九年级电与磁知识点
九年级物理电与磁知识点
九年级物理电与磁知识点一、电的基本概念1. 电荷:物质的一种性质,分为正电荷和负电荷。
2. 元电荷:电荷量的最小单位,任何电荷量都是元电荷的整数倍。
3. 电荷守恒定律:在一个封闭系统中,电荷总量保持不变。
二、电路基础1. 电流:电荷的定向移动形成电流,单位是安培(A)。
2. 电压:驱动电荷移动形成电流的力量,单位是伏特(V)。
3. 电阻:阻碍电流流动的程度,单位是欧姆(Ω)。
4. 欧姆定律:电流I等于电压V除以电阻R,即I=V/R。
三、串联与并联电路1. 串联电路:电路元件首尾相连,电流相同,总电阻等于各电阻之和。
2. 并联电路:电路元件头尾并联,电压相同,总电阻的倒数等于各电阻倒数之和。
四、电能与电功1. 电能:电流通过电路所做的功,单位是焦耳(J)。
2. 电功:电流在单位时间内做的功,单位是瓦特(W)。
3. 电能计算公式:W=VIt,其中W是电能,V是电压,I是电流,t是时间。
五、磁场的基本知识1. 磁场:磁体周围存在的力场,可以用磁力线表示。
2. 磁极:磁体上磁性最强的部分,分为南极和北极。
3. 磁力线:表示磁场分布的虚构线条,从北极出发,回到南极。
六、电磁感应1. 电磁感应:变化的磁场产生电场,或变化的电场产生磁场的现象。
2. 法拉第电磁感应定律:感应电动势的大小与磁通量的变化率成正比。
3. 楞次定律:感应电流的方向总是试图抵消引起它的磁通量的变化。
七、电磁波1. 电磁波:电磁场的振动以波的形式传播,可以在真空中传播。
2. 电磁波谱:从长波到短波,包括无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线。
3. 电磁波的特性:波长、频率和速度的关系为c=λf,其中c是光速,λ是波长,f是频率。
八、应用:电动机与发电机1. 电动机:利用电磁感应原理将电能转换为机械能的装置。
2. 发电机:利用电磁感应原理将机械能转换为电能的装置。
九、安全用电常识1. 避免接触裸露的电线和电器。
2. 不要在潮湿环境中使用电器。
电与磁九年级物理知识点
电与磁九年级物理知识点导言:电与磁是九年级物理课程中的重要内容,它们是现代科技发展的基础。
本文将围绕电与磁的基本概念、电路原理和电磁感应等知识点展开讲解,帮助读者全面理解和掌握这些内容。
一、电与磁的基本概念1. 电的本质电是一种带电粒子(电子或离子)在外电场作用下发生的现象。
带正电的粒子叫做正电荷,带负电的粒子叫做负电荷。
2. 电荷守恒定律闭合系统中,电荷的代数和始终保持不变。
电荷守恒定律是电现象的重要基本规律。
3. 磁的本质磁是由具有磁性物质所产生的力所表现出来的。
具有磁性的物体叫做磁体。
磁体有两个磁极,分别为南极和北极。
二、电路原理1. 电流的概念电流是电荷在导体中的流动,用I表示,单位是安培(A)。
电流的方向与电荷流动的方向相反。
2. 电阻与电阻率电阻指的是导体对电流的阻碍程度,用R表示,单位是欧姆(Ω)。
电阻率是物质固有的特性,不同物质有不同的电阻率。
3. 欧姆定律欧姆定律是描述电流与电压、电阻之间关系的基本定律。
它表明,在一定温度下,电流与电压成正比,与电阻成反比。
三、电磁感应1. 磁感线与磁感应强度磁感线是沿磁场方向的有向线条,用于表示磁场的分布情况。
磁感应强度是磁场力的强弱度量,用B表示,单位是特斯拉(T)。
2. 法拉第电磁感应定律法拉第电磁感应定律描述了磁场变化引起的感应电动势的产生。
根据该定律,磁场变化的速率和导线周围的磁感应强度都会影响感应电动势的大小。
3. 感应电流当导体在磁场中运动或磁场发生变化时,会在导体中产生感应电流。
感应电流的存在会使导体受到一定的力。
结论:通过学习电与磁的基本概念,了解电路原理和掌握电磁感应的知识,我们可以更好地理解电学与磁学的发展与应用。
电与磁的研究在现代科技中占有重要地位,对我们的生活产生了深远的影响。
掌握这些知识对于培养科学素养和提高综合能力具有重要意义。
期望通过本文的介绍,读者能够对电与磁有更深入的了解,为今后的学习和科研奠定坚实的基础。
九年级物理全一册“第二十章 电与磁”必背知识点
九年级物理全一册“第二十章电与磁”必背知识点一、磁现象与磁场1.磁性:物体具有吸引铁、钴、镍等物质的性质叫做磁性。
具有磁性的物体叫做磁体。
2.磁极:磁体上磁性最强的部分叫磁极,分为南极 (S极)和北极 (N极)。
任何磁体都有两个磁极,且同名磁极相斥,异名磁极相吸。
3.磁场:磁体周围存在一种看不见、摸不着,但客观存在的物质叫做磁场。
磁场的基本性质是对放入其中的磁体产生磁力的作用。
磁场有方向,规定小磁针静止时北极所指的方向为该点的磁场方向。
4.磁感线:为了形象地描述磁场的方向和分布情况,我们在磁场中画一些有方向的曲线,这些曲线叫做磁感线。
磁感线的方向就是小磁针在该点的受力方向,也是该点的磁场方向。
磁感线在磁体外部从N极出发回到S极,在磁体内部从S极到N极。
磁感线的疏密程度表示磁场的强弱。
二、电生磁与磁生电1.电生磁:奥斯特实验表明,通电导线周围存在磁场,且磁场方向与电流的方向有关。
通电螺线管外部的磁场与条形磁体的磁场相似,其两端的磁场方向跟电流方向有关,关系由安培定则判断。
2.磁生电:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中会产生感应电流,这种现象叫做电磁感应现象,产生的电流叫做感应电流。
感应电流的方向与导体运动方向和磁场方向都有关。
发电机就是根据电磁感应现象制成的,它将机械能转化为电能。
三、电磁铁与电磁继电器1.电磁铁:内部带有铁芯的通电螺线管叫做电磁铁。
电磁铁的磁性有无可以由电流的通断来控制,磁性强弱可以由电流大小和线圈匝数的多少来控制,磁极方向可以由电流方向来控制。
2.电磁继电器:电磁继电器是一种利用电磁铁来控制工作电路通断的开关。
它由电磁铁、衔铁、弹簧、触点等部分组成,可以实现用低电压、弱电流电路的通断来间接控制高电压、强电流电路的通断,还可以实现远距离操纵和自动化控制。
四、电动机与扬声器1.电动机:电动机是将电能转化为机械能的装置。
它的工作原理是通电线圈在磁场中受到力的作用而发生转动。
九年级物理电与磁知识点
1.电流:电流是单位时间内通过导体的电荷量。
用I表示,单位是安培(A)。
