中职数学常用公式及常用结论大全
职校高中数学知识点总结及公式大全
![职校高中数学知识点总结及公式大全](https://img.taocdn.com/s3/m/6984b14802d8ce2f0066f5335a8102d276a26109.png)
职校高中数学知识点总结及公式大全全文共四篇示例,供读者参考第一篇示例:职校高中数学知识点总结及公式大全一、初等代数1. 二项式定理(a + b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + ... + C(n,n-1)a b^(n-1) + C(n,n)b^n2. 多项式的加减乘除运算多项式加减法:合并同类项多项式乘法:展开式,按每一项分配展开多项式除法:长除法或者直接使用因式分解3. 一元二次方程一元二次方程的一般形式为ax^2 + bx + c = 0求根公式:x = (-b ± 根号(b^2 - 4ac)) / 2a判别式:Δ = b^2 - 4ac根的情况:Δ > 0,有两个不相等的实根Δ = 0,有两个相等的实根Δ < 0,无实数根4. 不等式解不等式的方法与解方程式类似,但需要注意不等式号的方向常见的不等式:线性不等式、一元二次不等式不等式的解集写法:用数轴表示或者写成区间形式5. 函数函数的定义:对于每个元素x,存在唯一的元素y 与之对应函数的图像:以y 轴为对称轴的曲线常见函数:一次函数、二次函数、指数函数、对数函数、三角函数二、平面几何1. 几何基本定理射影定理:两平行线被一截线相交,所成的两对对应角相等全等三角形的判定:SSS、SAS、ASA、AAS、HL相似三角形的判定:AA、SSS、SAS比例定理正弦定理:a/sinA = b/sinB = c/sinC余弦定理:c^2 = a^2 + b^2 - 2ab cosC2. 圆圆的相关性质:半径、直径、周长、面积圆的弦、割、切切线与半径的垂直性:切线与半径垂直于接触点圆内角的性质:内切圆、外切圆4. 向量向量的表示:用一个有向线段或者坐标表示向量的模:|a| = √(a1^2 + a2^2)向量的运算:加减法、数量积、向量积5. 空间几何点、直线、平面在空间中的位置关系直线和平面的交点及夹角平行线和垂直线的性质空间几何问题的解决方法第二篇示例:职校高中数学知识点总结在职校的高中数学课程中,学生将会接触到许多重要的数学知识点和公式。
超详细中职数常用公式及常用结论大全(精华版)
![超详细中职数常用公式及常用结论大全(精华版)](https://img.taocdn.com/s3/m/532726c9dd36a32d72758184.png)
中职数学常用公式及常用结论大全1. 常见数集: N---自然数集2,充要条件:N * ---正整数集Z---整数集 Q---有理数集 R---实数集( 1)充分条件:如pq ,就 p 是 q 充分条件 .( 2)必要条件:如 q p ,就 p 是 q 必要条件 .( 3)充要条件:如 pq ,且 q p ,就 p 是 q 充要条件 .注:假如甲是乙的充分条件,就乙是甲的必要条件;反之亦然.3,一元二次方程 ax 2 bx c 0(a0)( 1)求根公式: xbb24ac 2a( 2)根与系数的关系:4,不等式的基本性质:x 1 x 2b c , x 1 x 2aa( 1)如 ab ,就 ac b c ;( 2)如 a b ,且 c ( 3)如 a b ,且 c 5,一元一次不等式( 1)( 2) 0 ,就 ac bc 0 ,就 ac bcb ab a( 3)留意在解一元一次不等式组时,最终肯定要求两个不等式解集的交集才是整个一元一次不等式组的解集;6,一元二次不等式( 1) ax2bx c 0(a 0) 的解集: x x x 1或x x 2 x 1 , x 2 是对应方程的两个根且 x 1 < x 2( 2) ax 2 bx c 0( a 0) 的解集:x xx x x , x 是对应方程的两个根且x < x12 12127,含肯定值的不等式( 1) xa(a 0) a, a( 2) xa(a 0) , a a,( 3) axb c(c 0) ax bc 或ax b c( 4) axb c(c 0)c ax b c8,定义域口诀:函数定义域好求,分母不能等于零;偶次方根非负,零和负数无对数; 零的零次方无意义,正切函数角不直;其余函数实数集,多种情形求交集;9,二次函数的图像与性质ax b 0( a 0)ax b x ax b0(a 0)ax bx0) .( 1)解析式: 一般式: y ax 2 bx c顶点式: y a xb 2a24ac 4ab 2交点式: y a x x 1 x x 2( 2)图像与性质 10 ,分数指数幂 (1) m an 1n am ( a 0, m , n N ,且 n 1 ). (2) amn 1m an ( a 0, m, n N ,且 n 1 ). 11.有理指数幂的运算性质 (1) a r as a r s ( a0, r , s Q ) .(2)(a r )s a rs (a0, r , s Q ) .(3)(ab )ra rb r (a 0, b 0, r Q ) .12,常用指数值 : a 0 1 a 0 ;a11 a 0 a 13,指数式与对数式的互化式 log a NbabN (a 0, a 1, N14.对数的四就运算法就如 a >0, a ≠ 1, M > 0, N > 0,就 (1) log a ( M N ) log a Mlog a N ;(2) logM log Mlog N ;aaaN(3) log a Mn l og a M (n R ) .15,常用对数值 : log a 1 0 ; log a a 116,指数函数与对数函数的图像与性质y a x(a 0且a 1)y log a x( a 0且a 1)定义域, 0,值域0,,单调性增函数减函数增函数减函数17, 等差数列( 1)等差数列定义: a na n 1 常数 d ( 2)等差数列的通项公式a n a 1 (n 1)d ;( 3)如 a, b, c 成等差数列b 是 a,c 的等差中项2b a c( 4)其前 n 项和公式为 s n18,等比数列n(a 1 2a n )na 1n(n 1)d . 2( 1)等比数列定义:a n 常数 qa n 1( 2)等比数列的通项公式aa qn 1a 1 q n (n N *) ;n1q( 3)如 a, b, c 成等比数列 b 是 a, c 的等比中项b2ac( 4)其前 n 项的和公式为 s na 1 (11q n) , q 1q na 1 , q 1n2219,三角函数定义 已知角终边上一点P( x,y) ,设OP rx 2 y 2就: siny,cos x, tan y ;rrx20,三角函数值在各象限的符号口诀: 一全正;二正弦正;三正切正;四余弦正; 21,诱导公式:口诀 :奇变偶不变,符号看象限; 22,同角三角函数的基本关系式sin2cos21 ; tan =sin ;cos23,和角与差角公式sin( ) sin cos cos sin;cos() cos cossin sin ;tan()tantan 1 tan tan;(子同母异)24,二倍角公式sin 2sin cos ;cos 2cos2sin22cos21 1 2sin2;tan 22 tan .1 tan 225, yAsin( x) B 的周期与最值 (A, ω , 为常数,且 A>0)2(1) 周期: T(2) 最值:1 sin x 1 A Asinx AA B AsinxB A B(3)(3)y a sin x b cos x a2b 2sin( x)26,正弦定理 a b c 2 R .27,余弦定理sin A sin Bsin C( 1) a 2b 2c 22bc cos A ; b 2c2a22ca cos B ; c2a2b 22ab cosC . ( 2)推论: cos Ab2c22bca;cos B a 2c22acb;cos C a2b2c22ab28,三角形面积定理(1)S 1ah1bh1ch (h ,h ,h 分别表示a,b,c 边上的高).a b c2 2 2 a b c(2)S 1ab sin C1bc sin A1casin B .2 2 229,三角形内角和定理在△ ABC中,有 A B C C ( A B)C A B2C2 2 230,向量的加减运算2 2( A B) ;(1)AB BC AC (首尾相连)(2)AB AC CB (同一起点)31,实数与向量的积的运算律设λ ,μ 为实数,那么(1) 结合律:λ( μa)=( λμ) a;(2) 第一安排律:( λ+μ) a=λa+μa;(3) 其次安排律:λ( a+b)= λa+λb.32,向量的数量积的运算律:(1) a ·b= b ·a (交换律);(2) (a)·b= (a·b)= a·b= a ·(b);(3) (a+b)·c= a ·c +b ·c.33,a 与b 的数量积( 或内积)a·b=| a|| b|cos θ.a bcosa b34. 平面对量的坐标运算(1) 设a= ( x1, y1 ) , b= ( x2, y2) ,就a+b= ( x1x2, y1y2 ) .(2) 设a= ( x1, y1 ) , b= ( x2, y2) ,就a-b= ( x1x2 , y1y2 ) .(3) 设A (x1, y1 ) ,B( x2, y2 ) , 就AB OB OA ( x2x1, y2y1) .(4) 设a= ( x, y), R ,就a= ( x, y) .(5) 设a= ( x1, y1) , b= ( x2, y2) ,就a·b= ( x1x2y1y2 ) .35,两向量的夹角公式cosx1x2y1y2( a= ( x , y ) , b= ( x , y ) ).x2 y2 x2 y2 1 1 2 21 12 236,平面两点间的距离公式中中0 0d= | AB| AB AB ( xx )2 ( yy )2(A( x , y ) , B (x , y ) ).A, B37,向量的平行与垂直21211122设 a= (x 1, y 1) , b= ( x 2 , y 2 ) ,且 b 0,就a|| bb =λ ax 1 y 2 x 2 y 1 0 .a b(a 0)a · b=0 x 1x 2y 1 y 2 0 .38,线段 AB 的中点,长度公式如A ( x 1, y 1 ), B ( x 2 , y 2 ),中点 M (x 中,y 中)就 x x 1 x 2, y y 1 y 2 2239,斜率公式k tany 2 y 1( P (x , y ) , P (x , y ) ).x 2 x 111122240,直线的三种方程( 1)点斜式y y 1k( x x 1)( 直线 l 过点P 1 (x 1, y 1 ) ,且斜率为 k ) .( 2)斜截式 y kx b (b 为直线 l 在 y 轴上的截距 ).( 3)一般式 Ax By C0 ( 其中 A ,B 不同时为 0).41,两条直线的平行和垂直(1) 如 l 1 : yk 1x b 1 , l 2 : y k 2x b 2① l 1 || l 2k 1 k 2, b 1 b 2 ;② l 1l 2k 1k 21 .(2) 如 l 1 : A 1x B 1 y C 10 , l 2 : A 2 x B 2 y C 2 0 , 且 A 1,A 2,B 1,B 2 都不为零 ,① l || l A 1 B 1 C 1 A B A B 0且A C -A C =0 ; 121 22 21 2 2 1A 2B 2C 2② l 1l 2 A 1 A 2 B 1B 2 0 ;42. 点到直线的距离d | Ax 0 By 0 C | ( 点P(x , y ) , 直线 l : Ax By C 0 ). 留意直线肯定要是一般式; A 2 B243. 圆的两种方程( 1)圆的标准方程( x a)2( y b)2r 2.圆心坐标:( a,b )半径: r( 2)圆的一般方程x2y2Dx Ey F 0 ( D 2E24F > 0).圆心坐标:D,E2 2半径:rD 2E 2 4 F244,直线与圆的位置关系设直线l :ax by c 0 ,圆C :x 2y 2Dx Ey F 0 ,圆的半径为r ,圆心( D,2E) 到直2线的距离为 d ,就判别直线与圆的位置关系的依据有以下几点:(1)当d r 时,直线l 与圆C 相离;(2)当d r 时,直线l 与圆C 相切;(3)当d r 时,直线l 与圆C 相交;45,二次曲线(椭圆双曲线抛物线)椭圆看大小 a 最大,双曲线看正负c最大;45,抛物线的标准方程n *P m46,直线与圆锥曲线相交弦长公式AB ( x x )2( yy )2= (1 k 2)2xx4 x x1212121 2(弦端点 A ( x 1 , y 1 ), B ( x 2 , y 2 ) ,由方程y kx b 消去 y 得到 ax 2bx c 0 ,0 , 为直线AB 的倾斜角, k 为直线的斜率).47,分类计数原理( 加法原理)N m 1 F( x, y) m 2 0m n .48,分步计数原理( 乘法原理 )49,排列数公式N m 1 m 2m n .Pm =n( n 1)(n m 1) .( n ,m ∈ N ,且 m n ) .注 : 规定 0. 1.50,组合数公式P mn( n 1)(n m 1)Cm=n=m1 2( n ∈ N , mN ,且 m n ).m51,组合数的两个性质(1) C m =C n m ; (2) C m + C m 1 = C m ; 注: 规定 C 01 .n n n n n 1 n52,排列组合应用重复( 3信4邮) 在于不在用优先分类有序( 排列) 相邻问题用捆绑分步 不重复无序( 组合)相隔问题用插空* n。
职中数学公式总结大全
![职中数学公式总结大全](https://img.taocdn.com/s3/m/6a5d6bd5afaad1f34693daef5ef7ba0d4a736d98.png)
职中数学公式总结大全数学是一门基础学科,在职中数学中,我们会接触到很多重要的数学公式。
这些公式在求解数学问题和建立数学模型中起着重要的作用。
