初中数学分类讨论问题专题
初中数学专题“分类讨论”专题练习(含答案)
“分类讨论”专题练习1.已知AB 是圆的直径,AC 是弦,AB =2,AC =2,弦AD =1,则∠CAD = .2. 若(x 2-x -1)x +2=1,则x =___________.3. 已知等腰三角形一腰上的中线将它的周长分为9和12两部分,则腰长为,底边长为_______.4.若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b(a>b),则此圆的半径为( ) A.2a b+ B.2a b- C.2a b +或2a b- D. a+b 或a-b5.同一平面上的四个点,过每两点画一直线,则直线的条数是( ) A.1 B.4 C.6 D.1或4或66. 若||3,||2,,( )a b a b a b ==>+=且则A .5或-1B .-5或1C .5或1D .-5或-1 7.已知抛物线y =ax 2+bx +c 经过点(1,2).(1)若a =1,抛物线顶点为A ,它与x 轴交于两点B 、C ,且△ABC 为等边三角形,求b 的值.(2)若abc =4,且a ≥b ≥c ,求|a |+|b |+|c |的最小值.8.长宽都为整数的矩形,可以分成边长都为整数的小正方形。
例如一个边长2⨯4的矩形:可以分成三种情况: (1)(2)一个长宽为3⨯6的矩形,可以怎样分成小正方形,请画出你的不同分法。
9.已知(1)A m -,与(2B m +,是反比例函数ky x=图象上的两个点. (1)求k 的值;(2)若点(10)C -,,则在反比例函数ky x=图象上是否存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形?若存在,求出点D 的坐标;若不存在,请说明理由.分成两个正方形,面积分别为4,4分成8个正方形,面积每个都是1分成5个正方形,1个面积为4,4个面积是110.如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A C ,在坐标轴上,60cm OA =,80cm OC =.动点P 从点O 出发,以5cm/s 的速度沿x 轴匀速向点C 运动,到达点C 即停止.设点P 运动的时间为s t . (1)过点P 作对角线OB 的垂线,垂足为点T .求PT 的长y 与时间t 的函数关系式,并写出自变量t 的取值范围;(2)在点P 运动过程中,当点O 关于直线AP 的对称点O '恰好落在对角线OB 上时,求此时直线AP 的函数解析式; (3)探索:以A P T ,,三点为顶点的APT △的面积能否达到矩形OABC 面积的14?请说明理由.答案:1. 15°或105°2. 2、-1、0、-23. 腰长6底边9或腰长8底边54.C5.D6.C7. 解:⑴由题意,a +b +c =2, ∵a =1,∴b +c =1 抛物线顶点为A (-b 2,c -b 24)设B (x 1,0),C (x 2,0),∵x 1+x 2=-b ,x 1x 2=c ,△=b 2-4c >0 ∴|BC|=| x 1-x 2|=| x 1-x 2|2=(x 1+x 2)2-4 x 1x 2=b 2-4c ∵△ABC 为等边三角形,∴b 24 -c = 32b 2-4c即b 2-4c =23·b 2-4c ,∵b 2-4c >0,∴b 2-4c =2 3∵c =1-b , ∴b 2+4b -16=0, b =-2±2 5 所求b 值为-2±2 5⑵∵a ≥b ≥c ,若a <0,则b <0,c <0,a +b +c <0,与a +b +c =2矛盾. ∴a >0. ∵b +c =2-a ,bc =4a∴b 、c 是一元二次方程x 2-(2-a )x +4a =0的两实根.∴△=(2-a )2-4×4a≥0,∴a 3-4a 2+4a -16≥0, 即(a 2+4)(a -4)≥0,故a ≥4. ∵abc >0,∴a 、b 、c 为全大于0或一正二负.①若a 、b 、c 均大于0,∵a ≥4,与a +b +c =2矛盾; ②若a 、b 、c 为一正二负,则a >0,b <0,c <0, 则|a |+|b |+|c |=a -b -c =a -(2-a )=2a -2, ∵ a ≥4,故2a -2≥6当a =4,b =c =-1时,满足题设条件且使不等式等号成立. 故|a |+|b |+|c |的最小值为6. 8.分7种情况画图9.解:(1)由()332)1(+⋅=⋅-m m ,得m =-,因此k =(2)如图1,作BE x ⊥轴,E 为垂足,则3CE =,BE =,BC =因此30BCE =∠.由于点C 与点A 的横坐标相同,因此CA x ⊥轴,从而120ACB =∠. 当AC 为底时,由于过点B 且平行于AC 的直线与双曲线只有一个公共点B ,故不符题意.当BC 为底时,过点A 作BC 的平行线,交双曲线于点D , 过点A D ,分别作x 轴,y 轴的平行线,交于点F .由于30DAF =∠,设11(0)DF m m =>,则1AF ,12AD m =,由点(1A --,,得点11(1)D m --,.因此()()32323111=+-+-m m ,解之得1m =10m =舍去),因此点6D ⎛ ⎝⎭.此时的长度不等,故四边形ADBC 是梯形.如图2,当AB 为底时,过点C 作AB 的平行线,与双曲线在第一象限内的交点为D . 由于AC BC =,因此30CAB =∠,从而150ACD =∠.作DH x ⊥轴,H 为垂足, 则60DCH =∠,设22(0)CH mm =>,则2DH =,由点(10)C -,,得点22(1)D m -+, 因此()323122=⋅+-m m .解之得22m =(21m =-舍去),因此点(1D . 此时4CD =,与AB 的长度不相等,故四边形ABDC 是梯形.如图3,当过点C 作AB 同理可得,点(2D --,,四边形ABCD 是梯形. 综上所述,函数y x=图象上存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形,点D 的坐标为:6D ⎛ ⎝⎭或(1D 或(2D --,. 图1图2 图310.解:(1)在矩形OABC 中,60OA =,80OC =,100OB AC ∴===PT OB ⊥,Rt Rt OPT OBC ∴△∽△. PT OP BC OB ∴=,即560100PT t=,3y PT t ∴== 当点P 运动到C 点时即停止运动,此时t 的最大值为80165=.