电流可分为直流和交流两种,直流是指电荷在导体中的流动方向保持不变;交流是指电荷在导体中的流动方向时刻变化。
2.电压:电压是电流流动的驱动力。
用U表示,单位是伏特(V)。
电压可以理解为电荷在电路中获得或失去的能量。
例如,电池的正负极之间有电压差,可以驱动电流在电路中流动。
3.电阻:电阻是导体阻碍电流流动的程度。
用R表示,单位是欧姆(Ω)。
电阻越大,电流流动的难度越大。
常见的导体材料如金属具有较小的电阻,而绝缘体如塑料则有较大的电阻。
4.电路:电路是指导体、电源和电器之间形成的完整路径。
电路主要包括串联电路和并联电路两种形式。
串联电路中电流只能沿着一条路径流动,而并联电路中电流则分流在不同路径上。
5.欧姆定律:欧姆定律是描述电路中电流、电压和电阻之间关系的基本定律。
它表述为电流等于电压与电阻的比值,即I=U/R。
通过欧姆定律可以计算电路中的电流、电压或电阻。
6.磁场:磁场是磁性物质周围的区域,磁场具有磁力作用。
磁场由磁铁、电流或电磁铁等磁体产生。
磁场的强度用磁感应强度表示,单位是特斯拉(T)。
7.磁铁:磁铁是具有磁性的物质,分为人工磁铁和自然磁铁两种。
人工磁铁如钢磁针、磁铁棒等,可以通过电流或其他方式产生磁场。
自然磁铁如地磁,是地球的磁场对物体产生的磁化效应。
8.磁力:磁力是磁体对物体施加的作用力。
磁力的大小与磁体的强度、距离以及两者之间的相对位置有关。
磁力的方向与磁场线的方向相同。
9.楞次定律:楞次定律是描述电磁感应现象的定律。
它表述为变化的磁场会在闭合回路中产生感应电流,感应电流的方向使得产生的磁场与变化磁场抵消。
10.法拉第定律:法拉第定律是描述电磁感应现象的定律。
它表述为感应电动势的大小与闭合回路中的导线数目、导线的长度和磁场变化的速率成正比。
以上是九年级物理电与磁的主要知识点,通过对这些知识点的学习,可以帮助我们理解电流、电压、电阻的关系,以及磁场和磁力的产生和作用。
2023九年级物理磁与电知识点
2023九年级物理磁与电知识点九年级物理磁与电知识点1.磁性:物体吸引铁、镍、钴等物质的性质。
2.磁体:具有磁性的物体叫磁体。
它有指向性:指南北。
3.磁极:磁体上磁性最强的部分叫磁极。
①任何磁体都有两个磁极,一个是北极(N极);另一个是南极(S极)②磁极间的作用:同名磁极互相排斥,异名磁极互相吸引。
4.磁化:使原来没有磁性的物体带上磁性的过程5.磁体周围存在着磁场,磁极间的相互作用就是通过磁场发生的。
6.磁场的基本性质:对入其中的磁体产生磁力的作用。
7.磁场的方向:在磁场中的某一点,小磁针静止时北极所指的方向就是该点的磁场方向。
8.磁感线:描述磁场的强弱和方向而假想的曲线。
磁体周围的磁感线是从它北极出来,回到南极。
(磁感线是不存在的,用虚线表示,且不相交)9.磁场中某点的磁场方向、磁感线方向、小磁针静止时北极指的方向相同。
10.地磁的北极在地理位置的南极附近;而地磁的南极则在地理位置的北极附近。
(地磁的南北极与地理的南北极并不重合,它们的交角称磁偏角,这是中国学者:沈括最早记述这一现象。
)11.奥斯特实验证明:通电导线周围存在磁场。
12.安培定则:用右手握螺线管,让四指弯向螺线管中电流方向,则大拇指所指的那端就是螺线管的北极(N极)。
13.安培定则的易记易用:入线见,手正握;入线不见,手反握。
大拇指指的一端是北极(N 极)。
14.通电螺线管的性质:①通过电流越大,磁性越强;②线圈匝数越多,磁性越强;③插入软铁芯,磁性大大增强;④通电螺线管的极性可用电流方向来改变。
15.电磁铁:内部带有铁芯的螺线管就构成电磁铁。
16.电磁铁的特点:①磁性的有无可由电流的通断来控制;②磁性的强弱可由改变电流大小和线圈的匝数来调节;③磁极可由电流方向来改变。
17.电磁继电器:实质上是一个利用电磁铁来控制的开关。
它的作用可实现远距离操作,利用低电压、弱电流来控制高电压、强电流。
还可实现自动控制。
18.电磁感应:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就产生电流,这种现象叫电磁感应,产生的电流叫感应电流。
九年级物理电与磁知识点
九年级物理电与磁知识点九年级物理电与磁知识点第二十章电与磁第一节磁现象磁场1、磁现象:磁性:物体能够吸引钢铁、钴、镍一类物质(吸铁性)的性质叫磁性。
磁体:具有磁性的物体,叫做磁体。
磁体具有吸铁性和指向性。
磁体的分类:①形状:条形磁体、蹄形磁体、针形磁体;②来源:天然磁体(磁铁矿石)、人造磁体;③保持磁性的时间长短:硬磁体(永磁体)、软磁体。
磁极:磁体上磁性最强的部分叫磁极。
磁极在磁体的两端。
磁体两端的磁性最强,中间的磁性最弱。
磁体的指向性:可以在水平面内自由转动的条形磁体或磁针,静止后总是一个磁极指南(叫南极,用S表示),另一个磁极指北(叫北极,用N表示)。
无论磁体被摔碎成几块,每一块都有两个磁极。
磁极间的相互作用:同名磁极互相排斥,异名磁极互相吸引。
(若两个物体互相吸引,则有两种可能:①一个物体有磁性,另一个物体无磁性,但含有钢铁、钴、镍一类物质;②两个物体都有磁性,且异名磁极相对。
)磁化:一些物体在磁体或电流的作用下会获得磁性,这种现象叫做磁化。
钢和软铁都能被磁化:软铁被磁化后,磁性很容易消失,称为软磁性材料;钢被磁化后,磁性能长期保持,称为硬磁性材料。
所以钢是制造永磁体的好材料。
2、磁场:磁场:磁体周围的空间存在着磁场。
磁场的基本性质:磁场对放入其中的磁体产生磁力的作用。
磁体间的相互作用就是通过磁场而发生的。
磁场的方向:把小磁针静止时北极所指的方向定为那点磁场的方向。
磁场中的不同位置,一般说磁场方向不同。
磁感线:在磁场中画一些有方向的曲线,任何一点的曲线方向都跟放在该店的磁针北极所指的方向一致。
这样的曲线叫做磁感线。
对磁感线的认识:①磁感线是在磁场中的一些假想曲线,本身并不存在,作图时用虚线表示;②在磁体外部,磁感线都是从磁体的N极出发,回到S极。
在磁体内部正好相反。
③磁感线的疏密可以反应磁场的强弱,磁性越强的地方,磁感线越密,磁性越弱的地方,磁感线越稀;④磁感线在空间内不可能相交。
典型的磁感线:3、地磁场:地磁场:地球本身是一个巨大的磁体,在地球周围的空间存在着磁场,叫做地磁场。
初中九年级物理电与磁力知识点全汇总
初中九年级物理电与磁力知识点全汇总
本文将汇总初中九年级物理课程中涉及的电与磁力知识点。