以下是职中数学公式的一个总结大全:一、代数部分1. 二次方程的根公式:对于一元二次方程ax^2+bx+c=0,它的根可以由以下公式求得:x = (-b ± sqrt(b^2-4ac))/2a,其中sqrt表示开平方根。
2. 指数函数的性质:a^m * a^n = a^(m+n),(a^m)^n = a^(m*n),a^(-m) = 1/(a^m),(ab)^m = a^m * b^m。
3. 对数函数的性质:a^log_a(x) = x,log_a(a^x) = x,log_a(xy) = log_a(x) + log_a(y),log_a(x/y) = log_a(x) - log_a(y)。
4. 等差数列的通项公式:对于一个等差数列,其第n项可以由以下公式求得:a_n = a_1 + (n-1)d,其中a_1为首项,d为公差。
5. 等比数列的通项公式:对于一个等比数列,其第n项可以由以下公式求得:a_n = a_1 * r^(n-1),其中a_1为首项,r为公比。
二、几何部分1. 直角三角形的勾股定理:在直角三角形中,三边满足 a^2 + b^2 = c^2,其中a和b分别为两条直角边的长度,c为斜边的长度。
2. 正弦定理:在任意三角形ABC中,三边长度为a,b,c,对应的角分别为A,B,C,满足以下关系:a/sin(A) = b/sin(B) = c/sin(C)。
3. 余弦定理:在任意三角形ABC中,三边长度为a,b,c,对应的角分别为A,B,C,满足以下关系:c^2 = a^2 + b^2 - 2ab*cos(C)。
4. 面积公式:矩形的面积公式为 S = l * w,三角形的面积公式为 S = 1/2 * b * h,其中l和w分别为矩形的长和宽,b和h分别为三角形的底和高。
中职数学常用公式及常用结论大全
![中职数学常用公式及常用结论大全](https://img.taocdn.com/s3/m/0959563926284b73f242336c1eb91a37f11132e5.png)
中职数学常用公式及常用结论大全一、基本运算公式1.加法公式:- (a + b)² = a² + 2ab + b²- (a - b)² = a² - 2ab + b²-(a+b)(a-b)=a²-b²2.乘法公式:- (a + b) · (c + d) = ac + ad + bc + bd- (a - b) · (c - d) = ac - ad - bc + bd- (a + b)² = a² + 2ab + b²3.除法公式:-(a+b)/c=a/c+b/c4.平方公式:- (a + b)² = a² + 2ab + b²- (a - b)² = a² - 2ab + b²二、代数公式1.因式分解公式:-a²-b²=(a+b)(a-b)- a³ + b³ = (a + b)(a² - ab + b²)- a³ - b³ = (a - b)(a² + ab + b²)2.二次方程公式:- 一元二次方程: ax² + bx + c = 0根的求法:x = (-b ± √(b² - 4ac))/(2a)- 二项式平方公式:(a + b)² = a² + 2ab +b²- 二项式差平方公式:(a - b)² = a² - 2ab + b²三、几何公式1.周长和面积:-正方形:周长P=4a,面积S=a²- 长方形:周长P = 2(a + b),面积S = ab- 三角形:周长P = a + b + c,面积S = 1/2bh-圆形:周长C=2πr,面积S=πr²2.三角函数公式:- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:c² = a² + b² - 2abcosC- 正切公式:tanA = sinA/cosA3.三角恒等式:- sin²A + cos²A = 1- 1 + tan²A = sec²A- 1 + cot²A = csc²A四、概率统计公式1.期望公式:-离散型随机变量:E(X)=Σx·P(x)- 连续型随机变量:E(X) = ∫xf(x)dx2.方差公式:-离散型随机变量:D(X)=Σ(x-E(X))²·P(x)- 连续型随机变量:D(X) = ∫(x - E(X))²f(x)dx 3.二项分布公式:-P(x)=C(n,x)·pˣ·(1-p)^(n-x)4.正太分布公式:-P(x)=1/√(2πσ²)·e^(-(x-μ)²/(2σ²))五、常用结论1.公倍数与公约数:-两数的最小公倍数=两数的乘积/最大公约数-两数的最大公约数=两数的乘积/最小公倍数2.平行线与三角形:-平行线截割等腰直角三角形得到的两个三角形相似-平行线截割等腰三角形得到的两个三角形相似3.三角形中位线和中心线:-三角形的中位线交于一点,分割成6个全等的小三角形-三角形的中心线交于一点。
(完整版)中职数学基础知识汇总(可编辑修改word版)
![(完整版)中职数学基础知识汇总(可编辑修改word版)](https://img.taocdn.com/s3/m/73fcfa05bb4cf7ec4bfed094.png)
预备知识:中职数学基础知识汇总1.完全平方和(差)公式:(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b22.平方差公式:a2-b2=(a+b)(a-b)3.立方和(差)公式:a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2)第一章集合1.构成集合的元素必须满足三要素:确定性、互异性、无序性。
2.集合的三种表示方法:列举法、描述法、图像法(文氏图)。
3.常用数集:N(自然数集)、Z(整数集)、Q(有理数集)、R(实数集)、N+(正整数集)4.元素与集合、集合与集合之间的关系:(1)元素与集合是“∈”与“∉”的关系。
(2)集合与集合是“ Í” “ ”“= ”“/Í”的关系。
注:(1)空集是任何集合的子集,任何非空集合的真子集。
(做题时多考虑Ф是否满足题意)(2)一个集合含有n 个元素,则它的子集有2n 个,真子集有2n-1 个,非空真子集有2n-2 个。
5.集合的基本运算(用描述法表示的集合的运算尽量用画数轴的方法)(1)A B ={x| xÎ(2)A B ={x| xÎA且xÎA或xÎB}:A与B的公共元素组成的集合B}:A与B的所有元素组成的集合(相同元素只写一次)。
(3)C U A :U 中元素去掉A 中元素剩下的元素组成的集合。
注:C U(A B)=C U A C U B C U(A B) =C U A C U B6.会用文氏图表示相应的集合,会将相应的集合画在文氏图上。
7.充分必要条件: p 是q 的……条件p 是条件,q 是结论如果 p ⇒q,那么 p 是q 的充分条件;q 是p 的必要条件.如果 p ⇔q,那么 p 是q 的充要条件第二章不等式1.不等式的基本性质:(略)注:(1)比较两个实数的大小一般用比较差的方法;另外还可以用平方法、倒数法。
(2)不等式两边同时乘以负数要变号!!(3)同向的不等式可以相加(不能相减),同正的同向不等式可以相乘。
中职数学常用公式及常用结论大全 (一)
![中职数学常用公式及常用结论大全 (一)](https://img.taocdn.com/s3/m/a55770c0f80f76c66137ee06eff9aef8941e48e4.png)
中职数学常用公式及常用结论大全 (一)中职数学常用公式及常用结论大全数学是一门普遍适用的学科,学好数学的关键在于熟练掌握各种公式以及结论。
接下来,本文将为大家整理了常见的中职数学公式和结论,供大家参考。
1. 常见几何公式(1)矩形面积公式:S=a×b,其中a和b分别是矩形的长和宽。
(2)正方形面积公式:S=a²,其中a表示正方形的边长。
(3)三角形面积公式:S=1/2×b×h,其中b表示底边,h表示高。
(4)圆面积公式:S=π×r²,其中r表示圆的半径,π≈3.14。
(5)圆周长公式:C=2×π×r,其中r表示圆的半径,π≈3.14。
2. 常见代数公式(1)两点间距离公式:d=√[(x1-x2)²+(y1-y2)²],其中(x1,y1)和(x2,y2)表示两个点的坐标。
(2)二次方程解法公式:x=[-b±√(b²-4ac)]/2a,其中a、b、c为方程ax²+bx+c=0的系数。
(3)勾股定理:a²+b²=c²,其中a、b、c为直角三角形的两条直角边和斜边。
(4)配方法:a²+2ab+b²=(a+b)²。
(5)差积公式:a²-b²=(a+b)(a-b)。
3. 常见概率公式(1)事件发生的概率公式:P(A)=n(A)/n(S),其中n(A)表示事件A中包含的元素个数,n(S)表示样本空间中元素的总个数。
(2)互斥事件的概率公式:P(A∪B)=P(A)+P(B),其中A、B为两个互斥事件。
(3)独立事件的概率公式:P(A∩B)=P(A)×P(B),其中A、B为两个独立事件。
(4)全概率公式:P(B)=P(A1)×P(B|A1)+P(A2)×P(B|A2)+...+P(An)×P(B|An),其中B 为事件,A1、A2、...、An为互斥且构成样本空间的事件。
中职数学常见公式及结论
![中职数学常见公式及结论](https://img.taocdn.com/s3/m/6b3916faf242336c1eb95e9f.png)
1、圆心到直线的距离为 ,圆的半径为
相切
相交
相离
2、过圆 上点 的切线方程:
3、圆中弦长的求法:
(1) ( 是圆心到弦所在直线的距离)
(2)直线方程与圆方程联立
椭圆的标准方程及性质
标准ቤተ መጻሕፍቲ ባይዱ
方程
( )
( )
图像
范围
对称轴
关于x轴y轴成轴对称;关于原点成中心对称
顶点坐标
A1(-a,0)A2(a,0),
(八) 两向量垂直,平行的条件
设 =(a , a ) =(b ,b ) 则
⑴向量平行的条件: ∥ = ∥ a b - a b =0
⑵向量垂直的条件: · =0 a b + a b =0
解析几何
直线
1、直线与直线方程
1、直线的倾斜角、斜率和截距
(1)直线的倾斜角:一条直线向上的方向与x轴正向所成的最小正角,叫这条直线的倾斜角。
三、诱导公式:
四、两角和与差的三角函数
五、二倍角公式
六、正弦定理:
应用范围:(1)已知两角与一边(2)已知两边及其中一边的对角(两解,一解或无解)
七、余弦定理:
, ,
应用范围:(1)已知三边(2)已知两边及其夹角
八、三角形面积公式
S= absinC= bcsinA= acsinB
九、三角函数性质:
函数
三、含有绝对值不等式的解法:
第三章
1、函数的概念:
1、函数的两要素:定义域、对应法则。
函数定义域的条件:
(1)分式中的 ; (2)偶次方根的被开方数 ;
(3)对数的真数 ,底数 ; (4)零指数幂的底数 。
中职数学常用公式及常用结论大全
![中职数学常用公式及常用结论大全](https://img.taocdn.com/s3/m/7224d6be05a1b0717fd5360cba1aa81145318f58.png)
中职数学常用公式及常用结论大全一、代数运算常用公式:1. 平方差公式:(a + b)² = a² + 2ab + b²,(a - b)² = a² - 2ab + b²2.完全平方公式:a²-b²=(a+b)(a-b)3. 二次方程求根公式:对于二次方程ax² + bx + c = 0 (a ≠ 0),其解为 x = [-b ± √(b² - 4ac)] / (2a)4. 一元二次方程因式分解公式:ax² + bx + c = a(x - α)(x - β),其中α和β是方程的两个根。
二、几何公式和结论:1.圆的周长公式:C=2πr,其中C为圆的周长,r为半径。
2.圆的面积公式:A=πr²,其中A为圆的面积,r为半径。
3.直角三角形勾股定理:a²+b²=c²,其中c为斜边,a和b为两条边。
4.等腰三角形底边中线和高的关系:底边中线的长度等于等腰三角形的高。
5.平行四边形面积公式:A=底边×高,其中A为面积,底边为底边的长度,高为平行于底边的线段的长度。
三、函数与方程常用公式:1.直线的斜率公式:斜率m=(y₂-y₁)/(x₂-x₁),其中P₁(x₁,y₁)和P₂(x₂,y₂)为直线上的两个点。
2. 一次函数的一般式方程:y = kx + b,其中k为斜率,b为y轴截距。
3. 二次函数顶点坐标公式:对于二次函数y = ax² + bx + c,其顶点坐标为(-b/2a, -(b² - 4ac)/4a)。
4. 一元一次方程求解公式:对于一元一次方程ax + b = 0,其解为x = -b/a。
四、概率与统计常用公式:1.随机事件的概率公式:P(A)=n(A)/n(S),其中P(A)为事件A发生的概率,n(A)为事件A发生的次数,n(S)为样本空间中的总次数。
中职数学知识点总结及公式大全
![中职数学知识点总结及公式大全](https://img.taocdn.com/s3/m/e2c5af35f11dc281e53a580216fc700abb6852d1.png)
中职数学知识点总结及公式大全一、集合。
1. 集合的概念。
- 集合是由确定的元素组成的总体。
例如,一个班级的所有学生可以组成一个集合。
- 元素与集合的关系:属于(∈)和不属于(∉)。
如果a是集合A中的元素,就说a∈ A;如果a不是集合A中的元素,就说a∉ A。
2. 集合的表示方法。
- 列举法:把集合中的元素一一列举出来,写在大括号内。
例如A = {1,2,3}。
- 描述法:用确定的条件表示某些对象是否属于这个集合。
例如B={xx >0,x∈ R},表示所有大于0的实数组成的集合。
3. 集合间的基本关系。
- 子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊆ B(或B⊇ A)。
- 真子集:如果A⊆ B,且B中至少有一个元素不属于A,那么A是B的真子集,记作A⊂neqq B。
- 相等:如果A⊆ B且B⊆ A,那么A = B。
4. 集合的运算。
- 交集:A∩ B={xx∈ A且x∈ B}。
例如A = {1,2,3},B={2,3,4},则A∩ B = {2,3}。
- 并集:A∪ B={xx∈ A或x∈ B}。
对于上面的A和B,A∪ B={1,2,3,4}。
- 补集:设U是全集,A⊆ U,则∁_UA={xx∈ U且x∉ A}。