所以,t 的取值范围是016t ≤≤.(2)当O 点关于直线AP 的对称点O '恰好在对角线OB 上时,A T P ,,三点应在一条直线上(如答图2).AP OB ∴⊥,12∠=∠. Rt Rt AOP OCB ∴△∽△,OP AOCB OC∴=. 45OP ∴=.∴点P 的坐标为(450),设直线AP 的函数解析式为y kx b =+.将点(060)A ,和点(450)P ,代入解析式,得60045.a b k b =+⎧⎨=+⎩,解这个方程组,得4360.k b ⎧=-⎪⎨⎪=⎩, ∴此时直线AP 的函数解析式是4603y x =-+.(3)由(2)知,当4595t ==时,A T P ,,三点在一条直线上,此时点A T P ,, 不构成三角形.故分两种情况:(i )当09t <<时,点T 位于AOP △的内部(如答图3).过A 点作AE OB ⊥,垂足为点E ,由AO AB OB AE =可得48AE =.APT AOP ATO OTP S S S S ∴=--△△△△211160544843654222t t t t t t =⨯⨯-⨯⨯-⨯⨯=-+. 若14APT OABC S S =△矩形,则应有26541200t t -+=,即292000t t -+=.此时,2(9)412000--⨯⨯<,所以该方程无实数根.所以,当09t <<时,以A P T ,,为顶点的APT △的面积不能达到矩形OABC 面积的14.(答图2)(答图1)(ii )当916t <≤时,点T 位于AOP △的外部.(如答图4)此时2654APT ATO OTP AOP S S S S t t =+-=-△△△△.若14APT OABC S S =△矩形,则应有26541200t t -=,即292000t t --=.解这个方程,得192t +=,2902t -=<(舍去).由于288162525>=,991722t +∴=>=.而此时916t <≤,所以92t +=也不符合题意,故舍去. 所以,当916t <≤时,以A P T ,,为顶点的APT △的面积也不能达到矩形OABC 面积的14. 综上所述,以A P T ,,为顶点的APT △的面积不能达到矩形OABC 面积的14.。
例析初一数学中的分类讨论问题
例析初一数学中的分类讨论问题
分类讨论作为一种教学方式,是初中阶段数学教学中最重要的教学形式之一,其教学内容涉及几何、基本运算、有理数与无理数等。
分类讨论能让学生们深入地探究数学知识,例如,以几何中关于根据两个点之间的距离来推断出一条直线上的其他点,它其实是在分类讨论中被提出并进行更深入分析来加深学习的一个重点问题。
在初一数学中,分类讨论是学生将学习到的数学知识联系起来、思考回答问题的一种非常重要的教学方式。
通过分类讨论的方式,学生们可以将之前学习过的内容,按照类别联系起来,例如:初一数学中,物体绕着图形旋转时发生的变化情况,这种现象其实是多类问题的总称,包括椭圆、圆形、抛物线等,分类讨论是通过将其进行分类分析,再根据每类的特点来提出正确的结论的一个重点。
另外,也可以将初一数学学习的数与比联系起来,即“分式”,这一概念也是分类讨论的重点,学生们可以将概念分为一元分式、二元分式以及分式运算等几大类,根据不同类别的情况,来推断出正确的结果。
因此,分类讨论是学习初一数学最重要的教学设计之一,它涉及到从数学概念到数学应用的多个方面,有利于学生提升数学素养以及科学思维能力。
同时,分类讨论还可以激发学生们学习数学的兴趣,增强学生们对数学学科的钟爱之情,从而拥有一个深刻而系统的数学知识体系。
初中数学专题复习分类讨论问题(含答案)
初中数学专题复习(1) 分类讨论问题【简要分析】在中学数学的概念、定理、法则、公式等基础知识中,有不少是分类给出的,遇到涉及这些知识的问题,就可能需要分类讨论。
另外,有些数学问题在解答中,可能条件或结论不唯一确定,有几种可能性,也需要从问题的实际出发进行分类讨论。
把被研究的对象分成若干种情况,然后对各种情况逐一进行讨论,最终得以解决整个问题,这种解决问题的方法称为分类讨论思想方法。
它体现了化整为零与积零为整的思想,是近年来中考重点考查的思想方法。
分类讨论思想方法也是一种重要的解题策略。
分类思想方法实质上是按照数学对象的共同性和差异性,将其区分为不同的种类的思想方法,其作用是克服思维的片面性,防止漏解.要注意,在分类时,必须按同一标准分类,做到不重不漏.【典型考题例析】例1:已知一次函数y x =-+3333与x 轴、y 轴的交点分别为A 、B ,试在x 轴上找一点P ,使△PAB 为等腰三角形。
分析:本题中△PAB 由于P 点位置不确定而没有确定,而且等腰三角形中哪两条是腰也没有确定。
△PAB 是等腰三角形有几种可能?我们可以按腰的可能情况加以分类:(1)PA=PB ;(2)PA=AB ;(3)PB=AB 。
先可以求出B 点坐标()033,,A 点坐标(9,0)。
设P 点坐标为()x ,0,利用两点间距离公式可对三种分类情况分别列出方程,求出P 点坐标有四解,分别为()()()()-+-903096309630,、,、,、,。
(不适合条件的解已舍去)点拨:解答本题极易漏解。
解答此类问题要分析清楚符合条件的图形的各种可能位置,紧扣条件,分类画出各种符合条件的图形。
另外,由点的运动变化也会引起分类讨论。
由于运动引起的符合条件的点有不同位置,从而需对不同位置分别求其结果,否则漏解。
例2:正方形ABCD 的边长为10cm ,一动点P 从点A 出发,以2cm/秒的速度沿正方形的边逆时针匀速运动。
如图,回到A 点停止,求点P 运动t 秒时,P ,D 两点间的距离。
初中数学分类讨论专题
初中数学分类讨论专题
1. 哎呀呀,初中数学的分类讨论可太有意思啦!就说解不等式的时候吧,比如x²-5x+6>0,我们是不是得考虑各种情况来求解呀!这就像走迷宫,
得找对每条路才行呢!
2. 嘿,你知道吗?图形的分类讨论也超有趣!像判断等腰三角形的时候,到底是哪两条边相等呢?这可得仔细琢磨呀,就如同在玩找不同的游戏一样!
3. 哇塞,分类讨论在函数问题中也常常出现呢!假如已知一个函数图像,要确定解析式,那可得把不同情况都考虑进去呀,这难道不是像拼凑一幅神秘的拼图吗?
4. 哟呵,在几何证明中,分类讨论也是必不可少的!比如点的位置不确定时,那证明的思路可能完全不同哦,这就好比在选择不同的冒险路线!