以下是重要的知识点摘要:
1. 电流电压与电阻
- 电流:是电荷在导体中流动的物理量。
- 电压:是电流在电路中的推动力,也称为电势差。
- 电阻:是阻碍电流通过的物体或元件。
2. 串并联电路
- 串联电路:电流只有一条路径流过各元件。
- 并联电路:电流分为多条路径流过各元件。
3. 半导体与导体
- 导体:能够自由传导电流的物质,如金属。
- 半导体:电导率介于导体和绝缘体之间的物质,如硅。
4. 电磁感应
- 磁感线:用于表示磁场的线条。
- 电磁感应:当磁场中发生变化时,会在导体中产生电流。
5. 变压器原理
- 变压器:用来改变交流电压大小的装置。
以上是初中九年级物理电与磁力的一些重要知识点,希望对你有所帮助。
---
Considering the word limit is 800 words, I have provided a concise summary of the important knowledge points related to electricity and magnetism in Grade 9 physics. Please let me know if you need any further assistance.。
九年级电和磁知识点
九年级电和磁知识点电和磁是我们生活中常见且重要的物理现象,我们每天都会接触到与之相关的事物。
在九年级的物理课程中,电和磁也是非常重要的知识点。
本文将整理和介绍一些九年级电和磁的知识点,帮助大家更好地理解和掌握这一领域的知识。
一、电的基本知识1. 电的起源:电是一种带有电荷的粒子运动形成的现象。
电荷又分正电荷和负电荷,相同时互斥,不同时吸引。
2. 电的传导:电荷通过导体传导,导体是能将电荷自由传递的物质,如金属。
3. 电的绝缘:不同于导体,绝缘体对电荷的传导非常差,不产生导电的效果。
常见的绝缘体有塑料、橡胶等。
4. 电的电流:电荷的流动形成电流,通常用电子的流动方向表示。
电流的单位是安培(A)。
5. 电压和电势差:电压是电能转化为其他形式能量的驱动力,也是电荷在电路中流动所遇到的阻力。
电势差是指电场中单位正电荷由A点移动到B点所做的功。
6. 电阻和电阻率:电阻是材料对电流流动的阻碍程度,标志着电流通过的难易程度。
电阻率是材料本身所具有的阻碍电流流动的能力,不同材料具有不同的电阻率。
二、磁的基本知识1. 磁铁的特性:磁铁具有吸引铁、镍、钴等物质的特性。
磁铁的两个极分别是南极和北极,互相吸引,相同的极互相排斥。
2. 磁场的形成:磁场是由带电粒子的运动形成的,如电流、电荷等。
磁场是一种物质周围存在的物理量,它会对磁铁、导体、磁体等物体产生作用力。
3. 磁感应强度:磁感应强度是磁场对单位长度内的导体或磁体所施加的力的大小,单位是特斯拉(T)。
4. 磁通量和磁感应线:磁通量表示磁力线的数量,磁感应线刻画了磁场的分布情况。
5. 法拉第电磁感应定律:法拉第电磁感应定律原理是指当导体中的磁通量改变时,导体两端会产生感应电动势,导致电流的产生。
这一定律与电磁铁感应现象密切相关。
三、电和磁的应用1. 电和磁的应用十分广泛,如电磁铁、电动机、变压器、发电机、电磁波等。
2. 电磁铁:电磁铁的原理就是利用通过线圈流过电流时所产生的磁场吸引铁质物体,这在各类机械装置中广泛应用。
九年级物理磁与电知识点
九年级物理磁与电知识点
以下是九年级物理磁与电的知识点:
1. 磁场和电流:
- 电流通过导体时会产生磁场,这个现象被称为安培定律。
- 磁场的方向可以通过安培右手规则确定,即右手握住导线,大拇指指向电流的方向,其他四指的弯曲方向表示磁场的方向。
- 磁场的方向可以用磁力线表示,磁力线是由北极向南极的方向,且磁力线不会相交或断裂。
2. 磁力和电动力:
- 磁力是由磁场对运动的电荷或磁体施加的力。
- 磁力的方向可以通过洛伦兹力定律确定,即力的方向垂直于磁场和电荷或磁体的运动方向,遵循右手定则。
- 磁力的大小可以通过洛伦兹力定律计算,即力的大小等于磁场的强度、电荷的电流和两者之间的夹角的乘积。
3. 磁感应强度和电磁感应:
- 磁场的强度也被称为磁感应强度,用B表示,单位为特斯拉(T)。
- 磁感应强度与磁力之间的关系可以用磁场的链接磁通量公式表示,即磁场的链接磁通量等于磁感应强度乘以垂直于磁场的面积。
- 一个变化的磁场可以产生感应电动势,在一个闭合电路中,这个现象被称为电磁感应。
- 电磁感应中的法拉第定律指出,电动势的大小等于磁场的变化率乘以电路中的导线数目。
4. 电磁波和电磁频谱:
- 电磁波是一种由振动的电场和磁场组成的无线波动。
- 电磁波的频率和波长之间的关系可以用速度等于频率乘以波长的公式表示,速度等于光速约为3 x 10^8米/秒。
- 电磁波按频率从低到高的顺序排列,称为电磁频谱,包括无线电波、微波、红外线、可见光、紫外线、X射线和γ射线。
这些是九年级物理磁与电的一些主要知识点,希望能对你有帮助!。
九年级电与磁知识点
电与磁是物理学的重要内容之一,涉及到电荷、电场、电流、磁场、电磁感应等知识点。
以下是九年级电与磁的主要知识点:1.电荷和电场:-电荷是物质固有的属性,它可以分为正电荷和负电荷。
同性电荷相互排斥,异性电荷相互吸引。
-电场是电荷周围的一种物理场,它对其他电荷产生作用力。
电场的大小与电荷数目成正比,与距离的平方成反比。
-电荷在电场中会受到电场力的作用,力的方向与电场力相反。
2.电流和电路:-电流是单位时间内通过导体的电荷量,单位是安培(A)。
它的大小与电荷数目和时间成正比。
-电路是电流在导体中的闭合路径。
电路可以分为串联电路和并联电路两种。
-在串联电路中,电流只有一条路径流动,电流强度在各个电阻上相同。
-在并联电路中,电流可以有多条路径流动,电流强度在各个电阻上不同。
3.电阻和电压:-电阻是导体阻碍电流流动的程度,它的大小与导体的材料、长度和横截面积有关。
单位是欧姆(Ω)。
-电压是单位电荷所具有的能量,也可以理解为电势差。
单位是伏特(V)。
-电压可以使电荷在电路中产生运动,形成电流。
4.磁场和磁力:-磁场是磁铁或电流所产生的一种物理场,它对其他磁铁或电流产生力的作用。
磁场可以分为南极和北极。
-磁铁的两个不同的极之间会产生磁场力,同性能互斥,异性能吸引。
-磁铁的南、北极附近的磁场较强,远离磁铁时磁场逐渐减弱。
