【人教版】九年级数学下册《相似》全章教案

合集下载

九年级数学(人教版)第27章《相似》全章教案

九年级数学(人教版)第27章《相似》全章教案

第27章《相似》全章教案27.1 图形的相似〔1〕教学目标:1、知识与技能:通过实例知道相似图形的意义. 通过对生活中的事物或图形的观察,得理性认识,从而加以识别相似的图形.2、过程与方法:通过观察、归纳等数学活动,与他人交流思维的过程和结果,能用所学的知识去解决问题.3、情感态度与价值观:在获得知识的过程中培养学习的自信心.教学重点:相似图形和相似多边形的意义.教学难点:探索相似多边形对应角相等,对应边的比相等.教学过程:一、创设情境,导入新课引导学生观察课本p24-图27.1—1每两个图形之间的相同之处与不同之处---这两个图形形状相同,大小不相同,它们叫什么图形?这两个图形只是形状相同,大小不相同,它们叫相似图形.也可以说,这两个图形相似.二、师生互动,探索新知:1、观察以下几组几何图形,你能发现它们之间有什么关系?从而得出:具有相同形状的图形叫相似形.〔出示课题——图形的相似〕2、对上面的3组图形,通过图形的缩小或放大,再利用图形的平移或旋转等变换,使它与另一个图形能够重合,从而加以验证它们是相似的图形。

归纳定义:相似图形----形状相同的两个图形叫做相似图形.3、你还见过哪些相似的图形,请举出一些例子与同学们交流.三、探究:1、思考教科书第25页的思考,哈哈镜里看到的不同镜像它们相似吗?2、观察以下图中的3组图形,它们是不是相似形?为什么?(激发学生的求知欲,为下一节课“相似图形的特征”做好准备)四、课堂练习完成课本第25页练习第1、2题。

五、课堂小结这节课你有哪些收获?六、课时作业1、根据今天所学的内容,请你收集或设计一些相似的图案.2、习题27.1第1、2题.27.1 图形的相似〔2〕教学目标:1、知识与技能:通过对生活中的事物或图形的观察,获得理性认识,从而加以识别相似的图形.2、过程与方法:经历对相似图形观察、分析、欣赏以及动手操作、画图、测量等过程,能用所学的知识去解决问题;回忆相似图形的性质、定义,得出相似三角形的定义及其基本性质。

【人教版】九年级下册数学《相似》全章教案

【人教版】九年级下册数学《相似》全章教案

27.1 图形的相似(第 1 课时)【学习目标】1.经历探究图形的形状、大小,图形的边、角之间的关系,掌握相似多边形的定义以及相似比,并能根据定义判断两个多边形是否是相似多边形.2.掌握相似多边形的定义、表示法,并能根据定义判断两个多边形是否相似.3.能根据相似比进行有关计算.【自学指导】第一节1.相似三角形的定义及记法三角对应相等,三边对应成比例的两个三角形叫做相似三角形.如△ ABC与△ DEF相似,记作△ ABC∽△ DEF。

A与 D,D注意:其中对应顶点要写在对应位置,如AB 与 E,C与 F 相对应. AB∶DE等于相似比.2.想一想B C E F如果△ ABC∽△ DEF,那么哪些角是对应角?哪些边是对应边?对应角有什么关系?对应边呢?3.议一议(1)两个全等三角形一定相似吗?为什么?(2)两个直角三角形一定相似吗?两个等腰直角三角形呢?为什么?(3)两个等腰三角形一定相似吗?两个等边三角形呢?为什么?归纳:【典例分析】例 1:有一块呈三角形形状的草坪,其中一边的长是 20m,在这个草坪的图纸上,这条边长 5cm,其他两边的长都是 3.5cm,求该草坪其他两边的实际长度.(14m)例 2:如图,已知△ ABC∽△ ADE,AE=50cm,EC=30cm,BC=70cm,∠ BAC=45°,∠ACB=40°,求(1)∠AED和∠ ADE的度数;(2)DE的长.5.想一想:在例 2 的条件下,图中有哪些线段成比例?练习:等腰直角三角形 ABC与等腰直角三角形 A′B′C′相似,相似比为 3∶1,已知斜边 AB=5cm,求△ A′B′C′斜边A′B′上的高.(第 2 课时)【自学指导】第二节1、相似多边形的定义:两个多边形大小不等,但各角,各边这样的两个相似多边形叫做相似多边形。

注意:与相似三角形的定义的不同点。

2、叫做相似比。

3、判断:( 1)各角都对应相等的两个多边形是相似多边形。

人教版九年级数学下册第二十七章相似数学活动优秀教学案例

人教版九年级数学下册第二十七章相似数学活动优秀教学案例
(五)教学内容与过程系统、全面,突出重点
本案例教学内容与过程设计系统、全面,涵盖了相似图形的定义、性质、判定方法、应用等方面。通过讲授新知、小组讨论、总结归纳等环节,突出重点,使学生深入理解相似图形的知识。
此外,本案例还注重以下方面的教学实践:
1. 结合课本知识,引导学生运用类比、归纳、演绎等数学思维方法,发现相似图形的性质和判定方法。
(二)讲授新知
1. 通过具体例子,引导学生观察、思考相似图形的特点,进而引出相似图形的定义和性质。
2. 结合课本,讲解相似图形的判定方法,如AA、SSS、SAS等,并通过实例进行解释。
3. 介绍相似变换的概念和性质,以及在实际中的应用。
(三)学生小组讨论
将学生分成小组,让他们探讨以下问题:
1. 生活中还有哪些相似图形的例子?
2. 鼓励学生运用信息技术手,提高学习效率。
3. 培养学生的探究精神,让他们在解决问题的过程中,体会成功带来的喜悦,树立自信心,形成积极向上的价值观。
(三)小组合作,提高团队协作能力
本案例重视小组合作,通过合理分组,确保每个学生在小组中发挥自己的优势。在小组合作过程中,学生共同探讨问题、分享经验,培养团队协作能力和沟通能力。
(四)注重反思与评价,提升自我认知
本案例强调学生的反思与评价,鼓励学生在课后总结学习经验,提高自我认知。同时,教师对学生的学习过程和结果进行全面评价,为学生提供有针对性的指导,帮助他们建立自信,激发学习动力。
二、教学目标
(一)知识与技能
1. 理解并掌握相似图形的定义、性质和判定方法,能运用相似知识解决实际问题。
2. 能够运用比例线段、相似多边形、相似三角形等知识,解决生活中的实际问题,如地图比例尺的计算、物体放大与缩小的比例等。