5. 嘿呀,计算概率的时候也得分类讨论呢!比如说扔骰子出现不同情况的概率,是不是得一种一种算呀,这多像在收集各种宝贝呀!
6. 哎呀,方程有时候也需要分类讨论呢!比如含绝对值的方程,得根据绝对值里面的正负情况来分别求解,这就像在解开一团乱麻!
7. 哇哦,角度的分类讨论可不能忽视呀!像三角形中锐角、直角、钝角的情况,都得考虑到呢,这多像在整理一个多彩的调色盘!
8. 嘿,动点问题更是分类讨论的典型啦!那个点动起来,情况可就复杂啦,就像在看一场刺激的赛车比赛!
9. 总之呀,初中数学的分类讨论专题真的超级重要呢!它能让我们的思维变得更加灵活,解题更加得心应手!就像是给我们的大脑加上了一对翅膀,能在数学的天空中自由翱翔!。
分类讨论初一例题
分类讨论初一例题摘要:一、引言二、初一数学分类讨论的重要性三、初一数学分类讨论例题解析1.几何图形分类讨论2.代数分类讨论3.概率分类讨论四、总结与建议正文:【引言】在初中数学的学习过程中,分类讨论是一种基本且重要的思维方法。
本文将针对初一数学中的分类讨论进行例题解析,帮助大家更好地理解和掌握这一方法。
【初一数学分类讨论的重要性】分类讨论是数学中一种常用的思考问题的方法,通过对问题进行合理的分类,可以将复杂的问题转化为简单的子问题,从而更容易找到解决问题的途径。
在初中数学的学习中,分类讨论涉及到几何、代数、概率等多个方面,因此掌握好这一方法对于初一学生来说至关重要。
【初一数学分类讨论例题解析】【几何图形分类讨论】例题1:一个正方体长宽高分别为a、b、c,求这个正方体的对角线长度。
解析:根据正方体的性质,可以将其分为三个相互垂直的面,分别计算对角线长度再相加。
例题2:一个长方体长宽高分别为a、b、c,求这个长方体的对角线长度。
解析:根据长方体的性质,可以将其分为两个相互垂直的面,分别计算对角线长度再相加。
【代数分类讨论】例题3:已知一元二次方程ax^2 + bx + c = 0(a≠0)的两根为x1和x2,求a、b、c的关系。
解析:根据一元二次方程的求根公式,可以得到x1和x2的表达式,进一步推导可得到a、b、c的关系。
例题4:已知一元二次方程ax^2 + bx + c = 0(a≠0)的两根为x1和x2,求a、b、c与x1、x2的关系。
解析:根据一元二次方程的求根公式,可以得到x1和x2的表达式,进一步推导可得到a、b、c与x1、x2的关系。
【概率分类讨论】例题5:一个袋子里有5个红球和3个绿球,从中任意取出一个球,求取出红球的概率。
解析:根据概率的定义,红球的概率等于红球的个数除以总球数。
【总结与建议】通过以上例题解析,我们可以看出分类讨论在初一数学中的重要性。
因此,初一学生在学习过程中应注重培养分类讨论的思维习惯,这将有助于提高解题能力和数学素养。
例谈分类讨论思想在解初中数学题中的应用
例谈分类讨论思想在解初中数学题中的应用1. 引言1.1 概述数统计等。
【概述】分类讨论思想是指在解决问题时,将问题按照不同的特征或条件进行分类,然后分别讨论每个类别下的情况,最终得出综合结论的思维方法。
在初中数学学习中,分类讨论思想被广泛运用于解决各种类型的数学问题,尤其在解决复杂的问题和提高问题解题能力方面具有重要意义。
通过分类讨论思想,学生可以将复杂的问题进行分解,逐步解决,提高问题解决的效率和准确性,培养逻辑思维和分析问题的能力。
本文将重点讨论分类讨论思想在解初中数学题中的应用,分析其基本概念、应用案例、具体技巧,比较与其他解题方法的优劣以及在数学学习中的重要性。
通过本文的探讨,旨在深入探析分类讨论思想在数学学习中的实际意义,并探讨未来在该领域的研究方向。
1.2 研究背景在传统的教学模式中,学生往往是被passively 授予知识,缺乏对知识的主动探索和应用能力。
而分类讨论思想的引入可以打破这种被动学习的模式,鼓励学生思考问题的本质和解决方法,培养其独立思考和创新能力。
通过对不同情况的分类讨论和比较,学生可以更深入地理解问题,掌握解题的基本思路和方法,提高解题效率和准确度。
研究分类讨论思想在初中数学题中的应用具有积极意义,可以有效促进学生数学思维的发展,提高其解决实际问题的能力。
也为教师提供了一种新的教学方法和手段,有助于激发学生学习兴趣,提高教学效果。
通过深入探讨分类讨论思想的具体应用和技巧,可以为数学教育的改革和发展提供有益启示。
1.3 研究目的研究目的:本文旨在探讨分类讨论思想在解初中数学题中的应用,通过对分类讨论思想的基本概念、具体应用技巧以及与其他解题方法的比较分析,揭示其在数学学习中的重要性。
通过对分类讨论思想在解题过程中的实际操作和应用案例分析,旨在帮助读者更深入理解该方法的实际运用情况,从而提高解题效率和思维能力。
通过对未来研究方向的探讨和展望,寻求分类讨论思想在数学问题解决中的更广泛应用可能性,为数学教育的改革和提升提供参考。
例谈分类讨论思想在解初中数学题中的应用
例谈分类讨论思想在解初中数学题中的应用分类讨论思想在解初中数学题中发挥了重要作用,它能够将问题分解为若干不同的情况,从而将原问题变得简单易解。
下面我就分别从代数式、方程、几何等多个角度来谈谈分类讨论思想在初中数学中的应用。
一、代数式在代数式的求值中,有时我们需要计算代数式在不同情况下的值。
例如,如何用有理数表示下列函数在特定点的值:f(x)=|2x+1|-|x-1|?我们可以采用分类讨论的思路,分别考虑f(x)在(-∞,-1/2)、[-1/2,1]和(1,+∞)三个区间的值。
在第一个区间中,f(x)=-(2x+1)-(x-1)= -3x-2; 在第二个区间中,f(x)=(2x+1)-(x-1)= x+2; 在第三个区间中,f(x)=2x+1-(x-1)=x+2。
从而我们得到了f(x)在不同区间的值,便可以用有理数表示出f(x)在特定点的值。
二、方程在解方程时,分类讨论思想同样可行。
例如,需要解方程2x+1=|x-1|+3,我们可以将它分解为以下两种情况,来逐一进行求解:(1)当x≥1时,方程可化为2x+1-x+1=3,解得x=1。
通过分类讨论的方式,我们得到了方程的所有解。