二、不等式。
1. 不等式的基本性质。
- 对称性:如果a > b,那么b < a;如果b < a,那么a > b。
- 传递性:如果a > b,b > c,那么a > c。
- 加法单调性:如果a > b,那么a + c>b + c。
- 乘法单调性:如果a > b,c>0,那么ac > bc;如果a > b,c < 0,那么ac < bc。
2. 一元一次不等式。
- 一般形式为ax + b>0(a≠0)或ax + b < 0(a≠0)。
- 求解步骤:移项、合并同类项、系数化为1。
(完整word版)中职数学公式大全
![(完整word版)中职数学公式大全](https://img.taocdn.com/s3/m/b2cd4398524de518964b7d94.png)
中职数学常用公式及常用结论1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. 2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==.3.包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆ U A C B ⇔=ΦU C A B R ⇔=4.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.5.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 6.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}m in m a x m ax ()(),()(),()2b f x f f x f p f qa=-=;[]q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p abx ,2∈-=,则{}m i n()m i n (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.7.一元二次方程的实根分布 8充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 9.函数的单调性(1)任取 []2121,,,x x b a x x ≠∈那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.10.如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.11.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.12.多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 13.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=- 14.两个函数图象的对称性15.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;16.几个常见的函数方程 (1)正比例函数()f x cx =,(2)指数函数()xf x a =,. (3)对数函数()log a f x x =,. (4)幂函数()f x x α=,(5)余弦函数()cos f x x =,正弦函数()sin g x x =,17.分数指数幂(1)m na =(0,,a m n N *>∈,且1n >). (2)1m nm naa-=(0,,a m n N *>∈,且1n >).18.根式的性质(1)na =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.19.有理指数幂的运算性质 (1) (0,,)rsr sa a aa r s Q +⋅=>∈.(2) ()(0,,)r s rs a a a r s Q =>∈. (3)()(0,0,)rr rab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.20.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.21.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).22.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2) log log log aa a MM N N =-; (3)log log ()na a M n M n R =∈.23. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.24.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).25.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+ 211()22d n a d n =+-. 26.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.27.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. 28.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s ()2(1)s i n ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩29.和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ).30.二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 31.三角函数的周期公式函数sin()y x ωϕ=+, x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=.32.正弦定理2sin sin sin a b cR A B C===. 33.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.34.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.35.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 36.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 37.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a //b(b ≠0)12210x y x y ⇔-=.38. a 与b 的数量积(或内积) a ·b =|a ||b |cos θ. 39.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212x x y y +. 40.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).41.平面两点间的距离公式||AB =11(,)x y ,B 22(,)x y ).42.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=.43.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.44.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.45.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩46.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).47直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0).48.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠; ②1212120l l A A B B ⊥⇔+=;49.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.50.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).51. 圆的2种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0). 52.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.53.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA C Bb Aa d +++=.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;54.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x aby ±=.(2)若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x轴上,0<λ,焦点在y 轴上).55.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a--; 56.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y p x p => (2)点00(,)P x y 在抛物线22(0)y p x p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->.57.直线与圆锥曲线相交的弦长公式 AB =AB =A ),(),,(2211y x B y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率).58.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.59.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.60.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.61.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 62.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直;(2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 63.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直. 向向量)64.直线AB 与平面所成角 65.二面角l αβ--的平面角 66.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=..67.点B 到平面α的距离68.分类计数原理(加法原理) 12n N m m m =+++.69.分步计数原理(乘法原理) 12n N m m m =⨯⨯⨯. 70.排列数公式m n A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=. 71.组合数公式mnC =m n m mA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤).72.组合数的两个性质 (1)mn C =mn nC - ; (2) m n C +1-m n C =mn C 1+.注:规定10=n C .(6)nn n r n n n n C C C C C 2210=++++++ . (7)14205312-+++=+++n n n n n n n C C C C C C .73.排列数与组合数的关系m m n n A m C =⋅! .74.二项式定理n n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ;二项展开式的通项公式r r n r n r b a C T -+=1)210(n r ,,, =.75.等可能性事件的概率()m P A n=. 76.互斥事件A ,B 分别发生的概率的和 P(A +B)=P(A)+P(B).77.n 个互斥事件分别发生的概率的和P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+P(A n ). 78.独立事件A ,B 同时发生的概率 P(A ·B)= P(A)·P(B).79.n 次独立重复试验中某事件恰好发生k 次的概率()(1).k kn k n n P k C P P -=-80.离散型随机变量的分布列的两个性质(1)0(1,2,)i P i ≥=; (2)121P P ++=.。
(完整版)中职数学基础知识汇总,推荐文档
![(完整版)中职数学基础知识汇总,推荐文档](https://img.taocdn.com/s3/m/6fd1d11fbe23482fb4da4c4b.png)
中职数学基础知识汇总预备知识:1.完全平方和(差)公式: (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 22.平方差公式: a 2-b 2=(a+b)(a-b)3.立方和(差)公式: a 3+b 3=(a+b)(a 2-ab+b 2) a 3-b 3=(a-b)(a 2+ab+b 2)第一章 集合1. 构成集合的元素必须满足三要素:确定性、互异性、无序性。