5.电磁感应和电磁感应定律:-电磁感应是磁场变化时产生的电场力和电流现象。
当磁场和导体相对运动或磁场强度发生改变时,就会产生感应电流或感应电动势。
-电磁感应定律描述了感应电动势的产生。
它可以分为法拉第电磁感应定律和楞次定律。
-法拉第电磁感应定律指出,感应电动势的大小与磁场变化率成正比。
-楞次定律说明,感应电流的方向会使得产生它的磁场变化率减小。
上述知识点是九年级电与磁的主要内容,理解这些知识点对于理解电路、电磁感应和电磁现象具有重要意义。
同时,可以通过实验和计算验证这些知识点,提高对于电与磁的理解能力。
九年级物理电与磁知识点大全
电的基本知识:1.电的定义:电是物质中带有电荷的现象。
2.电荷的特性:正电荷和负电荷之间存在相互吸引力,同种电荷之间存在相互排斥力。
3.电的单位:国际单位制中电荷的单位是库仑(C),电流的单位是安培(A)。
4.电路的基本元件:导体和绝缘体。
导体是允许电荷通过的物质,绝缘体则不允许电荷通过。
5.电路的基本要素:电源、导线和负载。
电源提供能量,导线传输电流,负载将电能转化为其他形式的能量。
电流与电阻:1.电流的定义:电流是单位时间内通过导体横截面的电荷量。
2.电流的计算:电流等于通过导体的电荷量与时间的比值。
3.电阻的定义:电阻是电路中阻碍电流流动的物理量。
4.电阻的计算:电阻等于电压与电流的比值。
5.电阻的单位:国际单位制中电阻的单位是欧姆,简写为Ω。
电压与电功:1.电压的定义:电压是单位电荷所具有的电势能。
2.电压的计算:电压等于电势能与电荷的比值。
3.电压的单位:国际单位制中电压的单位是伏特(V)。
4.电功的定义:电流经过电压作用所做的功。
5.电功的计算:电功等于电流与电压的乘积。
电路的连接方式:1.并联电路:在并联电路中,电流将分流通过各个分支。
2.串联电路:在串联电路中,电流将依次经过各个元件。
3.混合电路:在混合电路中,既存在并联分支,也存在串联元件。
电能与电功率:1.电能的定义:电能是电荷在电场中具有的能量。
2.电能的计算:电能等于电压与电荷的乘积。
3.电能的单位:国际单位制中电能的单位是焦耳(J)。
4.电功率的定义:电功率是单位时间内电能的转换速率。
5.电功率的计算:电功率等于电流与电压的乘积。
磁性与电磁感应:1.磁场的定义:磁场是磁体周围的特殊区域,能够对磁铁和运动带电粒子产生磁力。
2.磁力的特性:磁力有大小和方向,并且同种磁极之间存在相互吸引力,异种磁极之间存在相互排斥力。
3.磁场的单位:国际单位制中磁感应强度的单位是特斯拉(T)。
4.电磁感应的现象:当磁通量的变化穿过一个闭合线圈时,会感应出电动势。
九年级物理电与磁知识点大全
1.电荷:电荷是物质的一种性质,有正电荷和负电荷两种。
正电荷和负电荷相互吸引,同性电荷相互排斥。
2.静电:物体带电后,不与其他物体接触的情况下,在空中停留的现象称为静电现象。
3.电流:电荷在导体中的移动形成的流动称为电流。
电流的单位是安培(A)。
4.电压:电压是电流流动的动力。
电压的单位是伏特(V)。
电流和电压之间的关系由欧姆定律描述:电流等于电压除以电阻。
5.电阻:阻碍电流流动的性质称为电阻。
电阻的单位是欧姆(Ω)。
6.欧姆定律:欧姆定律描述了电流、电压和电阻之间的关系。
它表示为V=IR,其中V是电压,I是电流,R是电阻。
7.电能和功率:电能是电流通过电阻时产生的能量,功率是单位时间内消耗的电能。
8.直流电和交流电:直流电是电流方向保持恒定的电流,交流电是电流方向周期性变化的电流。
9.电源:电源是能够提供电压和电流的设备,常见的电源有干电池和交流电源。
10.串联电路和并联电路:在串联电路中,电流只有一条路径可以流动,而在并联电路中,电流有多条路径可以流动。
串联电路中总电流等于各个电阻上的电流之和,而并联电路中总电流等于各个电阻上的电流之和。
11.电阻和导体的关系:电阻与导体的直径成反比,与导体的长度成正比。
12.电磁感应:当磁场的磁力线与导体运动方向垂直时,将在导体中产生感应电动势。
13.磁铁:磁铁是可以产生磁场的物体。
磁场是由磁铁产生的,它可以作用于其他磁性物质。
14.磁场:磁场是指磁力的存在区域。
磁场由磁铁产生,也可以由电流产生。
15.磁力:磁力是磁场对其他磁性物体或电流产生的力。
磁力的方向遵循左手定则。
16.磁感线:用来表示磁场方向和磁力强弱的线称为磁感线。
17.电磁铁:电磁铁是通过通电产生磁场的装置,它由绕有导线的铁心组成。
18.右手定则:右手定则用来确定磁场、电流和磁力之间的关系。
它表示为握住导线,手指指向电流方向,拇指指向磁力方向。
19.电磁感应定律:电磁感应定律描述了感应电动势的产生。
通用版初中物理九年级物理全册第二十章电与磁知识点归纳总结
第二十章电与磁一、基本概念1.电荷:同性相斥,异性相吸的性质,导体中自由移动的电子和在绝缘体中的核附近的电子都是具有电荷的。
2.电流:单位时间内通过导体横截面的电荷量。
3.电流方向:正电荷流动方向与电流方向相同,负电荷流动方向与电流方向相反。
4.导体:电流可以自由通过的物体。
5.绝缘体:电流不能自由通过的物体。
二、电路基本要素1.电源:提供电能的装置,常见的有电池、发电机等。
2.导线:将电流从电源传输至电器或其他部件的通道。
3.电阻:对电流的阻碍作用。
4.开关:控制电流的通断。
三、欧姆定律1.欧姆定律的表达式:U=IR,其中U为电压,I为电流,R为电阻。
2.U-I特性曲线:电阻越大,通过的电流越小,电压和电流成正比关系。
3.理解欧姆定律:电阻越大,电流的流动受到的阻碍越大,所以通过的电流越小;电压越大,电流的流动受到的推动力越大,所以通过的电流越大。
四、串联、并联电阻1.串联电阻:电阻相加,总电流不变,总电压等于各个电阻的电压之和。
2.并联电阻:电阻倒数之和的倒数等于总电阻,总电流等于各个电阻的电流之和。
五、电功和功率1.电功:电流通过电阻产生的热能。
2.电功的计算公式:W=UIt,其中U为电压,I为电流,t为时间。
3.功率:单位时间内做功的速率,计算公式为P=W/t,其中P为功率,W为电功,t为时间。
4.电功率的单位:瓦特(W)。
六、电流的感应规律1.感应规律的内容:导体在磁场中运动时,感应出电流。
2.大小和方向:感应电动势的大小和方向与导体运动的速度、导体长度以及磁感应强度的大小和方向有关。