人教版九年级数学下册教案第二十七章《相似》

人教版九年级数学下册教案第二十七章《相似》

第二十七章 相似 27.1 图形的相似 第1课时 相似图形01 教学目标1.通过对事物图形的观察、思考和分析,认识相似的图形.2.经历动手操作的活动过程,增强学生的观察和动手能力.3.体会图形的相似在现实生活中的存在与应用,进一步提高学生的数学应用意识.02 预习反馈阅读教材P24~25,弄清楚相似图形的概念,能正确判断两个图形是否相似.并完成下列预习内容. ①把形状相同的图形叫做相似图形.②两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的. ③从放大镜里看到的三角板和原来的三角板相似吗? 相似.④哈哈镜中人的形象与本人相似吗? 不相似.⑤全等三角形相似吗? 相似.⑥生活中哪些地方会见到相似图形? 答案不唯一.【点拨】 研究几何主要是研究几何图形的形状、大小与位置,只要形状相同的两个图形就叫做相似图形.03 名校讲坛例1 下列各图中哪组图形是相似图形(C)A B C D 【点拨】 观察图形,要从本质入手,如C ,将小图的位置稍加旋转就可以发现它们是相似图形. 【跟踪训练1】 下列图形中,不是相似图形的是(C)A BC D【跟踪训练2】 (教材P25练习2)如图,图形(a)~(f)中,哪些与图形(1)或(2)相似?解:(d)与(1)相似,(e)与(2)相似.04巩固训练1.如图所示各组图形中,两个图形形状不相同的是(C)A BC D2.下列图形中:①放大镜下的图片与原来的图片;②幻灯片的底片与投影在屏幕上的图象;③天空中两朵白云的照片;④卫星上拍摄的长城照片与相机拍摄的长城照片.其中相似的组数有(C)A.4组B.3组C.2组D.1组05课堂小结1.本节课学习了哪些主要内容?2.全等三角形和相似三角形有哪些区别和联系?第2课时 相似多边形与比例线段01 教学目标1.结合现实情境了解成比例线段,并能运用比例线段进行计算求值,理解并掌握相似多边形的性质以及运用相似多边形的性质解决实际问题.2.在探索过程中激发学生的求知欲,发展学生的交流合作精神.02 预习反馈阅读教材P26~27,理解并掌握“相似多边形”及“相似比”的概念,并完成下列预习内容:①对于四条线段a ,b ,c ,d ,如果其中两条线段的比等于另两条线段的比,如a b =cd (即ad =bc),那么我们就说这四条线段是成比例.②相似多边形的对应角相等,对应边成比例.③相似多边形对应边的比称为相似比,当相似比为1,这两个多边形全等.④用一个放大镜看一个四边形ABCD ,若该四边形的边长放大5倍,下列说法正确的是(B) A.角A 是原来的5倍 B.周长是原来的5倍C.每一个内角都发生了变化D.以上说法都不对03 名校讲坛例1 下列图形中,不一定相似的是(D) A.任意两个等腰直角三角形 B.任意两个等边三角形 C.任意两个正方形 D.任意两个菱形【跟踪训练1】 (《名校课堂》27.1习题)下列四组图形中,一定相似的是(D) A.正方形与矩形 B.正方形与菱形C.菱形与菱形D.正五边形与正五边形例2 (教材P26例)如图,四边形ABCD 和EFGH 相似,求角α,β的大小和EH 的长度x.【解答】 因为四边形ABCD 和EFGH 相似,所以它们的对应角相等,由此可得, α=∠C =83°,∠A =∠E =118°. 在四边形ABCD 中,∠β=360°-(78°+83°+118°)=81°. 因为四边形ABCD 和EFGH 相似,所以它们的对应边成比例,由此可得EH AD =EF AB ,即x 21=2418. 解得x =28.【点拨】 相似多边形对应边成比例,关键要理解“对应”二字.【跟踪训练2】 (《名校课堂》27.1习题)(教材P28T5的变式)如图,DE ∥BC ,DE =3,BC =9,AD =1.5,AB =4.5,AE =1.4,AC =4.2. (1)求AD AB ,AE AC ,DEBC 的值;(2)求证:△ADE 与△ABC 相似.解:(1)AD AB =1.54.5=13,AE AC =1.44.2=13, DE BC =39=13. (2)证明:∵DE ∥BC , ∴∠D =∠B ,∠E =∠C.又∵∠DAE =∠BAC ,AD AB =AE AC =DEBC,∴△ADE 与△ABC 相似.例3 已知A ,B 两地的实际距离AB =5 km ,画在地图上的距离CD =2 cm ,则这张地图的比例尺是1∶250__000. 【点拨】 图上距离与实际距离的比叫做比例尺.【跟踪训练3】 (教材P27练习1)在比例尺为1∶10 000 000的地图上,量得甲、乙两地的距离是30 cm ,求两地的实际距离.解:设两地的实际距离为x. 30x =110 000 000.解得x =300 000 000. ∵300 000 000 cm =3 000 km. ∴两地的实际距离为3 000 km.04 巩固训练1.下列各组线段中,成比例线段的是(B)A.1,2,3,4B.1,2,2,4C.3,5,9,13D.1,2,2,3 2.下列各组图形中,必定相似的是(D) A.两个等腰三角形 B.各有一个角是40°的两个等腰三角形 C.两条边之比都是2∶3的两个直角三角形 D.有一个角是100°的两个等腰三角形3.在一张由复印机出来的纸上,一个多边形的一条边由原来的1 cm 变成了4 cm ,那么这次复印的放缩比例为4∶1.4.5.已知三个数,1,2,3,请你再添上一个(只填一个)数,使它们能构成一个比例式,则这个数是6.在两个相似的五边形中,一个边长分别为1,2,3,4,5,另一个最大边为8,则后一个五边形的周长是多少? 解:设1,2,3,4对应边长为a ,b ,c ,d ,根据相似多边形对应边的比相等,则有a 1=b 2=c 3=d 4=85,解得a =85,b =165,c =245,d =325.所以另一个五边形的周长为:a +b +c +d +8=85+165+245+325+8=24.05 课堂小结1.本节课学习了哪些内容?2.如何根据相似多边形的概念判断多边形相似?27.2 相似三角形 27.2.1 相似三角形的判定 第1课时 平行线分线段成比例01 教学目标1.理解相似三角形的概念.2.掌握平行线分线段成比例的基本事实及推论.3.掌握判定三角形相似的预备定理.02 预习反馈阅读教材P29~31,弄懂相似三角形的概念,理解平行线分线段成比例定理和相似三角形判定的预备定理.并完成下面的预习内容.①如果△ABC ∽△A 1B 1C 1,且相似比为k ,那么△A 1B 1C 1∽△ABC 的相似比为1k.②如图,l 1,l 2分别被l 3,l 4,l 5所截,且l 3∥l 4∥l 5,则AB 与DE 对应,BC 与EF 对应,DF 与AC 对应;AB BC =(DE )(EF ),AB (AC )=(DE )DF ,AB DE =(BC )(EF )=(AC )(DF ).③平行于三角形一边的直线与其他两边(或延长线)相交所构成的三角形与原三角形相似. 【点拨】 找准对应线段是关键.03 名校讲坛例1 (教材补充例题)如图,DE ∥BC ,则下面比例式不成立的是(B)A.AD AB =AE ACB.DE BC =EC ACC.AD DB =AE ECD.BC DE =AC AE 【跟踪训练1】 如图所示,已知AB ∥CD ∥EF ,那么下列结论正确的是(A)A.AD DF =BC CEB.BC CE =DF ADC.CD EF =BC BED.CD EF =AD AF例2 (教材补充例题)如图,ED ∥BC ,EC ,BD 相交于点A ,过A 的直线交ED ,BC 分别于点M ,N ,则图中有相似三角形(C)A.1对B.2对C.3对D.4对【跟踪训练2】 (《名校课堂》27.2.1第1课时习题)如图,在△ABC 中,点D 在BC 上,EF ∥BC ,分别交AB ,AC ,AD 于点E ,F ,G ,图中共有几对相似三角形?分别是哪几对?解:共有3对相似三角形,分别是:△AEG ∽△ABD ,△AGF ∽△ADC ,△AEF ∽△ABC.04 巩固训练1.如图所示,若△ABC ∽△DEF ,则∠E 的度数为(C)A.28°B.32°C.42°D.52°2.如图,在▱ABCD 中,点E 在边AD 上,射线CE ,BA 交于点F ,下列等式成立的是(C)A.AE ED =CE EFB.AE ED =CD AFC.AE ED =FA ABD.AE ED =FE FC 3.如图,在△ABC 中,DE ∥BC ,DE =2,BC =6,AD =3,求BD 的长.解:∵DE ∥BC , ∴△ADE ∽△ABC. ∴AD AB =DE BC ,即3AB =26. ∴AB =9.∴BD =AB -AD =9-3=6.05 课堂小结1.本节课我们学习了哪些内容?2.当平行线与三角形两边的延长线相交,所构成的三角形与原三角形相似吗?第2课时 相似三角形的判定定理1,201 教学目标掌握三边成比例的两个三角形相似和两边成比例且夹角相等的两个三角形相似这两个判定三角形相似的定理.02 预习反馈阅读教材P32~34,理解相似三角形判定定理1与判定定理2.完成下列预习内容. ①如果两个三角形的三组边对应成比例,那么这两个三角形相似.②如果两个三角形的两组对应边的比相等,并且夹角相等,那么这两个三角形相似.③下列是两位同学运用相似三角形的定义判定两个三角形是否相似,你认为他们的说法是否正确?为什么?并写出你的解答.判断如图所示的两个三角形是否相似,简单说明理由.甲同学:这两个三角形的三个内角虽然分别相等,但是它们的边的比不相等,AC IJ ≠AB HJ ≠BCHI ,所以他们不相似.乙同学:这两个三角形的三个内角分别相等,对应边之比也相等,所以它们相似.解:甲同学的说法不正确,甲同学所分析的边的比不是对应边的比,根据相似三角形的概念,甲同学的说法不正确;根据相似三角形的概念,乙同学的说法正确.【点拨】 判断三角形相似要注意对应关系,找对应边和对应角时可类比全等三角形中找对应边和对应角的方法.03 名校讲坛例1 (教材P33例1(1))根据下列条件,判断△ABC 与△A′B′C′是否相似,并说明理由: AB =4 cm ,BC =6 cm ,AC =8 cm ,A′B′=12 cm ,B′C′=18 cm ,A′C′=24 cm. 【解答】 ∵AB A′B′=412=13,BC B′C′=618=13, AC A′C′=824=13, ∴AB =BC =AC. ∴△ABC ∽△A′B′C′.【跟踪训练1】 (《名校课堂》27.2.1第2课时习题)如图,在△ABC 中,AB =25,BC =40,AC =20,在△ADE 中,AE =12,AD =15,DE =24,试判断这两个三角形是否相似,并说明理由.解:相似.理由:∵AC AE =2012=53,AB AD =2515=53,BC DE =4024=53,∴AC AE =AB AD =BC DE. ∴△ABC ∽△ADE.例2 (教材P33例1(2))根据下列条件,判断△ABC 与△A′B′C′是否相似,并说明理由:∠A =120°,AB =7 cm ,AC =14 cm , ∠A′=120°,A′B′=3 cm ,A′C′=6 cm. 【解答】 ∵AB A′B′=73,AC A′C′=146=73,∴AB A′B′=ACA′C′. 又∠A =∠A′,∴△ABC ∽△A′B′C′.【跟踪训练2】 如图,四边形ABCD ,CDEF ,EFGH 都是正方形. (1)△ACF 与△ACG 相似吗?说说你的理由; (2)求∠1+∠2的度数.解:(1)相似.理由:设正方形的边长为a ,则AC =a 2+a 2=2a , ∵AC CF =2a a =2,CG AC =2a 2a =2, ∴AC CF =CG AC. 又∵∠ACF =∠GCA , ∴△ACF ∽△GCA. (2)∵△ACF ∽△GCA , ∴∠1=∠CAF.∵∠CAF +∠2=45°, ∴∠1+∠2=45°.04 巩固训练1.在△ABC 和△A′B′C′中,AB =9 cm ,BC =8 cm ,CA =5 cm ,A′B′=4.5 cm ,B′C′=2.5 cm ,C′A′=4 cm ,则下列说法错误的是(D)A.△ABC 与△A′B′C′相似B.AB 与B′A′是对应边C.两个三角形的相似比是2∶1D.BC 与B′C′是对应边2.在△ABC 与△A′B′C′中,已知AB·B′C′=BC·A′B′,若使△ABC ∽△A′B′C′,还应增加的条件是(C) A.AC =A′C′ B.∠A =∠A′ C.∠B =∠B′ D.∠C =∠C′3.如图,两个三角形的关系是相似(填“相似”或“不相似”),理由是这两个三角形的三边对应成比例.4.右图中的两个三角形是否相似:不相似,说明理由:对应边不成比例.5.如图,DE 与△ABC 的边AB ,AC 分别相交于D ,E 两点,若AE =2 cm ,AC =3 cm ,AD =2.4 cm ,AB =3.6 cm ,DE =43cm ,则BC 的长为多少?解:∵AE =2 cm ,AC =3 cm ,AD =2.4 cm ,AB =3.6 cm , ∴AE AC =AD AB =23. ∵∠A =∠A , ∴△ADE ∽△ABC. ∴DE BC =AE AC. 又∵DE =43 cm ,∴43BC =23. ∴BC =2 cm.【点拨】 运用相似三角形的判定和性质可以进行边的计算.05 课堂小结1.本节课我们学习了什么内容?2.全等三角形的判定定理对相似三角形的判定定理有什么借鉴作用?第3课时 相似三角形的判定定理301 教学目标1.掌握相似三角形的判定定理3.2.了解两个直角三角形相似的判定方法.3.深化对相似三角形的三个判定方法的理解,并能够运用相似三角形的判定方法解决相似三角形的有关问题.02 预习反馈阅读教材P35~36,理解相似三角形判定定理3及直角三角形相似的判定方法.完成下列预习内容. ①如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似. ②如果两个直角三角形中,有一条直角边和斜边对应成比例,那么这两个直角三角形相似.③要判定两个直角三角形相似,最简单的方法就是再找除直角外的一组内角对应相等,就可以根据相似三角形的判定3,判定这两个直角三角形相似.④如图所示,已知∠ADE =∠B ,则△AED ∽△ACB.理由是两角分别相等的两个三角形相似. ⑤顶角对应相等的两个等腰三角形相似吗?为什么?解:相似,理由:根据三角形内角和,顶点对应相等的两个等腰三角形其底角也对应相等.再根据“两角分别相等的两个三角形相似”这个判定定理即可判断这两个等腰三角形相似. 【点拨】 要根据已知条件选择适当的方法判定三角形相似.03 名校讲坛例1 (教材P35例2)如图,在Rt △ABC 中,∠C =90°,AB =10,AC =8.E 是AC 上一点,AE =5,ED ⊥AB ,垂足为D.求AD 的长.【解答】 ∵ED ⊥AB , ∴∠EDA =90°. 又∠C =90°,∠A =∠A , ∴△AED ∽△ABC. ∴AD AC =AE AB. ∴AD =AC·AE AB =8×510=4.【跟踪训练1】 如图,∠1=∠3,∠B =∠D ,AB =DE =5,BC =4. (1)△ABC ∽△ADE 吗?说明理由; (2)求AD 的长.解:(1)△ABC ∽△ADE.理由如下:∵∠1=∠3,∴∠1+∠2=∠3+∠2, ∴∠BAC =∠DAE. 又∵∠B =∠D , ∴△ABC ∽△ADE. (2)由(1),知AB AD =BC DE. ∴5AD =45. 解得AD =254.例2 (教材补充例题) 已知:如图,∠ABC =∠CDB =90°,AC =a ,BC =b ,当BD 与a ,b 之间满足怎样的关系时,这两个三角形相似?【解答】 ∵∠ABC =∠CDB =90°, (1)当BC BD =ABCD时,△ABC ∽△CDB , 此时BC BD =AB CD =AC BC ,即a b =b BD .∴BD =b 2a.即当BD =b 2a 时,△ABC ∽△CDB.(2)当AB BD =BCCD 时,△ABC ∽△BDC ,此时AB BD =BC CD =AC BC ,即AB BD =AC BC .∴a 2-b 2BD =a b ,BD =b aa 2-b 2.∴当BD =baa 2-b 2时,△ABC ∽△BDC.综上所述,即当BD =b 2a 或BD =baa 2-b 2时,这两个三角形相似.【点拨】 本题要考虑当两个三角形有一个角相等时,夹这个角的两边的比相等时有两种情况.【跟踪训练2】 (《名校课堂》27.2.1第3课时习题)在△ABC 和△A 1B 1C 1中,∠A =∠A 1=90°,添加下列条件不能判定两个三角形相似的是(D) A.∠B =∠B 1 B.AB A 1B 1=ACA 1C 1C.AB A 1B 1=BC B 1C 1D.AB B 1C 1=AC A 1C 104 巩固训练1.下列条件中,一定能判断两个等腰三角形相似的是(C) A.都含有一个40°的内角 B.都含有一个50°的内角C.都含有一个60°的内角D.都含有一个70°的内角2.在△ABC与△A′B′C′中,有下列条件:(1)ABA′B′=BCB′C′;(2)BCB′C′=ACA′C′;(3)∠A=∠A′;(4)∠C=∠C′,如果从中任取两个条件组成一组,那么能判断△ABC∽△A′B′C′的共有(C)A.1组B.2组C.3组D.4组3.如图,在△ABC中,∠C=90°,E是BC上一点,ED⊥AB,垂足为D.求证:△ABC∽△EBD.证明:∵ED⊥AB,∴∠EDB=90°.∵∠C=90°,∴∠EDB=∠C.∵∠B=∠B,∴△ABC∽△EBD.4.如图,AB=AC,∠A=36°,BD是∠ABC的平分线.求证:△ABC∽△BCD.证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°.∵BD是∠ABC的平分线,∴∠ABD=∠DBC=36°.∴∠A=∠CBD.又∵∠C=∠ABC,∴△ABC∽△BCD.05课堂小结1.本节课我们学习了什么内容?2.全等三角形的判定定理与相似三角形的判定定理有何区别?27.2.2 相似三角形的性质01 教学目标理解并掌握相似三角形的性质.02 预习反馈阅读教材P37~39,理解相似三角形的性质,并完成下列预习内容.(1)相似三角形对应中线的比、对应高的比、对应角平分线的比都等于相似比. (2)如图,△ABC ∽△A′B′C′,相似比为k ,AD ⊥BC 于点D ,A′D′⊥B′C′于点D′.①你能发现图中还有其他的相似三角形吗?【解答】 其他的相似三角形还有△ABD ∽△A′B′D′,△ADC ∽△A′D′C′. ②△ABC 与△A′B′C′中,C △ABC C △A′B′C′=k ,S △ABCS △A′B′C′=k 2.【点拨】 在运用相似三角形的性质时,要注意周长的比与面积的比之间的区别,不要混为一谈,另外面积的比等于相似比的平方,反过来相似比等于面积比的算术平方根.03 名校讲坛例 (教材P38例3)如图,在△ABC 和△DEF 中,AB =2DE ,AC =2DF ,∠A =∠D.若△ABC 的边BC 上的高为6,面积为125,求△DEF 的边EF 上的高和面积.【解答】 在△ABC 和△DEF 中, ∵AB =2DE ,AC =2DF , ∴DE AB =DF AC =12. 又∠D =∠A ,∴△DEF ∽△ABC ,△DEF 与△ABC 的相似比为12.∵△ABC 的边BC 上的高为6,面积为125, ∴△DEF 的边EF 上的高为12×6=3,面积为(12)2×125=3 5.【跟踪训练】 如图,在▱ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,CD =2DE.若△DEF 的面积为10,则▱ABCD 的面积为多少?解:∵四边形ABCD 为平行四边形, ∴AD ∥BC ,AB ∥CE.∴△DEF ∽△CEB ,△DEF ∽△ABF. ∴S △DEF S △CEB =(DE CE )2=(DE CD +DE)2=(DE 3DE )2=19,S △DEF S △ABF =(DE AB )2=(DE CD )2=(DE 2DE )2=14.∴S △CEB =90,S △ABF =40.∴S ▱ABCD =S △ABF +S 四边形BCDF =S △ABF +S △CEB -S △DEF =40+90-10=120.04 巩固训练1.若两个相似三角形的相似比为1∶2,则它们面积的比为(C)A.2∶1B.1∶ 2C.1∶4D.1∶52.如图,在▱ABCD 中,点E 在边DC 上,DE ∶EC =3∶1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为(B)A.3∶4B.9∶16C.9∶1D.3∶13.如果△ABC ∽△DEF ,A ,B 分别对应D ,E ,且AB ∶DE =1∶2,那么下列等式一定成立的是(D) A.BC ∶DE =1∶2B.△ABC 的面积∶△DEF 的面积=1∶2C.∠A 的度数∶∠D 的度数=1∶2D.△ABC 的周长∶△DEF 的周长=1∶24.如果两个相似三角形的面积的比是4∶9,那么它们对应的角平分线的比是2∶3.5.已知△ABC ∽△A 1B 1C 1,△ABC 的周长与△A 1B 1C 1的周长的比值是32,BE ,B 1E 1分别是它们对应边上的中线,且BE =6,则B 1E 1=4.6.如图所示,Rt △ABC ∽Rt △DFE ,CM ,EN 分别是斜边AB ,DF 上的中线,已知AC =9 cm ,CB =12 cm ,DE =3 cm.(1)求CM 和EN 的长;(2)你发现CMNE的值与相似比有什么关系?得到什么结论?解:(1)在Rt △ABC 中,AB =AC 2+CB 2=92+122=15, ∵CM 是斜边AB 的中线, ∴CM =12AB =7.5.∵Rt △ABC ∽Rt △DFE , ∴DE AC =DF AB ,即39=13=DF 15. ∴DF =5.∵EN 为斜边DF 上的中线, ∴EN =12DF =2.5.(2)∵CM EN =7.52.5=31,相似比为AC DE =93=31,∴相似三角形对应中线的比等于相似比.05 课堂小结本节课我们学习了哪些内容?27.2.3 相似三角形应用举例01 教学目标1.通过本节相似三角形应用举例,发展学生综合运用相似三角形的判定方法和性质解决问题的能力,提高学生的数学应用意识,加深对相似三角形的理解与认识.2.在活动过程中使学生积累经验与成功体验,激发学生学习数学的热情与兴趣.02 预习反馈阅读教材P39~40,进一步体会从实际问题中建立数学模型,并完成下列预习内容. (1)太阳光下,同一时刻,物体的长度与其影长成正比(正比或反比).(2)太阳光下,同一时刻,物体的高度、影子、光线构成的三角形相似吗? 答:相似.03 名校讲坛例1 (教材P40例5)如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P ,在近岸取点Q 和S ,使点P ,Q ,S 共线且直线PS 与河垂直,接着在过点S 且与PS 垂直的直线a 上选择适当的点T ,确定PT 与过点Q 且垂直PS 的直线b 的交点R.已测得QS =45 m ,ST =90 m ,QR =60 m ,请根据这些数据,计算河宽PQ.【解答】 ∵∠PQR =∠PST =90°,∠P =∠P , ∴△PQR ∽△PST. ∴PQ PS =QR ST, 即PQ PQ +QS =QR ST ,PQ PQ +45=6090,PQ ×90=(PQ +45)×60. 解得PQ =90 m.答:河宽大约为90 m.【跟踪训练1】 (《名校课堂》27.2.3习题)(菏泽中考)如图,M ,N 为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞,工程人员为计算工程量,必须计算M ,N 两点之间的直线距离,选择测量点A ,B ,C ,点B ,C 分别在AM ,AN 上,现测得AM =1千米,AN =1.8千米,AB =54米,BC =45米,AC =30米,求M ,N 两点之间的直线距离.解:连接MN. ∵AC AM =301 000=3100,AB AN =541 800=3100,∴AC AM =ABAN. 又∵∠BAC =∠NAM , ∴△BAC ∽△NAM. ∴BC MN =3100,即45MN =3100.∴MN =1 500. 答:M ,N 两点之间的直线距离为1 500米.例2 小刚用下面的方法来测量学校大楼AB 的高度.如图,在水平地面上的一面平面镜,镜子与教学大楼的距离EA =21 m ,当他与镜子的距离CE =2.5 m 时,他刚好能从镜子中看到教学大楼的顶端B ,已知他的眼睛距地面高度DC =1.6 m ,请你帮助小刚计算出教学大楼的高度AB 是多少m ?(注意:根据光的反射定律,反射角等于入射角)【解答】 根据反射角等于入射角,则有∠DEF =∠BEF ,而FE ⊥AC , ∴∠DEC =∠BEA.又∵∠DCE =∠BAE =90°, ∴△DEC ∽△BEA. ∴CD AB =EC EA . 又∵DC =1.6,EC =2.5,EA =21, ∴1.6AB =2.521. ∴AB =13.44.答:建筑物AB 的高度为13.44 m.【点拨】 从实际问题的情景中,找出相似三角形是解决本类题型的关键.【跟踪训练2】 如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF 来测量操场旗杆AB 的高度,他们通过调整测量位置,使斜边DF 与地面保持平行,并使边DE 与旗杆顶点A 在同一直线上.已知DE =0.5米,EF =0.25米,目测点D 到地面的距离DG =1.5米,到旗杆的水平距离DC =20米,求旗杆的高度.解:由题意可得,△DEF ∽△DCA ,则DE DC =EF AC, ∵DE =0.5米,EF =0.25米,DG =1.5米,DC =20米, ∴0.520=0.25AC. 解得AC =10.故AB =AC +BC =AC +DG =10+1.5=11.5(米).答:旗杆的高度为11.5米.04 巩固训练1.如图,小明在打网球时,击球点距球网的水平距离为8 m ,已知网高为0.8 m ,要使球恰好能打过网,而且落在离网4 m 的位置,则球拍击球时的高度h 为2.4m.2.如图,测得BD =120 m ,DC =60 m ,EC =50 m ,求河宽.解:由题意,可得∠B =∠C =90°,∠ADB =∠EDC , ∴△ADB ∽△EDC. ∴AB EC =BD CD, 即AB =BD·EC CD =120×5060=100(m).答:河宽AB 为100 m.【点拨】 证明相似三角形的方法很多,要根据实际情况,选择最简单、合适的一种.3.亮亮和颖颖住在同一幢住宅楼,两人用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M ,颖颖的头顶B 及亮亮的眼睛A 恰好在一条直线上时,两人分别标定自己的位置C ,D ,然后测出两人之间的距离CD =1.25 m ,颖颖与楼之间的距离DN =30 m(C ,D ,N 在一条直线上),颖颖的身高BD =1.6 m ,亮亮蹲地观测时眼睛到地面的距离AC =0.8 m ,你能根据以上测量数据帮助他们求出住宅楼的高度吗?解:过点A 作CN 的平行线交BD 于点E ,交MN 于点F.由已知可得,FN =ED =AC =0.8 m ,AE =CD =1.25 m ,EF =DN =30 m ,BD =1.6 m , ∠AEB =∠AFM =90°. 又∵∠BAE =∠MAF , ∴△ABE ∽△AMF. ∴BE MF =AE AF, 即1.6-0.8MF = 1.251.25+30. 解得MF =20.∴MN =MF +FN =20+0.8=20.8(m). 答:住宅楼的高度为20.8 m.05 课堂小结利用相似三角形进行测量的一般步骤:(1)因地制宜,构造相似三角形;(2)测量与所求线段对应的边的长以及另外任意一组对应边的长;(3)根据相似三角形的对应边成比例进行计算.27.3位似第1课时位似图形的概念及画法01教学目标1.正确理解位似图形等有关概念,能够按照要求利用位似将图形进行放大或缩小以及能够正确地作出位似图形的位似中心.2.在实际操作和探究活动中,让学生感受、体会到几何图形之美,提高对数学美的认识层次,陶冶美育情操,激发学习热情.02预习反馈阅读教材P47~48,完成下列预习内容.(1)两个多边形不仅相似,而且对应点的连线相交于一点,对应边互相平行,像这样的两个图形叫做位似图形,这个点叫做位似中心.(2)下列说法正确的是(D)A.两个图形如果是位似图形,那么这两个图形一定全等B.两个图形如果是位似图形,那么这两个图形不一定相似C.两个图形如果是相似图形,那么这两个图形一定位似D.两个图形如果是位似图形,那么这两个图形一定相似(3)用作位似图形的方法,可以将一个图形放大或缩小,位似中心位置可能在(D)A.原图形的外部B.原图形的内部C.原图形的边上D.任意位置【点拨】位似的三要素即是判定位似的依据,也是位似图形的性质.03名校讲坛例1如图,作出一个新图形,使新图形与原图形对应线段的比为2∶1.【解答】 1.在原图形上取点A,B,C,D,E,F,G,在图形外任取一点P;2.作射线AP,BP,CP,DP,EP,FP,GP;3.在这些射线上依次取A′,B′,C′,D′,E′,F′,G′,使PA′=2PA,PB′=2PB,PC′=2PC,PD′=2PD,PE′=2PE,PF′=2PF,PG′=2PG;4.顺次连接点A′,B′,C′,D′,E′,F′,G′,A′.所得到的图形就是符合要求的图形.【点拨】作位似图形的步骤:(1)按要求作出各点的对应点后,(2)连线.注意:不要连错对应点之间的连线.【跟踪训练1】(《名校课堂》27.3习题)如图,请在8×8的网格中,以点O为位似中心,作出△ABC的一个位似图形△A′B′C′,使△A′B′C′与△ABC的相似比为2∶1.解:如图所示,△A′B′C′为所求的三角形.例2请画出如图所示两个图形的位似中心.图1图2【解答】如图所示的点O1,就是图1的位似中心.如图所示的点O2,就是图2的位似中心.【点拨】正确地作出位似中心,是解位似图形的关键,可以根据位似中心的定义,位似图形的对应点连线的交点就是位似中心.【跟踪训练2】找出下列图形的位似中心.04巩固训练1.在下列图形中,不是位似图形的是(D)A BC D2.如图,以点O为位似中心,将△ABC放大后得到△DEF,已知△ABC与△DEF的面积比为1∶9,则AB∶DE的值为(A)A.1∶3B.1∶2C.1∶ 3D.1∶93.如图,以O为位似中心将四边形ABCD放大后得到四边形A′B′C′D′,若OA=4,OA′=8,则四边形ABCD和四边形A′B′C′D′的周长的比为1∶2.4.如图,△DEF 是△ABC 经过位似变换得到的,位似中心是点O ,请确定点O 的位置,如果OC =3.6 cm ,OF =2.4 cm ,求它们的相似比.解:连接AD ,CF 交于点O ,则点O 即为所求.∵OC =3.6 cm ,OF =2.4 cm ,∴OC ∶OF =3∶2.∴△ABC 与△DEF 的相似比为3∶2.5.如图,图中的小方格都是边长为1的小正方形,△ABC 与△A′B′C′是以点O 为位似中心的位似图形,它们的顶点都是在小正方形的顶点上.(1)找出位似中心点O ;(2)△ABC 与△A′B′C′的位似比为2∶1;(3)按(2)中的位似比,以点O 为位似中心画出△ABC 的另一个位似图形△A″B″C″.解:(1)如图所示,点O 即为所求.(2)∵AC A′C′=21, ∴△ABC 与△A′B′C′的位似比为:2∶1.故答案为:2∶1.(3)如图所示,△A″B″C″即为所求.05 课堂小结1.本节课我们学习了哪些内容?2.位似图形与一般相似图形相比,有哪些特殊性?3.利用位似作图的步骤有哪些?第2课时 平面直角坐标系中的位似01 教学目标1.让学生理解掌握位似图形在平面直角坐标系上的应用,即会根据相似比,求位似图形顶点,以及根据位似图形对应点坐标,求位似图形的相似比和在平面直角坐标系上作出位似图形.2.让学生在应用有关知识解决问题的过程中,提高应用意识,体验数形结合的思想方法在解题中的运用.02 预习反馈阅读教材P48~50,以原点为位似中心的两个位似图形对应顶点的坐标规律,并完成下列预习内容.(1)如图,在平面直角坐标系中,有两点A(6,3),B(6,0),以原点O 为位似中心,相似比为13,把线段AB 缩小,观察对应点之间坐标的变化,你有什么发现?答:线段缩小后,点A ,B 的坐标与其对应点的坐标的比为13. (2)在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点坐标的比为k.(3)△ABC 和△A 1B 1C 1关于原点位似且点A(-3,4),它的对应点A 1(6,-8),则△ABC 和△A 1B 1C 1的相似比是12. (4)已知△ABC 三个顶点的坐标分别为A(1,2),B(1,0),C(3,3),以原点O 为位似中心,相似比为2,把△ABC 放大得到其位似图形△A 1B 1C 1,则△A 1B 1C 1各顶点的坐标分别为A 1(2,4),B 1(2,0),C 1(6,6).03 名校讲坛例 (教材P49例)如图,△ABO 三个顶点的坐标分别为A(-2,4),B(-2,0),O(0,0).以原点O 为位似中心,画出一个三角形,使它与△ABO 的相似比为32.【解答】 如图,利用位似中对应点的坐标的变化规律,分别取点A′(-3,6),B′(-3,0),O(0,0).顺次连接点A′,B′,O ,所得△A′B′O 就是要画的一个图形.【点拨】 作位似变换时,要先弄清点的坐标的变化情况,求出变换后对应的坐标.然后在坐标中描出对应点,连线即可.【跟踪训练】 在平面直角坐标系中,△ABC 的三个顶点坐标分别为A(2,-4),B(3,-2),C(6,-3).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)以点M 为位似中心,在网格中画出△A 1B 1C 1的位似图形△A 2B 2C 2,使△A 2B 2C 2与△A 1B 1C 1的相似比为2∶1.解:(1)如图所示,△A 1B 1C 1即为所求.(2)如图所示,△A 2B 2C 2即为所求.。