2. 集合的三种表示方法:列举法、描述法、图像法(文氏图)。
3. 常用数集:N (自然数集)、Z (整数集)、Q (有理数集)、R (实数集)、N +(正整数集)4. 元素与集合、集合与集合之间的关系:(1) 元素与集合是“∈”与“∉”的关系。
(2) 集合与集合是“” “”“”“”的关系。
注:(1)空集是任何集合的子集,任何非空集合的真子集。
(做题时多考虑Ф是否满足题意) (2)一个集合含有n 个元素,则它的子集有2n 个,真子集有2n -1个,非空真子集有2n -2个。
5. 集合的基本运算(用描述法表示的集合的运算尽量用画数轴的方法) (1){|}A B x x A x B 且:A 与B 的公共元素组成的集合(2){|}ABx xA xB 或:A 与B 的所有元素组成的集合(相同元素只写一次)。
(3)A C U :U 中元素去掉A 中元素剩下的元素组成的集合。
注:=()U U U C AB C A C B ()U U U C A B C A C B6. 会用文氏图表示相应的集合,会将相应的集合画在文氏图上。
7. 充分必要条件:p 是q 的……条件 p 是条件,q 是结论如果p ⇒q ,那么p 是q 的充分条件;q 是p 的必要条件. 如果p ⇔q ,那么p 是q 的充要条件第二章 不等式1. 不等式的基本性质:(略)注:(1)比较两个实数的大小一般用比较差的方法;另外还可以用平方法、倒数法。
(2)不等式两边同时乘以负数要变号!!(3)同向的不等式可以相加(不能相减),同正的同向不等式可以相乘。
中职数学基础知识汇总
![中职数学基础知识汇总](https://img.taocdn.com/s3/m/abca0903c381e53a580216fc700abb68a982adeb.png)
中职数学基础知识汇总预备知识:1.完全平方和差公式: a+b 2=a 2+2ab+b 2 a-b 2=a 2-2ab+b 22.平方差公式: a 2-b 2=a+ba-b3.立方和差公式: a 3+b 3=a+ba 2-ab+b 2 a 3-b 3=a-ba 2+ab+b 2第一章 集合1. 构成集合的元素必须满足三要素:确定性、互异性、无序性;2. 集合的三种表示方法:列举法、描述法、图像法文氏图;3. 常用数集:N 自然数集、Z 整数集、Q 有理数集、R 实数集、N +正整数集4. 元素与集合、集合与集合之间的关系: (1) 元素与集合是“∈”与“∉”的关系; (2) 集合与集合是“” “”“”“”的关系;注:1空集是任何集合的子集,任何非空集合的真子集;做题时多考虑Ф是否满足题意 2一个集合含有n 个元素,则它的子集有2n 个,真子集有2n -1个,非空真子集有2n -2个; 5. 集合的基本运算用描述法表示的集合的运算尽量用画数轴的方法 1{|}A B x x A x B 且:A 与B 的公共元素组成的集合2{|}ABx xA xB 或:A 与B 的所有元素组成的集合相同元素只写一次;3A C U :U 中元素去掉A 中元素剩下的元素组成的集合; 注:=()U U U C AB C A C B ()U U U C A B C A C B6. 会用文氏图表示相应的集合,会将相应的集合画在文氏图上;7. 充分必要条件:p 是q 的……条件 p 是条件,q 是结论如果p ⇒q,那么p 是q 的充分条件;q 是p 的必要条件. 如果p ⇔q,那么p 是q 的充要条件第二章 不等式1. 不等式的基本性质:略注:1比较两个实数的大小一般用比较差的方法;另外还可以用平方法、倒数法; 2不等式两边同时乘以负数要变号3同向的不等式可以相加不能相减,同正的同向不等式可以相乘; 2. 重要的不等式: 1ab b a 222≥+,当且仅当b a=时,等号成立;2),(2+∈≥+R b a ab b a ,当且仅当b a =时,等号成立;3注:2ba +算术平均数≥ab 几何平均数 3. 一元一次不等式的解法略 4. 一元二次不等式的解法 (1) 保证二次项系数为正(2) 分解因式十字相乘法、提取公因式、求根公式法,目的是求根: (3) 定解:口诀大于取两边,小于取中间;5. 绝对值不等式的解法若0>a ,则⎩⎨⎧-<>⇔><<-⇔<a x a x a x ax a a x 或||||分式不等式的解法:与二次不等式的解法相同;注:分母不能为0.第三章 函数1. 函数1定义:设A 、B 是两个非空数集,如果按照某种对应法则f ,对A 内任一个元素x,在B 中总有一个且只有一个值y 与它对应,则称f 是集合A 到B 的函数,可记为:f :A →B,或f :x →y.其中A 叫做函数f 的定义域.函数f 在a x =的函数值,记作)(a f ,函数值的全体构成的集合CCB,叫做函数的值域.2函数的表示方法:列表法、图像法、解析法;注:在解函数题时可以画出图像,运用数形结合的方法可以使大部分题目变得更简单; 2. 函数的三要素:定义域、值域、对应法则(1) 定义域的求法:使函数的解析式有意义的x 的取值范围主要依据:分母不能为0,偶次根式的被开方式≥0,特殊函数定义域:0,0≠=x x y R x a a a y x∈≠>=),10(,且 (2) 值域的求法:y 的取值范围① 正比例函数:kx y = 和 一次函数:b kx y +=的值域为R② 二次函数:c bx ax y ++=2的值域求法:配方法;如果x 的取值范围不是R 则还需画图像 ③ 反比例函数:xy 1=的值域为}0|{≠y y ④ 另求值域的方法:换元法、不等式法、数形结合法、函数的单调性等等; (3) 解析式求法:在求函数解析式时可用换元法、构造法、待定系数法等; 3. 函数图像的变换 (1) 平移 (2) 翻折 4. 函数的奇偶性(1) 定义域关于原点对称 (2) 若)()(x f x f -=-→奇 若)()(x f x f =-→偶注:①若奇函数在0=x处有意义,则0)0(=f ②常值函数ax f =)(0≠a 为偶函数③0)(=x f 既是奇函数又是偶函数 5. 函数的单调性对于],[21b a x x ∈∀、且21x x <,若⎩⎨⎧><上为减函数在称上为增函数在称],[)(),()(],[)(),()(2121b a x f x f x f b a x f x f x f增函数:x 值越大,函数值越大;x 值越小,函数值越小;减函数:x 值越大,函数值反而越小;x 值越小,函数值反而越大; 6. 二次函数1二次函数的三种解析式①一般式:cbx ax x f ++=2)(0≠a②顶点式:h k x a x f +-=2)()(0≠a ,其中),(h k 为顶点③两根式:))(()(21x x x x a x f --= 0≠a ,其中21x x 、是0)(=x f 的两根2图像与性质二次函数的图像是一条抛物线,有如下特征与性质: ① 开口→>0a 开口向上 →<0a 开口向下② 对称轴:abx 2-= 顶点坐标:)44,2(2a b ac a b -- ③ ∆与x 轴的交点:⎪⎩⎪⎨⎧→<∆→=∆→>∆无交点交点有有两交点0100 ④ 根与系数的关系:韦达定理⎪⎩⎪⎨⎧=⋅-=+a cx x a b x x 2121 ⑤c bx ax x f ++=2)(为偶函数的充要条件为0=b⑥二次函数二次函数恒大小于0⑦若二次函数对任意x 都有)()(x t f x t f +=-,则其对称轴是t x=;第四章 指数函数与对数函数1. 指数幂的性质与运算 1根式的性质:①n 为任意正整数,n na )(a = ②当n 为奇数时,a a n n =;当n 为偶数时,||a a n n =③零的任何正整数次方根为零;负数没有偶次方根; 2 零次幂:10=a )0(≠a (3) 负数指数幂:n naa 1=- ),0(*N n a ∈≠ (4) 分数指数幂:n m nm a a= )1,,0(>∈>+n N n m a 且(5) 实数指数幂的运算法则:),,0(R n m a ∈>①nm nmaa a +=⋅ ②mnn m aa =)( ③nn n b a b a ⋅=⋅)(2. 幂运算时,注意将小数指数、根式都统一化为分数指数;一般将每个数都化为最小的一个数的n 次方;3. 幂函数⎩⎨⎧∞+=<∞+=>=)上单调递减,在(时,当)上单调递增,在(时,当0000aa ax y a x y a x y 4. 指数与对数的互化:b N N aa b=⇔=log )10(≠>a a 且 、 )0(>N5. 对数基本性质: ①1log =a a ②01log =a ③N a Na =log ④N a N a =log ⑤互为倒数与ab b a log log ab a b b a b a log 1log 1log log =⇔=⋅⇔⑥b mnb a n a mlog log =6. 对数的基本运算:7. 换底公式:aNN b b alog log log =)10(≠>b b 且8.9. 利用幂函数、指数函数、对数函数的单调性比较两个数的大小,将其变为同底、同幂次或用换底公式或是利用中间值0,1来过渡;10. 指数方程和对数方程:指数式和对数式互化 同底法 换元法 ④取对数法注:解完方程要记得验证根是否是增根,是否失根;当公比为1时,数列为常数列通项公式推 论1mn a a d mn --=2d m n a a m n )(-+= 3若q p n m +=+,则q p n m a a a a +=+1mnmn a a q=- 2m n m nq a a -=3若q p n m +=+,则q p n m a a a a =中项公式 三个数c b a 、、成等差数列,则有 三个数c b a 、、成等比数列,则有前n 项和公式qq a a q q a S n n n --=--=11)1(111≠q1. 已知前n 项和n S 的解析式,求通项n a2. 弄懂等差、等比数通项公式和前n 项和公式的证明方法;见教材第六章 三角函数1.弧度和角度的互换π=o 180弧度 1801π=o 弧度01745.0≈弧度 1弧度'1857)180(o o ≈=π2.扇形弧长公式和面积公式r ||⋅=α扇L 2||2121r Lr S ⋅==α扇 记忆法:与ah S ABC 21=∆类似 3.任意三角函数的定义:斜边对边=αsin =r y 斜边邻边=αcos =r x邻边对边=αtan =xy 4.特殊三角函数值不存在5. 三角函数的符号判定(1) 口诀:一全二正弦,三切四余弦;三角函数中为正的,其余的为负 (2) 图像记忆法6.三角函数基本公式αααcos sin tan =可用于化简、证明等 1cos sin 22=+αα 可用于已知αsin 求αcos ;或者反过来运用7. 诱导公式:口诀:奇变偶不变,符号看象限;解释:指)(2Z k k ∈+⋅απ,若k 为奇数,则函数名要改变,若k 为偶数函数名不变;7. 已知三角函数值求角α:1 确定角α所在的象限;2 求出函数值的绝对值对应的锐角'α;3 写出满足条件的π2~0的角;4 加上周期同终边的角的集合8. 和角、倍角公式⑴ 和角公式:βαβαβαsin cos cos sin )sin(±=± 注意正负号相同 βαβαβαsin sin cos cos )cos( =± 注意正负号相反 ⑵ 二倍角公式:αααcos sin 22sin = ααααα2222sin 211cos 2sin cos 2cos -=-=-=⑶ 半角公式:2cos 12sinαα-±= 2cos 12cos αα+±= 9.9. 正弦型函数)sin(ϕω+=x A y )0,0(>>ωA 1定义域R ,值域],[A A - 2周期:ωπ2=T3注意平移的问题:一要注意函数名称是否相同,二要注意将x 的系数提出来,再看是怎样平移的; 4x b x a y cos sin +=)sin(22ϕ++=x b a10. 正弦定理R CcB b A a 2sin sin sin === R 为ABC ∆的外接圆半径 其他形式:1A R a sin 2= B R b sin 2= C R c sin 2=注意理解记忆,可只记一个 2C B A c b a sin :sin :sin ::=11. 余弦定理A bc c b a cos 2222-+= ⇒ bca cb A 2cos 222-+= 注意理解记忆,可只记一个12. 三角形面积公式B ac A bcC ab S ABC sin 21sin 21sin 21===∆ 注意理解记忆,可只记一个 13. 海伦公式:))()((c P b P a P P S ABC---=∆其中P 为ABC ∆的半周长,2cb a P ++=第七章 平面向量1. 向量的概念(1) 定义:既有大小又有方向的量;(2) 向量的表示:书写时一定要加箭头另起点为A,终点为B 的向量表示为AB ; (3) 向量的模长度:||||a AB 或(4) 零向量:长度为0,方向任意;单位向量:长度为1的向量;向量相等:大小相等,方向相同的两个向量; 反负向量:大小相等,方向相反的两个向量;2. 向量的运算 (1) 图形法则三角形法则 平形四边形法则2计算法则加法:AC BC AB =+ 减法:CA AC AB =- 3运算律:加法交换律、结合律 注:乘法内积不具有结合律3. 数乘向量:a λ 1模为:||||a λ 2方向:λ为正与a 相同;λ为负与a 相反;4.AB 的坐标:终点B 的坐标减去起点A 的坐标; ),(A B A B y y x x AB --=5. 向量共线平行:∃唯一实数λ,使得b a λ=; 可证平行、三点共线问题等6. 平面向量分解定理:如果21,e e 是同一平面上的两个不共线的向量,那么对该平面上的任一向量a ,都存在唯一的一对实数21,x x ,使得2211e x e x a +=;7. 注意ABC ∆中,重心三条中线交点、外心外接圆圆心:三边垂直平分线交点、内心内切圆圆心:三角平分线交点、垂心三高线的交点 8. 向量的内积数量积(1) 向量之间的夹角:图像上起点在同一位置;范围],0[π; (2) 内积公式:><=⋅b a b a b a ,cos |||| 9. 向量内积的性质: (1)||||,cos b a b a >=<夹角公式 2a ⊥b 0=⋅⇔b a3a a aa ==⋅||||2或 长度公式10. 