3.电磁感应:导体自身带电产生的磁场产生感生电动势。
七、电磁继电器和电磁铁1.电磁继电器:利用通电线圈产生的电磁吸引力或电磁排斥力,使开关闭合或断开的电器。
2.电磁铁:利用通电线圈产生的电磁吸引力,使铁心磁化并起到吸附物体的作用。
八、电磁感应1.线圈电流产生的磁场:线圈内部和附近有磁场。
2.长导体中的感应规律:导体移动时,在导体两端感应电动势。
初三电与磁知识点总结
初三电与磁知识点总结电与磁的基本概念电的基本概念1.电的起源和发现2.电的定义和基本特性3.电荷的性质及表达方式4.电流和电路的基本概念磁的基本概念1.磁的起源和发现2.磁的定义和基本特性3.磁场的概念和性质4.磁力线及其表示方式电的产生与传输静电的产生和性质1.静电的产生方式2.静电的性质及其实例电流的产生和传输1.电流的产生方式2.电路的组成和元件3.并联电路和串联电路的差异4.电阻的概念和影响因素电的能量转化与利用1.电能和电功的概念2.电能的转化和利用方式3.电源和电器的基本原理4.电能的损耗和节约磁场与电荷运动磁场的产生和性质1.磁场的产生方式2.磁感应强度和磁场线的特点3.磁场的影响和作用4.电流在磁场中的受力规律电荷在磁场中的运动1.动力学规律和洛伦兹力2.磁场对运动电荷的影响3.磁场中粒子的运动轨迹和性质4.各种力的合成和分解电磁感应与发电原理1.电磁感应的现象和规律2.感应电流的产生和表达方式3.发电机和电动机的基本原理4.电磁感应的应用和意义磁学与电学的综合运用磁学与电学的互相转换1.磁能和电能的互相转换2.电磁铁和电磁泵的工作原理3.磁悬浮列车和磁共振成像的实现磁学与电学的应用领域1.电磁波的发现和性质2.电磁波谱和应用范围3.电磁辐射和防护的重要性4.电磁感应在通信和磁共振成像中的应用磁学与电学的前沿探索1.超导体和超导磁体的发展与应用2.量子力学和电磁学的结合3.高能物理实验与磁场的控制技术4.新能源与电磁能的研究和利用电与磁的安全与环保电与磁的安全知识1.安全用电的原则和措施2.防雷和防护的重要性3.射线防护和电磁辐射的危害与防范电与磁的环保意识1.节约用电和能源的重要性2.废弃电器的处理和环保措施3.电磁污染和环境保护的关系4.可再生能源和新能源的发展前景以上是对初三电与磁知识点的全面总结,包含了电与磁的基本概念、电的产生与传输、磁场与电荷运动、磁学与电学的综合运用以及电与磁的安全与环保等方面的内容。
九年级物理磁与电知识点
九年级物理磁与电知识点磁与电是九年级物理学习中的重要内容,涉及到了磁场、磁感应和电路等方面的知识。
本文将通过以下几个方面介绍九年级物理磁与电的知识点。
1. 磁场与电流磁场是围绕着电流或磁体产生的一种特殊物理现象。
当电流通过导线时,会产生一个围绕导线的磁场。
电流越大,磁场就越强。
我们可以通过安培环路定理来计算磁场的强度。
2. 磁感应与磁感线当一个导体在磁场中运动时,会在导体内产生感应电流。
这种现象被称为磁感应。
根据法拉第电磁感应定律,磁感应的大小与磁场的变化率有关。
磁感应线是用来表示磁场方向和强度的线条,它们的方向是从磁北极指向磁南极。
3. 洛伦兹力与电动势当带电粒子在磁场中运动时,会受到洛伦兹力的作用。
洛伦兹力的大小与带电粒子的电荷量、速度和磁场强度有关。
如果一个导体在磁场中切割磁感线,就会在导体两端产生电势差,这个现象被称为电动势。
4. 电磁感应与发电机电磁感应是指导体在磁场中运动时产生感应电动势的现象。
发电机利用电磁感应的原理将机械能转换为电能。
它由转子、定子和磁场组成。
当转子旋转时,导线切割磁感线,产生感应电动势,从而产生电流。
5. 电磁铁与电磁继电器电磁铁是一种利用电流通过线圈来产生磁场的装置。
电磁铁的磁性是可以被控制的,可以通过控制电流的大小来改变磁场的强度。
电磁继电器是利用电磁铁来控制电路的开关,它可以放大电信号、隔离电路和自动控制等功能。
6. 电路中的电阻、电容与电感在电路中,电阻、电容和电感是常见的三种元件。
电阻用来控制电流的大小,电容用来储存电荷,电感用来储存磁场能量。
它们的单位分别是欧姆、法拉和亨利。
总结:磁与电是九年级物理学习的重要内容,包括磁场与电流、磁感应与磁感线、洛伦兹力与电动势、电磁感应与发电机以及电磁铁与电磁继电器等方面的知识点。
通过学习这些知识,可以更好地理解磁与电的本质,掌握其在实际生活中的应用。
在学习中要注重理论与实践相结合,通过实验来观察和验证这些现象和规律,加深对知识的理解和记忆。
九年级物理知识点磁与电
九年级物理知识点磁与电磁与电是九年级物理学习中非常重要的知识点。
磁与电的相互作用在我们生活中起着重要的作用。
本文将介绍磁与电的基本概念、原理和应用。
通过深入了解磁与电,我们可以更好地理解世界的运作原理。
一、磁与电的基本概念1. 磁的基本概念磁是指具有吸引铁或产生磁场的物质。
磁的基本单位是磁矩,常用表示方式为M。
2. 电的基本概念电是指物质中带有电荷的现象。
电的基本单位是电荷,常用表示方式为Q。
当带正电荷的物体与带负电荷的物体接触时,会发生静电作用。
二、磁与电的相互作用原理1. 磁场与电流的相互作用当电流通过导线时,会产生磁场。
磁场的方向可以通过右手定则确定。
根据安培定律,电流与磁场之间存在相互作用的关系。
2. 电磁感应根据法拉第电磁感应定律,当磁通量发生变化时,会在导线中产生感应电动势,从而导致感应电流的产生。
这个原理广泛应用于电磁铁、变压器等设备中。
三、磁与电的应用1. 电动机电动机是一种将电能转化为机械能的设备。
它的工作原理是利用电流在磁场中的相互作用,产生力矩从而改变转动运动的方向和速度。
2. 发电机发电机是一种将机械能转化为电能的设备。
它的工作原理是利用磁场与导线的相互作用,产生感应电动势,从而生成电流。
3. 电磁铁电磁铁是一种将电能转化为磁能的设备。
它的工作原理是在铁芯中通电产生磁场,使铁芯具有磁性,可以吸引或排斥其他磁铁。
4. 变压器变压器是一种用来改变交流电压大小的设备。
它利用电磁感应的原理,通过磁场的变化来实现电压的升降。
5. 磁共振成像磁共振成像是一种常用的医学影像学方法。
它利用磁场与人体组织中的水分子的相互作用,通过信号的接收和处理生成图像,以观察人体内部的结构。
通过学习磁与电的知识,我们不仅能够更好地理解现象背后的原理,还能够应用于我们的生活和工作中。
磁与电的相互作用广泛存在于电器、医学、交通等领域,对推动科技的发展与人类生活的提升起着至关重要的作用。