新人教版九年级下册相似全章教案

新人教版九年级下册相似全章教案
AB BC CA
A B B C C A 1 ,它们的关系是互为倒数.这一点在教学中科结合相似比“放大或缩小”的含义 AB BC CA k 来让学生理解; ( 3)作业
1.如图,△ ABC ∽△ AED, 其中 DE ∥BC ,找出对应角并写出对应边的比例式. 2.如图,△ ABC ∽△ AED ,其中∠ ADE= ∠B,找出对应角并写出对应边的比例式.
活动 1 (教材 P40 页 探究 1)
如图 27.2-1), 任意画两条直线 l1 , l 2,再画三条与 l 1 , l2 相交的平行线 l 3 , l 4, l5.分别量度
l 3 , l 4, l 5.在 l1 上截得的两条线段 AB, BC 和在 l2 上截得的两条线段 DE, EF 的长度 , AB ︰

1

k
⑴所有的等腰三角形都相似。
⑵所有的等边三角形都相似。
⑶所有的直角三角形都相似。
⑷所有的等腰直角三角形都相似。
教师示范一个规范过程,让学生模仿,学会用定义来解决问题。
1.例 1。如图,在 ABC 中,
A
三、范例研讨,迁移练习:
D
E
DE//BC , D。 E 分别在 AB , AC 上。
求证:△ ADE ∽△ ABC
(1) 谈谈本节课你有哪些收获.
(2) 课外作业
1、下列说法正确的是(

A .小明上幼儿园时的照片和初中毕业时的照片相似
.
B.商店新买来的一副三角板是相似的 .
C.所有的课本都是相似的 .
D.国旗的五角星都是相似的 .
2、填空题 1、形状
的图形叫相似形; 两个图形相似, 其中一个图形可以看作由另一个图形的
AD AE AB EC

新人教版九年级数学下册《第二十七章 相似 》全章教案

新人教版九年级数学下册《第二十七章 相似 》全章教案

新人教版九年级数学下册《第二十七章相似》全章教案本文已经没有格式错误和明显有问题的段落了,但是可以对每段话进行小幅度的改写,以增强文章的流畅性和可读性。

第一节课重点讲解了相似图形的概念和运用方法。

通过一些日常生活中的例子,让学生们理解了相似图形的形状和大小可以不同,但是它们的形状相同。

同时,老师还通过线段的长度比例的例子,让学生们理解了相似图形的比例关系。

在例题讲解中,老师通过选择题的形式,让学生们运用相似图形的特征,判断哪个图形与左边的图形相似。

同时,老师还给出了一道关于比例尺的例题,让学生们运用相似图形的知识,计算出实际距离。

第二节课重点讲解了相似多边形的主要特征和识别方法。

老师让学生们了解到相似多边形的对应角相等,对应边的比相等。

通过一些实例,让学生们学会了如何识别相似多边形,并运用其性质进行计算。

总的来说,本章节的教学目标是让学生们掌握相似图形和相似多边形的概念和运用方法。

通过一些生动的例子和实例,让学生们更好地理解和掌握知识点。

在研究第26页的内容时,学生需要了解判别两个多边形是否相似的条件。

这些条件包括对应角是否相等,对应边的比是否相等,这两个条件缺一不可。

如果要说明两个多边形不相似,则必须说明各角无法对应相等或各对应边的比不相等,或者举出合适的反例。

在解决这个问题时,依靠直觉观察是不可靠的。

课堂引入:1.对于图中的两个相似的四边形,它们的对应角和对应边的比是否相等。

2.相似多边形的特征是对应角相等,对应边的比相等。

如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似。

3.相似比是相似多边形对应边的比。

4.当相似比为1时,相似的两个图形全等,因此全等形是一种特殊的相似形。

例1(补充)(选择题):下列说法正确的是D。

因为任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似。

例(教材P26例题):要求相似多边形中的某些角的度数和某些线段的长,可以根据相似多边形的对应角相等,对应边的比相等来解题。

九年级下册-第27章-相似-全章教案[1]

九年级下册-第27章-相似-全章教案[1]

备课时间:上课时间:第27章相似27.1 图形的相似(1)教学目标:1、知识与技能:从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念.2、过程与方法:在相似图形的探究过程中,让学生运用“观察—比较—猜想”分析问题.3、情感态度与价值观:在探究相似图形的过程中,培养学生与他人交流、合作的意识和品质.教学重点:认识图形的相似.教学难点:理解相似图形概念.教学方法:特别关注“三段六环”教学模式课时安排:第一课时教学准备:多媒体课件教学过程:一.头脑风暴导入新课活动1观察图片,体会相似图形同学们,请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?(课本图27.1-1)( 课本图27.1-2)二:出示目标明确任务课件出示知识性目标,学生带着目标学习,提高学习效率。

三、独立先学自学检测出示自学指导,见课件自学检测:师生活动: 教师出示图片,提出问题;学生观察,小组讨论;师生共同交流.得到相似图形的概念.教师活动:什么是相似图形?学生活动:共同交流,得到相似图形的概念.学生归纳总结:(板书)形状相同的图形叫做相似图形在活动中,教师应重点关注:学生用数学的语言归纳相似图形的概念;活动2思考:如图27.1-3是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?学生活动: 学生观察思考,小组讨论回答;四、小组合作展示汇报活动3练习问题:1.如图,从放大镜里看到的三角尺和原来的三角尺相似吗?2.如图,图形a~f中,哪些是与图形(1)或(2)相似的?五、后讲点拨、难点解析教师活动:教师出示图片,提出问题;学生活动:学生看书观察,小组讨论后回答问题.教师活动:在活动中,教师应重点关注:在练习中检验学生对相似图形的几何直觉.六、畅谈收获、达标检测(1)谈谈本节课你有哪些收获.(2)达标检测1、下列说法正确的是()A.小明上幼儿园时的照片和初中毕业时的照片相似.B.商店新买来的一副三角板是相似的.C.所有的课本都是相似的.D.国旗的五角星都是相似的.2、填空题1、形状的图形叫相似形;两个图形相似,其中一个图形可以看作由另一个图形的或而得到的。

《相似》教案(一)(人教版九年级下)

《相似》教案(一)(人教版九年级下)