向量的直角坐标运算: 1),(A B A B y y x x AB --=(2)设),(),,(2211y x b y x a ==,则 ),(2121y y x x b a ±±=± ),(11y x a λλλ= 2121y y x x b a +=⋅11.中点坐标公式:若A 11(,)x y ,B 22(,)x y ,点Mx,y 是线段AB 的中点,则1212,22x x y y x y ++== 12.向量平行、垂直的充要条件:设),(),,(2211y x b y x a ==,则a ∥b 2121y yx x =⇔相对应坐标比值相等 a ⊥b ⇔=⋅⇔0b a 02121=+y y x x 两个向量垂直则它们的内积为011. 长度公式(1) 向量长度公式:设),(y x a =,则22||y x a +=(2) 两点间距离公式:设点),(),,(2211y x B y x A ,则 212212)()(||y y x x AB -+-=12. 向量平移(1) 平移公式:点),(y x P 平移向量)','('),(21y x P a a a 到=,则⎩⎨⎧+=+=21''a y y a x x 记忆法:“新=旧+向量”2图像平移:)(x f y =的图像平移向量),(21a a a=后得到的函数解析式为:)(12a x f a y -=- 第八章 平面解析几何1. 曲线C 上的点与方程0),(=y x F 之间的关系: (1) 曲线C 上点的坐标都是方程0),(=y x F 的解;(2) 以方程0),(=y x F 的解),(y x 为坐标的点都在曲线C 上;则曲线C 叫做方程0),(=y x F 的曲线,方程0),(=y x F 叫做曲线C 的方程;2. 求曲线方程的方法及步骤: 1 设动点的坐标为x,y ;2 写出动点在曲线上的充要条件;3 用y x ,的关系式表示这个条件列出的方程;4 化简方程不需要的全部约掉;5证明化简后的方程是所求曲线的方程;如果方程化简过程是同解变形的话第五步可省略;3. 两曲线的交点:联立方程组求解即可;4. 直线:1 倾斜角α:一条直线l 向上的方向与x 轴的正方向所成的最小正角叫这条直线的倾斜角;其范围是),0[π2 斜率:①倾斜角为090的直线没有斜率;②αtan =k倾斜角的正切③经过两点),(),,(222111y x P y x P 的直线的斜率1212x x y y K --=)(21x x ≠3 直线的方程 ① 两点式:121121x x x x y y y y --=-- ② 斜截式:b kx y +=③ 点斜式:)(00x x k y y -=- ④ 一般式:0=++C By Ax注:1.若直线l 方程为3x+4y+5=0,则与l 平行的直线可设为3x+4y+C=0;与l 垂直的直线可设为4X-3Y+C=02.求直线的方程最后要化成一般式; 4 两条直线的位置关系注:系数为0的情况可画图像来判定;5点到直线的距离①点),(00y x P 到直线0=++C By Ax 的距离:2200||BA C By Ax d +++=5. 圆的方程(1) 标准方程:222)()(rb y a x =-+-0>r 其中圆心),(b a ,半径r ;(2) 一般方程:022=++++F Ey Dx y x 0422>-+F E D圆心2,2ED -- 半径:2422FE D r -+=4直线和圆的位置关系:主要用几何法,利用圆心到直线的距离d 和半径r 比较;相交⇔<r d ; 相切⇔=r d ; 相离⇔>r d6.7.注:等轴双曲线:1实轴长和虚轴长相等⇒b a =2离心率2=e 3渐近线x y ±=8. 注:12 掌握焦点在哪个轴上的判断方法3圆锥曲线中凡涉及到弦长,都可用联立直线和曲线的方程求解再用弦长公式:2122124)(1||x x x x k AB -++=4圆锥曲线中最重要的是它本身的定义做题时应注意圆锥曲线上的点是满足圆锥曲线的定义的第九章 立体几何1. 空间的基本要素:点、线、面注:用集合符号表示空间中点元素、线集合、面集合的关系 2. 平面的基本性质 (1) 三个公理:① 如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内;② 如果两个不重合的平面有一个公共点,那么它们的所有公共点组成的集合是过该点的一条直线; ③ 经过不在同一条直线上的三点,有且只有一个平面; (2) 三个推论:① 经过一条直线和这条直线外的一点,有且只有一个平面; ② 经过两条相交直线,有且只有一个平面; ③ 经过两条平行直线,有且只有一个平面; 3. 两条直线的位置关系:(1) 相交:有且只有一个公共点,记作“A b a = ”(2) 平行:.a 过直线外一点有且只有一条直线与该直线平行;.b 平行于同一条直线的两条直线平行(3) 异面:① 定义:不同在任何一个平面内的两条直线② 异面直线的夹角:对于两条异面直线,平移一条与另一条相交所成的不大于2π的角;注意在找异面直线之间的夹角时可作其中一条的平行线,让它们相交; 4. 直线和平面的位置关系:(1) 直线在平面内:α⊆l(2) 直线与平面相交:A l =α(3) 直线与平面平行① 定义:没有公共点,记作:l ∥α② 判定:如果平面外一条直线与平面内一条直线平行,则该直线与平面平行;③ 性质:如果一条直线与一平面平行,且过直线的另一平面与该平面相交,则该直线与交线平行; 5. 两个平面的位置关系 (1) 相交:l =βα (2) 平行:① 定义:没有公共点,记作:“α∥β”② 判定:如果一个平面内有两条相交直线与另一个平面都平行,则两平面平行 ③ 性质:.a 两个平行平面与第三个平面都相交,则交线互相平行 .b 平行于同一平面的两个平面平行 .c 夹在两平行平面间的平行线段相等.d 两条直线被三个平行平面所截得的对应线段成比例6. 直线与平面所成的角:(1) 定义:直线与它在平面内的射影所成的角(2) 范围:]2,0[π7. 直线与平面垂直(1) 判定:如果一条直线垂直于平面内的两条相交直线,则该直线与平面垂直 (2) 性质:① 如果一条直线垂直于一平面,则它垂直于该平面内任何直线; ② 垂直于同一平面的两直线平行; ③ 垂直于同一直线的两平面平行; 8. 两个平面垂直(1) 判定定理:如果一个平面经过另一个平面的垂线,则两个平面互相垂直;(2) 性质定理:如果两个平面垂直,则一个平面内垂直于它们的交线的直线与另一个平面垂直; 9. 二面角(1) 定义:过二面角βα--l 的棱上一点O ,分别在两半平面内引棱l 的垂线OB OA 、,则AOB ∠为二面角的平面角(2) 范围:],0[π(3) 二面角的平面角构造:① 按定义,在棱上取一点O ,分别在两半平面内引棱的垂线OB OA 、,则AOB ∠即是 ② 作一平面与二面角的棱垂直,与两半平面分别交于OB OA 、,AOB ∠即是第十章 排列、组合与二项式定理1.分类用加法:n m m m N +⋯⋯++=21 分步用乘法:n m m m N ⋯⋯=212.有序为排列:)!(!)1()2)(1(m n n m n n n n P mn -=+-⋯⋯--=无序为组合:)!(!!!)1()2)(1(m n m n m m n n n n P P C m mm n mn-=+-⋯⋯--== 阶乘:123)2)(1(!⨯⨯⨯⋯⋯--==n n n n P nn 规定:1!0=10=n C注:1做排列组合题的原则:先特殊,后一般2在一起,用捆绑法;不在一起,用插空法;另外的思考方法:一般法、排除法、分类讨论法、机会均等法等等; 3.组合数的两个性质:1m n nmn C C -= 211-++=m n m n m n C C C 4.二项式定理: 通项:rr n r n r b a C T -+=1,其中r nC 叫做第1+r 项的二项式系数; 注:1二项展开式中第1+r 项的系数与第1+r 项的二项式系数rn C 是两个不同的概念; 2杨辉三角1. 二项式系数的性质(1) 除每行两端的1以外,每个数字都等于它肩上两数之和,即11-++=r nr n rn C C C (2) 与首末两端等距离的两项的二项式系数相等,即rn nrn C C -= (3)n 为偶数,展开式有奇数项,中间项的二项式系数最大;第12+n项 n 为奇数,展开式有偶数项,中间两项的二项式系数最大;第21+n 项和后一项7. n n n n n C C C 2C m n 10=⋯⋯+⋯⋯++ 15314202-=⋯⋯+++=⋯⋯+++n n n n n n n C C C C C C第十一章 概率与统计一、概率.1. 概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值.2. 等可能事件的概率:如果一次试验中可能出现的结果有年n 个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是n 1,如果某个事件A 包含的结果有m 个,那么事件A 的概率nm P(A)=. 3. ①互斥事件:不可能同时发生的两个事件叫互斥事件. 如果事件A 、B 互斥,那么事件A+B 发生即A 、B 中有一个发生的概率,等于事件A 、B 分别发生的概率和,即PA+B=PA+PB;②对立事件:两个事件必有一个发生的互斥事件...............叫对立事件. 注意:i.对立事件的概率和等于1:1)A P(A )A P(P(A)=+=+.ii.互为对立的两个事件一定互斥,但互斥不一定是对立事件.③相互独立事件:事件A 或B 是否发生对事件B 或A 发生的概率没有影响.这样的两个事件叫做相互独立事件. 如果两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即PA·B=PA·PB. 由此,当两个事件同时发生的概率PAB 等于这两个事件发生概率之积,这时我们也可称这两个事件为独立事件.④独立重复试验:若n 次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n 次试验是独立的. 如果在一次试验中某事件发生的概率为P,那么在n 次独立重复试验中这个事件恰好发生k 次的概率:kn k k n n P)(1P C (k)P --=. 二、随机变量.1. 随机试验的结果应该是不确定的.试验如果满足下述条件:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.它就被称为一个随机试验.2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量;设离散型随机变量ξ可能取的值为: ,,,,21i x x xξ取每一个值),2,1( =i x 的概率p x P ==)(ξ,则表称为随机变量ξ的概率分布,简称ξ的分布列.121i 注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数.3. ⑴离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k kn n q p C k P -==)(ξ,k =0,1,2,…,n ,p q -=1.由于kn qp C 恰好是二项展开式中的各项的值,所以称这样的随机变量ξ服从二项分布,记作ξ~Bn ,p ,其中n ,p 为参数,并记kn kkn q p C -=bk ;n ,p .⑵二项分布的判断与应用.①二项分布,实际是对n 次独立重复试验.关键是看某一事件是否是进行n 次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布.②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列.三、数学期望与方差.n n 2211随机变量取值的平均水平.2. 二项分布的数学期望:np E =ξ 其分布列为ξ~),(p n B .P 为发生ξ的概率3.方差、标准差的定义:当已知随机变量ξ的分布列为),2,1()( ===k p x P k k ξ时,则称+-++-+-=n n p E x p E x p E x D 2222121)()()(ξξξξ为ξ的方差; 显然0≥ξD ,故σξξσξ.D =为ξ的根方差或标准差;随机变量ξ的方差与标准差都反映了随机变量ξ取值的稳定与波动,集中与离散的程度.ξD 越小..,.稳定性越高.....,.波动越小......4.二项分布的方差:npq D =ξ5. 期望与方差的关系:22)(ξξξE E D -=四、正态分布.基本不列入考试范围1.密度曲线与密度函数:对于连续型随机变量ξ,位于x 轴上方,ξ落在任一区间),[b a 内的概率等于它与x 轴.直线a x =与直线b x =所围成的曲边梯形的面积如图阴影部分的曲线叫ξ的密度曲线,以其作为图像的函数)(x f 叫做ξ的密度函数,由于“),(+∞-∞∈x ” 是必然事件,故密度曲线与x 轴所夹部分面积等于1.2. ⑴正态分布与正态曲线:如果随机变量ξ的概率密度为:2221)(σσπ-=ex f . σμ,,R x ∈为常数,且0 σ,称ξ服从参数为σμ,的正态分布,用ξ~),(2σμN 表示.)(x f 的表达式可简记为),(2σμN ,它的密度曲线简称为正态曲线.⑵正态分布的期望与方差:若ξ~),(2σμN ,则ξ的期望与方差分别为:μξ=E ,2σξ=D ⑶正态曲线的性质.①曲线在x 轴上方,与x 轴不相交. ②曲线关于直线μ=x 对称.③当μ=x 时曲线处于最高点,当x 向左、向右远离时,曲线不断地降低,呈现出“中间高、两边低”的钟形曲线. ④当x <μ时,曲线上升;当x >μ时,曲线下降,并且当曲线向左、向右两边无限延伸时,以x 轴为渐近线,向x 轴无限的靠近.⑤当μ一定时,曲线的形状由σ确定,σ越大,曲线越“矮胖”.表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.3. ⑴标准正态分布:如果随机变量ξ的概率函数为)(21)(22+∞-∞=- x ex x πϕ,则称ξ服从标准正态分布. 即ξ~)1,0(N 有)()(x P x ≤=ξϕ,)(1)(x x --=ϕϕ求出,而Pa <ξ≤b 的计算则是)()()(a b b a P ϕϕξ-=≤ .注意:当标准正态分布的)(x Φ的X 取0时,有5.0)0(=Φ,当)(x Φ的X 取大于0⑵正态分布与标准正态分布间的关系:若ξ~),(2σμN 则ξ的分布函数通 常用)(x F 表示,且有)σμx (F(x)x)P(ξ-==≤ϕ. 4.⑴“3σ”原则.假设检验是就正态总体而言的,进行假设检验可归结为如下三步:①提出统计假设,统计假设里的变量服从正态分布),(2σμN .②确定一次试验中的取值a 是否落入范围)3,3(σμσμ+-.③做出判断:如果)3,3(σμσμ+-∈a ,接受统计假设. 如果)3,3(σμσμ+-∉a ,由于这是小概率事件,就拒绝统计假设.⑵“3σ”原则的应用:若随机变量ξ服从正态分布),(2σμN 则 ξ落在)3,3(σμσμ+-内的概率为% 亦即落在)3,3(σμσμ+-之外的概率为%,此为小概率事件,如果此事件发生了,就说明此种产品不合格即ξ不服从正态分布;S 阴=0.5S a =0.5+S。