三、几何在解几何问题时,分类讨论思想更是不可或缺。
例如,在平面直角坐标系内,已知直线y=kx+1与x轴、y轴及直线x+y=2所构成的四个角度之和为90°,求k的取值范围。
我们可以分两种情况来讨论:(1)k>0时,易得k≤1/2。
从而我们得到k的取值范围为-1≤k≤1/2。
综上所述,分类讨论思想在初中数学中的应用非常广泛,有时它甚至是解题的一种标准方法。
我们需要注意的是,在采用分类讨论的思路时,应把问题分解得尽可能清晰明了,以保证所得结果的准确性和完整性。
初一数学分类讨论题
初一数学分类讨论题
(实用版)
目录
1.初一数学分类讨论题的概念和重要性
2.初一数学分类讨论题的解题技巧
3.初一数学分类讨论题的典型例题分析
正文
初一数学分类讨论题的概念和重要性:
初一数学分类讨论题是指在解决数学问题时,需要根据不同情况进行分类讨论的题目。
这种题目能够锻炼学生的逻辑思维能力和分类讨论的技巧,是初中数学中非常重要的一类题目。
分类讨论题在初一数学教材中占有很大的比重,也是各类考试中的常考点。
因此,掌握好分类讨论题的解题方法对于初一学生来说至关重要。
初一数学分类讨论题的解题技巧:
1.仔细阅读题目,明确题目要求,确定需要分类讨论的条件。
2.分类讨论时,要根据题目条件进行合理分类,避免分类过多或过少。
3.对于每个分类,要按照题目要求,分别进行讨论,避免遗漏。
4.在讨论过程中,要善于运用数学公式、定理和性质,进行严密的推导和论证。
5.在得出结论后,要对各个分类的结论进行整合,得出最终答案。
初一数学分类讨论题的典型例题分析:
例题:一个正方形的对角线长是 10√2 厘米,求这个正方形的面积。
分析:此题需要根据正方形对角线的长度进行分类讨论。
当对角线长度为 10√2 厘米时,正方形的面积为 (10√2)/2=50 平方厘米;当对角
线长度不为 10√2 厘米时,正方形的面积为 (a+b)/2,其中 a、b 分别为正方形的两条边长。
因此,需要分别讨论这两种情况,得出最终答案。
初中数学专题复习分类讨论问题(含解答)
分类讨论问题一、内容提要: 分类讨论的主要因素: (1)根据本身就是分类定义;(2)有些性质、公式在不同条件下有不同的结论; (3)一些定义、定理、公式和法则有范围或条件限制; (4)题目的条件或结论不唯一时;(5)解含参数(字母系数)的题目时,必须根据参数(字母系数)的不同取值范围进行讨论;(6)推理过程中,遇到数量的大小不确定,图形的位置或形状不确定的。
四个步骤: (1)确定分类对象 (2)进行合理分类 (3)逐类讨论,分级进行 (4)归纳并作出结论 二、例题精选 1.按图形的性质分类例1 如图1,⊙O 是等边ΔABC 的外接圆,D 是 BC上异于B 、C 的一点。
若 BD与 DC 的度数之比是1∶3,⊙O 的半径为1,取点F ,使ΔDCF 为等腰三角形,且顶角为钝角,试指出这时DF 的长或其取值范围。
分析:题目中,没有确定DC 是等腰三角形的底还是腰,所以要分为不同的情况讨论,在不同状态下求DF 。
解:因为 BC为120°, BD 与 DC 的度数的比是1∶3,所以 DC 为90°, DCB AO连结OC、OD,则=①以CD为底边时,如图2,DF可变化,若∠F为直角,则DF=1,而本题∠F为钝角,有<DF<1。
②以CF为底边时,如图3,DF确定,DF=DC=。
③以DF为底边时,如图4,DF可变化,若∠C=90°,则DF=2,所以∠C为钝角时,DF>2。
又DF<2,所以2<DF<2。
说明:题目中的已知条件只是用来确定DC的长度,而后面的分类讨论内容与圆没有关系,是对等腰三角形的边进行计算,分类讨论注意全面,不要遗漏。
例2、抛物线y=m x2-(3m+)x+4与x轴交于两点A,B,与y轴交于C点,若ΔABC是等腰三角形,求抛物线的解析式。
解:在y=mx2-(3m+)x+4中令x=0, 得到y=4,∴ c(0,4 )令y=0,则m x2-(3m+)x+4=0∵ m≠0, ∴ x1=3, x2=。
七上数学方程应用分类讨论
七上数学方程应用分类讨论
七年级上册的数学方程应用问题经常需要进行分类讨论,这是因为实际问题中存在多种可能的情况,需要根据不同的情况建立不同的方程或不等式。
以下是几个常见的分类讨论的例子:
1. 追及问题:这类问题中通常有两个物体在同一时刻开始运动,一个在另一个的前面。
我们需要根据两物体的速度和起始距离来分类讨论何时何地追上。
2. 相遇问题:这类问题中两个物体从不同的地点出发,朝着对方运动。
我们需要根据两物体的速度和起始距离来分类讨论何时何地相遇。
3. 行程问题:这类问题通常涉及一个或多个物体在一条直线上运动,我们需要根据物体的速度和运动时间来计算物体的位移。
4. 利润问题:这类问题通常涉及商品的价格、成本和利润之间的关系,我们需要根据商品的售价和成本来计算利润。
5. 溶液问题:这类问题通常涉及溶液的浓度、质量和体积之间的关系,我们需要根据溶液的浓度和质量来计算体积。
对于每个具体的问题,我们都需要仔细分析其背景和条件,根据不同的情况进行分类讨论,并建立合适的方程或不等式来解决问题。
同时,还需要注意方程或不等式的解的合理性和实际意义。
分类讨论问题经典题型
分类讨论问题经典题型
分类研究问题
初中数学中的分类研究问题是近年来中考命题的热点内容之一,要用分类研究法解答的数学题目,往往具有较强的规律性、综合性和探究性,既能全面考查同学的数学能力又能考查同学的思维能力,分类研究问题弥漫了数学辨证思想,它是规律划分思想在解决数知识题时的详细运用。
第一部分例题解析
1、代数部分
例1:化简:|x-1|+|x-2|
例2、代数式
a a
b b ab ab ||||||
++的全部可能的值有() A. 2个 B. 3个 C. 4个 D. 很多个
2、函数部分
例题1:一次函数y kx b x =+-≤≤,当31时,对应的y 值为19≤≤x ,则kb 的值是()。
A. 14
B. -6
C. -4或21
D. -6或14
