.电势差,电势:a) 球面内等电势, 等于球面上的电势。

球面外点的电势等于处于球心的“点电荷”在该点的电势;11.电势叠加原理:(各电荷的电势零点必须相同)12.场强与电势的微分关系:a) 在静电场中,相同电势的点组成的曲面称作等势面。

b) 等势面与电场线处处垂直,场强方向指向电势降低的方向;c) 电场线指向电势降落的方向;d) 在等势面上移动电荷,电场力不做功;e) 等势面的洗漱程度可以用反映电场的强度;13.静电场中的导体:a) 导体内部的电场强度处处为0;b) 静电平衡的导体的表面是等势面;14.静电平衡的基本特性:a) 导体处于静电平衡时,其内部各处无净电荷,电荷只能分布在表面;b) 静电平衡下的导体其表面上的电荷密度与场强之间的关系:0εσ=表E ; c) 孤立导体处于静电平衡时,所带电荷的面密度与表面的曲率有关。

《大学物理》第七章 磁力S

《大学物理》第七章 磁力S
4
磁(场)力
一、磁感应强度的定义 洛伦兹力
Fm
Fm qv B
洛伦兹力的大小
F qvB sin
q
B v
M
'
Fm 1、磁感应强度的大小 B qv sin 2、磁感应强度的方向 Fm 0
——零力线的方向 3、磁感应强度的单位
M
SI:特斯拉(T), Gauss: 1T=104G
2 m v/ / mv R h qB qB
h 常量
B↑
B
h↓
F
F
磁镜 磁瓶
——磁约束现象 应用: 可控轻核聚变
17
动画
地磁场: 中间弱、两极强
18
地磁场:中间弱、两极强,是天然的磁捕获器。
Charged Particle Approaching Earth
范.阿仑辐射带
S S S底
B dS
S
BdS cos
S
BS 底 ( BS底 ) 0
12
§ 7 、3
带电粒子在电磁场中的运动
—匀变速运动
B
F
一、匀强电场中的运动
二、匀强磁场中的运动
mv R qvB = m v2/R 得: qB
2 R 2 m 周期 T v qB 1 qB 频率 f T 2 m
UH B kI
25
§7.5 载流导体在磁场中受的力 一、安培力的公式 设导线所通电流强度为:I B 考虑一小段长为dl 的载流导线在磁场中的受力。 S 为方便,定义电流元: Idl (与电流同向) q 设:电流元中每个载流子 q的平均定向 v 运动速度为 v 则每个载流子所受磁力: f qv B I d l 电流元中的载流子数量: dN nSdl dF fdN 则电流元 Idl 所受的总磁场 力:

大学物理答案第七章

大学物理答案第七章
系统吸热为
(3)若沿过程曲线从a到c状态,内能改变为
应用热力学第一定律,系统所作的功为
7-3 2mol的氮气从标准状态加热到373 K,如果加热时(1)体积不变;(2)压强不变,问在这两种情况下气体吸热分别是多少?哪个过程吸热较多?为什么?
分析根据热力学第一定律,系统从外界吸收的热量,一部分用于增加系统的内能,另一部分用于对外作功.理想气体的内能是温度的单值函数,在常温和常压下氮气可视为理想气体,无论经过什么样的准静态过程从标准状态加热到373 K,其内能的变化都相同.在等体过程中气体对外不作功,系统从外界吸收的热量,全部用于系统的内能的增加,而在等压过程中,除增加内能外,还要用于系统对外作功,因此吸热量要多些.
分析气体动理论的能量公式表明,气体的温度是气体分子平均平动动能的量度,而且定义了方均根速率 .只要温度不变,无论经历什么样的过程,方均根速率都不变.本题中,可以通过等温过程中系统所作的功的表达式确定该过程中系统的温度.
解等温过程中系统所作的功为
7-92 m3的气体等温地膨胀,压强从 变到 ,求完成的功.
第七章热力学基础
7-1 假设火箭中的气体为单原子理想气体,温度为2000 K,当气体离开喷口时,温度为1000 K,(1)设气体原子质量为4个原子质量单位,求气体分子原来的方均根速率 .已知一个原子质量单位=1.6605×10-27kg;(2)假设气体离开喷口时的流速(即分子定向运动速度)大小相等,均沿同一方向,求这速度的大小,已知气体总的能量不变.
p
p22
p0等温线
1
p1
OV2V1V
图7-12
分析对于双原子理想气体,热容比 .不论经历什么过程,只要初终态气体的温度相同,就可以应用理想气体状态方程,建立类似于等温过程中初态和终态压强和体积之间的关系.