中职数学常见公式及结论
![中职数学常见公式及结论](https://img.taocdn.com/s3/m/a335cda79a89680203d8ce2f0066f5335a8167bd.png)
中职数学常见公式及结论一、基础公式:1.两点之间的距离公式:设两点A(x1,y1)和B(x2,y2),则AB的距离d为:d=√((x2-x1)²+(y2-y1)²)2.直线的斜率公式:设直线上两点A(x1,y1)和B(x2,y2),则直线的斜率m为:m=(y2-y1)/(x2-x1)3.一次函数的一般式:设一次函数为y = kx + b,则k为斜率,b为y轴截距。
4.二次函数的顶点坐标:设二次函数为y = ax² + bx + c,则顶点坐标为:x=-b/(2a)y=c-b²/(4a)5.定比数列的通项公式:设定比数列的首项为a₁,公比为q,则第n项aₙ为:aₙ=a₁*qⁿ⁻¹6.等差数列的求和公式:设等差数列的首项为a₁,公差为d,前n项和Sn为:Sn=(2a₁+(n-1)*d)*n/27.等比数列的求和公式:设等比数列的首项为a₁,公比为q,前n项和Sn为:Sn=a₁*(qⁿ-1)/(q-1)二、几何公式:1.三角形面积公式:设三角形的底边长为a,高为h,则三角形的面积S为:S=1/2*a*h2.三角形周长公式:设三角形的三条边长分别为a、b、c,则三角形的周长P为:P=a+b+c3.三角形海伦公式:设三角形的三条边长分别为a、b、c,则三角形的面积S为:S=√[s*(s-a)*(s-b)*(s-c)]其中,s=(a+b+c)/24.直角三角形勾股定理:设直角三角形的两直角边的长度分别为a、b,斜边的长度为c,则有:c²=a²+b²5.正弦定理:设三角形的三边分别为a、b、c,对应的角度为A、B、C,则有:a / sinA =b / sinB =c / sinC6.余弦定理:设三角形的三边分别为a、b、c,对应的角度为A、B、C,则有:c² = a² + b² - 2ab * cosC7.正切定理:设三角形的三边分别为a、b、c,对应的角度为A、B、C,则有:tanA = a / h三、统计与概率公式:1.平均数的计算公式:设n个数的平均数为A,总和为S,则有:A=S/n2.方差的计算公式:设n个数的方差为V,n个数的平均数为A,第i个数为xᵢ,则有:V=Σ(xᵢ-A)²/n其中,Σ表示求和3.标准差的计算公式:标准差为方差的平方根:σ=√V4.随机事件概率的计算公式:设随机事件A发生的次数为m,试验次数为n,则事件A发生的概率P(A)为:P(A)=m/n以上是中职数学中常见的公式及结论。
职高数学公式整理
![职高数学公式整理](https://img.taocdn.com/s3/m/09e01ae9f8c75fbfc67db206.png)
第一册数学公式一、集合实数集R 空集 ∅ 有理数集Q 自然数集N 正整数集*+Z Z 或 整数集 Z交集:{}B ∈A ∈=B ⋂A χχχ且 并集:{}B ∈A ∈=B ⋃A χχχ或补集:{}A ∉∈=A χχχ且U C U充分条件:条件p ⇒结论q必要条件:条件p ⇐结论q 充要条件:条件p ⇔结论q三、函数()x f y =函数奇偶性奇函数:设函数的定义域为数集D ,如果对于任意的,都有D x ∈-且)()(x f x f -=-,那么函数)(x f 叫做奇函数。
偶函数:设函数的定义域为数集D ,如果对于任意的,都有D x ∈-且)()(x f x f =-,那么函数)(x f 叫做偶函数。
不具有奇偶性的函数叫做非奇非偶函数。
四、指数函数与对数函数分式指数幂:n mnm a a= nmnm aa1=-实数指数幂:qp qpa a a +=⋅ ()pq qpa a = ()p p pb a ab ⋅=幂函数:)(R x ∈=αγα指数函数:)10(≠>=a a a x且γ 性质:1)函数的定义域为R ,域值为()∞+,0; 2)当0=x 时,函数值1=y ;3)当()()内是减函数。
时,函数在内是增函数,当时,函数在+∞∞-<<+∞∞->,10,1a a对数:b N N a a b=⇔=log性质:1)01log =a 2)1log =a a 3)0>N ,即零和负数没有对数 常用对数:N N lg log 10简记为自然对数:以无理数e (e=2.71928……)为底的对数,N N e ln log 简记为 积、商、幂的对数:)0,0(lg lg )lg(>>+=N M N M MN N M NMlg lg lg-= M n M n lg lg = 对数函数:x y a log = 性质:1)函数的定义域为()∞+,0,域值为R ; 2)当1=x 时,函数值0=y ;3)当()()内是减函数。
《职高数学》公式及定理表
![《职高数学》公式及定理表](https://img.taocdn.com/s3/m/2b2fa817a8114431b90dd835.png)
《数学》公式及定理表1、 乘法公式:(1)(a+b )²=a 2+2ab+b 2 (2)(a —b)²=a ²-2ab+b ² (3)(a+b)(a-b)=a ²-b ² (4)a ³+b ³=(a+b)(a ²-ab+b ²) (5)a ³-b ³=(a-b)(a ²+ab+b ²)2、 集合运算(1)集合的交:{}B ∈∧A ∈=B ⋂A x x x (公共部分) (2)集合的并:{}B ∈∨A ∈=B ⋃A x x x (全部)(3)集合的补:{}A ∉∧∈=A x U x x C u (属于U 但不属于A )3、 逻辑:若B ⇒A , 则 (1)A 是B 的充分条件;(2)B 是A 的必要条件。
若B ⇔A , 则 A 是B 的充分必要条件。
4、一元二次方程:02=++c bx ax(1)求根公式:a ac b b x 242-±-=()42≥-ac b(2)判别式:ac b 42-=∆当Δ>0时,方程有两个不相等的实根; 当Δ=0时,方程有两个相等的实根; 当Δ<0时;方程没有实数根。
(3)根与系数的关系:a b x x -=+21 ac x x =⋅21 5、二次函数:c bx ax y ++=2(1)顶点:⎪⎪⎭⎫ ⎝⎛--ab ac a b 44,22(2)对称轴:a b x 2-= (3)当0>a 时,ab ac y 442min-=;当0<a 时,a b ac y 442max -=6.绝对值不等式(0a >)(1)若x a <,则:a x a -<<; (2)x a >,则:x a <-或x a >7、奇偶性:(1)奇函数:()()x f x f -=- (图象关于原点对称) (2)偶函数:()()x f x f =- (图象关于y 轴对称) (3)性质:奇奇奇=±; ;非奇非偶偶奇=± 偶偶偶=± ;偶奇奇=÷⨯ ;奇偶奇=÷⨯ 偶偶偶=÷⨯8、指数公式:(1)()010a a =≠ (2)()10pp aa a-=≠ (3)nma = (4)mnm na a a+= (5)mm nm n n a a a a a-÷== (6)()n m mn a a =(7)()nnnab a b = (8)(b a )n =n nba (9)n a =(10)n a = (11)n a =9、指数与对数关系:(1)若b a N =,则log a b N = (2)若10b N =,则lg b N =10、对数公式:(1)b a b a =log ()b b =10lg 2 ()01log 3=a()01lg 4= ()N a Na=log5 ()N N =lg 106 11、对数法则:()()N M MN a a a log log log 1+= ()N M NMa a alog log log 2-= ()M n M a n a log log 3= (4)换底公式:aN N a lg lg log =12.导数(1)导数公式: ()0C '=; ()1n n x nx -'=; ()u v u v '''±=±; ()Cu Cu ''= (2)切线斜率:0x x k y ='= (3)切线:()00y y k x x -=-13、三角函数定义:若点()y x P , 222y x r +=()r y =αsin 1 ()r x=αcos 2 ()x y =αtan 3 ()y x =αcot 4 ()x r =αsec 5 ()yr =αcsc 614、三角恒等式:(1)22sin cos 1αα+= (2)221tan sec αα+=(3)221cot csc αα+=(4)sin tan cos aa α= (5)cos cot sin a a α= (6)1cot tan aα= (7)1csc sin a α=(8)1sec cos aα= 15、特殊角三角函数值:16、三角符号:17、周期公式:若()()ϕω+=x A y sin 1 ()ϕω+=x A y cos x b x a y ϖϖcos sin +=则周期:ωπ2=T若()()ϕω+=x A y tan 2 ()ϕω+=x A y cot 则周期:ωπ=T 18、三角函数基本公式:()()βαβαβαsin cos cos sin sin 1±=±()()βαβαβαsin sin cos cos cos 2 =±()()βαβαβαtan tan 1tan tan tan 3⋅±=±19、倍角公式:(1)sin 22sin cos ααα= (2)22tan tan 21(tan )aa α=-(3)2222cos 2cos sin 2cos 112sin ααααα=-=-=-20、半角公式(降幂公式):(1)21cos sin 22a α-=(2)21cos cos 22a α+=(3)sin 1cos tan 21cos sin aaααα-==+21.题型(1)x b x a y cos sin ±= 则:22max b a y +=,22min b a y +-=(2)形如:ααcos sin ± 方法:平方(3)求AB 的垂直平分线 方法:设动点();,y x P 则:PB PA =22.正弦定理:CcB b A a sin sin sin == 23.余弦定理:()A bc c b a cos 21222-+=()B ac c a b cos 22222-+=()C ab b a c cos 23222-+=24.函数定义域求法:(1)分式中的分母不能为0, (a1α≠0) (2)负数不能开偶次方,(a α≥0) (3)对数中的真数必须大于0, (log a N N>0)25.等差数列:(1)公差:1--=n n a a d (2)通项:()d n a a n ⋅-+=11 (3)前n 项的和:()21na a S n n ⋅+=或 ()d n n na S n 211-+=(4)等差中项:若a ,A ,b 成等差b a A +=⇔2(5)若m+n=p+q ,则:q p n ma a a a +=+26.等比数列:(1)公比:1-=n na a q (2)通项:11-=n n q a a (3)前n 项的和:()q q a S nn --=111 或 q q a a S n n --=11(4)等比中项:若a ,G ,b 成等比ab G =⇒2(5)若m+n=p+q ,则:q p n ma a a a ⋅=⋅27.向量:若点()()222111,,,y x P y x P 则:(1)向量:()121221,y y x x P P --=→(2)距离:()()21221221y y x x P P -+-=(3)中点公式:若点()00,y x M 是21P P 的中点则:2210x x x +=,2210y y y += 28、向量的坐标运算:若:()()2121,,,b b b a a a ==→→ 则:()()2211,1b a b a b a ++=+→→()()2211,2b a b a b a --=-→→ ()()21,3a a a λλλ=→()2211,cos 4b a b a b a b a b a +=〉〈⋅⋅=⋅→→→→→→(22215a a +=()26a =29.向量的关系(1)平行:→a ∥2211b a b a b a b =⇔=⇔→→→λ(2)垂直:→a ⊥002211=+⇔=⋅⇔→→→b a b a b a b(3)夹角, 则:=30 倾斜角和斜率(1)倾斜角α:直线向上的方向与x 轴的正方向的所成的最小正角.[)00180,0∈α(2)斜率k αtan =k 或 1212x x y y k --=或 由 y kx b =+ 得31.直线方程形式:(1) 点斜式:()00y y k x x -=-0 (2) 斜截式:y kx b =+ (3)截距式:1=+bya x (4) 两点式:121121x x x x y y y y --=-- (5)一般式:0=++C By Ax 32.两条直线关系若 L 1:y=k 1x+b 1 L 2:y=k 2x+b 2(1) 平行:若L 1∥L 2,则k 1=k 2,b 1≠b 2 (2) 垂直:若L 1⊥L 2,则k 1*k 2=-1 (3)夹角θ, 则:21211tan k k k k +-=θ33.距离(1)点()00,y x P 到直线:0=++C By Ax 距离:2200BA CBy Ax d +++=(2)两条平行线的距离:1122:0;:0l Ax By C l Ax By C ++=++=则:2221B A C C d +-=34.圆(1)标准方程:若圆心()b a C ,, 半径:r 则:()()222r b y a x =-+-(2)一般方程:022=++++F Ey Dx y x35.椭圆 ()222b a c -= ()b a > 其中定义:a PF PF 221=+其中:长轴:2a 短轴:2b 焦距:2c 离心率:ae =(e<1) 36.双曲线: ()222b a c+=其中定义:a PF PF 221=-其中:实轴:2a 虚轴:2b 焦距:2c 离心率:ace =(e>1) 37.抛物线: 离心率:e=1其中定义:PMPF =)0(>p38.求()x f y =的反函数的方法(1) 方法:将()x f y =化成()y g x = ; 将x 与y 互换,得反函数:()()x g x f y ==-1(2)反函数性质:图象关于x y =对称39.排列,组合,概率,统计(1)排列:()()()121mn A n n n n m =---+ 阶乘:n n A =n ﹗=n(n-1)(n-2) (1)(2)组合:()()11(1)21m n n n n m C m m --+=-⨯; m n m n n C C -=; 01n n n C C ==(3)概率:互斥事件;()()()P A B P A P B +=+ 对立事件:()()1P A P A =- 独立事件:()()()P AB P A P B =独立重复试验:()()1n kk kn nP k C p p -=-(4)统计:平均数:12nx x x x n +++=方差:()()()2222121n s x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦。