例题2:已知一次函数2+-=x y 与x 轴、y 轴的交点分离为A 、B ,试在x 轴上找一点P ,使△PAB 为等腰三角形。
3、几何部分
1.若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为() A .50° B .80°
C .65°或50°
D .50°或80°
2.某等腰三角形的两条边长分离为3cm 和6cm ,则它的周长为() A .9cm B .12cm C .15cm D .12cm 或15cm
4、综合类:
例1:正方形ABCD 的边长为10cm ,一动点P 从点A 动身,以2cm/秒的速度沿正方形的边逆时针匀速运动。
如图,回到A 点停止,求点P 运动t 秒时,P ,D 两点间的距离。
初中数学重难点突破:等腰三角形中的分类讨论问题
等腰三角形中的分类讨论问题典例讲解:分类讨论求角度例1:等腰三角形有一个内角是50°,则其余两个内角的度数为 .解:当50°角是顶角时,则底角为(180°-50°)÷2=65°,则其余两个角的度数为65°,65°;当50°角是底角时,则顶角为180°-50°×2=80°,则其余两个角的度数度数为50°,80°.所以,本题的答案为:65°,65°或50°,80°.总结:(1)在等腰三角形中求内角的度数时,要看已知角是否已经确定是顶角或底角.若已确定,则直接利用三角形的内角和定理求解;否则,要分类讨论,分已知角为顶角和已知角为底角两种情况.(2)若等腰三角形中已知的角是直角或钝角,则此角必为顶角,不用再分类讨论.分类讨论求长度解:当3x-1= x+1时,解得x=1,此时三角形的三条边长分别为2,2,5,因为2+2<5,不符合三角形三边关系,所以x=1舍去;当3x-1= 5时,解得x=2,此时三角形的三条边长分别为5,3,5,因为5+3>5,符合三角形三边关系,所以x=2成立;当x+1=5时,解得x=4,此时三角形的三条边长分别为11,5,5,因为5+5<11,不符合三角形三边关系,所以x=4舍去.所以,本题答案为2.总结:利用等腰三角形有两条边长相等的性质求边长或周长时,当不确定哪两条边是腰时,要进行分类讨论,计算出结果后要验证,检验算出的结果是否符号三角形三边关系.提升练习1.已知等腰三角形的两边长a,b满足|a﹣2|+b2﹣10b+25=0,那么这个等腰三角形的周长为()A.8B.12C.9或12D.92.如果等腰三角形两边长是6cm和12cm,那么它的周长是()A.18cm B.24cm C.30cm D.24或30cm3.等腰三角形一腰上的高与另一腰上的夹角为30°,则顶角的度数为()A.60°B.150°C.60°或120°D.60°或150°4.已知等腰△ABC中,∠A=50°,则∠B的度数为()A.50°B.65°C.50°或65°D.50°或80°或65°5.已知等腰三角形的顶角等于50°,则底角的度数为度.6.等腰三角形一个外角是150°,求一腰上的高与另一腰的夹角是.7.在等腰三角形ABC中,∠A=2∠B,则∠C的度数为.8.在△ABC中,AB=AC,∠B=40°,点D在BC边上,连接AD,若△ABD是直角三角形,则∠DAC的度数是.9.等腰三角形一边长等于4,一边长等于9,它的周长是.10.等腰三角形的一个内角是80°,则它顶角的度数是.11.已知一个等腰三角形的一边长为2cm,另一边长为5cm,则这个等腰三角形的周长是cm.12.一等腰三角形的底边长为15cm,一腰上的中线把三角形的周长分为两部分,其中一部分比另一部分长5cm,那么这个三角形的周长为.13.若等腰三角形一腰上的高与另一腰的夹角为45°,则这个等腰三角形的底角为.14.如图,△ABC中∠ABC=40°,动点D在直线BC上,当△ABD为等腰三角形,∠ADB=.15.等腰三角形的周长为21cm.(1)若已知腰长是底边长的3倍,求各边长;(2)若已知一边长为6cm,求其他两边长.16.如图,在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分成18cm和21cm两部分,求△ABC的三边长.17.已知在△ABC中,AB=20,BC=8,AC=2m﹣2.(1)求m的取值范围;(2)若△ABC是等腰三角形,求△ABC的周长.18.已知:在△ABC中,AB=AC,∠BAC=45°.(1)如图,点D在AB边上,点E在AC边上,BD=CE,BE与CD交于点F.求证:BF=CF;(2)若点D是AB边上的一个动点,点E是AC边上的一个动点,且BD=CE,BE与CD交于点F.当△BFD是等腰三角形时,求∠FBD的度数.参考答案:1.B . 2.C . 3.C . 4.D .5. 65 . 6. 30°或60° . 7. 45°或72° . 8. 10°或50° .9. 22 . 10. 80°或20° . 11. 12 . 12. 55cm 或35cm .13. 67.5°或22.5° . 14. 40°或100°或70°或20° .15.解:(1)如图,设底边BC =a cm ,则AC =AB =3a cm ,∵等腰三角形的周长是21cm ,∴3a +3a +a =21,∴a =3,∴3a =9,∴等腰三角形的三边长是3cm ,9cm ,9cm ;(2)①当等腰三角形的底边长为6cm 时,腰长=(21﹣6)÷2=7.5(cm );则等腰三角形的三边长为6cm 、7.5cm 、7.5cm ,能构成三角形;②当等腰三角形的腰长为6cm 时,底边长=21﹣2×6=9;则等腰三角形的三边长为6cm ,6cm 、9cm ,能构成三角形.故等腰三角形其他两边的长为7.5cm ,7.5cm 或6cm 、9cm .16.解:∵BD 是AC 边上的中线,∴AD =CD=21AC , ∵AB =AC ,∴AD =CD=21AB , 设AD =CD =x cm ,BC =y cm ,分两种情况:当时,即,解得:, ∴△ABC 的各边长为10cm ,10cm ,7cm ;当时,即,解得:, ∴△ABC 的各边长为14cm ,14cm ,11cm ;综上所述:△ABC 各边的长为10cm ,10cm ,7cm 或14cm ,14cm ,11cm .17.