第二十七章 相似27.1 图形的相似(一)一、教学目标1. 理解并掌握两个图形相似的概念.2. 了解成比例线段的概念,会确定线段的比.二、重点、难点1. 重点:相似图形的概念与成比例线段的概念.2. 难点:成比例线段概念.3. 难点的突破方法(1)对于相似图形的概念,可用大量的实例引入,但要注意教材中“把形状相同的图形说成是...相似图形”,只是对相似图形概念的一个描述,不是定义;还要强调:①相似形一定要形状相同,与它的位置、颜色、大小无关(其大小可能一样,也有可能不一样,当形状与大小都一样时,两个图形就是全等形,所以全等形是一种特殊的相似形);②相似形不仅仅指平面图形,也包括立体图形的情况,如飞机和飞机模型也是相似形;③两个图形相似,其中一个图形可以看作有另一个图形放大或缩小得到的,而把一个图形的部分拉长或加宽得到的图形和原图形不是相似图形.(2)对于成比例线段:①我们是在学生小学学过数的比,及比例的基本性质等知识的基础上来学习成比例线段的;②两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;③线段的比是一个没有单位的正数;④四条线段a,b,c,d 成比例,记作d c b a =或a:b=c:d ;⑤若四条线段满足dc b a =,则有ad=bc (为利于今后的学习,可适当补充:反之,若四条线段满足ad=bc ,则有dc b a =,或其它七种表达形式). 三、例题的意图本节课的三道例题都是补充的题目,例1是一道判断图形相似的选择题,通过讲解要使学生明确:(1)相似形一定要形状相同,与它的位置、颜色、大小无关;(2)两个图形相似,其中一个图形可以看作有另一个图形放大或缩小得到的,而把一个图形的部分拉长或加宽得到的图形和原图形不是相似图形;(3)在识别相似图形时,不要以位置为准,要“形状相同”;例2通过分别采用m 、cm 、mm 三种不同的长度单位,求得的ba 的值相等,使学生明确:两条线段的比与所采用的长度单位无关,但求比时两条线段的长度单位必须一致;例3是求线段的比的题,要使学生对比例尺有进一步的认识:比例尺=实距图距实际距离图上距离=,而求图上距离与实际距离的比就是求两条线段的比. 四、课堂引入1.(1)请同学们看黑板正上方的五星红旗,五星红旗上的大五角星与小五角星他们的形状、大小有什么关系?再如下图的两个画面,他们的形状、大小有什么关系.(还可以再举几个例子)(2)教材P36引入. (3)相似图形概念:把形状相同的图形说成是相似图形.(强调:见前面)(4)让学生再举几个相似图形的例子.(5)讲解例1.2.问题:如果把老师手中的教鞭与铅笔,分别看成是两条线段AB 和CD ,那么这两条线段的长度比是多少?归纳:两条线段的比,就是两条线段长度的比.3.成比例线段:对于四条线段a,b,c,d ,如果其中两条线段的比与另两条线段的比相等,如dc b a =(即ad=bc ),我们就说这四条线段是成比例线段,简称比例线段. 【注意】 (1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;(2)线段的比是一个没有单位的正数;(3)四条线段a,b,c,d 成比例,记作d c b a =或a:b=c:d ;(4)若四条线段满足dc b a =,则有ad=bc . 五、例题讲解 例1(补充:选择题)如图,下面右边的四个图形中,与左边的图形相似的是( )分析:因为图A 是把图拉长了,而图D 是把图压扁了,因此它们与左图都不相似;图B 是正六边形,与左图的正五边形的边数不同,故图B 与左图也不相似;而图C 是将左图绕正五边形的中心旋转180º后,再按一定比例缩小得到的,因此图C 与左图相似,故此题应选C.例2(补充)一张桌面的长a=1.25m ,宽b=0.75m ,那么长与宽的比是多少?(1)如果a=125cm ,b=75cm ,那么长与宽的比是多少?(2)如果a=1250mm ,b=750mm ,那么长与宽的比是多少?解:略.(35b a =) 小结:上面分别采用m 、cm 、mm 三种不同的长度单位,求得的b a 的值是相等的,所以说,两条线段的比与所采用的长度单位无关,但求比时两条线段的长度单位必须一致.例3(补充)已知:一张地图的比例尺是1:32000000,量得北京到上海的图上距离大约为3.5cm ,求北京到上海的实际距离大约是多少km ?分析:根据比例尺=实际距离图上距离,可求出北京到上海的实际距离. 解: 略答:北京到上海的实际距离大约是1120 km .六、课堂练习1.教材P37的观察.2.下列说法正确的是( )A .小明上幼儿园时的照片和初中毕业时的照片相似.B .商店新买来的一副三角板是相似的.C .所有的课本都是相似的.D .国旗的五角星都是相似的.3.如图,请测量出右图中两个形似的长方形的长和宽,(1)(小)长是_______cm ,宽是_______cm ; (大)长是_______cm ,宽是_______cm ;(2)(小)=长宽 ;(大)=长宽 . (3)你由上述的计算,能得到什么结论吗?(答:相似的长方形的宽与长之比相等)4.在比例尺是1:8000000的“中国政区”地图上,量得福州与上海之间的距离时7.5cm ,那么福州与上海之间的实际距离是多少?5.AB 两地的实际距离为2500m ,在一张平面图上的距离是5cm ,那么这张平面地图的比例尺是多少?七、课后练习1.观察下列图形,指出哪些是相似图形:(答:相似图形分别是:(1)和(8);(2)和(6);(3)和(7) )2.教材P37练习1、2.3.教材P40 练习1与习题1 .教学反思27.1 图形的相似(二)一、教学目标1.知道相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等.2.会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算.二、重点、难点1.重点:相似多边形的主要特征与识别.2.难点:运用相似多边形的特征进行相关的计算.3.难点的突破方法(1)判别两个多边形是否相似,要看这两个多边形的对应角是否相等,且对应边的比是否也相等,这两个条件缺一不可;可以以矩形、菱形为例说明:仅有对应角相等,或仅有对应边的比相等的两个多边形不一定相似(见例1),也可以借助电脑直观演示,增加效果,从而纠正学生的错误认识.(2)由相似多边形的特征可知,如果已知两个多边形相似,就等于知道它们的对应角相等,对应边的比相等(对应边成比例),在计算时要能灵活运用.(3)相似比是一个很重要的概念,它实质是把一个图形放大或缩小的倍数(即相似多边形的对应边的长放大或缩小的倍数).三、例题的意图本节课安排了3个例题,例1与例3都是补充的题目,其中通过例1的学习,要让学生了解判别两个多边形是否相似,要看这两个多边形的对应角是否相等,且对应边的比是否也相等,这两个条件缺一不可;而若说明两个多边形不相似,则必须说明各角无法对应相等或各对应边的比不相等,或举出合适的反例,在解决这个问题上,依靠直觉观察是不可靠的;例2是教材P39的例题,它主要考查的是相似多边形的特征,运用相似多边形的对应角相等,对应边的比相等即可求解;例3是相似多边形特征的灵活运用(使用方程思想)的题目,在教学中还可根据自己的学生学习的程度,适当增加一些题目用以巩固相似多边形的性质.四、课堂引入1.如图的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形.2.问题:对于图中两个相似的四边形,它们的对应角,对应边的比是否相等.3.【结论】:(1)相似多边形的特征:相似多边形的对应角相等,对应边的比相等.反之,如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似.(2)相似比:相似多边形对应边的比称为相似比.问题:相似比为1时,相似的两个图形有什么关系?结论:相似比为1时,相似的两个图形全等,因此全等形是一种特殊的相似形.五、例题讲解例1(补充)(选择题)下列说法正确的是()A .所有的平行四边形都相似B .所有的矩形都相似C .所有的菱形都相似D .所有的正方形都相似分析:A 中平行四边形各角不一定对应相等,因此所有的平行四边形不一定都相似,故A 错;B 中矩形虽然各角都相等,但是各对应边的比不一定相等,因此所有的矩形不一定都相似,故B 错;C 中菱形虽然各对应边的比相等,但是各角不一定对应相等,因此所有的菱形不一定都相似,故C 也错;D 中任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似,故D 说法正确,因此此题应选D .例2(教材P39例题).分析:求相似多边形中的某些角的度数和某些线段的长,可根据相似多边形的对应角相等,对应边的比相等来解题,关键是找准对应角与对应边,从而列出正确的比例式. 解:略例3(补充)已知四边形ABCD 与四边形A 1B 1C 1D 1相似,且A 1B 1:B 1C 1:C 1D 1:D 1A 1=7:8:11:14,若四边形ABCD 的周长为40,求四边形ABCD 的各边的长.分析:因为两个四边形相似,因此可根据相似多边形的对应边的比相等来解题. 解:∵ 四边形ABCD 与四边形A 1B 1C 1D 1相似,∴ AB :BC :CD :DA= A 1B 1:B 1C 1:C 1D 1:D 1A 1.∵ A 1B 1:B 1C 1:C 1D 1:D 1A 1=7:8:11:14,∴ AB :BC :CD :DA= 7:8:11:14.设AB=7m ,则BC=8m ,CD=11m ,DA=14m .∵ 四边形ABCD 的周长为40,∴ 7m+8m+11m+14m=40.∴ m=1.∴ AB=7,则BC=8,CD=11,DA=14.六、课堂练习1.教材P40练习2、3.2.教材P41习题4.3.(选择题)△ABC 与△DEF 相似,且相似比是32,则△DEF 与△ABC 与的相似比是( ). A .32 B .23 C .52 D .94 4.(选择题)下列所给的条件中,能确定相似的有( )(1)两个半径不相等的圆;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等边三角形;(5)所有的等腰梯形;(6)所有的正六边形.A .3个B .4个C .5个D .6个5.已知四边形ABCD和四边形A1B1C1D1相似,四边形ABCD的最长边和最短边的长分别是10cm和4cm,如果四边形A1B1C1D1的最短边的长是6cm,那么四边形A1B1C1D1中最长的边长是多少?七、课后练习1.教材P41习题3、5、6.2.如图,AB∥EF∥CD,CD=4,AB=9,若梯形CDEF与梯形EFAB相似,求EF的长.※3.如图,一个矩形ABCD的长AD= a cm,宽AB= b cm,E、F分别是AD、BC的中点,连接E、F,所得新矩形ABFE与原矩形ABCD相似,求a:b的值.(2:1)教学反思27.2.1 相似三角形的判定(一)一、教学目标1.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力.2.掌握两个三角形相似的判定条件(三个角对应相等,三条边的比对应相等,则两个三角形相似)——相似三角形的定义,和三角形相似的预备定理(平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似).3.会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题.二、重点、难点1.重点:相似三角形的定义与三角形相似的预备定理.2.难点:三角形相似的预备定理的应用.3.难点的突破方法(1)要注意强调相似三角形定义的符号表示方法(判定与性质两方面),应注意两个相似三角形中,三边对应成比例,A C CA C B BC B A AB ''=''=''每个比的前项是同一个三角形的三条边,而比的后项分别是另一个三角形的三条对应边,它们的位置不能写错;(2)要注意相似三角形与全等三角形的区别和联系,弄清两者之间的关系.全等三角形是特殊的相似三角形,其特殊之处在于全等三角形的相似比为1.两者在定义、记法、性质上稍有不同,但两者在知识学习上有很多类似之处,在今后学习中要注意两者之间的对比和类比;(3)要求在用符号表示相似三角形时,对应顶点的字母要写在对应的位置上,这样就会很快地找到相似三角形的对应角和对应边;(4)相似比是带有顺序性和对应性的(这一点也可以在上一节课中提出):如△ABC ∽△A ′B ′C ′的相似比k AC CA C B BC B A AB =''=''='',那么△A ′B ′C ′∽△ABC 的相似比就是k 1CA A C BC C B AB B A =''=''='',它们的关系是互为倒数.这一点在教学中科结合相似比“放大或缩小”的含义来让学生理解;(5)“平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似”定理也可以简单称为“三角形相似的预备定理”.这个定理揭示了有三角形一边的平行线,必构成相似三角形,因此在三角形相似的解题中,常作平行线构造三角形与已知三角形相似.三、例题的意图本节课的两个例题均为补充的题目,其中例1是训练学生能正确去寻找相似三角形的对应边和对应角,让学生明确可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素:即(1)对顶角一定是对应角;(2)公共角一定是对应角;最大角或最小的角一定是对应角;(3)对应角所对的边一定是对应边;(4)对应边所对的角一定是对应角;对应边所夹的角一定是对应角.例2是让学生会运用“三角形相似的预备定理”解决简单的问题,这里要注意,此题两次用到相似三角形的对应边成比例(也可以先写出三个比例式,然后拆成两个等式进行计算),学生刚开始可能不熟练,教学中要注意引导.四、课堂引入1.复习引入(1)相似多边形的主要特征是什么?(2)在相似多边形中,最简单的就是相似三角形.在△ABC 与△A ′B ′C ′中,如果∠A=∠A ′, ∠B=∠B ′, ∠C=∠C ′, 且k AC CA C B BC B A AB =''=''=''. 我们就说△ABC 与△A ′B ′C ′相似,记作△ABC ∽△A ′B ′C ′,k 就是它们的相似比.反之如果△ABC ∽△A ′B ′C ′,则有∠A=∠A ′, ∠B=∠B ′, ∠C=∠C ′, 且AC CA C B BC B A AB ''=''=''. (3)问题:如果k=1,这两个三角形有怎样的关系?2.教材P42的思考,并引导学生探索与证明.3.【归纳】三角形相似的预备定理 平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似.五、例题讲解例1(补充)如图△ABC ∽△DCA ,AD ∥BC ,∠B=∠DCA .(1)写出对应边的比例式;(2)写出所有相等的角;(3)若AB=10,BC=12,CA=6.求AD 、DC 的长.分析:可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素.对于(3)可由相似三角形对应边的比相等求出AD 与DC 的长.解:略(AD=3,DC=5)例2(补充)如图,在△ABC 中,DE ∥BC ,AD=EC ,DB=1cm ,AE=4cm ,BC=5cm ,求DE 的长.分析:由DE ∥BC ,可得△ADE ∽△ABC ,再由相似三角形的性质,有AC AE AB AD =,又由AD=EC 可求出AD 的长,再根据ABAD BC DE =求出DE 的长. 解:略(310DE =). 六、课堂练习1.(选择)下列各组三角形一定相似的是( )A .两个直角三角形B .两个钝角三角形C .两个等腰三角形D .两个等边三角形2.(选择)如图,DE∥BC,EF∥AB,则图中相似三角形一共有()A.1对B.2对C.3对D.4对3.如图,在□ABCD中,EF∥AB,DE:EA=2:3,EF=4,求CD的长.(CD= 10)七、课后练习1.如图,△ABC∽△AED, 其中DE∥BC,写出对应边的比例式.2.如图,△ABC∽△AED,其中∠ADE=∠B,写出对应边的比例式.3.如图,DE∥BC,(1)如果AD=2,DB=3,求DE:BC的值;(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长.教学反思27.2.1 相似三角形的判定(二)一、教学目标1.初步掌握“三组对应边的比相等的两个三角形相似”的判定方法,以及“两组对应边的比相等且它们的夹角相等的两个三角形相似”的判定方法.2.经历两个三角形相似的探索过程,体验用类比、实验操作、分析归纳得出数学结论的过程;通过画图、度量等操作,培养学生获得数学猜想的经验,激发学生探索知识的兴趣,体验数学活动充满着探索性和创造性.3.能够运用三角形相似的条件解决简单的问题.二、重点、难点1. 重点:掌握两种判定方法,会运用两种判定方法判定两个三角形相似.2. 难点:(1)三角形相似的条件归纳、证明;(2)会准确的运用两个三角形相似的条件来判定三角形是否相似.3. 难点的突破方法(1)关于三角形相似的判定方法1“三组对应边的比相等的两个三角形相似”,教科书虽然给出了证明,但不要求学生自己证明,通过教师引导、讲解证明,使学生了解证明的方法,并复习前面所学过的有关知识,加深对判定方法的理解.(2)判定方法1的探究是让学生通过作图展开的,我们在教学过程中,要通过从作图方法的迁移过程,让学生进一步感受,由特殊的全等三角形到一般相似三角形,以及类比认识新事物的方法.(3)讲判定方法1时,要扣住“对应”二字,一般最短边与最短边,最长边与最长边是对应边.(4)判定方法2一定要注意区别“夹角相等” 的条件,如果对应相等的角不是两条边的夹角,这两个三角形不一定相似,课堂练习2就是通过让学生联想、类比全等三角形中SSA 条件下三角形的不确定性,来达到加深理解判定方法2的条件的目的的.(5)要让学生明确,两个判定方法说明:只要分别具备边或角的两个独立条件——“两边对应成比例,夹角相等”或“三边对应成比例”就能证明两个三角形相似.(6)要让学生学会自觉总结如何正确的选择三角形相似的判定方法:这两种方法无论哪一个,首先必需要有两边对应成比例的条件,然后又有目标的去探求另一组条件,若能找到一组角相等,而这组对应角又是两组对应边的“夹角”时,则选用判定方法2,若不是“夹角”,则不能去判定两个三角形相似;若能找到第三边也成比例,则选用判定方法1.(7)两对应边成比例中的比例式既可以写成如CA ACB A AB ''=''的形式,也可以写成C A B A AC AB ''''=的形式. (8)由比例的基本性质,“两边对应成比例”的条件也可以由等积式提供.三、例题的意图本节课安排的两个例题,其中例1是教材P46的例1,此例题是为了巩固刚刚学习过的两种三角形相似的判定方法,(1)是复习巩固“两组对应边的比相等且它们的夹角相等的两个三角形相似”的判定方法;(2)是复习巩固“三组对应边的比相等的两个三角形相似” 的判定方法.通过此例题要让学生掌握如何正确的选择三角形相似的判定方法.例2是补充的题目,它既运用了三角形相似的判定方法2,又运用了相似三角形的性质,有一点综合性,由于学生刚开始接触相似三角形的题目,而本节课的内容有较多,故此例题可以选讲.四、课堂引入1.复习提问:(1) 两个三角形全等有哪些判定方法?(2) 我们学习过哪些判定三角形相似的方法?(3) 全等三角形与相似三角形有怎样的关系?(4) 如图,如果要判定△ABC 与△A’B’C’相似,是不是一定需要一一验证所有的对应角和对应边的关系? 2.(1)提出问题:首先,由三角形全等的SSS 判定方法,我们会想如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么能否判定这两个三角形相似呢?(2)带领学生画图探究;(3)【归纳】三角形相似的判定方法1 如果两个三角形的三组对应边的比相等, 那么这两个三角形相似.3.(1)提出问题:怎样证明这个命题是正确的呢?(2)教师带领学生探求证明方法.4.用上面同样的方法进一步探究三角形相似的条件:(1)提出问题:由三角形全等的SAS 判定方法,我们也会想如果一个三角形的两条边与另一个三角形的两条边对应成比例,那么能否判定这两个三角形相似呢?(2)让学生画图,自主展开探究活动.(3)【归纳】三角形相似的判定方法2 两个三角形的两组对应边的比相等,且它们的夹角相等,那么这两个三角形相似.五、例题讲解例1(教材P46例1)分析:判定两个三角形是否相似,可以根据已知条件,看是不是符合相似三角形的定义或三角形相似的判定方法,对于(1)由于是已知一对对应角相等及四条边长,因此看是否符合三角形相似的判定方法2“两组对应边的比相等且它们的夹角相等的两个三角形相似”,对于(2)给的几个条件全是边,因此看是否符合三角形相似的判定方法1“三组对应边的比相等的两个三角形相似”即可,其方法是通过计算成比例的线段得到对应边.解:略※例2 (补充)已知:如图,在四边形ABCD 中,∠B=∠ACD ,AB=6,BC=4,AC=5,CD=217,求AD 的长.分析:由已知一对对应角相等及四条边长,猜想应用“两组对应边的比相等且它们的夹角相等”来证明.计算得出ACCD CD AB =,结合∠B=∠ACD ,证明△ABC ∽△DCA ,再利用相似三角形的定义得出关于AD 的比例式ADAC AC CD =,从而求出AD 的长. 解:略(AD=425). 六、课堂练习1.教材P47.2.2.如果在△ABC 中∠B=30°,AB=5㎝,AC=4㎝,在△A’B’C’中,∠B’=30°A’B’=10㎝,A’C’=8㎝,这两个三角形一定相似吗?试着画一画、看一看?3.如图,△ABC 中,点D 、E 、F 分别是AB 、BC 、CA 的中点,求证:△ABC ∽△DEF .七、课后练习1.教材P47.1、3.2.如图,AB•AC=AD•AE ,且∠1=∠2,求证:△ABC ∽△AED .※3.已知:如图,P 为△ABC 中线AD 上的一点,且BD 2=PD •AD ,求证:△ADC ∽△CDP .教学反思27.2.1 相似三角形的判定(三)一、教学目标1.经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力.2.掌握“两角对应相等,两个三角形相似”的判定方法.3.能够运用三角形相似的条件解决简单的问题.二、重点、难点1.重点:三角形相似的判定方法3——“两角对应相等,两个三角形相似”2.难点:三角形相似的判定方法3的运用.3.难点的突破方法(1)在两个三角形中,只要满足两个对应角相等,那么这两个三角形相似,这是三角形相似中最常用的一个判定方法.(2)公共角、对顶角、同角的余角(或补角)、同弧上的圆周角都是相等的,是判别两个三角形相似的重要依据.(3)如果两个三角形是直角三角形, 则只要再找到一对锐角相等即可说明这两个三角形相似.三、例题的意图本节课安排了两个例题,例1是教材P48的例2,是一个圆中证相似的题目,这个题目比较简单,可以让学生来分析、让学生说出思维的方法、让学生自己写出证明过程.并让学生掌握遇到等积式,应先将其化为比例式的方法.例2是一个补充的题目,选择这个题目是希望学生通过这个题的学习,掌握利用三角形相似的知识来求线段长的方法,为下节课学习“27.2.2 相似三角形的应用举例”打基础.四、课堂引入1.复习提问:(1)我们已学习过哪些判定三角形相似的方法?(2)如图,△ABC 中,点D 在AB 上,如果AC 2=AD •AB ,那么△ACD 与△ABC 相似吗?说说你的理由.(3)如(2)题图,△ABC 中,点D 在AB 上,如果∠ACD=∠B ,那么△ACD 与△ABC 相似吗?——引出课题.(4)教材P48的探究3 .五、例题讲解例1(教材P48例2).分析:要证PA •PB=PC •PD ,需要证PBPC PD PA ,则需要证明这四条线段所在的两个三角形相似.由于所给的条件是圆中的两条相交弦,故需要先作辅助线构造三角形,然后利用圆的性质“同弧上的圆周角相等”得到两组角对应相等,再由三角形相似的判定方法3,可得两三角形相似.证明:略(见教材P48例2).例2 (补充)已知:如图,矩形ABCD 中,E 为BC 上一点,DF ⊥AE 于F ,若AB=4,AD=5,AE=6,求DF 的长.分析:要求的是线段DF 的长,观察图形,我们发现AB 、AD 、AE 和DF 这四条线段分别在△ABE 和△AFD 中,因此只要证明这两个三角形相似,再由相似三角形的性质可以得到这四条线段对应成比例,从而求得DF 的长.由于这两个三角形都是直角三角形,故有一对直角相等,再找出另一对角对应相等,即可用“两角对应相等,两个三角形相似”的判定方法来证明这两个三角形相似.解:略(DF=310). 六、课堂练习1.教材P49的练习1、2.2.已知:如图,∠1=∠2=∠3,求证:△ABC ∽△ADE .3.下列说法是否正确,并说明理由.(1)有一个锐角相等的两直角三角形是相似三角形;(2)有一个角相等的两等腰三角形是相似三角形.七、课后练习1. 已知:如图,△ABC 的高AD 、BE 交于点F . 求证:FDEF BF AF .2.已知:如图,BE 是△ABC 的外接圆O 的直径,CD 是△ABC 的高.(1)求证:AC •BC=BE •CD ;(2)若CD=6,AD=3,BD=8,求⊙O 的直径BE 的长.教学反思27.2.2 相似三角形的应用举例一、教学目标1. 进一步巩固相似三角形的知识.2. 能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题、盲区问题)等的一些实际问题.3. 通过把实际问题转化成有关相似三角形的数学模型,进一步了解数学建模的思想,培养分析问题、解决问题的能力.二、重点、难点1.重点:运用三角形相似的知识计算不能直接测量物体的长度和高度.2.难点:灵活运用三角形相似的知识解决实际问题(如何把实际问题抽象为数学问题).。

九年级数学《相似-数学活动》教学设计

九年级数学《相似-数学活动》教学设计

《第27章相似数学活动》教学设计1. 教材内容义务教育课程标准实验教科书(人教版)《数学》九年级下册第27章相似数学活动。

2.知识背景分析本章隶属于“图形与几何”领域。

在前面,学生已经学过了全等和全等三角形的有关知识,也研究了几种图形的全等变换。

“全等”是图形间的一种关系,具有这种关系的两个图形叠合在一起,能够完全重合,也就是它们的形状、大小完全相同。

“相似”也是指图形间的一种相互关系,,但它与“全等”不同,这两个图形仅仅形状相同,大小不一定相同。

其中一个图形可以看成是另一个图形按一定比例放大或缩小得到的。

这种变换是相似变换。

当放大或缩小的比例为1时,这两个图形就是全等的。

全等是相似的一种特殊情况,从这个意义上讲,研究相似比研究全等更具有一般性,所以这一章所研究的问题实际上是在研究图形的全等和一些全等变换基础上的拓广和发展。

在后面,学生还要学习“锐角三角函数”和“投影与视图”的知识,学习这些内容,都要用到相似的知识。

在物理中,学习力学、光学等,也都要用到相似的知识。

因此这一章的内容也是今后学习所必须的基础知识。

另外,在实际生活中的建筑设计、测量、绘图等许多方面,也都要用到相似的有关知识。

因此这一章内容对于学生今后从事各种实际工作也具有重要的作用。

本章共有三节内容:第1节图形的相似主要介绍相似图形,相似多边形的概念,并探索相似多边形的性质;第2节相似三角形主要研究相似三角形的判定方法、相似三角形在测量中的应用及相似三角形的周长和面积;第3节位似研究了一种特殊的相似-位似,研究了位似图形的画法及平面直角坐标系中的位似变化。

本节活动课是在学习前三节的基础上进行的,本章数学活动有两个,一个是测量旗杆的的高度,一个是位似变换与艺术字。

测量旗杆﹙某些不能直接度量的物体的高度﹚的高度,是综合运用相似知识的良好机会。

通过测量旗杆的的高度,可以使学生综合运用相似三角形的判定和性质解决问题,发展学生的应用意识,加深学生对于相似三角形的理解和认识。

九年级数学《相似-复习课》教案

九年级数学《相似-复习课》教案

《第27章相似》复习课教学设计1.教材内容义务教育课程标准实验教科书(人教版)《数学》九年级下册第27章相似的全章复习。

2.知识背景分析本章隶属于“空间与图形”领域,本章共有三节内容第1节图形的相似主要介绍相似图形,相似多边形的概念,并探索相似多边形的性质;第2节相似三角形主要研究相似三角形的判定方法、相似三角形在测量中的应用及相似三角形的周长和面积;第3节位似研究了一种特殊的相似-位似,研究了位似图形的画法及平面直角坐标系中的位似变化。

本节课是在学习前三节的基础上进行的,通过对一些图形性质的探索、证明等,进一步发展学生的探究能力,培养学生的逻辑思维能力等。

3.学情背景分析教学对象是九年级学生,学生的逻辑思维能力得到了一定的发展。

本章正处于学生对于掌握的推理论证方法的进一步巩固和提高阶段,要求学生能熟练运用综合法证明命题,熟悉探索法德推理过程,因此在教学中要注意多帮助学生复习已有的知识,做到以新带旧,新旧结合。

要加强解题思路的分析,帮助学生树立已知与未知,简单与复杂,特殊与一般在一定的条件下可以转换的思想,使学生学会把未知化为已知,把复杂问题化为简单问题,把一般问题化为特殊问题的思考方法。

通过小结对于学生推理证明的训练,进一步提高学生的逻辑思维能力和分析解决问题的能力。

4.学习目标4.1知识与技能目标(1)通过复习,梳理本章知识,构建知识网络.(2)通过具体实例认识图形的相似,探索相似图形的性质,知道相似多边形的对应角相等,对应边成比例,面积的比等于对应边的比的平方。

(3)了解两个三角形相似的概念,探索两个三角形相似的条件。

(4)了解图形的位似,能够利用位似将一个图形放大或缩小。

(5)通过典型实例观察和认识现实生活中物体的相似,使学生综合运用图形的相似解决一些实际问题。

(5)在同一直角坐标系中,感受图形变换后点的坐标的变化特点。

4.2过程与方法目标经历小结的过程,使学生学会建立本章的知识结构图。

新人教版九年级下册-第27章-相似-全章教案

新人教版九年级下册-第27章-相似-全章教案

初三数学九(下)第二十七章:相似第1课时图形的相似(1)教学目标:1、知识目标:从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念.2、能力目标:在相似图形的探究过程中,让学生运用“观察—比较—猜想”分析问题.3、情感目标:在探究相似图形的过程中,培养学生与他人交流、合作的意识和品质.重点、难点教学重点: 认识图形的相似.教学难点: 理解相似图形概念.一.创设情境活动1观察图片,体会相似图形同学们,请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?(课本图27.1-1)( 课本图27.1-2)师生活动: 教师出示图片,提出问题;学生观察,小组讨论;师生共同交流.得到相似图形的概念.教师活动:什么是相似图形?学生活动:共同交流,得到相似图形的概念.学生归纳总结:(板书)形状相同的图形叫做相似图形在活动中,教师应重点关注:学生用数学的语言归纳相似图形的概念;活动2思考:如图27.1-3是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?学生活动: 学生观察思考,小组讨论回答;二. 通过练习巩固相似图形的概念活动3练习问题:1.如图,从放大镜里看到的三角尺和原来的三角尺相似吗?2.如图,图形a~f中,哪些是与图形(1)或(2)相似的?教师活动:教师出示图片,提出问题;学生活动:学生看书观察,小组讨论后回答问题.教师活动:在活动中,教师应重点关注:在练习中检验学生对相似图形的几何直觉.三. 小结巩固活动3(1)谈谈本节课你有哪些收获.(2)课外作业1、下列说法正确的是()A.小明上幼儿园时的照片和初中毕业时的照片相似.B.商店新买来的一副三角板是相似的.C.所有的课本都是相似的.D.国旗的五角星都是相似的.2、填空题1、形状的图形叫相似形;两个图形相似,其中一个图形可以看作由另一个图形的或而得到的。

课后反思:第2课时 图形的相似 (2)教学目标:1、 知识目标:(1)理解相似三角形的概念,了解相似三角形的对应元素及相似比; (2)掌握判定三角形相似的预备定理。