《职高数学》公式及定理表
![《职高数学》公式及定理表](https://img.taocdn.com/s3/m/b6fd1764d0d233d4b04e6953.png)
《数学》公式及定理表1、 乘法公式:(1)(a+b )²=a 2+2ab+b 2(2)(a —b)²=a ²-2ab+b ² (3)(a+b)(a-b)=a ²-b ² (4)a ³+b ³=(a+b)(a ²-ab+b ²) (5)a ³-b ³=(a-b)(a ²+ab+b ²)2、 集合运算(1)集合的交:{}B ∈∧A ∈=B ⋂A x x x (公共部分) (2)集合的并:{}B ∈∨A ∈=B ⋃A x x x (全部)(3)集合的补:{}A ∉∧∈=A x U x x C u (属于U 但不属于A )3、 逻辑:若B ⇒A , 则 (1)A 是B 的充分条件;(2)B 是A 的必要条件。
若B ⇔A , 则 A 是B 的充分必要条件。
4、一元二次方程:02=++c bx ax(1)求根公式:aacb b x 242-±-=()042≥-ac b(2)判别式:ac b 42-=∆当Δ>0时,方程有两个不相等的实根; 当Δ=0时,方程有两个相等的实根; 当Δ<0时;方程没有实数根。
(3)根与系数的关系:ab x x -=+21ac x x =⋅21 5、二次函数:c bx ax y ++=2(1)顶点:⎪⎪⎭⎫⎝⎛--a b ac a b 44,22(2)对称轴:abx 2-= (3)当0>a 时,a b ac y 442min-=;当0<a 时,ab ac y 442max-=6、奇偶性:(1)奇函数:()()x f x f -=- (图象关于原点对称) (2)偶函数:()()x f x f =- (图象关于y 轴对称) (3)性质:奇奇奇=±; ;非奇非偶偶奇=± 偶偶偶=±;偶奇奇=÷⨯ ;奇偶奇=÷⨯偶偶偶=÷⨯7、指数公式:(1)a 0=1 (a ≠0) (2)a P -=Pa 1(a ≠0)(3)a mn=m n a (4)a m a n =a n m + (5)a m÷an=nm aa =a n m - (6)(a m )n =a mn(7)(ab )n=a nb n(8)(ba)n=n n ba(9)(a )2=a (10)2a =|a|8、指数与对数关系:(1)若a b =N ,则b=㏒a N (2)若10b =N ,则b=lgN9、对数公式:(1)b a b a =log ()b b =10lg 2 ()01log 3=a()01lg 4= ()N a Na=log5 ()N N =lg 10610、对数法则:()()N M MN a a a log log log 1+= ()N M NMa a alog log log 2-=()M n M a n a log log 3= (4)换底公式:aN N a lg lg log =11、三角函数定义: 若点()y x P , 222y x r +=()ry =αsin 1 ()rx =αcos 2 ()xy =αtan 3()y x =αcot 4 ()x r=αsec 5 ()yr =αcsc 612、三角恒等式:(1)(Sin α)²+(Cos α)²=1(2)1+(tan α)²=(sec α)²(3)1+(cot α)²=(csc α)² (4)a acos sin =tana(5)aa sin cos =cota (6)cota=a tan 1 (7)csca=asin 1 (8)seca=acos 113、特殊角三角函数值:14、三角符号:15、周期公式:若()()ϕω+=x A y sin 1 ()ϕω+=x A y cosx b x a y ϖϖcos sin +=则周期:ωπ2=T若()()ϕω+=x A y tan 2 ()ϕω+=x A y cot 则周期:ωπ=T16、三角函数基本公式:()()βαβαβαsin cos cos sin sin 1±=±()()βαβαβαsin sin cos cos cos 2 =±()()βαβαβαtan tan 1tan tan tan 3⋅±=±17、倍角公式:(1)α2sin =2sina*cosa (2)tan2a=2)(tan 1tan 2a a-(3)cos2a=(cosa )2--(sina )2=2(cosa )2--1=1—2(sina)218、半角公式(降幂公式):(1)(sin 2a)2=2cos 1a - (2)(cos 2a )2=2cos 1a+ (3)tan 2a =a a sin cos 1-=a acos 1sin +19.题型(1)x b x a y cos sin ±= 则:22max b a y += , 22min b a y +-=(2)形如:ααcos sin ± 方法:平方(3)求AB 的垂直平分线 方法:设动点();,y x P 则:PB PA =20.正弦定理:CcB b A a sin sin sin ==21.余弦定理:()A bc c b a cos 21222-+= ()B ac c a b cos 22222-+= ()C ab b a c cos 23222-+=22.函数定义域求法:(1)分式中的分母不能为0, (a1α≠0) (2)负数不能开偶次方,(a α≥0) (3)对数中的真数必须大于0, (㏒N N>0)23.等差数列:(1)公差:1--=n n a a d (2)通项:()d n a a n ⋅-+=11 (3)前n 项的和:()21na a S n n ⋅+=或()d n n na S n 211-+= (4)等差中项:若a ,A ,b 成等差b a A +=⇔2 (5)若m+n=p+q ,则:q p n m a a a a +=+24.等比数列:(1)公比:1-=n n a a q (2)通项:11-=n n q a a(3)前n项的和:()qq a S nn --=111 或 qqa a Sn n--=11 (4)等比中项:若a ,G ,b 成等比ab G =⇒2(5)若m+n=p+q ,则:q p n m a a a a ⋅=⋅25.向量:若点()()222111,,,y x P y x P 则:(1)向量:()121221,y y x x P P --=→(2)距离:()()21221221y y x x P P -+-=(3)中点公式:若点()00,y x M 是21P P 的中点则:2210x x x +=,2210y y y +=26、向量的坐标运算: 若:()()2121,,,b b b a a a ==→→则:()()2211,1b a b a b a ++=+→→ ()()2211,2b a b a b a --=-→→ ()()21,3a a a λλλ=→()2211,cos 4b a b a b a b a b a +=〉〈⋅⋅=⋅→→→→→→(22215aa +=()26a=27.向量的关系(1)平行:→a ∥2211b a b a b a b =⇔=⇔→→→λ(2)垂直:→a ⊥002211=+⇔=⋅⇔→→→b a b a b a b(3)夹角,则:=28 (1)倾斜角α:直线向上的方向与x 轴的正方向的所成的最小正角.[)00180,0∈α(2)斜率kαtan =k 或 1212x x y y k --=或 由 y=kx+b 得29.直线方程形式:(1) 点斜式:y y -0=k (x--x 0) (2) 斜截式:y=kx+b (3) 两点式:121121x x x x y y y y --=-- (4)截距式:1=+by a x(5)一般式:0=++C By Ax30.两条直线关系若 L 1:y=k 1x+b 1 L 2:y=k 2x+b 2 (1) 平行:若L 1∥L 2,则k 1=k 2,b 1≠b 2 (2) 垂直:若L 1⊥L 2,则k 1*k 2=-1 (3)夹角θ, 则:21211tan k k k k +-=θ31.距离(1)点()00,y x P 到直线:0=++C By Ax 距离:2200BA CBy Ax d +++=(2)两条平行线的距离:0:,0:2211=++=++C By Ax l C By Ax l则: 2221BA C C d +-=32.圆(1)标准方程:若圆心()b a C ,, 半径:r则:()()222r b y a x =-+-(2)一般方程:022=++++F Ey Dx y x33.椭圆 ()222b a c -= ()b a > 其中定义:a PF PF 221=+其中:长轴:2a 短轴:2b 焦距:2c 离心率:ae = (e<1)34.双曲线: ()222b a c +=其中定义:a PF PF 221=-其中:实轴:2a 虚轴:2b 焦距:2c 离心率:ae = (e>1)35.抛物线: 离心率:e=1 其中定义:PM PF =)0(>p36.求()x f y =的反函数的方法(1) 方法:将()x f y =化成()y g x = ;将x 与y 互换,得反函数:()()x g x f y ==-1 (2)反函数性质:图象关于x y =对称。
中职职高数学全部公式概念
![中职职高数学全部公式概念](https://img.taocdn.com/s3/m/4add2701e009581b6ad9eb83.png)
高职数学章节公式汇总第一章 集合1.子集的记号:)(意义:B x A x B A ∈⇒∈⊆ 交集][B x A x B A ∈∈⇒⋂且)(并集][)(B x A x B A ∈∈⇒⋃或 补集][)(U x A x CuA ∈∉⇒且2.集合的相关性质及运算:若令字母A 为任一集合,字母B 为任一非空集合,则: ∅A ⊆ A A ⊆ ∅⊄B21222--nnn的个数:任一集合的非空真子集数:任一集合的真子集的个:任一集合的子集的个数3.集合的表示方法:列举法、描述法和图象法(要会表示)4.特殊集合符号:自然数集N 正整数集*N 整数集Z 有理数集Q 实数集R5.充分、必要、充要条件:(1)若B A ⇒,则A 是B 的充分条件; (2)若B A ⇐,则A 是B 的必要条件; (3)若B A ⇔, 则A 是B 的充要条件。
第二章 不等式1.绝对值不等式:cb axc c c b ax c b ax c b ax c c b ax <<><>或<>,>+-⇒++-+⇒+)0(,||;)0(||2.分式不等式:0))((0>>d cx b ax d cx bax ++⇔++00))((0≠+≥++⇔≥++d cx d cx b ax dcx bax 且 3.均值定理:定义若a >0,b >0,则ab ba ≥+2,当且仅当b a =时等号成立。
4.一元二次不等式02>c bx ax++或)0(0,2≠++a c bx ax <与一元二次方程)0(0,2≠=++a c bx ax 的关系:注:对一元二次不等式先检查二次项系数a ,若0<a ,先两边乘以“-1”,化二次项系数大于0.4.不等式的解集区间与集合的互换:R b x x b a x x a a a x x b b x x b a b x a x =+∞-∞≤=-∞>=+∞+∞=≥-∞=<=≤<),(6};|{],(5};|{),(4),[}|{3);,(}|{2];,(}|{1)()()()()()(Rb x x b a x x a a a x x b b x x b a b x a x =+∞-∞≤=-∞>=+∞+∞=≥-∞=<=≤<),(6};|{],(5};|{),(4),[}|{3);,(}|{2];,(}|{1)()()()()()(第三章 函数1.求函数定义域的要点:(1)分式的分母不为0;(2)偶次根式的被开方数大于或等于0; (3)对数的真数大于0;(4)零指数的底数不为0.2.函数的单调性:(会找增区间和减区间) (1)增区间:在函数定义域内的区间),(b a 内的任意x ,若xx 21<,则)()(21x x f f <(即x 增大,)(x f 也增大)。
中等职业高中数学公式总结
![中等职业高中数学公式总结](https://img.taocdn.com/s3/m/031ca0225727a5e9856a6168.png)
x a x b 0 的解集为 x b 或 x a
如: x 2 x 3 0 x 3 或 x 2 ,
,
x a x b 0 的解集为 a x b
( x 2)( x 3) 0 2 x 3
(1)若2m p q, 则2a m a p a q ;
(3) S n , S 2 n S n , S 3n S 2 n , 成等差数列.