大学物理:第七章 热力学定律

大学物理:第七章 热力学定律


做功可以改变系统的状态
做功是系统与外界交换能量的一种方式 在热学中,它是外界有序运动能量与系
统无序运动能量间的转换。过程量
摩擦升温(机械功) 电加热(电功)
上海交通大学 物理系
准静态过程的功
dA PSdl PdV 若A>0系统对外界作功.
A dA v2 PdV v1
若A<0外界对系统作功
上海交通大学 物理系
准静态过程
可以用P-V图描述准静态的变化过程,这P-V图上的每 上点都可表示系统的一个平衡态。
准静态做功:气体膨胀过程
P
P1
P
P2
12
V1 V2 V
上海交通大学 物理系
准静态过程
作功是系统与外界交换能量的一种方式,是力 学相互作用下的能量转移。作功是通过宏观的 有规则运动来完成的。
上海交通大学 物理系
理想气体
严格满足玻意耳定律 pV = vRT
压强趋向于零极限状态下的气体
满足道尔顿分压定律 满足阿伏伽德罗定律 满足焦耳定律 U=U(T) 内能由系统的状态唯一地确定,并随状态变化而变化, 是状态的单值函数
E E(2) E(1)
上海交通大学 物理系
理想气体的内能 焦耳实验
上海交通大学 物理系
气体实验定律
关于气体热学行为的5个基本实验定律, 也是建立理想气体概念的实验依据。
玻意耳定律
盖·吕萨克定律 查理定律。 阿伏伽德罗定律 道耳顿定律
上海交通大学 物理系
§9.1 热力学第一定律
包括热现象在内的能量守恒和 转换定律
热力学第一定律
Q U2 U1 W
系统从外界吸热 Q
处于平衡态系统的内能是确定的;

第七章大学物理教材

第七章大学物理教材

直导线 AB 和半径为 r
yB
的圆弧导线 BCA 组成 , C
电流为顺时针方向, 求磁场作用于闭合 导线的力.
Idl
Ir
B 0

Idl
A
0
o
x


解 F1 I ABBj
根据对称性分析


F2 F2y j
F2 dF2y dF2 sin
BIdl sin
+
- Fm-
++
B
vd-
-
UH
+
N 型半导体
2)测量磁场
霍耳电压
UH

RH
IB d
7-8 载流导线在磁场中所受的力
一 安培力
洛伦兹力
Fm

evd

B

vd
Fm
Idl

I
S
Fm evd B sin

dl
dF nevdSdlB sin B
I nevdS
dF IdlBsin IdlB sin
讨论:
⑴ 载流子为正,RH、UH 为正; 载流子为负,RH、UH 为负。
U
H

RH
IB d
RH

1 qn
⑵ 金属中n很大, RH、UH 很小,霍尔效应很弱; 半导体中n较小,RH、UH 较大,霍尔效应较明显。 ⑶霍耳效应的应用
1)判断B 半导 体的类型
Fm
+
I
- vd-+
+ +
-
+
UH
I
-
P 型半导体
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章稳恒磁场
7-1、如图所示,几种载流导线在平面内分布,电流均为I ,它们在O 点的磁感应强度各为多少?
解 (a )
R
I
B 800μ=
方向垂直纸面向外
(b ) R
I
R
I
B πμμ22000-
=
方向垂直纸面向里 (c ) R
I
R I B 42000μπμ+=
方向垂直纸面向外 7-2 如图7-2,一根无限长直导线,通有电流I ,中部一段弯成圆弧形。