人教版九年级数学下册《第二十七章 相似》教案

人教版九年级数学下册《第二十七章 相似》教案

人教版九年级数学下册《第二十七章相似》教案一. 教材分析人教版九年级数学下册《第二十七章相似》主要讲述了相似图形的性质和判定方法。

本章内容包括相似图形的定义、相似比、相似多边形的性质、相似三角形的性质和判定、相似圆的性质和判定等。

这些内容是学生学习几何学的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析九年级的学生已经具备了一定的几何基础,对图形有了一定的认识。

但是,对于相似图形的定义和性质,学生可能还比较陌生,需要通过具体的例子和实践活动来加深理解。

此外,学生对于图形的变换和判定方法可能还不够熟练,需要通过大量的练习来提高。

三. 教学目标1.理解相似图形的定义和性质,能够判断两个图形是否相似。

2.掌握相似三角形的性质和判定方法,能够应用到实际问题中。

3.培养学生的空间想象能力和逻辑思维能力,提高解决问题的能力。

四. 教学重难点1.相似图形的定义和性质的理解。

2.相似三角形的性质和判定方法的掌握。

3.图形变换的熟练运用。

五. 教学方法1.采用问题驱动的教学方法,通过引导学生思考和探索,激发学生的学习兴趣和积极性。

2.利用多媒体和实物模型,进行直观演示和操作,帮助学生建立直观的空间想象能力。

3.提供丰富的练习题,进行巩固和拓展,提高学生的解题能力。

六. 教学准备1.多媒体教学设备。

2.实物模型和图片。

3.练习题和答案。

七. 教学过程1.导入(5分钟)通过展示一些相似的图形,如字母“A”和“a”,让学生观察和思考,引出相似图形的概念。

2.呈现(10分钟)讲解相似图形的定义和性质,通过具体的例子和实物模型进行演示,让学生理解和掌握相似图形的特征。

3.操练(10分钟)让学生进行一些类似的练习题,巩固对相似图形的理解和判断能力。

可以提供一些提示和指导,帮助学生解决问题。

4.巩固(10分钟)通过一些综合性的练习题,让学生应用相似图形的性质和判定方法,解决实际问题。

教师可以给予一些帮助和指导,鼓励学生独立思考和解决问题。

人教版九年级下册第二十七章相似教学设计

人教版九年级下册第二十七章相似教学设计
(三)情感态度与价值观
1.培养学生对几何图形的审美观念,激发他们对几何学的兴趣。
-通过展示美丽的几何图形,让学生感受几何图形的美,培养他们的审美情趣。
-通过解决实际问题,让学生体会几何学的实用价值,提高他们对几何学的兴趣。
2.培养学生勇于探索、积极思考的学习态度,形成良好的学习习惯。
-在教学过程中,注重鼓励学生提问、质疑,培养他们勇于探索的精神。
1.教学活动设计:
-以生活中的实例导入新课,如展示一组形状相似但大小不同的物体(如照片、玩具等),引导学生观察并思考它们之间的关系。
-提问:“同学们,你们在生活中遇到过形状相似但大小不同的物体吗?它们之间有什么共同特征?”
-通过学生回答,引出相似图形的概念。
2.教学目标:
-激发学生对相似图形的兴趣,调动他们的学习积极性。
-引导学生运用演绎推理和合情推理,证明相似图形的性质,提高他们的逻辑思维能力。
2.学会运用小组合作、讨论交流等学习方法,提高解决问题的能力。
-在课堂教学中,组织学生进行小组合作,共同探讨相似图形的问题,培养他们的团队协作能力和沟通能力。
-鼓励学生在课堂上积极发言,分享自己的思考过程和解决方案,提高他们的表达能力和自信心。
-结合实际案例,让学生了解相似在实际生活中的应用。
(三)学生小组讨论
1.教学活动设计:
-将学生分成小组,针对给定的问题或案例进行讨论,如相似三角形的判定、相似图形的应用等。
-各小组派代表分享讨论成果,其他小组进行评价和补充。
2.教学目标:
-培养学生的团队协作能力和沟通能力。
-通过讨论交流,巩固学生对相似图形性质的理解,提高他们解决问题的能力。
-对本节课的主要内容进行总结,强调相似图形的定义、判定方法及性质应用。

初中数学九年级下册《相似》大单元教学设计

初中数学九年级下册《相似》大单元教学设计

初中数学人教版九年级下册《相似》大单元教学设计一、教材分析本节内容选于人版教材九年级(下),本章在已学习“全等图形”的基础上,以认识相似图形(即形态相同图形)为核心内容,在本节课的学习过程中,通过几何画板软件,让学生充分感受到相似图形的魅力,通过动手操作画出相似图形,体会相似图形在现实中的应用,进一步增强学生的数学应用意识,通过几个小游戏让学生充分领略到学习的乐趣。

本节课重在学生自己动脑、动手,培养创造精神和探究意识,因而在教学中,教师要热情鼓励学生自主探究和大胆创新,对每一位同学作品给予鼓励和足够的重视。

二、学情分析学生已经学习了平行线的知识以及图形的全等,对两个图形之间的关系有了一定的理解和认识,并且大部分学生能够熟练运用学过的知识解决问题。

本章的学习,学生通过大量的现实情景,从“相似”这个角度认识了图形的另一种关系,丰富了学生对图形的直观体验,学生已经具备了一定的分析理解能力和逻辑推理能力。

三、新课标要求1、了解比例的基本性质、线段的比、成比例的线段;通过建筑、艺术上的实例了解黄金分割。

2、通过具体实例认识图形的相似。

了解相似多边形和相似比。

3、掌握基本事实:两条直线被一组平行线所截,所得的对应线段成比例。

4、了解相似三角形的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似。

*了解相似三角形判定定理的证明。

5、了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方。

6、了解图形的位似,知道利用位似可以将一个图形放大或缩小。

7、会利用图形的相似解决一些简单的实际问题。

四、单元教学目标1、在研究与图形相似有关的问题中,经历观察、操作、类比、归纳、交流等过程,进一步发展几何直观、空间观念和推理能力,发展发现问题、提出问题、解决问题的能力,积累数学活动经验。

2、了解线段的比、成比例线段,掌握比例的性质及平行线分线段成比例的基本事实。

新人教版九年级数学下册《第二十七章 相似 》全章教案

新人教版九年级数学下册《第二十七章 相似 》全章教案

第二十七章相似第1课时(p24-25)27.1图形的相似(一)一、教学目标理解并掌握两个图形相似的概念.二、重点、难点1.重点:相似图形的概念与运用概念.2.难点:运用概念.三、课堂引入1.(1)请同学们看黑板正上方的五星红旗,五星红旗上的大五角星与小五角星他们的形状、大小有什么关系?再如教材P24画面,他们的形状、大小有什么关系.(还可以再举几个例子)(2)相似图形概念:把形状相同的图形说成是相似图.(强调:见前面)(3)让学生再举几个相似图形的例子.2.问题:如果把老师手中的教鞭与铅笔,分别看成是两条线段AB和CD,那么这两条线段的长度比是多少?归纳:两条线段的比,就是两条线段长度的比.四、例题讲解(补充:选择题)如图,下面右边的四个图形中,与左边的图形相似的是()分析:因为图A是把图拉长了,而图D是把图压扁了,因此它们与左图都不相似;图B是正六边形,与左图的正五边形的边数不同,故图B与左图也不相似;而图C 是将左图绕正五边形的中心旋转180º后,再按一定比例缩小得到的,因此图C 与左图相似,故此题应选C.例(补充)已知:一张地图的比例尺是1:32000000,量得北京到上海的图上距离大约为3.5cm ,求北京到上海的实际距离大约是多少km ?分析:根据比例尺=实际距离图上距离,可求出北京到上海的实际距离.解: 略答:北京到上海的实际距离大约是1120 km .五、课堂练习 教材P25的练习题。

六.板书:根据比例尺=实际距离图上距离七、教学后记:27.1 图形的相似(二)第2课时(p36-38)一、教学目标1.知道相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等.2.会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算.二、重点、难点1.重点:相似多边形的主要特征与识别.2.难点:运用相似多边形的特征进行相关的计算.三、例题的意图第26页内容的学习,要让学生了解判别两个多边形是否相似,要看这两个多边形的对应角是否相等,且对应边的比是否也相等,这两个条件缺一不可;而若说明两个多边形不相似,则必须说明各角无法对应相等或各对应边的比不相等,或举出合适的反例,在解决这个问题上,依靠直觉观察是不可靠的.四、课堂引入1.第26页内容:对于图中两个相似的四边形,它们的对应角,对应边的比是否相等.2.【结论】:(1)相似多边形的特征:相似多边形的对应角相等,对应边的比相等.反之,如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似.(2)相似比:相似多边形对应边的比称为相似比.问题:相似比为1时,相似的两个图形有什么关系?结论:相似比为1时,相似的两个图形全等,因此全等形是一种特殊的相似形.五、例题讲解例1(补充)(选择题)下列说法正确的是()A.所有的平行四边形都相似 B.所有的矩形都相似C.所有的菱形都相似 D.所有的正方形都相似分析:A中平行四边形各角不一定对应相等,因此所有的平行四边形不一定都相似,故A错;B中矩形虽然各角都相等,但是各对应边的比不一定相等,因此所有的矩形不一定都相似,故B错;C中菱形虽然各对应边的比相等,但是各角不一定对应相等,因此所有的菱形不一定都相似,故C也错;D中任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似,故D说法正确,因此此题应选D.例(教材P26例题).分析:求相似多边形中的某些角的度数和某些线段的长,可根据相似多边形的对应角相等,对应边的比相等来解题,关键是找准对应角与对应边,从而列出正确的比例式.解:略例(补充)已知四边形ABCD与四边形A1B1C1D1相似,且A1B1:B1C1:C1D1:D1A1=7:8:11:14,若四边形ABCD的周长为40,求四边形ABCD的各边的长.分析:因为两个四边形相似,因此可根据相似多边形的对应边的比相等来解题.解:∵四边形ABCD与四边形A1B1C1D1相似,∴ AB:BC:CD:DA= A1B1:B1C1:C1D1:D1A1.∵ A1B1:B1C1:C1D1:D1A1=7:8:11:14,∴ AB:BC:CD:DA= 7:8:11:14.设AB=7m,则BC=8m,CD=11m,DA=14m.∵四边形ABCD的周长为40,∴ 7m+8m+11m+14m=40.∴ m=1.∴ AB=7,则BC=8,CD=11,DA=14.六、课堂练习1.教材P27练习1、2、3.2.教材P27习题1、2、4.七、课堂练习教材P27习题3、5.八、板书:1、相似多边形的特征:相似多边形的对应角相等,对应边的比相等.2、相似比:相似多边形对应边的比称为相似比.九、教学后记:27.2.1 相似三角形的判定(一)第3课时一、教学目标1.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力.2.掌握两个三角形相似的判定条件(三个角对应相等,三条边的比对应相等,则两个三角形相似)——相似三角形的定义,和三角形相似的预备定理(平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似). 3.会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题. 二、重点、难点1.重点:相似三角形的定义与三角形相似的定理. 2.难点:三角形相似的预备的应用. 三、课堂引入 1.复习引入(1)相似多边形的主要特征是什么?(2)在相似多边形中,最简单的就是相似三角形.在△ABC 与△A ′B ′C ′中,如果∠A=∠A ′, ∠B=∠B ′, ∠C=∠C ′, 且k A C CAC B BC B A AB =''=''=''. 我们就说△ABC 与△A ′B ′C ′相似,记作△ABC ∽△A ′B ′C ′,k 就是它们的相似比.反之如果△ABC ∽△A ′B ′C ′,则有∠A=∠A ′, ∠B=∠B ′, ∠C=∠C ′, 且A C CAC B BC B A AB ''=''=''. (3)问题:如果k=1,这两个三角形有怎样的关系?2.教材P29“探究”,导出:(1)、平行线分线段成比例定理:按第41页内容讲解。

人教版九年级数学下册第二十七章《相似》同步教学设计

人教版九年级数学下册第二十七章《相似》同步教学设计
(2)选择题:选择正确的相似判定方法或性质。
(3)解答题:运用相似知识解决实际问题。
3.学生解答:学生在规定时间内完成练习题,教师进行巡回指导。
(五)总结归纳
1.教学活动:教师对本节课的知识点进行总结,强调相似图形的判定方法、性质及其实际应用。
2.学生反馈:学生分享自己在课堂上的收获和感悟,提出疑问。
3.分析相似三角形的性质:教师引导学生通过观察、分析,发现相似三角形的对应边、对应角之间的比例关系,总结相似三角形的性质。
4.结合实例:教师通过具体实例,如地图比例尺、摄影作品中的相似图形等,讲解相似知识在实际中的应用。
(三)学生小组讨论
1.教学活动:将学生分成若干小组,针对以下问题展开讨论:
(1)相似三角形的判定方法有哪些?
(2)相似三角形的性质有哪些?
(3)相似知识在生活中有哪些应用?
2.学生讨论:学生在小组内进行讨论,分享自己的看法和发现。
3.小组汇报:各小组汇报讨论成果,教师进行点评和总结。
(四)课堂练习
1.教学活动:教师设计具有代表性的练习题,让学生独立完成,巩固相似知识。
2.练习题类型:
(1)判断题:判断给定图形是否相似,并说明理由。
4.引入新课:今天我们将学习相似图形的相关知识,了解它们的特点和判定方法,并学会运用相似知识解决实际问题。
(二)讲授新知
1.教学活动:教师讲解相似图形的概念,通过示例进行解释,使学生理解相似图形的内涵。
2.讲解相似三角形的判定方法:教师引导学生回顾全等三角形的判定方法,进而引出相似三角形的判定方法,如两边对应成比例且夹角相等、三边对应成比例等。
4.培养学生的团队协作能力,通过小组讨论、交流,共同解决几何问题。
(三)情感态度与价值观

人教版数学九年级下册数学:第27章 相似 同步教案(全章)

人教版数学九年级下册数学:第27章  相似   同步教案(全章)