⑤、等差中项:若 a, A, b 成等差数列,则称 A 是 a,b 的等差中项。 A
ab 2
6、等差中项公式: am an 2a m n .
5
个数列称为等差数列;常数称为该数列的公差,记作:d ②、等差数列的通项公式 a n
a1 (n 1)d 推广形式 an am (n m)d
n ( a1 a n ) n ( n 1) na1 d 2 2
③、等差数列的前 n 项和公式 S n
④、等差数列的性质:在等差数列 a n 中 (2)若m n p q, 则a m a n a p a q ;
7、在三角形 ABC 中, sin A : sin B : sin C a : b : c 8、 a sin x b cos x 最小正周期: T 最大值为 a 2 b 2 , 最小值为 a 2 b 2 , a 2 b 2 sin(x ) ,
2
9、等差数列的性质: a m a n ( m n )d ,如 a5 a 2 3d 10、和角差角公式: sin cos cos sin sin( )
如: y 5 x 4 x 3 图像的研究:
职高数学公式总结大全
![职高数学公式总结大全](https://img.taocdn.com/s3/m/b4e9008bb04e852458fb770bf78a6529647d35cb.png)
- 前n项和公式:S_n=(n(a_1 + a_n))/(2)=na_1+(n(n - 1))/(2)d
2. 等比数列。
- 通项公式:a_n=a_1q^n - 1,其中a_1为首项,q为公比(q≠0)。
- 前n项和公式:当q = 1时,S_n=na_1;当q≠1时,S_n=(a_1(1 - q^n))/(1 - q)
五、平面向量。
1. 向量的加法与减法。
- 设→a=(x_1,y_1),→b=(x_2,y_2)
-→a+→b=(x_1 + x_2,y_1 + y_2)
-→a-→b=(x_1 - x_2,y_1 - y_2)
2. 向量的数量积。
-→a·→b=→a×→b×cosθ=x_1x_2 + y_1y_2,其中θ为→a与→b的夹角。
2. 二次函数。
- 表达式:y=ax^2 + bx + c(a≠0)
- 对称轴:x = -(b)/(2a)
- 顶点坐标:(-(b)/(2a),(4ac - b^2)/(4a))
3. 反比例函数。
- 表达式:y=(k)/(x)(k≠0)
三、三角函数。
1. 锐角三角函数。
- 在直角三角形ABC(∠ C = 90^∘)中。
七、立体几何初步。
1. 柱体、锥体、台体的体积公式。
- 柱体(棱柱、圆柱):V = Sh,其中S为底面积,h为高。
- 锥体(棱锥、圆锥):V=(1)/(3)Sh
- 台体(棱台、圆台):V=(1)/(3)h(S+√(SS')+S'),其中h为高,S、S'分别为上下底面面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中职数学常用公式及常用结论大全1. 常见数集:N---自然数集 *N ---正整数集 Z---整数集 Q---有理数集 R---实数集 2、充要条件:(1)充分条件:若p q ⇒,则p 是q 充分条件. (2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 3、一元二次方程20(0)ax bx c a ++=≠(1)求根公式:2b x a-±=(2)根与系数的关系:12b x x a +=-,12c x x a⋅= 4、不等式的基本性质:(1)若a b > ,则a c b c ±>±; (2)若a b > ,且0c > ,则ac bc > (3)若a b > ,且0c < ,则ac bc < 5、一元一次不等式(1)0(0)bax b a ax b x a ->>⇒>⇒>(2)0(0)bax b a ax b x a-<>⇒<⇒<(3)注意在解一元一次不等式组时,最后一定要求两个不等式解集的交集才是整个一元一次不等式组的解集。
6、一元二次不等式(1)20(0)ax bx c a ++>>的解集:{}12x x x x x <>或1x 、2x 是对应方程的两个根且1x <2x (2)20(0)ax bx c a ++<>的解集:{}12x x x x <<1x 、2x是对应方程的两个根且1x <2x7、含绝对值的不等式 (1)()(0),x a a a a <>⇒-(2)()()(0),,x a a a a >>⇒-∞-⋃+∞(3)(0)ax b c c ax b c ax b c +>>⇒+<-+>⇒或(4)(0)ax b c c c ax b c +<>⇒-<+<⇒8、定义域口诀:函数定义域好求,分母不能等于零;偶次方根非负,零和负数无对数;零的零次方无意义,正切函数角不直;其余函数实数集,多种情况求交集。
9、二次函数的图像与性质(1)解析式:一般式:2y ax bx c=++顶点式:22424b ac by a xa a-⎛⎫=++⎪⎝⎭交点式:()()12y a x x x x=--(2)图像与性质10、分数指数幂(1)mnn maa=(0,,a m n N*>∈,且1n>).(2)1mnmnaa-=(0,,a m n N*>∈,且1n>).11.有理指数幂的运算性质(1)(0,,)r s r sa a a a r s Q+⋅=>∈.(2)()(0,,)r s rsa a a r s Q=>∈.(3)()(0,0,)r r rab a b a b r Q=>>∈.12、常用指数值:()010a a=≠; ()11a aa-=≠13、指数式与对数式的互化式log baN b a N=⇔=(0,1,0)a a N>≠>. 14.对数的四则运算法则若a>0,a≠1,M>0,N>0,则(1)log()log loga a aMN M N=+;(2) log log loga a aMM NN=-;(3)log log()na aM n M n R=∈.15、常用对数值:log10a=;log1aa=16、指数函数与对数函数的图像与性质(01)xy a a a=>≠且log(01)ay x a a=>≠且定义域(),-∞+∞()0,+∞值域()0,+∞(),-∞+∞单调性增函数减函数增函数减函数17、等差数列(1)等差数列定义:1n na a d--==常数(2)等差数列的通项公式1(1)na a n d=+-;(3)若,,a b c成等差数列⇔b是,a c的等差中项2b a c⇔=+(4)其前n项和公式为1()2nnn a as+=1(1)2n nna d-=+.18、等比数列(1)等比数列定义:1nnaqa-==常数(2)等比数列的通项公式1*11()n nnaa a q q n Nq-==⋅∈;(3)若,,a b c成等比数列⇔b是,a c的等比中项2b ac⇒=(4)其前n项的和公式为11(1),11,1nna qqs qna q⎧-≠⎪=-⎨⎪=⎩19、三角函数定义已知角α终边上一点,)P x y (,设OP r ==则:sin ,cos ,tan y x yr r xααα===。
20、三角函数值在各象限的符号口诀:一全正;二正弦正;三正切正;四余弦正。
21、诱导公式:口诀:奇变偶不变,符号看象限。
22、同角三角函数的基本关系式22sin cos 1θθ+=;tan θ=θθcos sin 。
23、和角与差角公式sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±=; tan tan tan()1tan tan αβαβαβ±±=。
(子同母异)24、二倍角公式sin 2sin cos ααα=;2222cos 2cos sin 2cos 112sin ααααα=-=-=-;22tan tan 21tan ααα=-. 25、sin()y A x B ωϕ=++的周期与最值(A,ω,ϕ为常数,且A>0)(1)周期:2T πω=(2)最值:()1sin 1x ωϕ-≤+≤()sin A A x A ωϕ-≤+≤()sin A B A x B A B ωϕ-+≤++≤+(3)sin cos )y a x b x x ωωωϕ=++ 26、正弦定理 2sin sin sin a b cR A B C===. 27、余弦定理(1)2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.(2)推论:222cos 2b c a A bc +-=;222cos 2a c b B ac +-=;222cos 2a b c C ab+-=28、三角形面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.29、三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+。
30、向量的加减运算(1)AB BC AC +=(首尾相连) (2)AB AC CB -=(同一起点)31、实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 32、向量的数量积的运算律:(1) a ·b= b ·a (交换律); (2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 33、a 与b 的数量积(或内积)a ·b =|a ||b |cos θ.cos θ⋅=a ba b34.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--. (4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +. 35、两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).36、平面两点间的距离公式,A B d =||AB AB AB =⋅=11(,)x y ,B 22(,)x y ).37、向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a ||b ⇔b =λa 12210x y x y ⇔-=.a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 38、线段AB 的中点,长度公式11221212(,),(,)22A x yB x y M x y x x y y x y ==++==中中中中若,中点(,)则 ,39、斜率公式2121tan y y k x x α-==-(111(,)P x y 、222(,)P x y ).40、直线的三种方程(1)点斜式11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式y kx b =+(b 为直线l 在y 轴上的截距). (3)一般式0Ax By C ++=(其中A 、B 不同时为0). 41、两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ⇔=≠;②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①1111212221221222||0A C -A C =0A B C l l A B A B A B C ⇔=≠⇔-=且; ②1212120l l A A B B ⊥⇔+=; 42.点到直线的距离d =点00(,)P x y ,直线l :0Ax By C ++=).注意直线一定要是一般式。
43. 圆的两种方程(1)圆的标准方程222()()x a y b r -+-=. 圆心坐标:(a,b ) 半径:r(2)圆的一般方程220x y Dx Ey F ++++=(224D E F +->0).圆心坐标:D E ,22⎛⎫-- ⎪⎝⎭ 半径:224D E Fr +-=44、直线与圆的位置关系设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r ,圆心)2,2(ED --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点:(1)当r d >时,直线l 与圆C 相离; (2)当r d =时,直线l 与圆C 相切; (3)当r d <时,直线l 与圆C 相交; 45、二次曲线(椭圆双曲线抛物线)椭圆看大小a 最大,双曲线看正负c 最大。