解:(1)在△ABC中,AB=20,BC=8,AC=2m﹣2.∴20﹣8<2m﹣2<20+8,解得:7<m<15;∴m的取值范围为:7<m<15;(2)∵△ABC是等腰三角形,∴分两种情况:当AB=AC=20时,∴△ABC的周长=20+20+8=48;当BC=AC=8时,∵8+8=16<20,∴不能组成三角形;综上所述,△ABC的周长为48.18.(1)证明:∵AB=AC,∴∠ABC=∠ACB,在△BCD与△CBE中,∴△BCD≌△CBE(SAS),∴∠FBC=∠FCB,∴BF=CF;(2)解:∵AB=AC,∠BAC=45°,∴,由(1)知,∠FBC=∠FCB,∴∠DBF=∠ECF,设∠FBD=∠ECF=x,则∠FBC=∠FCB=(67.5°﹣x),∠BDF=∠ECF+∠BAC=x+45°,∠DFB=2∠FBC=2(67.5°﹣x)=135°﹣2x,∵△BFD是等腰三角形,故分三种情况讨论:①.当BD=BF时,此时∠BDF=∠DFB,∴x+45°=135°﹣2x,得x=30°,即∠FBD=30°;②当BD=DF时,此时∠FBD=∠DFB,∴x=135°﹣2x,得x=45°,即∠FBD=45°;③当BF=DF时,此时∠FBD=∠FDB,∴x=x+45°,不符题意,舍去;综上所述,∠FBD=30°或45°.。
人教版初中数学八上 小专题(十三) 等腰三角形中的分类讨论
8.如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,4),在 y轴上取一点C,使△ABC为等腰三角形,则符合条件的点C有 4 个.
第8题图
图1
(2)当MN与CA的延长线相交,交点为D时,如图2,∠ADN=40°,则∠DAB= 90°-40°=50°. 综上所述,∠B的度数为65°或25°.
图2
类型三 已知等腰三角形的一边确定另一个顶点时需分类讨论 7.在如图所示的正方形网格中,网格线的交点称为格点.已知A,B是两格点,若C也
是图中的格点,且使得△ABC为等腰三角形,则这样的点C有 8 个.
类型二 当三角形的形状不确定时需分类讨论 5.若等腰三角形一腰上的高与另一腰的夹角为25°,则该等腰三角形顶角的度数
为 65°或115° . 6.在△ABC中,AB=AC,AB的垂直平分线MN与AC所在直线相交所得的锐角度数为
40°,求∠B的度数. 解:分两种情况讨论: (1)当MN与AC相交,交点为D时,如图1,∠ADM=40°,则∠A=90°-40° =50°.
D.56°或68°
3.在等腰三角形ABC中,∠A=2∠B,则∠C的度数为 45°或72° .
4.如图,在△ABC中,∠ABC=25°,∠BAC=100°,点P在△ABC的三边上运 动.当△PAC为等腰三角形时,求其顶角的度数. 解:∵∠ABC=25°, ∠BAC=100°, ∴∠ACB=180°-∠BAC-∠ABC=55°. 分四种情况讨论: (1)如图1,当点P在AB上,且AP=AC时,顶角为∠A=100°;
图1
(2)如图2,当点P在BC上,且AC=PC时,顶角为∠C=55°;
图2 (3)如图3,当点P在BC上,且AC=AP时,顶角为∠CAP=180°-2∠C= 70°;
初一数学分类讨论思想例题分析及练习
初一数学分类讨论思想例题分析及练习
分类讨论思想是一种解题方法,当一个命题的条件或结论不唯一确定,有多种可能情况时,就需要按可能出现的各种情况分门别类的加以讨论,最后综合归纳出问题的正确答案。
在数学研究中,分类讨论思想是一个重要的思想方法,初中常见的数学思想还有数形结合思想、转化思想、方程思想等。
分类讨论思想经常出现在中考中的考题中,因此是需要掌握的重要思想方法。
本文将会把初一一年常见的分类讨论问题大致整理一下。
在分类讨论的问题中有三个重要的注意事项。
首先,分类讨论思想通常出现在题目中的基本步骤中出现了“条件不确定,无法进行下一步”。
其次,分类讨论需要注意“不重、不漏”,
特别要注意分类标准的统一性。
最后,分类讨论中最容易错的是“讨论有重漏,讨论之后不检验是否合题意”。
举个例子,解方程:|x-1|=2.我们可以分析出绝对值为2的数有2个,因此解为x-1=2或x-1=-2,即x=3或x=-1.绝对值
问题是我们在上学期最初见过的“难题”。
一般考察绝对值的问
题有三种,包括化简、类似于“解方程”和使用绝对值的几何意义解题。
对于每种情况,都需要注意处理方法。
再举个例子,试比较1+a与1-a的大小。
我们可以使用作差法来比较大小,即通过两个数量的差来判断大小。
分类讨论的步骤如下:①当a>0时,2a>0,即(1+a)-(1-a)>0,即1+a>1-a;②当a=0时,2a=0,即(1+a)-(1-a)=0,即1+a=1-a;③当
a<0时,2a<0,即(1+a)-(1-a)<0,即1+a<1-a。
分类讨论初一例题
分类讨论初一例题摘要:一、引言二、初一数学分类讨论的重要性三、初一数学分类讨论例题解析1.相似三角形的判定2.平行线的性质3.四则运算法则4.因式分解四、总结与建议正文:【引言】在初中数学的学习过程中,分类讨论是一种重要的思维方式,能够帮助学生更好地理解和解决数学问题。
特别是在初一阶段,学生刚刚接触几何、代数等概念,学会分类讨论对于打下扎实的数学基础具有重要意义。
本文将结合初一数学的例题,对分类讨论的方法进行详细解析。
【初一数学分类讨论的重要性】分类讨论是一种逻辑严密、层次清晰的解题方法。
通过对问题进行分类,学生可以更好地抓住问题的本质,从而提高解题效率。
同时,分类讨论有助于培养学生的逻辑思维能力和分析问题的能力,为今后的数学学习打下坚实基础。