第二十七章相似27.1 图形的相似第1课时相似图形教学目标1.通过对事物图形的观察、思考和分析,认识相似的图形.2.经历动手操作的活动过程,增强学生的观察和动手能力.3.体会图形的相似在现实生活中的存在与应用,进一步提高学生的数学应用意识.预习反馈阅读教材P24~25,弄清楚相似图形的概念,能正确判断两个图形是否相似.并完成下列预习内容.①把形状相同的图形叫做相似图形.②两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.③从放大镜里看到的三角板和原来的三角板相似吗?相似.④哈哈镜中人的形象与本人相似吗?不相似.⑤全等三角形相似吗?相似.⑥生活中哪些地方会见到相似图形?答案不唯一.【点拨】研究几何主要是研究几何图形的形状、大小与位置,只要形状相同的两个图形就叫做相似图形.例题讲解:例1下列各图中哪组图形是相似图形(C)A BC D【点拨】观察图形,要从本质入手,如C,将小图的位置稍加旋转就可以发现它们是相似图形.【跟踪训练1】下列图形中,不是相似图形的是(C)A BC D【跟踪训练2】(教材P25练习2)如图,图形(a)~(f)中,哪些与图形(1)或(2)相似?解:(d)与(1)相似,(e)与(2)相似.巩固训练1.如图所示各组图形中,两个图形形状不相同的是(C)A BC D2.下列图形中:①放大镜下的图片与原来的图片;②幻灯片的底片与投影在屏幕上的图象;③天空中两朵白云的照片;④卫星上拍摄的长城照片与相机拍摄的长城照片.其中相似的组数有(C)A.4组B.3组C.2组D.1组课堂小结1.本节课学习了哪些主要内容?2.全等三角形和相似三角形有哪些区别和联系?第2课时相似多边形与比例线段教学目标1.结合现实情境了解成比例线段,并能运用比例线段进行计算求值,理解并掌握相似多边形的性质以及运用相似多边形的性质解决实际问题.2.在探索过程中激发学生的求知欲,发展学生的交流合作精神.预习反馈阅读教材P26~27,理解并掌握“相似多边形”及“相似比”的概念,并完成下列预习内容:①对于四条线段a,b,c,d,如果其中两条线段的比等于另两条线段的比,如ab=cd(即ad=bc),那么我们就说这四条线段是成比例.②相似多边形的对应角相等,对应边成比例.③相似多边形对应边的比称为相似比,当相似比为1,这两个多边形全等.④用一个放大镜看一个四边形ABCD,若该四边形的边长放大5倍,下列说法正确的是(B)A.角A是原来的5倍B.周长是原来的5倍C.每一个内角都发生了变化D .以上说法都不对 例题讲解:例1 下列图形中,不一定相似的是(D) A .任意两个等腰直角三角形 B .任意两个等边三角形 C .任意两个正方形 D .任意两个菱形【跟踪训练1】 下列四组图形中,一定相似的是(D) A .正方形与矩形 B .正方形与菱形C .菱形与菱形D .正五边形与正五边形例2 (教材P26例)如图,四边形ABCD 和EFGH 相似,求角α,β的大小和EH 的长度x.【解答】 因为四边形ABCD 和EFGH 相似,所以它们的对应角相等,由此可得,α=∠C =83°,∠A =∠E =118°.在四边形ABCD 中,∠β=360°-(78°+83°+118°)=81°.因为四边形ABCD 和EFGH 相似,所以它们的对应边成比例,由此可得EH AD =EF AB ,即x 21=2418.解得x =28.【点拨】 相似多边形对应边成比例,关键要理解“对应”二字.【跟踪训练2】 如图,DE ∥BC ,DE =3,BC =9,AD =1.5,AB =4.5,AE =1.4,AC =4.2. (1)求AD AB ,AE AC ,DEBC 的值;(2)求证:△ADE 与△ABC 相似.解:(1)AD AB =1.54.5=13,AE AC =1.44.2=13,DE BC =39=13.(2)证明:∵DE ∥BC , ∴∠D =∠B ,∠E =∠C.又∵∠DAE =∠BAC ,AD AB =AE AC =DEBC,∴△ADE 与△ABC 相似. 例3 已知A ,B 两地的实际距离AB =5 km ,画在地图上的距离CD =2 cm ,则这张地图的比例尺是1∶250__000. 【点拨】 图上距离与实际距离的比叫做比例尺.【跟踪训练3】 (教材P27练习1)在比例尺为1∶10 000 000的地图上,量得甲、乙两地的距离是30 cm ,求两地的实际距离.解:设两地的实际距离为x.30x =110 000 000. 解得x =300 000 000.∵300 000 000 cm =3 000 km.∴两地的实际距离为3 000 km.巩固训练 1.下列各组线段中,成比例线段的是(B)A .1,2,3,4B .1,2,2,4C .3,5,9,13D .1,2,2,3 2.下列各组图形中,必定相似的是(D) A .两个等腰三角形B .各有一个角是40°的两个等腰三角形C .两条边之比都是2∶3的两个直角三角形D .有一个角是100°的两个等腰三角形3.在一张由复印机出来的纸上,一个多边形的一条边由原来的1 cm 变成了4 cm ,那么这次复印的放缩比例为4∶1.4.把矩形对折后得到的矩形和原来的矩形相似,那么这个矩形的长与宽之比为2.5.已知三个数,1,2,3,请你再添上一个(只填一个)数,使它们能构成一个比例式,则这个数是23. 6.在两个相似的五边形中,一个边长分别为1,2,3,4,5,另一个最大边为8,则后一个五边形的周长是多少?解:另一个五边形的周长为24. 课堂小结1.本节课学习了哪些内容?2.如何根据相似多边形的概念判断多边形相似?27.2 相似三角形 27.2.1 相似三角形的判定 第1课时 平行线分线段成比例教学目标1.理解相似三角形的概念.2.掌握平行线分线段成比例的基本事实及推论. 3.掌握判定三角形相似的预备定理. 预习反馈阅读教材P29~31,弄懂相似三角形的概念,理解平行线分线段成比例定理和相似三角形判定的预备定理.并完成下面的预习内容.①如果△ABC ∽△A 1B 1C 1,且相似比为k ,那么△A 1B 1C 1∽△ABC 的相似比为1k.②如图,l 1,l 2分别被l 3,l 4,l 5所截,且l 3∥l 4∥l 5,则AB 与DE 对应,BC 与EF 对应,DF 与AC 对应;AB BC =(DE )(EF ),AB (AC )=(DE )DF ,AB DE =(BC )(EF )=(AC )(DF ).③平行于三角形一边的直线与其他两边(或延长线)相交所构成的三角形与原三角形相似. 【点拨】 找准对应线段是关键. 例题讲解:例1 (教材补充例题)如图,DE ∥BC ,则下面比例式不成立的是(B)A.ADAB=AEACB.DEBC=ECACC.ADDB=AEECD.BCDE=ACAE【跟踪训练1】如图所示,已知AB∥CD∥EF,那么下列结论正确的是(A)A.ADDF=BCCEB.BCCE=DFADC.CDEF=BCBED.CDEF=ADAF例2(教材补充例题)如图,ED∥BC,EC,BD相交于点A,过A的直线交ED,BC分别于点M,N,则图中有相似三角形(C)A.1对B.2对C.3对D.4对【跟踪训练2】如图,在△ABC中,点D在BC上,EF∥BC,分别交AB,AC,AD于点E,F,G,图中共有几对相似三角形?分别是哪几对?解:共有3对相似三角形,分别是:△AEG∽△ABD,△AGF∽△ADC,△AEF∽△ABC.巩固训练1.如图所示,若△ABC∽△DEF,则∠E的度数为(C)A.28°B.32°C.42° D.52°2.如图,在▱ABCD中,点E在边AD上,射线CE,BA交于点F,下列等式成立的是(C)A.AE ED =CE EFB.AE ED =CD AFC.AE ED =FA ABD.AE ED =FE FC3.如图,在△ABC 中,DE ∥BC ,DE =2,BC =6,AD =3,求BD 的长.解:∵DE ∥BC , ∴△ADE ∽△ABC. ∴AD AB =DE BC ,即3AB =26. ∴AB =9.∴BD =AB -AD =9-3=6. 课堂小结1.本节课我们学习了哪些内容?2.当平行线与三角形两边的延长线相交,所构成的三角形与原三角形相似吗?第2课时 相似三角形的判定定理1,2教学目标掌握三边成比例的两个三角形相似和两边成比例且夹角相等的两个三角形相似这两个判定三角形相似的定理. 预习反馈阅读教材P32~34,理解相似三角形判定定理1与判定定理2.完成下列预习内容. ①如果两个三角形的三组边对应成比例,那么这两个三角形相似.②如果两个三角形的两组对应边的比相等,并且夹角相等,那么这两个三角形相似.③下列是两位同学运用相似三角形的定义判定两个三角形是否相似,你认为他们的说法是否正确?为什么?并写出你的解答.判断如图所示的两个三角形是否相似,简单说明理由.甲同学:这两个三角形的三个内角虽然分别相等,但是它们的边的比不相等,AC IJ ≠AB HJ ≠BCHI ,所以他们不相似.乙同学:这两个三角形的三个内角分别相等,对应边之比也相等,所以它们相似.解:甲同学的说法不正确,甲同学所分析的边的比不是对应边的比,根据相似三角形的概念,甲同学的说法不正确;根据相似三角形的概念,乙同学的说法正确.【点拨】 判断三角形相似要注意对应关系,找对应边和对应角时可类比全等三角形中找对应边和对应角的方法.例题讲解:例1 (教材P33例1(1))根据下列条件,判断△ABC 与△A ′B ′C ′是否相似,并说明理由: AB =4 cm ,BC =6 cm ,AC =8 cm ,A ′B ′=12 cm ,B ′C ′=18 cm ,A ′C ′=24 cm.【解答】 ∵AB A ′B ′=412=13,BC B ′C ′=618=13,AC A ′C ′=824=13,∴AB A ′B ′=BC B ′C ′=ACA ′C ′.∴△ABC ∽△A ′B ′C ′.【跟踪训练1】 如图,在△ABC 中,AB =25,BC =40,AC =20,在△ADE 中,AE =12,AD =15,DE =24,试判断这两个三角形是否相似,并说明理由.解:相似.理由:∵AC AE =2012=53,AB AD =2515=53,BC DE =4024=53,∴AC AE =AB AD =BCDE.∴△ABC ∽△ADE. 例2 (教材P33例1(2))根据下列条件,判断△ABC 与△A ′B ′C ′是否相似,并说明理由: ∠A =120°,AB =7 cm ,AC =14 cm ,∠A ′=120°,A ′B ′=3 cm ,A ′C ′=6 cm.【解答】 ∵AB A ′B ′=73,AC A ′C ′=146=73,∴AB A ′B ′=ACA ′C ′.又∠A =∠A ′,∴△ABC ∽△A ′B ′C ′.【跟踪训练2】 如图,四边形ABCD ,CDEF ,EFGH 都是正方形.(1)△ACF 与△ACG 相似吗?说说你的理由; (2)求∠1+∠2的度数.解:(1)相似.理由:设正方形的边长为a ,则AC =a 2+a 2=2a ,∵AC CF =2a a =2,CG AC =2a 2a =2,∴AC CF =CGAC.又∵∠ACF =∠GCA ,∴△ACF ∽△GCA. (2)∵△ACF ∽△GCA ,∴∠1=∠CAF.∵∠CAF +∠2=45°,∴∠1+∠2=45°. 巩固训练1.在△ABC 和△A ′B ′C ′中,AB =9 cm ,BC =8 cm ,CA =5 cm ,A ′B ′=4.5 cm ,B ′C ′=2.5 cm ,C ′A ′=4 cm ,则下列说法错误的是(D)A .△ABC 与△A ′B ′C ′相似 B .AB 与B ′A ′是对应边C .两个三角形的相似比是2∶1D .BC 与B ′C ′是对应边2.在△ABC 与△A ′B ′C ′中,已知AB ·B ′C ′=BC ·A ′B ′,若使△ABC ∽△A ′B ′C ′,还应增加的条件是(C)A .AC =A ′C ′B .∠A =∠A ′C .∠B =∠B ′D .∠C =∠C ′3.如图,两个三角形的关系是相似(填“相似”或“不相似”),理由是这两个三角形的三边对应成比例.4.右图中的两个三角形是否相似:不相似,说明理由:对应边不成比例.5.如图,DE 与△ABC 的边AB ,AC分别相交于D ,E 两点,若AE =2 cm ,AC =3 cm ,AD =2.4 cm ,AB =3.6 cm ,DE =43cm ,则BC 的长为多少?解:∵AE =2 cm ,AC =3 cm ,AD =2.4 cm ,AB =3.6 cm , ∴AE AC =AD AB =23. ∵∠A =∠A ,∴△ADE ∽△ABC. ∴DE BC =AE AC. 又∵DE =43 cm ,∴43BC =23.∴BC =2 cm. 【点拨】 运用相似三角形的判定和性质可以进行边的计算. 课堂小结1.本节课我们学习了什么内容?2.全等三角形的判定定理对相似三角形的判定定理有什么借鉴作用?第3课时 相似三角形的判定定理3教学目标1.掌握相似三角形的判定定理3.2.了解两个直角三角形相似的判定方法.3.深化对相似三角形的三个判定方法的理解,并能够运用相似三角形的判定方法解决相似三角形的有关问题.预习反馈阅读教材P35~36,理解相似三角形判定定理3及直角三角形相似的判定方法.完成下列预习内容. ①如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似. ②如果两个直角三角形中,有一条直角边和斜边对应成比例,那么这两个直角三角形相似.③要判定两个直角三角形相似,最简单的方法就是再找除直角外的一组内角对应相等,就可以根据相似三角形的判定3,判定这两个直角三角形相似.④如图所示,已知∠ADE =∠B ,则△AED ∽△ACB .理由是两角分别相等的两个三角形相似.⑤顶角对应相等的两个等腰三角形相似吗?为什么?解:相似,理由:根据三角形内角和,顶点对应相等的两个等腰三角形其底角也对应相等.再根据“两角分别相等的两个三角形相似”这个判定定理即可判断这两个等腰三角形相似.【点拨】 要根据已知条件选择适当的方法判定三角形相似.例题讲解:例1 (教材P35例2)如图,在Rt △ABC 中,∠C =90°,AB =10,AC =8.E 是AC 上一点,AE =5,ED ⊥AB ,垂足为D.求AD 的长.【解答】 ∵ED ⊥AB , ∴∠EDA =90°.又∠C =90°,∠A =∠A , ∴△AED ∽△ABC. ∴AD AC =AE AB .∴AD =AC ·AE AB =8×510=4. 【跟踪训练1】 如图,∠1=∠3,∠B =∠D ,AB =DE =5,BC =4. (1)△ABC ∽△ADE 吗?说明理由; (2)求AD 的长.解:(1)△ABC ∽△ADE.理由如下:∵∠1=∠3,∴∠1+∠2=∠3+∠2, ∴∠BAC =∠DAE. 又∵∠B =∠D , ∴△ABC ∽△ADE. (2)由(1),知AB AD =BCDE .∴5AD =45.解得AD =254. 例2 (教材补充例题)已知:如图,∠ABC =∠CDB =90°,AC =a ,BC =b ,当BD 与a ,b 之间满足怎样的关系时,这两个三角形相似?【解答】 ∵∠ABC =∠CDB =90°, (1)当BC BD =ABCD 时,△ABC ∽△CDB ,此时BC BD =AB CD =AC BC ,即a b =b BD .∴BD =b 2a.即当BD =b2a 时,△ABC ∽△CDB.(2)当AB BD =BCCD 时,△ABC ∽△BDC ,此时AB BD =BC CD =AC BC ,即AB BD =AC BC. ∴a 2-b 2BD =a b ,BD =b a a 2-b 2.∴当BD =b aa 2-b 2时,△ABC ∽△BDC.综上所述,即当BD =b 2a 或BD =b aa 2-b 2时,这两个三角形相似.【点拨】 本题要考虑当两个三角形有一个角相等时,夹这个角的两边的比相等时有两种情况.【跟踪训练2】 在△ABC 和△A 1B 1C 1中,∠A =∠A 1=90°,添加下列条件不能判定两个三角形相似的是(D) A .∠B =∠B 1 B.AB A 1B 1=ACA 1C 1C.AB A 1B 1=BC B 1C 1 D.AB B 1C 1=AC A 1C 1巩固训练 1.下列条件中,一定能判断两个等腰三角形相似的是(C) A .都含有一个40°的内角 B .都含有一个50°的内角 C .都含有一个60°的内角 D .都含有一个70°的内角 2.在△ABC 与△A ′B ′C ′中,有下列条件:(1)AB A ′B ′=BC B ′C ′;(2)BC B ′C ′=ACA ′C ′;(3)∠A =∠A ′;(4)∠C =∠C ′,如果从中任取两个条件组成一组,那么能判断△ABC ∽△A ′B ′C ′的共有(C)A .1组B .2组C .3组D .4组3.如图,在△ABC 中,∠C =90°,E 是BC 上一点,ED ⊥AB ,垂足为D.求证:△ABC ∽△EBD.证明:∵ED ⊥AB , ∴∠EDB =90°. ∵∠C =90°, ∴∠EDB =∠C.∵∠B =∠B , ∴△ABC ∽△EBD. 课堂小结1.本节课我们学习了什么内容?2.全等三角形的判定定理与相似三角形的判定定理有何区别?27.2.2 相似三角形的性质教学目标理解并掌握相似三角形的性质. 预习反馈阅读教材P37~39,理解相似三角形的性质,并完成下列预习内容.(1)相似三角形对应中线的比、对应高的比、对应角平分线的比都等于相似比.(2)如图,△ABC ∽△A ′B ′C ′,相似比为k,AD ⊥BC 于点D ,A ′D ′⊥B ′C ′于点D ′.①你能发现图中还有其他的相似三角形吗?【解答】 其他的相似三角形还有△ABD ∽△A ′B ′D ′,△ADC ∽△A ′D ′C ′.②△ABC 与△A ′B ′C ′中,C △ABCC △A ′B ′C ′=k ,S △ABCS △A ′B ′C ′=k 2.【点拨】 在运用相似三角形的性质时,要注意周长的比与面积的比之间的区别,不要混为一谈,另外面积的比等于相似比的平方,反过来相似比等于面积比的算术平方根.例题讲解:例 (教材P38例3)如图,在△ABC 和△DEF 中,AB =2DE ,AC =2DF ,∠A =∠D.若△ABC 的边BC 上的高为6,面积为125,求△DEF 的边EF 上的高和面积.【解答】 在△ABC 和△DEF 中, ∵AB =2DE ,AC =2DF , ∴DE AB =DF AC =12.又∠D =∠A , ∴△DEF ∽△ABC ,△DEF 与△ABC 的相似比为12.∵△ABC 的边BC 上的高为6,面积为125,∴△DEF 的边EF 上的高为12×6=3,面积为(12)2×125=3 5.【跟踪训练】 如图,在▱ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,CD =2DE.若△DEF 的面积为10,则▱ABCD 的面积为多少?解:∵四边形ABCD 为平行四边形, ∴AD ∥BC ,AB ∥CE.∴△DEF ∽△CEB ,△DEF ∽△ABF.∴S△DEFS△CEB=(DECE)2=(DECD+DE)2=(DE3DE)2=19,S△DEFS△ABF=(DEAB)2=(DECD)2=(DE2DE)2=14.∴S△CEB=90,S△ABF=40.∴S▱ABCD=S△ABF+S四边形BCDF=S△ABF+S△CEB-S△DEF=40+90-10=120.巩固训练1.若两个相似三角形的相似比为1∶2,则它们面积的比为(C)A.2∶1 B.1∶ 2C.1∶4 D.1∶52.如图,在▱ABCD中,点E在边DC上,DE∶EC=3∶1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为(B)A.3∶4 B.9∶16 C.9∶1 D.3∶13.如果△ABC∽△DEF,A,B分别对应D,E,且AB∶DE=1∶2,那么下列等式一定成立的是(D)A.BC∶DE=1∶2B.△ABC的面积∶△DEF的面积=1∶2C.∠A的度数∶∠D的度数=1∶2D.△ABC的周长∶△DEF的周长=1∶24.如果两个相似三角形的面积的比是4∶9,那么它们对应的角平分线的比是2∶3.5.已知△ABC∽△A1B1C1,△ABC的周长与△A1B1C1的周长的比值是32,BE,B1E1分别是它们对应边上的中线,且BE=6,则B1E1=4.6.如图所示,Rt△ABC∽Rt△DFE,CM,EN分别是斜边AB,DF上的中线,已知AC=9 cm,CB=12 cm,DE=3 cm.(1)求CM和EN的长;(2)你发现CMNE的值与相似比有什么关系?得到什么结论?解:(1)在Rt△ABC中,AB=AC2+CB2=92+122=15,∵CM是斜边AB的中线,∴CM=12AB=7.5.∵Rt△ABC∽Rt△DFE,∴DEAC=DFAB,即39=13=DF15.∴DF=5.∵EN为斜边DF上的中线,∴EN=12DF=2.5.(2)∵CMEN=7.52.5=31,相似比为ACDE=93=31,∴相似三角形对应中线的比等于相似比.课堂小结本节课我们学习了哪些内容?27.2.3 相似三角形应用举例教学目标1.通过本节相似三角形应用举例,发展学生综合运用相似三角形的判定方法和性质解决问题的能力,提高学生的数学应用意识,加深对相似三角形的理解与认识.2.在活动过程中使学生积累经验与成功体验,激发学生学习数学的热情与兴趣.预习反馈阅读教材P39~40,进一步体会从实际问题中建立数学模型,并完成下列预习内容.(1)太阳光下,同一时刻,物体的长度与其影长成正比(正比或反比).(2)太阳光下,同一时刻,物体的高度、影子、光线构成的三角形相似吗?答:相似.例题讲解:例1(教材P40例5)如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P,在近岸取点Q和S,使点P,Q,S共线且直线PS与河垂直,接着在过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直PS的直线b的交点R.已测得QS=45 m,ST=90 m,QR=60 m,请根据这些数据,计算河宽PQ.【解答】∵∠PQR=∠PST=90°,∠P=∠P,∴△PQR∽△PST.∴PQPS=QRST,即PQPQ+QS=QRST,PQPQ+45=6090,PQ×90=(PQ+45)×60.解得PQ=90 m.答:河宽大约为90 m.【跟踪训练1】(菏泽中考)如图,M,N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞,工程人员为计算工程量,必须计算M,N两点之间的直线距离,选择测量点A,B,C,点B,C分别在AM,AN上,现测得AM=1千米,AN=1.8千米,AB=54米,BC=45米,AC=30米,求M,N两点之间的直线距离.解:连接MN.∵ACAM=301 000=3100,ABAN=541 800=3100,∴ACAM=ABAN.又∵∠BAC=∠NAM,∴△BAC∽△NAM.∴BCMN=3100,即45MN=3100.∴MN=1 500.答:M,N两点之间的直线距离为1 500米.例2小刚用下面的方法来测量学校大楼AB的高度.如图,在水平地面上的一面平面镜,镜子与教学大楼的距离EA=21 m,当他与镜子的距离CE=2.5 m时,他刚好能从镜子中看到教学大楼的顶端B,已知他的眼睛距地面高度DC=1.6 m,请你帮助小刚计算出教学大楼的高度AB是多少m?(注意:根据光的反射定律,反射角等于入射角)【解答】 根据反射角等于入射角,则有∠DEF =∠BEF ,而FE ⊥AC , ∴∠DEC =∠BEA.又∵∠DCE =∠BAE =90°, ∴△DEC ∽△BEA.∴CD AB =ECEA .又∵DC =1.6,EC =2.5,EA =21, ∴1.6AB =2.521.∴AB =13.44. 答:建筑物AB 的高度为13.44 m.【点拨】 从实际问题的情景中,找出相似三角形是解决本类题型的关键.【跟踪训练2】 如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF 来测量操场旗杆AB 的高度,他们通过调整测量位置,使斜边DF 与地面保持平行,并使边DE 与旗杆顶点A 在同一直线上.已知DE =0.5米,EF =0.25米,目测点D 到地面的距离DG =1.5米,到旗杆的水平距离DC =20米,求旗杆的高度.解:由题意可得,△DEF ∽△DCA ,则DE DC =EFAC ,∵DE =0.5米,EF =0.25米,DG =1.5米,DC =20米, ∴0.520=0.25AC.解得AC =10. 故AB =AC +BC =AC +DG =10+1.5=11.5(米). 答:旗杆的高度为11.5米. 巩固训练1.如图,小明在打网球时,击球点距球网的水平距离为8 m ,已知网高为0.8 m ,要使球恰好能打过网,而且落在离网4 m 的位置,则球拍击球时的高度h 为2.4m.2.如图,测得BD =120 m ,DC =60 m ,EC =50 m ,求河宽.解:由题意,可得∠B =∠C =90°,∠ADB =∠EDC ,∴△ADB ∽△EDC. ∴AB EC =BD CD ,即AB =BD ·EC CD =120×5060=100(m). 答:河宽AB 为100 m.【点拨】 证明相似三角形的方法很多,要根据实际情况,选择最简单、合适的一种.课堂小结利用相似三角形进行测量的一般步骤:(1)因地制宜,构造相似三角形;(2)测量与所求线段对应的边的长以及另外任意一组对应边的长;(3)根据相似三角形的对应边成比例进行计算.27.3 位似第1课时位似图形的概念及画法教学目标1.正确理解位似图形等有关概念,能够按照要求利用位似将图形进行放大或缩小以及能够正确地作出位似图形的位似中心.2.在实际操作和探究活动中,让学生感受、体会到几何图形之美,提高对数学美的认识层次,陶冶美育情操,激发学习热情.预习反馈阅读教材P47~48,完成下列预习内容.(1)两个多边形不仅相似,而且对应点的连线相交于一点,对应边互相平行,像这样的两个图形叫做位似图形,这个点叫做位似中心.(2)下列说法正确的是(D)A.两个图形如果是位似图形,那么这两个图形一定全等B.两个图形如果是位似图形,那么这两个图形不一定相似C.两个图形如果是相似图形,那么这两个图形一定位似D.两个图形如果是位似图形,那么这两个图形一定相似(3)用作位似图形的方法,可以将一个图形放大或缩小,位似中心位置可能在(D)A.原图形的外部 B.原图形的内部C.原图形的边上 D.任意位置【点拨】位似的三要素即是判定位似的依据,也是位似图形的性质.例题讲解:例1如图,作出一个新图形,使新图形与原图形对应线段的比为2∶1.【解答】 1.在原图形上取点A,B,C,D,E,F,G,在图形外任取一点P;2.作射线AP,BP,CP,DP,EP,FP,GP;3.在这些射线上依次取A′,B′,C′,D′,E′,F′,G′,使PA′=2PA,PB′=2PB,PC′=2PC,PD′=2PD,PE′=2PE,PF′=2PF,PG′=2PG;4.顺次连接点A′,B′,C′,D′,E′,F′,G′,A′.所得到的图形就是符合要求的图形.【点拨】作位似图形的步骤:(1)按要求作出各点的对应点后,(2)连线.注意:不要连错对应点之间的连线.【跟踪训练1】如图,请在8×8的网格中,以点O为位似中心,作出△ABC的一个位似图形△A′B′C′,使△A′B′C′与△ABC的相似比为2∶1.解:如图所示,△A′B′C′为所求的三角形.例2请画出如图所示两个图形的位似中心.图1 图2【解答】如图所示的点O1,就是图1的位似中心.如图所示的点O2,就是图2的位似中心.【点拨】正确地作出位似中心,是解位似图形的关键,可以根据位似中心的定义,位似图形的对应点连线的交点就是位似中心.【跟踪训练2】找出下列图形的位似中心.巩固训练1.在下列图形中,不是位似图形的是(D)A BC D2.如图,以点O为位似中心,将△ABC放大后得到△DEF,已知△ABC与△DEF的面积比为1∶9,则AB∶DE的值为(A)A.1∶3 B.1∶2 C.1∶ 3 D.1∶9第2题图第3题图3.如图,以O为位似中心将四边形ABCD放大后得到四边形A′B′C′D′,若OA=4,OA′=8,则四边形ABCD 和四边形A′B′C′D′的周长的比为1∶2.4.如图,△DEF是△ABC经过位似变换得到的,位似中心是点O,请确定点O的位置,如果OC=3.6 cm,OF=2.4 cm,求它们的相似比.解:连接AD,CF交于点O,则点O即为所求.∵OC=3.6 cm,OF=2.4 cm,∴OC ∶OF =3∶2.∴△ABC 与△DEF 的相似比为3∶2.5.如图,图中的小方格都是边长为1的小正方形,△ABC 与△A ′B ′C ′是以点O 为位似中心的位似图形,它们的顶点都是在小正方形的顶点上.(1)找出位似中心点O ;(2)△ABC 与△A ′B ′C ′的位似比为2∶1;(3)按(2)中的位似比,以点O 为位似中心画出△ABC 的另一个位似图形△A ″B ″C ″.解:(1)如图所示,点O 即为所求. (2)∵AC A ′C ′=21, ∴△ABC 与△A ′B ′C ′的位似比为:2∶1.故答案为:2∶1. (3)如图所示,△A ″B ″C ″即为所求. 课堂小结1.本节课我们学习了哪些内容?2.位似图形与一般相似图形相比,有哪些特殊性? 3.利用位似作图的步骤有哪些?第2课时 平面直角坐标系中的位似教学目标1.让学生理解掌握位似图形在平面直角坐标系上的应用,即会根据相似比,求位似图形顶点,以及根据位似图形对应点坐标,求位似图形的相似比和在平面直角坐标系上作出位似图形.2.让学生在应用有关知识解决问题的过程中,提高应用意识,体验数形结合的思想方法在解题中的运用. 预习反馈阅读教材P48~50,以原点为位似中心的两个位似图形对应顶点的坐标规律,并完成下列预习内容.(1)如图,在平面直角坐标系中,有两点A(6,3),B(6,0),以原点O 为位似中心,相似比为13,把线段AB 缩小,观察对应点之间坐标的变化,你有什么发现?答:线段缩小后,点A ,B 的坐标与其对应点的坐标的比为13.(2)在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点坐标的比为k . (3)△ABC 和△A 1B 1C 1关于原点位似且点A(-3,4),它的对应点A 1(6,-8),则△ABC 和△A 1B 1C 1的相似比是12.(4)已知△ABC 三个顶点的坐标分别为A(1,2),B(1,0),C(3,3),以原点O 为位似中心,相似比为2,把△ABC 放大得到其位似图形△A 1B 1C 1,则△A 1B 1C 1各顶点的坐标分别为A 1(2,4),B 1(2,0),C 1(6,6).例题讲解:例 (教材P49例)如图,△ABO 三个顶点的坐标分别为A(-2,4),B(-2,0),O(0,0).以原点O 为位似中心,画出一个三角形,使它与△ABO 的相似比为32.【解答】 如图,利用位似中对应点的坐标的变化规律,分别取点A ′(-3,6),B ′(-3,0),O(0,0).顺次连接点A ′,B ′,O ,所得△A ′B ′O 就是要画的一个图形.【点拨】 作位似变换时,要先弄清点的坐标的变化情况,求出变换后对应的坐标.然后在坐标中描出对应点,连线即可.【跟踪训练】 在平面直角坐标系中,△ABC 的三个顶点坐标分别为A(2,-4),B(3,-2),C(6,-3). (1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)以点M 为位似中心,在网格中画出△A 1B 1C 1的位似图形△A 2B 2C 2,使△A 2B 2C 2与△A 1B 1C 1的相似比为2∶1.解:(1)如图所示,△A 1B 1C 1即为所求. (2)如图所示,△A 2B 2C 2即为所求. 巩固训练1.某个图形上各点的横、纵坐标都变成原来的12,连接各点所得图形与原图形相比(C)A .完全没有变化B .扩大成原来的2倍C .面积缩小为原来的14D .关于纵轴成轴对称2.如图所示的△ABC ,以A 点为位似中心,放大为原来的2倍,画出一个相应的图形,并写出相应的点的坐标.解:根据题意,图中的△AB 1C 1就是满足题意的三角形,其中A 点的坐标不变,仍是(-3,-1),B 1,C 1的坐标分别为(3,-3),(1,3).课堂小结1.本节课学习了什么内容?2.想一想位似作图与平移作图、轴对称作图、旋转作图有什么共同点?。