总结起来,磁与电的知识点是九年级物理学习中不可忽视的部分。
初中九年级物理电与磁知识点全汇总
1.带电物体导体和绝缘体:物体按是否能够导电可分为导体和绝缘体。
导体可以自由地传导电荷,而绝缘体则不能。
2.电流的概念和特点:电流是指单位时间内通过导体的电荷数量。
电流的方向由正电荷的流动方向决定。
电流有大小和方向之分。
电流的单位是安培(A)。
3.电路的组成和符号:电路由电源、导线和用电器组成。
电源可以是电池或发电机,导线用来传输电流,而用电器则是消耗电能的设备。
在电路中各个部分的符号一般由国际电工委员会规定。
4.电阻的概念和特点:电阻是指电流通过导体时的阻碍程度。
电阻的大小取决于导体物质的特性、截面积和长度。
电阻的单位是欧姆(Ω)。
5.简单电路的串联和并联关系:电路可以串联连接,也可以并联连接。
在串联电路中,电流相同但电阻相加,而在并联电路中,电流相加但电阻相同。
串联电路的总电阻大于任何一个电阻,而并联电路的总电阻小于任何一个电阻。
6.欧姆定律:欧姆定律描述了电流、电压和电阻之间的关系。
根据欧姆定律,电流等于电压除以电阻:I=V/R。
7.阻值和电能计算:电阻的阻值等于电压除以电流:R=V/I。
电能的计算公式为E=VIt,其中E表示电能,V表示电压,I表示电流,t表示时间。
8.电功和功率计算:电功是指电能的消耗或转化过程中所做的功。
功率是指单位时间内消耗或产生的电能量。
电功的计算公式为W=VIt,功率的计算公式为P=VI。
9.简单电路中的热效应:电流通过导体时,会产生热效应。
根据焦耳定律,电功消耗的能量全部转化为导体的热能。
10.磁场的产生和特点:磁场是由电流或磁体产生的,可以使磁铁受力或磁针偏转。
磁场具有无极性、无远距离作用、彼此排斥或吸引等特点。
11.磁场与电流的相互作用:当电流通过导线时,会产生磁场。
磁场会对附近的磁铁或磁针产生力的作用。
12.安培定则:安培定则描述了电流和磁场之间的相互作用关系。
根据安培定则,电流所产生的磁场方向垂直于电流方向,并且大小与电流成正比。
13.电磁铁和电动机的工作原理:电磁铁是使用电流产生的磁场来吸附铁制物体的装置。
初中九年级物理电与磁知识点全汇总
初中九年级物理电与磁知识点全汇总电与磁一、磁现象1.磁性是指磁铁能吸引铁、钴、镍等物质的性质,具有磁性的物质称为磁体。
2.磁极是指磁体上磁性最强的部分,任何一个磁体都有两个磁极,分别为南极(S)和北极(N)。
同名磁极互相排斥,异名磁极互相吸引。
3.磁化是指使原本没有磁性的物体获得磁性的过程。
二、磁场1.磁场是指在磁体周围存在的一种物质,能使磁针偏转。
磁场对放入其中的磁体产生磁力的作用。
2.磁感线是为了形象地描述磁场而假想出来的一些有方向的曲线。
磁感线的方向就是磁场方向,其分布疏密可以反映磁场磁性的强弱。
3.地磁场是指地球周围存在的磁场,其N极在地理的南极附近,S极在地理的北极附近。
三、电生磁1.电流的磁效应是指通电导体周围存在磁场,其方向跟电流方向有关。
2.通电螺线管是一种具有磁性的装置,其磁极方向也跟电流方向有关。
四、电磁铁1.电磁铁是一个内部插有铁芯的螺线管,通电后能产生强磁场。
安培定则可以用来确定其磁极方向,即用右手握住螺线管,让四指弯向螺线管中电流的方向,则大拇指所指的那端就是螺线管的北极。
1.判断电磁铁磁性强弱的方法是通过转换法,即根据电磁铁吸引大头针的数量来判断。
2.控制变量法可以影响电磁铁磁性强弱的因素,包括电流大小、有无铁芯以及线圈匝数的多少。
3.通过实验得出结论,当电磁铁线圈匝数相同时,电流越大,电磁铁的磁性越强;有铁芯的电磁铁磁性越强;当通过电磁铁的电流相同时,线圈匝数越多,磁性越强。
4.电磁铁具有可控制磁性的优点,可通过电流的有无、大小以及线圈匝数的多少来控制,同时电磁铁的磁性也可以通过电流方向来改变。
5.电磁铁的应用包括电磁起重机、磁悬浮列车、电磁选矿机、电铃、电磁自动门等,以及电磁继电器和扬声器。
6.电动机的作用是将电能转化为机械能,其基本结构包括转子线圈、定子磁体、电刷和换向器。
电刷的作用是与半环接触,使电源和线圈组成闭合电路,而换向器则可以改变线圈中的电流方向。
通电线圈在磁场中受力而转动的原理制成的,其受力大小与电流、磁场强度以及线圈匝数有关。
九年级磁与电知识点总结
九年级磁与电知识点总结磁与电是物理学中两个重要的概念。
在九年级学习物理的过程中,我们接触到了很多与磁与电相关的知识点。
通过总结与整理这些知识点,我希望能够为大家提供一个清晰明了的学习参考。
以下是九年级磁与电知识点的总结:1. 磁性物质与磁场磁性物质是指能够被磁场吸引或排斥的物质,如铁、镍、钴等。
磁场是指磁铁或导体周围存在的特殊区域,它能够对磁性物质产生影响。
2. 磁性物质的分类磁性物质可分为三类:顺磁性物质、抗磁性物质和铁磁性物质。
顺磁性物质在外磁场中受力方向与磁场方向相同;抗磁性物质在外磁场中受力方向与磁场方向相反;铁磁性物质在外磁场中受力方向与磁场方向相同,并且能够保持一定的磁性。
3. 磁场的定义与表示方法磁场用于描述磁铁在周围空间内的特殊区域,可以通过磁力线来表示。
磁力线是沿着磁场方向的曲线,它的方向由磁南极指向磁北极。
4. 磁场的性质磁场有两个基本性质:磁力线不相交和磁力线呈环状。
这两个性质决定了磁场的特殊性质。
5. 磁场的产生与磁感应强度磁场是由电流和磁体产生的,我们可以通过电流线圈产生磁场。
磁感应强度B是磁场的物理量,表示在单位面积上垂直通过的磁力线数目。
6. 磁场对运动带电粒子的影响磁场能够对运动带电粒子施加力,这个力称为洛伦兹力。
洛伦兹力的大小与带电粒子的电荷、速度和磁感应强度有关。
7. 电与磁的相互转化电流会在周围产生磁场,而磁场变化也会激发电流。
这种相互转化的现象被称为电磁感应。
8. 磁感应强度的计算根据法拉第电磁感应定律,磁感应强度的大小与导体的长度、速度、磁感应强度和角度有关。
可以通过公式B=Blvsinθ来计算磁感应强度。
9. 电磁感应现象的应用电磁感应现象被广泛应用于发电机、变压器等电器设备中。
它们依靠磁感应启动或调节电能的转换和传输。
10. 磁场的磁力磁铁之间会相互作用,这种相互作用称为磁力。
磁力的大小与磁铁的磁感应强度、磁极之间的距离和角度有关。
以上是九年级磁与电知识点的总结。
九年级电与磁的十条知识点