【初一数学分类讨论例题解析】1.相似三角形的判定对于判定两个三角形是否相似,可以分为以下三种情况:(1)两角分别相等(2)两角和为180°,且一边分别相等(3)三边分别相等2.平行线的性质平行线的判定和性质问题可以分为以下几种情况:(1)同位角相等(2)内错角相等(3)同旁内角互补(4)平行线与横切线的性质3.四则运算法则在进行四则运算时,需要根据运算对象和运算符的性质进行分类:(1)纯数字运算(2)带分数运算(3)小数运算(4)百分数运算4.因式分解在进行因式分解时,需要根据多项式的性质进行分类:(1)提公因式法(2)公式法(3)分组分解法(4)十字相乘法【总结与建议】通过以上例题的解析,我们可以看出,分类讨论在初一数学中起到了至关重要的作用。
因此,建议学生在学习过程中,注重培养自己的分类讨论意识,养成对问题进行分类的习惯。
上海初三数学分类讨论专题
分类讨论在初中数学中,分类讨论是研究和解决一类较为复杂的数学问题的重要数学思想方法之一。
一般情况下,当一个数学问题所给出的条件及研究结论的数量关系或图形的位置关系不确定时,就要按照某一个标准将这个问题恰当地分成若干个不同的、较为简单的小问题,分别加以解决,最后,综合各个问题的结果,使整个问题得到解决,这就是利用分类讨论解数学问题的基本思路。
在初中数学中,用分类讨论解决的数学问题常见类型有:①给出图形或图形中的某些点、线段、角的位置不确定;①给出的条件或结论中的某些数量关系不确定;①给出的条件或结果中含有字母系数;①实际应用问题中有多种方案;①与图形运动的变化相联系。
分类讨论是一种化整为零、各个击破的思想方法。
用分类讨论解数学问题的关键是确定分类的标准,分析可能存在的各种情况,得出完整的结论。
正确的分类必须是周全的,原则是既不遗漏,也不重复。
例题剖析例1、如果直角梯形的一条底边长为7cm ,两腰的长分别为cm 8和cm 10,那么这个梯形的面积是 2cm 。
练习:1、已知与圆2O 相切的圆1O 的半径长为cm 3,cm O O 721=,那么圆2O 的半径长是 。
例2、在平面直角坐标系xOy 中,将抛物线22x y =沿y 轴向上平移1个单位,再沿x 轴向右平移两个单位,平移后抛物线的顶点坐标记作A ,直线3=x 与平移后的抛物线相交于点B ,与直线OA 相交于点C 。
(1)求ABC ∆的面积;(2)点P 在平移后抛物线的对称轴上,如果ABP ∆与ABC ∆相似,求所有满足条件的P 点坐标。
练习:2、如图,D B BD CD BD AB 、,,⊥⊥分别为垂足,已知7,3,2===BD CD AB ,点P 是线段BD 上的一动点,若使点P 分别与B A 、和D C 、构成的两个三角形相似,求线段PB 的值。
例3、如图,在ABC Rt ∆中,4,3,90==︒=∠BC AC ACB ,过点B 作射线AC BB //1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学专题复习——分类讨论问题一、教学目标使学生养成分类讨论思想,并掌握一定的分类技巧,以及常见题型的分类方法。
形成一定的分类体系,对待问题能有更严谨、缜密的思维。
二、教学重点对常见题型分类方法的掌握;能够灵活运用一般的分类技巧。
三、教学难点对于分类的“界点”、“标准”把握不准确,容易出现重复解、漏解等现象。
四、板书设计1:分式方程无解的分类讨论问题;2:“一元二次”方程系数的分类讨论问题;3:三角形、圆等几何图形相关量求解的分类讨论问题;4:分类问题在动点问题中的应用;4.1常见平面问题中动点问题的分类讨论;4.2组合图形(二次函数、一次函数、平面图形等组合)中动点问题的分类。
五、教学用具打印互动背景资料、三角板、多媒体。
六、作业布置附后1:分式方程无解的分类讨论问题例题1:(2011武汉)=+=-+-a 349332无解,求x x ax x 解:去分母,得: 1.6,801a 31-a 21-31-a 21-211-a )3(4)3(3=-==∴=-=-=-=⇒-=++a a a x x ax x 或者或或由已知)( 猜想:把“无解”改为“有增根”如何解? 68-==a a 或例题2:(2011郴州) ==--+a 2112无解,求x a x2:“一元二次”方程系数的分类讨论问题例题3:(2010上海)已知方程01)12(22=+++x m x m 有实数根,求m 的取值范围。
(1) 当02=m 时,即m=0时,方程为一元一次方程x+1=0,有实数根x=1-(2) 当02≠m 时,方程为一元二次方程,根据有实数根的条件得:41-m ,0144)12(22≥≥+=-+=∆即m m m ,且02≠m 综(1)(2)得,41-≥m 常见病症:(很多同学会从(2)直接开始而且会忽略02≠m 的条件)总结:字母系数的取值范围是否要讨论,要看清题目的条件。
一般设置问题的方式有两种(1)前置式,即“二次方程”;(2)后置式,即“两实数根”。
这都是表明是二次方程,不需要讨论,但切不可忽视二次项系数不为零的要求,本题是根据二次项系数是否为零进行讨论的。
例题4:(2011益阳)当m 是什么整数时,关于x 的一元二次方程0442=+-x mx 与0544422=--+-m m mx x 的根都是整数。
A C 解:因为是一元二次方程,所以二次项系数不为0,即02≠m ,0≠m ,1.m ,01≤≥∆解得 同理,.45m ,02-≥≥∆解得1m 45≤≤-∴且0≠m ,又因为m 为整数.11或取-∴m (1)当m=—1时,第一个方程的根为222±-=x 不是整数,所以m=—1舍去。
(2)当m=1时,方程1、2的根均为整数,所以m=1.练习:已知关于x的一元二次方程01)1(2=++-x x m 有实数根,则m的取值范围是: 1m 45001≠≤⇒⎩⎨⎧≥∆≠-且m m3:三角形、圆等几何图形相关量求解的分类讨论问题例题:5:(2011青海)方程01892=+-x x 的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A 12 B 12或15 C 15 D 不能确定例题6:(2011武汉)三角形一边长AB 为13cm ,另一边AC 为15cm ,BC 上的高为12cm,求此三角形的面积。