人教版数学九年级下册第27章《相似》课堂教学设计

人教版数学九年级下册第27章《相似》课堂教学设计

人教版数学九年级下册第27章《相似》课堂教学设计一. 教材分析人教版数学九年级下册第27章《相似》主要介绍了相似图形的性质和判定。

本章内容是学生学习几何知识的重要环节,为后续学习函数、解析几何等知识点奠定基础。

本章内容涉及的概念和性质较多,学生需要通过实例理解和掌握相似图形的相关知识。

二. 学情分析九年级的学生已具备一定的几何知识基础,能理解并运用平行、相交、三角形、四边形等基本图形的性质。

但学生在学习过程中,对抽象概念的理解和运用仍有困难,需要通过具体实例和动手操作来加深理解。

此外,学生对数学语言的表达和逻辑推理能力有待提高。

三. 教学目标1.理解相似图形的概念,掌握相似图形的性质。

2.学会判定两个图形是否相似,并能运用相似性质解决实际问题。

3.培养学生的逻辑推理能力和数学语言表达能力。

四. 教学重难点1.相似图形的概念和性质。

2.判定两个图形相似的方法。

3.相似图形在实际问题中的应用。

五. 教学方法1.采用直观演示法,通过实物模型和几何画板软件展示相似图形的性质和判定。

2.运用案例分析法,让学生通过分析具体实例,理解和掌握相似图形的性质。

3.采用分组合作法,让学生在小组内讨论和探究相似图形的问题,培养学生的团队协作能力。

4.运用问答法,引导学生积极思考,提高学生的数学思维能力。

六. 教学准备1.准备相应的教案和教学课件。

2.准备实物模型和几何画板软件。

3.准备相关案例分析和练习题。

七. 教学过程1.导入(5分钟)通过展示实物模型和几何画板软件,引导学生观察和分析,提出问题:“这些图形有什么共同特点?”让学生思考和讨论,引出相似图形的概念。

2.呈现(10分钟)讲解相似图形的定义和性质,通过实例和几何画板软件展示相似图形的判定方法。

引导学生理解和掌握相似图形的性质。

3.操练(10分钟)让学生分组讨论,分析给定的图形,判断它们是否相似。

每组选取一个代表进行回答,教师点评并给予指导。

4.巩固(10分钟)让学生运用相似图形的性质解决实际问题,如计算图形面积、比例问题等。

人教版九年级数学下册第二十七章相似(教案)