九年级电与磁的十条知识点电与磁是物理学中重要的概念,我们生活中的很多现象和技术都与电与磁有关。
在九年级学习电与磁的过程中,有几个关键的知识点是需要我们重点掌握的。
下面将介绍九年级电与磁的十条知识点,希望能够对同学们有帮助。
1. 电流的概念和特点:电流是电荷在导体中的移动形成的。
电流的方向是正电荷(正电流)或负电荷(负电流)的移动方向。
电流的大小与电荷的移动速度和电荷的数量有关。
2. 电阻的概念和性质:电阻是导体阻碍电流通过的程度。
导体中的电阻与导体的材料和尺寸有关。
常用的导体有金属、半导体和绝缘体,它们的电阻不同。
3. 欧姆定律:欧姆定律描述了电流、电压和电阻之间的关系,它可以表示为U=IR,其中U表示电压,I表示电流,R表示电阻。
欧姆定律是研究电路中的基本定律。
4. 串联电路和并联电路:在电路中,元件可以串联或并联连接。
串联电路是指元件依次连接在一起,电流依次通过每个元件。
并联电路是指元件同时连接在一起,电流同时通过每个元件。
串联电路中电阻之和等于各个电阻的总和,而并联电路中电阻之和等于各个电阻之倒数的总和的倒数。
5. 磁场的产生和性质:通过流经导线的电流可以产生磁场。
磁场是一种物质的性质,它可以使其他物质受到磁力的作用。
磁场的强弱和方向可以用磁力线来描述。
6. 电磁感应现象:电磁感应是指导体中的磁场发生变化时,产生感应电流的现象。
法拉第电磁感应定律描述了感应电流的产生。
电磁感应在发电机、变压器等电器中起着重要的作用。
7. 磁场和电流的相互作用:电流和磁场之间存在相互作用。
电流可以在磁场中受到磁力的作用,而磁场也可以受到电流的作用。
这种相互作用可以用洛伦兹力公式F=qvB来描述,其中F表示力,q表示电荷,v表示速度,B表示磁场。
8. 电磁感应定律的应用:电磁感应定律在电动机和发电机等设备中有重要的应用。
电动机利用电磁感应产生的感应电流产生力,从而使电机运转。
发电机则利用机械能或其他能量形式产生感应电流,实现能量转换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级电与磁知识点【篇一:九年级电与磁知识点】《电与磁》一、磁现象1.最早的指南针叫司南.2.磁性:磁体能够吸收钢铁一类的物质.3.磁极:磁体上磁性最强的部分叫磁极.磁体两端的磁性最强,中间最弱.水平面自由转动的磁体,静止时指南的磁极叫南极(s极),指北的磁极叫北极(n极).4.磁极间的作用规律:同名磁极相互排斥,异名磁极相互吸引.一个永磁体分成多部分后,每一部分仍存在两个磁极.5.磁化:使原来没有磁性的物体获得磁性的过程.钢和软铁的磁化:软铁被磁化后,磁性容易消失,称为软磁材料.钢被磁化后,磁性能长期保持,称为硬磁性材料.所以制造永磁体使用钢,制造电磁铁的铁芯使用软铁.磁铁之所以吸引铁钉是因为铁钉被磁化后,铁钉与磁铁的接触部分间形成异名磁极,异名磁极相互吸引的结果.6.物体是否具有磁性的判断方法:①根据磁体的吸铁性判断.②根据磁体的指向性判断.③根据磁体相互作用规律判断.④根据磁极的磁性最强判断.磁性材料在现代生活中已经得到广泛应用,音像磁带、计算机软盘上的磁性材料就具有硬磁性.二、磁场1.磁场:磁体周围存在着的物质,它是一种看不见、摸不着的特殊物质.磁场看不见、摸不着我们可以根据它对其他物体的作用来认识它.这里使用的是转换法.(认识电流也运用了这种方法.)2.磁场对放入其中的磁体产生力的作用.磁极间的相互作用是通过磁场而发生的.3.磁场的方向规定:在磁场中的某一点,小磁针静止时北极所指的方向,就是该点磁场的方向.4.磁感线:在磁场中画一些有方向的曲线.任何一点的曲线方向都跟放在该点的磁针北极所指的方向一致.磁感线的方向:在用磁感线描述磁场时,磁感线都是从磁体的n极出发,回到磁体的s极.说明:①磁感线是为了直观、形象地描述磁场而引入的带方向的曲线,不是客观存在的.但磁场客观存在. ②磁感线是封闭的曲线. ③磁感线的疏密程度表示磁场的强弱. ④磁感线立体的分布在磁体周围,而不是平面的.⑤磁感线不相交.5.地磁场:在地球周围的空间里存在的磁场,磁针指南北是因为受到地磁场的作用.地磁极:地磁场的北极在地理的南极附近,地磁场的南极在地理的北极附近.磁偏角:地理的两极和地磁的两极并不不重合,这个现象最先由我国宋代的沈括发现.三、电生磁1、电流的磁效应通电导线的周围存在磁场,磁场的方向跟电流的方向有关,这种现象称为电流的磁效应.该现象在1820年被丹麦的物理学家奥斯特发现.奥斯特是世界上第一个发现电与磁之间有联系的人.2、通电螺线管的磁场通电螺线管的磁场和条形磁铁的磁场一样.其两端的极性跟电流方向有关,电流方向与磁极间的关系可由安培定则来判断.3、安培定则:用右手握螺线管,让四指指向螺线管中电流的方向,则大拇指所指的那端就是螺线管的n极.四、电磁铁1.电磁铁在螺线管内插入软铁芯,当有电流通过时有磁性,没有电流时就失去磁性.这种磁体叫做电磁铁.工作原理:电流的磁效应.2、影响电磁铁磁性强弱的因素电流越大,电磁铁的磁性越强;线圈匝数越多,电磁铁的磁性越强;插入铁芯,电磁铁的磁性会更强.3、特点:其磁性的有无可由通断电流来控制;其磁极方向可以通过改变电流方向来改变;其磁性强弱与电流大小、线圈匝数、有无铁芯有关.4、电磁铁的应用:电磁起重机、电磁继电器五、电磁继电器扬声器1、电磁继电器继电器是利用低电压、弱电流电路的通断,来间接地控制高电压、强电流电路的装置.电磁继电器:实质是由电磁铁控制的开关.应用:用低电压弱电流控制高电压强电流,进行远距离操作和自动控制.2、扬声器扬声器是把电信号转换成声信号的一种装置.它主要由永久磁体、线圈和锥形纸盆组成.六、电动机1、磁场对通电导线的作用通电导线在磁场中要受到力的作用,力的方向跟电流的方向、磁感线的方向都有关系.当电流的方向或者磁感线的方向变得相反时,通电导线受力的方向也变得相反.2、电动机主要由转子和定子组成.电动机是利用通电线圈在磁场里受力而转动的原理制成的.电动机在工作时,线圈转到平衡位置的瞬间,线圈中的电流断开,但由于线圈的惯性,线圈还可以继续转动,转过此位置后,线圈中的电流方向靠换向器的作用而发生改变.3、电动机工作时,把电能转化为机械能.电动机构造简单控制方便、体积小、效率高、功率可大可小.七、磁生电1、电磁感应由于导体在磁场中运动而产生电流的现象,叫做电磁感应现象,产生的电流叫做感应电流.英国物理学家法拉第于1831年发现了利用磁场产生电流的条件和规律.产生感应电流的条件:闭合电路的部分导体在磁场中做切割磁感线的运动.导体中感应电流的方向:跟导体运动的方向和磁感线的方向有关. 2、发电机发电机主要由转子和定子组成.发电机的工作原理:电磁感应现象.发电机在发电的过程中,把机械能转化为电能.方向不断变化的电流叫交变电流,简称交流(ac).我国电网以交流供电,频率是50hz,周期0.02s,电流方向1s改变100次.【篇二:九年级电与磁知识点】一、磁现象1.磁性:磁铁能吸引铁、钴、镍等物质,磁铁的这种性质叫做磁性。