(54或84)例题7:(2011湘西)若两圆相切,圆心距是7,其中一圆的半径为4,则另一圆的半径为:3或11.例题8:(2011四校联考)一条绳子对折后成右图A 、B, A.B 上一点C ,且有BC=2AC,将其从C 点剪断,得到的线段中最长的一段为40cm,请问这条绳子的长度为:60cm 或120cm4:动点问题的分类分类讨论问题4.1:常见平面问题中动点问题的分类讨论;A B1p CD 2p 4p 3p例题9:(2011永州)正方形ABCD 的边长为10cm ,一动点P 从点A 出发,以2cm/秒的速度沿正方形的边逆时针匀速运动。
如图,回到A 点停止,求点P 运动t 秒时, P ,D 两点间的距离。
解:点P 从A 点出发,分别走到B ,C ,D ,A 所用时间是 秒, 秒, 秒, 秒,即5秒,10秒,15秒,20秒。
∴(1)当0≤t<5时,点P 在线段AB 上,|PD|=|P 1D|=(cm)(2)当5≤t<10时,点P 在线段BC 上,|PD|=|P 2D|=(3)当10≤t<15时,点P 在线段CD 上,|PD|=|P 3D|=30-2t(4)当15≤t ≤20时,点P 在线段DA 上,|PD|=|P 4D|=2t-30综上得:|PD|=总结:本题从运动的观点,考查了动点P 与定点D 之间的距离,应根据P 点的不同位置构造出不同的几何图形,将线段PD 放在直角三角形中求解或直接观察图形求解。
4.2:组合图形(一次函数、二次函数与平面图形等组合)中动点问题的分类。
例题10:(2010福建)已知一次函数3333+-=x y 与x 轴、y 轴的交点分别为A 、B ,试在x 轴上找一点P ,使△PAB 为等腰三角形。
分析:本题中△PAB 由于P 点位置不确定而没有确定,而且等腰三角形中哪两条是腰也没有确定。
△PAB 是等腰三角形有几种可能?我们可以按腰的可能情况加以分类:(1)PA=PB ;(2)PA=AB ;(3)PB=AB 。
先可以求出B 点坐标M E A B C D N()033,,A 点坐标(9,0)。
设P 点坐标为)0(,x ,利用两点间距离公式可对三种分类情况分别列出方程,求出P 点坐标有四解,分别为)0369()0369()03()09(,、,、,、,-+-。
(不适合条件的解已舍去)总结:解答本题极易漏解。
解答此类问题要分析清楚符合条件的图形的各种可能位置,紧扣条件,分类画出各种符合条件的图形。
另外,由点的运动变化也会引起分类讨论。
由于运动引起的符合条件的点有不同位置,从而需对不同位置分别求其结果,否则漏解。
例11:(2010湖北)如图,正方形ABCD 的边长是2,BE=CE ,MN=1,线段MN 的两端在CD 、AD 上滑动.当DM= 时,△ABE与以D 、M 、N 为项点的三角形相似。
分析与解答 勾股定理可得ABE 与以D 、M 、N 为项点的三角形相似时,DM 可以与BE 是对应边,也可以与AB 是对应边,所以本题分两种情况:(1) 当DM与BE 是对应边时,DMMN AB AE =, 即1DM DM =.(2)当DM与AB 是对应边时,DM MN AB AE =,即2DM DM =故DM 例题12:(2011湘潭)如图,直线y=3x+3交x 轴于A 点,交y 轴于B 点,过A,B 两点的抛物线交x 轴于另一点C (3,0).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点Q ,使三角形ABQ 是等腰三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由。
说明 从以上各例可以看出,分灯思想在几何中的较为广泛.这类试题的解题思路是:对具有位置关系的几何图形,要有分类讨论的意识,在熟悉几何问题所需要的基础知识的前提下,正确应用分类思想方法,恰当地选择分类标准,是准确全面求解的根本保证.解析:(1)抛物线解析式的求法:1,三点式;2,顶点式(h,k );3,交点式。
易得: 32)3,0()3)(1(2++-=∴-+=x x y B x x a y 在抛物线上再结合点(2) 依题意得10=AB ,抛物线的对称轴为x=1,设Q(1,y)1) 以AQ 为底,则有AB=QB,及22)3(110-+=y 解得,y=0或y=6,又因为点(1,6)在直线AB 上(舍去),所以此时存在一点Q(1,0)2) 以BQ 为底,同理则有AB=AQ,解的Q(1,6) Q(1,6-)3) 以AB 为底,同理则有QA=QB,存在点Q(1,1).综上,共存在四个点分别为:(1,0)、(1,1)、(1,6) 、(1,6-)【作业训练】1.已知等腰△ABC 的周长为18㎝,BC=8㎝.若△ABC ≌△A ´B ´C ´,则△A ´B ´C ´中一定有一定有条边等于( )A .7㎝B .2㎝或7㎝C .5㎝D .2㎝或7㎝2.(2010衡阳)若等腰三角形的两个角度的比是1:2,则这个三角形的顶角为( )度。
A 30 B 60 C 30或90 D 603.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,以过t 小时两车相距50千米,则t 的值是( )A .2或2.5B .2或10C .10或12.5D .2或12.54.已知⊙O 的半径为2,点P 是⊙O 外一点,OP 的长为3,那么以P 这圆心,且与⊙O 相切的圆的半径一定是( )A .1或5B .1C .5D .不能确定5.(2011株洲市)两圆的圆心距d=5,他们的半径分别是一元二次方程0452=+-x x 的两根,判断这两圆的位置关系: .6.已知点P是半径为2的⊙O外一点,PA 是⊙O 的切线,切点为A ,且PA=2,在⊙O 内作了长为的弦AB ,连续PB ,则PB 的长为7.(2010四校联考)在等腰三角形ABC 中,AB=AC,一边上的中线BD 将这个三角形的周长分为15和12两部分,则这个三角形的底边长为:.8:变换例题12,请问是否在x 轴,y 轴上存在点P,使得P,B,C 三点组成的图形为等腰三角形,请说明理由。
【参考答案】1.D 2 .C 3. A 4.A 5.外切 6.2或7.7或11。