人教版九年级数学下册第二十七章相似(教案)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《相似》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过形状相似但大小不同的物体?”(如照片的放大与缩小)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索相似图形的奥秘。
另外,在小组讨论环节,我发现有些学生参与度不高,可能是因为他们对讨论主题不太感兴趣或者不知道如何表达自己的观点。针对这个问题,我计划在下次课中尝试引入更多有趣的讨论主题,并鼓励学生大胆发表自己的看法,提高他们的参与度。
在总结回顾环节,我注意到有些学生对相似知识的应用还不是很熟练。为了帮助他们更好地消化吸收所学知识,我决定在课后布置一些与实际生活紧密相关的练习题,让学生们在完成作业的过程中加深对相似知识的理解。
人教版九年级数学下册第二十七章相似(教案)
一、教学内容
人教版九年级数学下册第二十七章相似:
1.理解相似图形的概念;
2.掌握相似图形的性质;
a.对应角相等
应边成比例
3.学习相似三角形的判定方法;
a. AA相似定理
b. SSS相似定理
c. SAS相似定理
4.应用相似知识解决实际问题;
5.实践活动:观察生活中相似的图形,理解其应用。
二、核心素养目标
1.培养学生空间观念和几何直观,能通过观察、分析、抽象出相似图形的特征;
2.提高学生逻辑推理能力,学会运用相似判定方法解决问题,培养严谨的数学思维;
3.增强学生运用数学知识解决实际问题的能力,培养数学应用意识;
4.培养学生团队合作精神,通过实践活动,提高观察、发现、探索现实世界中的相似现象的能力。
1.讨论主题:学生将围绕“相似在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:27.1图形的相似(第1课时)一、教学目标1.通过实例知道相似图形的意义.2.经历观察、猜想和分析过程,知道相似多边形对应角相等,对应边的比相等,反之亦然.二、教学重点和难点1.重点:相似图形和相似多边形的意义.2.难点:探索相似多边形对应角相等,对应边的比相等.三、教学过程(一)创设情境,导入新课师:(出示两张全等的图片)大家看这两个图形,(稍停)这两个图形形状相同,大小也相同,它们叫什么图形?生:(齐答)叫全等图形.师:(出示两张相似的图片)大家看这两个图形,(稍停)这两个图形只是形状相同,它们叫什么图形?(稍停)它们叫相似图形.也可以说,这两个图形相似(板书:相似).师:和全等一样,相似也是两个图形的一种关系.从今天开始我们要学习新的一章,这一章要学的内容就是相似(在“相似”前板书:第二十七章).(二)尝试指导,讲授新课师:相似图形在我们的生活中是很常见的,大家把课本翻到第34页,(稍停)34页上有几个图,左上方是用同一张底片洗出的不同尺寸的照片,它们是相似图形;还有大小不同的两个足球,它们也是相似图形;还有一辆汽车和它的模型,它们也是相似图形.师:看了这些相似图形,哪位同学能给相似图形下一个定义?生:……(让几名同学回答)(师出示下面的板书)形状相同的两个图形叫做相似图形.师:请大家一起把相似图形的概念读两遍.(生读)师:(出示两张全等的图片)全等图形,它们不仅形状相同,而且大小也相同;(出示两张相似的图片)而相似图形,它们只是形状相同,它们的大小可能相同,也可能不相同.师:明确了相似图形的概念,下面请同学们来举几个相似图形的例子,谁先来说?生:……(让几位同学说,如果学生说的题材不够广泛,师可以再举几个例子.譬如,放电影时,屏幕上的画面与胶片上的图形是相似图形;实际的建筑物与它的模型是相似图形;复印机把一个图形放大,放大后的图形和原来图形是相似图形)师:好了,下面请大家做一个练习.(三)试探练习,回授调节1.下列各组图形哪些是相似图形?(1) (2) (3)(4) (5)(6)2.如图,图中是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?(四)尝试指导,讲授新课(师出示下图)师:(指准图)这个三角形和这个三角形形状相同,所以它们是相似三角形.从图上看,这两个相似三角形的角有什么关系?生:∠A=∠A ′,∠B=∠B ′,∠C=∠C ′.(生答师板书:∠A=∠A ′,∠B=∠B ′,∠C=∠C ′)师:(指图)这两个相似三角形的边有什么关系?(让生思考一会儿)师:(指准图)AB 与A ′B ′的比是AB A B (板书:AB A B ),BC 与B ′C ′的比是BC B C (板书:BC B C ),CA 与C ′A ′的比是CA C A (板书:CA C A),这三个比相等吗? 生:(齐答)相等.师:为什么相等?(稍停后指准图)△A ′B ′C ′可以看成是△ABC 缩小得到的,假如AB 是A ′B ′的2倍,那么可以想象,BC 也是B ′C ′的2倍,CA 也是C ′A ′的2倍,所以这三个比相等(在式子中间写上两个等号).师:我们再来看一个例子. (师出示下图)///B A C CB A ////A B C D D A B C师:(指准图)这个四边形和这个四边形形状相同,所以它们是相似四边形.从图上看,这两个相似四边形的角有什么关系?生:∠A=∠A ′,∠B=∠B ′,∠C=∠C ′,∠D=∠D ′.(生答师板书:∠A=∠A ′,∠B=∠B ′,∠C=∠C ′,∠D=∠D ′)师:(指图)这两个相似四边形的边有什么关系? 生:AB A B =BC B C =CA C A =DA D A .(生答师板书:AB A B =BC B C =CA C A =DA D A) 师:(指式子)这四个比为什么相等?(稍停后指准图)四边形A ′B ′C ′D ′可以看成是四边形ABCD 放大得到的,假如AB 是A ′B ′的一半,那么可以想象,BC 也是B ′C ′的一半,CD 也是C ′D ′的一半,DA 也是D ′A ′的一半,所以这四个比相等. 师:从这两个例子,大家想一想,你能得出一个什么结论?(等到有一部分同学举手再叫学生)生:……(多让几名学生发表看法)(师出示下面的板书)相似多边形对应角相等,对应边的比也相等.师:请大家把这个结论一起来读两遍.(生读)师:相似多边形对应角相等,对应边的比也相等.实际上,这个结论反过来也是成立的,反过来怎么说?生:……(让几名学生说)(师出示下面的板书)对应角相等,对应边的比也相等的多边形是相似多边形.师:请大家把反过来的结论一起来读两遍.(生读)师:我们知道,形状相同的多边形是相似多边形.但是,什么样才算形状相同呢?(稍停)从这两个结论我们可以看到,对多边形来说,所谓形状相同,实际上指的就是对应角相等,对应边的比也相等.对应角相等,对应边的比也相等的多边形是相似多边形.所以,现在我们可以给相似多边形下一个更明确的定义. (师出示下面的板书)对应角相等,对应边的比也相等的两个多边形叫做相似多边形.师:下面我们利用相似多边形的概念来做两个练习.(五)试探练习,回授调节3.如图,△ABC 与△A ′B ′C ′相似,则∠C ′= °,B ′C ′= .4.判断正误:对的画“√”,错的画“×”.(1)两个等边三角形一定相似; ( )(2)两个正方形一定相似; ( )(3)两个矩形一定相似; ( )(4)两个菱形一定相似. ( )C /110 533//B A A B C(六)归纳小结,布置作业师:(指准板书)本节课我们学习了相似图形和相似多边形的概念.什么叫做相似图形?形状相同的两个图形叫做相似图形.从这两个结论,我们进一步发现,对多边形来说,所谓形状相同指的就是对应角相等,对应边的比也相等.所以我们又给相似多边形下了一个更明确定义:对应角相等,对应边也相等的两个多边形叫做相似多边形.(作业:P 35练习1.P 38习题1.4.) 四、板书设计 第二十七章相似 ……叫做相似图形. 图1 图2……叫做相似多边形.相似多边形对应角…… ∠A=∠A ′,∠B=∠B ′…… ∠A=∠A ′,∠B=∠B ′…… 对应角相等,对应……//AB A B =//BC B C …… //AB A B =//BC B C……课题:27.1图形的相似(第2课时)一、教学目标1.会运用相似多边形的概念进行计算和证明,知道相似比的意义.2.培养推理论证能力,发展空间观念.二、教学重点和难点1.重点:运用相似多边形的概念进行计算和证明.2.难点:运用相似多边形的概念进行证明.三、教学过程(一)基本训练,巩固旧知1.填空:(1) 相同的两个图形叫做相似图形.(2)相似多边形对应 相等,对应 的比也相等;反过来,对应 相等,对应 的比也相等的多边形是相似多边形.(二)创设情境,导入新课师:上节课我们学习了相似图形的概念,还通过观察图形得出了相似多边形的两个结论.(师出示下面板书)相似多边形的对应角相等,对应边的比也相等;对应角相等,对应边的比也相等的多边形是相似多边形.师:本节课我们将利用这两个结论来做两个题目,先请看例1.(三)尝试指导,讲授新课(师出示例1)例1 如图,四边形ABCD 和EFGH 相似,求角α、β的大小和EH 的长度x.(先让生尝试,然后师边讲解边板书,解题过程如课本第37页所示)(四)试探练习,回授调节2.填空:如图所示的两个五边形相似,则a= ,b= ,c= ,d= .(五)尝试指导,讲授新课(师出示例2)例2 如图,证明△ABC和△A′B ′C′相似.(先让生尝试,然后师分析证明思路,最后边讲解边板书,证明过程如下)证明:在等腰直角△ABC和△A′B′C′中,∠A=∠A′=45°,∠B=∠B′=45°,∠C=∠C′=90°.而AB=2255=50=52,A′B′=221010=200=102,∴AB521A B2102,BC51B C102,CA51C A102.∴AB BC CAA B B C C A.∴△ABC与△A′B′C′相似.(六)试探练习,回授调节3.如图,证明△ABC与△A′B′C′相似.(七)归纳小结,布置作业师:在课的最后,我们还要介绍一个概念.(指准例1图)我们知道,这两个四边形相似,它们对应边的比相等,那么对应边的比等于多少?(稍停)等于1824(板书:1824),约分后等于34(边讲边板书:=34).34叫什么?叫相似比.一般来说,1010///A BC55BCA21///AC BAC B30︒30︒相似多边形对应边的比叫做相似比(板书:相似多边形对应边的比叫做相似比). 师:好了,两个例题一个概念,这些就是本节课所学的内容.(作业:P 38习题3.5.)课题:27.2.1相似三角形的判定(第1课时)一、教学目标1.经历观察、类比、猜想过程,得出相似三角形的三个判定定理,会简单运用这三个定理.2.培养合情推理能力,发展空间观念.二、教学重点和难点1.重点:相似三角形的三个判定定理.2.难点:得出相似三角形的三个判定定理.三、教学过程(一)基本训练,巩固旧知1.填空:全等三角形的四个判定定理:(1)如果两个三角形三 对应相等,那么这两个三角形全等(简写成:边边边或SSS ).(2)如果两个三角形两 对应相等,并且相应的夹角相等,那么这两个三角形全等(简写成:边角边或 ).(3)如果两个三角形两 对应相等,并且相应的夹边相等,那么这两个三角形全等(简写成:角边角或 ).(4)如果两个三角形两 对应相等,并且其中一个角的对边对应相等,那么这两个三角形全等(简写成:角角边或 ).(本课时教学时间比较紧张,建议把本题提前留作作业)(二)创设情境,导入新课师:我们知道,形状相同的两个图形叫做相似图形.那么什么叫相似三角形?(稍停)形状相同的两个三角形叫做相似三角形.师:对两个三角形来说,形状相同是什么意思?(稍停)就是对应角相等,对应边的比也相等.所以相似三角形还有一个更明确的定义.对应角相等,对应边的比也相等的两个三角形叫做相似三角形.(师出示下图)师:譬如△ABC 和△A ′B ′C ′,如果∠A=∠A ′,∠B=∠B ′,∠C=∠C ′(边讲边板书:A /B /B C A /C如果∠A=∠A′,∠B=∠B′,∠C=∠C′),AB BC CAA B B C C A(边讲边板书:AB BC CAA B B C C A),我们就说△ABC与△A′B′C′相似(边讲边板书:就说△ABC与△A′B′C′相似),记作△ABC∽△A′B′C′(边讲边板书:记作△ABC∽△A′B′C′).师:(指准板书)相似三角形的这个定义,可以用来判定两个三角形相似,但利用定义判定,既要证明三组对应角相等,又要证明三组对应边的比相等,所以比较麻烦.怎么解决这个问题呢?(稍停)(三)尝试指导,讲授新课师:学习三角形全等时,我们知道,除了可以利用全等三角形定义来判定两个三角形全等,还有四个简便的判定方法.哪四个简便的判定方法?(稍停)就是SSS、SAS、ASA、AAS.同样,判定两个三角形相似,有没有简便的判定方法?请大家先自己想一想.(生思考,要给学生充足的思考时间)师:好了,下面我们一起来考虑这个问题.师:全等三角形判定定理SSS是怎么说的?(稍停)如果两个三角形三边对应相等,那么这两个三角形全等.类似的,也有一个相似三角形的判定定理.(师出示下面的板书)如果两个三角形的三组对应边的比相等,那么这两个三角形相似.师:请大家把这个结论一起来读一遍.(生读)师:(指板书)如果两个三角形的三组对应边的比相等,那么这两个三角形相似.(指图)结合这个图,这个结论的意思是说,如果AB BC CAA B B C C A,那么△ABC∽△A′B′C′(边讲边作如下板书).AB BC CAA B B C C A△ABC∽△A′B′C′师:这是相似三角形的一个判定定理,下面我们来看第二个判定定理.师:全等三角形判定定理SAS是怎么说的?(稍停)如果两个三角形两边对应相等,并且相应的夹角相等,那么这两个三角形全等.类似的,也有一个相似三角形的判定定理.(师出示下面的板书)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.师:请大家把这个结论一起来读一遍.(生读)师:(指板书)如要两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.(指图)结合这个图,这个结论的意思是说,如果AB ACA B A C,夹角∠A=∠A′,那么△ABC∽△A′B′C′(边讲边作如下板书).AB ACA B A C,∠A=∠A′△ABC∽△A′B′C′师:这是相似三角形的又一个判定定理,下面我们来看第三个判定定理.师:全等三角形判定定理ASA、AAS都有两个角对应相等的条件,对相似三角形来说,具备两个角对应相等的条件,有这样一个判定定理.(师出示下面的板书)如果两个三角形的两个角对应相等,那么这两个三角形相似.师:(指板书)如要两个三角形的两个角对应相等,那么这两个三角形相似.(指图)结合这个图,这个结论的意思是说,如果∠A=∠A′,∠B=∠B′,那么△ABC~△A′B′C′(边讲边作如下板书).∠A=∠A′,∠B=∠B′△ABC∽△A′B′C′师:(指板书)这就是相似三角形的三个判定定理,之所以称它们为定理,是因为它们都是可以证明的.证明的过程比较复杂,有兴趣的同学可以看课本,课堂上我们就不证明了,只要求大家能够理解这三个判定定理,并能运用它们.下面我们就来运用判定定理.(师出示例题)例根据下列条件,判断△ABC与△A′B′C′是否相似,并说明理由:(1)∠A=120°,AB=7,AC=14,∠A′=120°,A′B′=3,A′C′=6;(2)AB=4,BC=6,AC=8,A′B′=12,B′C′=18,A′C′=21;(3)∠A=70°,∠B=60°,∠A′=70°,∠C′=50°.(先让生尝试,然后师边讲解边板书,(1)(2)题解题过程如课本第44页所示,(3)题解题过程如下)(3)∠C=180°-∠A-∠B=180°-70°-60°=50°.∵∠A=∠A′=70°,∠C=∠C′=50°,∴△ABC∽△A′B′C′.(四)试探练习,回授调节2.根据下列条件,判断△ABC与△A′B′C′是否相似.(1)∠B=100°,∠C=30°,∠A′=50°,∠B′=100°;(2)∠A=40°,AB=8,AC=15,∠A=40°,A′B′=16,A′C′=20;(3)AB=4,BC=2,CA=3,A′B′=6,B′C′=3,C′A′=4.5.(五)归纳小结,布置作业师:(指板书)本节课我们学习了相似三角形的三个判定定理,希望大家能够理解这三个定理,并记住它们.(作业:P习题2)54四、板书设计////BC CA B C C A就说△ABC 和△A ′B ′C ′相似记作△ABC ∽△A ′B ′C ′课题:27.2.1相似三角形的判定(第2课时)一、教学目标 1.会利用判定定理证明简单图形中的两个三角形相似,进而得出边角关系.2.培养推理论证能力,发展空间观念.二、教学重点和难点1.重点:利用判定定理证明简单图形中的两个三角形相似.2.难点:找相似三角形的对应边.三、教学过程(一)基本训练,巩固旧知1.填空:(1)如果两个三角形的三组对应边的 相等,那么这两个三角形相似.(2)如果两个三角形的两组对应边的 相等,并且相应的 相等,那么这两个三角形相似.(3)如果两个三角形的两个 对应相等,那么这两个三角形相似.2.判断图中的两个三角形是否相似:(1) △ABC 与△DEF ;(2) △OAB 与△ODC ;(3) △ABC 与△ADE .(二)创设情境,导入新课(出示下面的板书)F E D C B A 2.52547 3.636305445O A BC D 110︒40︒30︒EA B C如果两个三角形的三组对应边的比相等,那么这两个三角形相似.如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.如果两个三角形的两个角对应相等,那么这两个三角形相似.师:(指板书)上节课我们学习了相似三角形的三个判定定理,请大家一起把这三个定理读一遍.(生读)师:本节课我们要学习什么?本节课我们要利用相似三角形的判定定理做几个题目,请看例题.(三)尝试指导,讲授新课(师出示例题)例 已知:如图,AB ∥DC. 求证:(1)△AOB ∽△COD ;(2)OA ·OD=OB ·OC. (先让生尝试,然后师分析证明思路,最后师生共同完成证明过程,证明过程如下)证明:∵AB ∥DC ,∴∠A=∠C ,∠B=∠D.∴△AOB ∽△COD.∴OA OB OC OD. ∴OA ·OD=OB ·OC. (列OA OB OC OD 时,要让学生自己找OA ,OB 的对应边,并告诉找对应边的方法) (四)试探练习,回授调节3.已知:如图,DE ∥BC ,求证:(1)△ABC ∽△ADE ;(2)AB ·AE=AC ·AD.4.完成下面的证明过程: 已知:如图,∠B=∠ACD. 求证:AC 2=AB ·AD.证明:∵∠B=∠ACD ,∠A=∠A , ∴△ ∽△ . ∴AB AC ()(). ∴AC 2=AB ·AD. 5.选做题:已知:如图,AD=2DB ,AE=2EC.求证:(1)DE 2BC 3; (2)DE ∥BC.(五)归纳小结,布置作业师:本节课我们利用相似三角形的判定定理做了几个题目,通过做这几个题目,你有什么体会? 生:……(让几名学生说) A B C DO E A B CD AD B CE A B C D(作业:P 54习题3(2).4.5.)课题:27.2.1相似三角形的判定(第3课时) 一、教学目标1.会利用判定定理证明简单图形中的两个直角三角形相似,进而得出边角关系.2.培养推理论证能力,发展空间观念. 二、教学重点和难点1.重点:利用判定定理证明简单图形中的两个直角三角形相似.2.难点:找相似三角形的对应边. 三、教学过程(一)基本训练,巩固旧知 1.判断正误:对的画“√”,错的画“×”.(1)两个全等三角形一定相似; ( ) (2)两个相似三角形一定全等; ( ) (3)两个等腰三角形一定相似; ( ) (4)顶角相等的两个等腰三角形一定相似; ( ) (5)两个直角三角形一定相似; ( ) (6)有一个锐角对应相等的两个直角三角形一定相似; ( ) (7)两个等腰直角三角形一定相似; ( ) (8)两个等边三角形一定相似. ( )2.填空:(1)如图,BE ∥CD ,则△ ∽△ ,AB AE BE ()()();(2)如图,AB ∥DE ,则△ ∽△ ,AB BC CA ()()();(3)如图,∠B=∠ADE ,则△ ∽△ ,AB BC CA ()()().(二)创设情境,导入新课师:上节课我们利用相似三角形的判定定理做了几个题目,这节课我们再来做几个题目,先看一道例题. (三)尝试指导,讲授新课 (师出示例题)例 已知:如图,在Rt △ABC 中,CD 是斜边上的高.A D BCE ABCDEA BCED ABC D求证:(1)△ACD ∽△CBD ; (2)CD 2=AD ·BD.(先让生尝试,然后师分析证明思路,最后师生共同完成证明过程,证明过程如下)证明:在Rt △ABC 中,∠A=90°-∠B , 在Rt △CBD 中,∠BCD=90°-∠B ,∴∠A=∠BCD.而∠ADC=∠CDB=90°, ∴△ACD ∽△CBD.∴CD ADBD CD .∴CD 2=AD ·BD.(列CD ADBD CD 时,要让学生自己找CD ,AD 的对应边,并强调找对应边的方法)(四)试探练习,回授调节3.已知:如图,在Rt △ABC 中,CD ⊥AB 于D. 求证:(1)△CBD ∽△ABC ;(2)BC 2=AB ·BD.4.已知,如图,△ABC ∽△A ′B ′C ′,AD 和A ′D ′分别是BC 和B ′C ′上的高.求证:AD ABA D A B.(五)归纳小结,布置作业 师:(指准图)本节课我们学习了证明两个直角三角形相似.两个直角三角形已经有一个直角对应相等,所以只要证明一个锐角对应相等就能得出这两个直角三角形相似.课外补充作业:5.已知:如图,在Rt △ABC 中,DE ⊥AB 于E 点, AE=3,AD=4,AB=6,求AC.6.已知:如图,在△ABC 中,CD 是AB 上的高,CD 2=AD ·BD. 求证:(1)△CBD ∽△ACD ; (2)∠ACB=90°. /D C //B /A DB AC E AB C D DC B AC AD B四、板书设计(略)课题:27.2.1相似三角形的判定(第4课时) 一、教学目标1.会利用判定定理证明与圆有关的两个三角形相似,进而得出边角关系.2.培养推理论证能力,发展空间观念. 二、教学重点和难点1.重点:利用判定定理证明与圆有关的两个三角形相似.2.难点:画辅助线,运用圆的知识. 三、教学过程(一)基本训练,巩固旧知1.填空: (1)如图,AB ∥CD ,则△ ∽△ ,OA OB AB()()(); (2)如图,在Rt △ABC 中,CD 是斜边上的高,则△ ∽△ ∽△ . 2.填空:(1)如图∠A=∠ ,∠D=∠ ;(2)如图∠PAD=∠ ,∠B=∠ .(二)创设情境,导入新课师:上节课我们利用相似三角形的判定定理做了几个题目,这节课我们再来做几个题目,先看一道例题. (三)尝试指导,讲授新课 (师出示例题)例 已知:如图,弦AB 和CD 相交于⊙O 内一点P.求证:PA ·PB=PC ·PD.(先让生尝试,然后师分析证明思路,最后师生共同完成证明过程,证明过程如下)证明:连结AC 、BD. ∵∠A 和∠D 都是CB 所对的圆周角, ∴∠A=∠D. 同理∠C=∠B.OA BC D P AD C B D CB AA C BD O .PA DC B∴△PAC ∽△PDB.∴PA PCPD PB.即PA ·PB=PC ·PD.(列PA PC PD PB时,要让学生自己找PA ,PC 的对应边)(四)试探练习,回授调节 3.填空:如图,PA=3,PC=2,点P 是AB 的中点,则PD= .4.已知:如图,弦BA 和DC 的延长线相交于⊙O 外一点P.求证:PA ·PB=PC ·PD. (提示:连结AC )5.填空:在上题中,如果PA=3,AB=2,PC=2.5,则PD= . (五)归纳小结,布置作业师:本节课我们做了几个题目,做这几个题目不仅用到了相似三角形的判定定理,还用到了一些圆的知识.譬如用到了同弧所对的圆周角相等,用到了圆内接四边形的一个外角等于它的内对角.在有关圆的图形中,因为相等的角比较多,所以常常会有相似三角形,利用相似三角形对应边的比相等,就能得出线段的关系.(指例题)这是解决和这个例题类似问题的一般思路. 课外补充作业: 6.已知:如图,AB 是直径,PB 是过点B 的切线.求证:PB 2=PA ·PC. 四、板书设计(略)课题:27.2.2相似三角形应用举例(第1课时) 一、教学目标1.经历对实际问题的思考和讨论过程,会利用相似三角形解决高度测量问题.2.培养把实际问题转化为数学问题的能力,发展应用意识. 二、教学重点和难点1.重点:利用相似三角形解决高度测量问题.2.难点:探索如何利用相似三角形解决高度测量问题. 三、教学过程(一)创设情境,导入新课师:从初一到现在,我们已经学了不少图形的知识,我们学过相交线平行线,我们学过三角形四边形,我们学过圆,这些天我们又学了相似三角形.这些关于图形的知识是怎么形成的呢?(稍停)据说在很久很久以前,埃及的尼罗河水每年都会泛滥,两岸的田地就被淹没,水退后人们要重新划定田界,这便促使人们学会了计算简单图形边长、面积的方法,逐步形成了图形的知识.可见,图形知识是由于测量的实际需要而形成的.本节课我们要学的也与测量有关,我们要利用相似三角形的知识来解决一个测量问题,先来看这样一个实际问题.P A C B D .O A P D CB.PCA B O(二)尝试指导,讲授新课 (师出示下图) 师:(指图)这是旗杆,旗杆很高,怎么测量出旗杆的高度?请大家想出一个可行的测量办法.(让生思考一会儿,等到有一部分学生举手)师:有些同学已经有了办法,大家还是把自己的想法先在小组里交流交流. (生小组交流,师巡视倾听)师:哪位同学来说说你们小组讨论的情况?生:……(让几名同学说,师作适当评价,譬如有些想法只是一种想法不具有可行性)师:测量旗杆的高度有很多办法,其中有一种比较好的办法是利用相似三角形来测量,怎么利用相似三角形来测量?师:旗杆在地上会有影子,假如这条线是旗杆的影子(边讲边画图).我们在旗杆影子的顶端立一根木杆(边讲边画图),木杆在地上也会影子,这条线是木杆的影子(边讲边画图).现在连结这两条线段(边讲边连结),就构成了两个三角形,我们把三角形的顶点都标上字母(标字母,画好的图如下所示).师:(指准图)△ABC 与△DEA 相似吗? 生:(齐答)相似.师:为什么相似?(让生思考一会儿再叫学生) 生:……(让一两名学生回答) 师:(指准图)因为旗杆和木杆都垂直立在地上,所以∠C 、∠DAE 都是直角(边讲边在图中作直角符号). 师:(指准图)而DE ∥AB ,为什么?(稍停)因为DE 是太阳光线,AB 也是太阳光线,太阳光线是平行的,所以DE ∥AB. 师:(指准图)因为DE ∥AB ,所以∠BAC=∠D (边讲边在图中作角的符号),所以△ABC ∽△DEA.B C师:假如我们量出旗杆影子AC 的长度为8米(边讲边在图中标:8m ),木杆的高度为2米(边讲边在图中标:2m ),木杆影子的长度为1.6米(边讲边在图中标:1.6m ),那么旗杆高度是多少米?(边讲边在图中标:?)大家算一算.(生计算)师:旗杆的高度是多少米? 生:(齐答)10米.师:好了,下面我们把求旗杆高度的过程完整地写出来. (以下师边讲解边板书,解答过程如下) 解:∵DE ,AB 是太阳光线, ∴DE ∥AB.∴∠BAC=∠D.而∠C=∠DAE=90°, ∴△ABC ∽△DEA.∴BC AC EA DA ,即BC 82 1.6. ∴BC=10(米).因此,旗杆的高度为10米. (三)试探练习,回授调节 1.填空:如图,在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一栋高楼的影长为90m ,则这栋高楼的高度是 m.2.填空:如图,测得BD=120m ,DC=60m ,EC=50m , 则河宽AB= m.(四)归纳小结,布置作业师:本节课我们利用相似三角形解决了测量旗杆高度的问题,通过解决这个问题,不知道大家有没有意识到,其实测量可以分成两种,一种是可以直接测量的,譬如,我们的身高,教室的长度,马路的宽度,这些都可以直接测量.另一种是不能直接测量的,譬如,旗杆的高度,珠峰的高度,地球和月亮的距离,这些1.8m3m 90m都不能直接测量.不能直接测量的问题怎么解决?(稍停)解决不能直接测量的问题,实质上是把不能直接测量的问题转化为可以直接测量的问题.(指准图)譬如,旗杆的高度是不能直接测量的,但它的影子,还有木杆及影子的长度都是可以直接测量,利用相似三角形可以求出旗杆的高度.师:不能直接测量就利用相似三角形间接地测量,这种想法很巧妙很高明,从中我们可以看到数学知识在解决实际问题中的作用,看到数学的价值,看到人的聪明才智.(作业:P习题10.11.)55四、板书设计(略)。

相关文档
最新文档