2.磁体:具有磁性的物质叫做磁体。
3.磁极:磁体上磁性最强的部分(任一个磁体都有两个磁极且是不可分割的)(1)两个磁极:南极(s)指南的磁极叫南极,北极(n)指北的磁极叫北极。
(2)磁极间的相互作用规律:同名磁极互相排斥,异名磁极互相吸引。
4.磁化:使原来没有磁性的物体获得磁性的过程。
二、磁场 1.磁场(1)概念:在磁体周围存在的一种物质,能使磁针偏转,这种物质看不见,摸不到,我们把它叫做磁场。
(2)基本性质:磁场对放入磁场中的磁体产生磁力的作用。
(3)磁场的方向:规定——在磁场中的任意一点,小磁针静止时,n 即所指的方向就是那点的磁场方向。
注意——在磁场中的任意一个位置的磁场方向只有一个。
(2)方向:为了让磁感线能反映磁场的方向,我们把磁感线上都标有方向,并且磁感线的方向就是磁场方向。
(3)特点:磁体外部的磁感线从n 极出发回到s 极,内部从s 极出发回到n 磁感线是有方向的,磁感线上任何一点的切线方向与该点的磁场方向一致。
磁感线的分布疏密可以反映磁场磁性的强弱,越密越强,反之越弱。
磁感线是空间立体分布,是一些闭合曲线,在空间不能断裂,任意两条磁感线不能相交。
磁感线是为了描述磁场而假想出来的,实际上不存在。
3.地磁场(1)概念:地球周围存在着磁场叫做地磁场。
(2)磁场的n 极在地理的南极附近,磁场的s 极在地理的北极附近。
(3)磁偏角:首先由我国宋代的沈括发现的。
1.电流的磁效应(1)1820 年,丹麦的科学家奥斯特第一个发现电与磁之间的联系。
(2)由甲、乙可知:通电导体周围存在磁场。
(3)由甲、丙可知:通电导体的磁场方向跟电流方向有关。
(4)电流的磁效应对应的图 2.通电螺线管(1)磁场跟条形的磁场是相似的。
(2)通电螺线管的磁极方向跟电流方向有关。
3.安培定则:用右手握住螺线管,让四指弯向螺线管中电流的方向,则大拇指所指的那端就是螺线管的北极。
四、电磁铁 1.电磁铁定义:电磁铁是一个内部插有铁芯的螺线管。
2.判断电磁铁磁性的强弱(转换法):根据电磁铁吸引大头针的数目的多少来判断电磁铁磁性的强弱。
3.影响电磁铁磁性强弱的因素(控制变量法):电流大小;有无铁芯;线圈匝数的多少结论(1):在电磁铁线圈匝数相同时,电流越大,电磁铁的磁性越强。
结论(2):电磁铁的磁性强弱跟有无铁芯有关,有铁芯的磁性越强。
结论(3):当通过电磁铁的电流相同时,电磁铁的线圈匝数越多,磁性越强。
4.电磁铁的优点(1)电磁铁磁性有无,可由电流的有无来控制。
(2)电磁铁磁性强弱,可由电流大小和线圈匝数的多少来控制。
(3)电磁铁的磁性可由电流方向来改变。
5.电磁铁的应用:电磁起重机、磁悬浮列车、电磁选矿机、电铃、电磁自动门等五、电磁继电器扬声器电磁继电器(1)结构:电磁继电器是由电磁铁、衔铁、簧片、触点(静触点、动触点)组成。
(2)工作原理:当较低的电压加在接线柱两个接线柱所连的触点接通,较大的电流就可以通过b、c带动机器工作了。
(3)结论:电磁继电器就是利用电磁铁控制工作电路通断的开关。
(4)用电磁继电器控制电路的好处:用低电压控制高电压;远距离控制;自动控制。
六、电动机 1.磁场对通电导体的作用(1)通电导体在磁场里,会受到力的作用。
(2)通电导体在磁场里,受力方向与电流方向和磁感线方向有关。
2.电动机(1)基本结构:转子线圈)、定子(磁体)、电刷、换向器电刷的作用:与半环接触,使电源和线圈组成闭合电路。
换向器的作用:使线圈一转过平衡位置就改变线圈中的电流方向。
(2)原理:通电线圈在磁场中受力而转动的原理制成的。
通电线圈在磁场中的受力大小跟电流(电流越大,受力越大)有关。
通电线圈在磁场中的受力大小跟磁场的强弱(磁性越强,受力越大)有关。
通电线圈在磁场中的受力大小跟线圈的匝数(匝数越大,受力越大)有关。
(3)应用:直接电动机:(电动玩具、录音机、小型电器等)交流电动机:(电风扇、洗衣机、家用电器等)(4)电动机原理图(有电源): 1.电磁感应现象(1)电磁感应现象是英国的物理学家法拉第第一个发现的。
(2)电磁感应:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就会产生电流。
感应电流:由于电磁感应产生的电流叫感应电流。
(3)电流中感应电流的方向与导体切割磁感线的运动方向和磁场方向有关。
(4)电磁感应原理图: 2.发电机原理:发电机是根据电磁感应原理工作的,是机械能转化为电能的机器。
发电机原理图(无电源): 3.直流电和交流电(1)直流电:方向不变的电流叫做直流电。
(2)交流电:周期性改变电流方向的电流叫交电流。
(3)产生感应电流大小跟磁场强度、切割磁感线速度、线圈匝数(导体的长度)有关。
(4)周期(t):(5)频率(f):我国交流电周期是0.02s,频率为50hz(每秒内产生的周期性变化的次数是50 次),每秒电流方向改变100 4.发电机和电动机的区别区别电动机发电机结构有电源无电源工作原理通电线圈在磁场中受力的作用电磁感应能量转化电能转化为机械能机械能转化为电能【篇三:九年级电与磁知识点】第二十章电和磁1、本章内容包括磁现象、电生磁、磁生电等内容,是中考的一个重要的模块。
2、通过电流的磁效应,我们认识到电流和磁场是同时存在且密不可分的。
3、电磁感应探索了由磁场产生电流的方法,是中考必考内容。
磁现象、磁场电生磁??磁现象:磁体能够吸引铁、钴、镍等物质。
它的吸引能力最强的两个部位叫做磁极。
??能够自由转动的磁体,例如悬吊着的小磁针,静止时指南的那个磁极叫做南极或s 极,指北的那个磁极叫做北极或n 极。
??磁极间相互作用的规律是:同名磁极相互排斥,异名磁极相互吸引。
??一些物体在磁体或电流的作用下会获得磁性,这种现象叫做磁化。