求图中P 点磁感应强度的大小。

7-3、如右图所示,两根导线沿半径方向引到铁环上的A 、B 两点。

并在很远处与电源相连。

秋环中心的磁感应强度。

7-4、如图所示,一宽为b 的薄金属板,其电流为I 。

试求在薄板的平面上距板的一边为r 的点P 的磁感应强度。

解:
x
dI dB πμ20=
r
b
r b I dx bx I dB B r
b r
+===⎰
⎰+ln 2200πμπμ
7-5、如图所示,矩形线圈与无限长直导线在同一平面内,无限长直导线中通有电流为I 求:通过矩形线圈的磁通量。

解: r
I
B πμ20=
Bhdr dS B d =⋅=Φ a
b
r Ih dr r Ih b
a
ln 2200πμπμ==
Φ⎰
7-6、如图所示,一边长为15.0=l m 的立方体如图放置,有一均匀磁场k j i B 5.136++=T 通过立方体所在区域,计算:(1)通过立方体上阴影面的磁通量;(2)通过立方体六个
面的总磁通量。

解:
(1)通过如图所示的立方体上阴影面积的磁通量为
Wb 135.0)15.0()5.136(2=⋅++=⋅=Φi k j i S B
(2)立方体的六个面构成闭合曲面,通过立方体的总磁通量必为零,即
0d =⋅=Φ⎰⎰s
s B
7-7 设图7-7中两导线中的电流1I 、2I 均为8A ,对图示的三条闭合曲线a 、b 、c ,分别写出安培环路定律等式右边电流的代数和。

并讨论:
(1)在各条闭合曲线上,各点的磁感应强度B 的量值是否相等? (2)在闭合曲线c 上各点的B 是否为零?为什么?
7-8、如图,一同轴电缆内芯半径1R ,外部圆筒结构内半径2R 、外半径3R ,内芯和外筒中的电流均为I ,但电流流向相反,导体的磁性可不考虑,求以下各处磁感强度(1)1R r < (2

21R r R << (3)3R r >
解:(1)1R r < 22
1
12r R I
r B ππμπ=⋅,2
1
012R Ir
B πμ= (2)21R r R << I r B 022μπ=⋅,r
I
B πμ202=
(3)3R r > 0)(203=-=⋅I I r B μπ,03=B
7-9、如图所示的空心柱形导体半径分别为1R 和2R ,导体内载有电流为I ,设电流I 均匀分布在导体的截面上,求导体内部(21R r R <<)各点的磁感应强度。

解:∑⎰'=⋅I d 0μl B ,)
()
(2
122212R R R r I I --=', r R r R R I
B 2
122
1220)
(2-⋅-=πμ
7-10 一电子在T B 4
107-⨯=的匀强磁场中作圆周运动,圆周半径 3.0r cm =。

已知B 垂直
于纸面向外,某时刻电子在A 点,速度V 向上,如图7-10。

(1) 试画出这电子运动的轨道; (2) 求这电子速度v 的大小; (3) 求这电子的动能k E 。

7-11 一电子在T B 4
102-⨯=的磁场中沿半径为 2.0R cm =的螺
旋线运动,螺距为 5.0h cm =,如图7-11所示。

(1)求这电子的速度; (2)磁场B 的方向如何?
7-11图
7-12、一无限长直导线,通有电流I 1=10mA ,矩形线圈中通有电流I 2=10mA ,如图放置,若d=2㎝,b=8㎝,ℓ=10㎝,求矩形线圈所受的合力。

(0μ=47
10-⨯πT.m..A 1
-)
左: F= BI 2 =0
μd
I π21 I 2 =110
10-⨯N 右: F=
)
(21
0b d I +πμ I 2 =211
10-⨯N
合力 F= 0.810
10
-⨯N
7-13、通电直导线旁放一通电导体,两者相互垂直(如图所示)。

求此导体棒所受安培力的大小和方向。

====⎰Idl l I
F BIdl dF l I B b
a
πμπμ2,,20000a b I I ln 200πμ,
方向向下。

7-14 一铁制的螺绕环,其平均周长30cm ,截面积为2
1cm ,在环上均匀绕以300匝导线,当绕组内的电流为0.032A 时,环内磁通量为Wb 6
102-⨯。

试计算 (!)环内的磁感应强度;
(2)磁场强度;
(3)磁化面电流(即面束缚电流)密度; (4)环内材料的磁导率和相对磁导率; (5)磁芯内的磁化强度。

相关文档
最新文档