实验中学七年级数学
河南省实验中学2024-2025学年上学期七年级入学测试数学试题(解析版)
数学(时间:70分钟满分:100分)亲爱的同学,欢迎来到河南省实验中学的大家庭,这是你进校的第一次考试,希望展示你真实的水平,努力加油哟!一.选择题(共10小题,满分20分)1. 一个三角形,其中有两个角分别是50°和70°,第三个角是( )A. 60°B. 70°C. 80°D. 50°【答案】A【解析】【分析】本题考查了三角形内角和定理,根据三角形内角和等于180°,直接求解即可.【详解】解:由题意可知:第三个角的度数是180507060°−°−°=°, 故选:A .2. 一张地图的比例尺是1:25000,从图中测得两地的距离是4cm ,它们的实际距离是( )kmA. 1B. 10C. 100D. 100000【答案】A【解析】A、B 两地的实际距离为cm x ,根据比例尺的定义,列方程解答即可.【详解】解:设A ,B 两地的实际距离为cm x ,由题意得: 1425000x= 解:100000x =,又100000cm 1km =故选A .3. 下面各选项中的两种量,成正比例关系的是( )A. 平行四边形的面积一定,它的底和高B. 已知3y x =+,y 和xC. 正方体的表面积与它的一个面的面积D. 已知9:4x y =:,y 和x 【答案】C【解析】【分析】本题主要考查了正反比例, 根据平行四边形的面积,正方体的表面积以及比例的关系列出式子一一判断即可.【详解】解:A .底×高=平行四边形的面积(一定),它的底和高成反比例关系,故该选项不符合题意; B .已知3y x =+,y 和x 不是正比例函数,故该选项不符合题意;C .正方体的表面积6=×一个面的面积,则正方体的表面积与它的一个面的面积成正比例关系,故该选项符合题意;D .9:4x y =:,则36xy =,y 和x 成反比例关系,故该选项不符合题意; 故选:C .4. 在5cm 5cm 8cm 8cm 10cm 、、、、的五根小棒中,任选三根围成一个等腰三角形,有( )种不同的围法.A. 2B. 3C. 4D. 5【答案】B【解析】【分析】本题考查了等腰三角形的定义,三角形的三边关系定理,熟记三角形的三边关系定理是解题关键.根据三角形的三边关系定理即可得.【详解】解:三角形的三边关系定理:任意两边之和大于第三边则有以下两种选法:①选5cm 5cm 8cm 、、三根木棒,558+>,满足三角形的三边关系定理;②选8cm 8cm 10cm 、、三根木棒,8810+>,满足三角形的三边关系定理;③选885cm cm cm 、、三根木棒,5+8>8,满足三角形的三边关系定理;即有3种不同的围法,故选:B .5. 某超市按进价加40%作为定价销售某种商品,可是销售得不好,只卖出14,来老板按定价减价40%以210元出售,很快就卖完了,则这次生意盈亏情况是( )A. 不亏不赚B. 平均每件亏了5元C. 平均每件赚了5元D. 不能确定 【答案】B【解析】【分析】本题主要考查了百分数的应用,先求出进价,再求出现在的售价,相减即可得出答案.【详解】解:()()210140%140%250÷+−=(元),()11250140%210124544 ×+×+×−=(元), ∴2502455−=(元) 故选:B6. 同时掷出两枚相同的骰子,朝上的两个面上的两个点数的和不大于7的概率(可能性)是( ) A. 17 B. 16 C. 712 D. 13【答案】C【解析】【分析】本题主要考查可能性的求法,即求一个数是另一个数的几分之几用除法解答.同时掷两枚相同的骰子,出现的点数的可能结果有36种,点数之和不大于7的共21种,用除法计算即可.【详解】解:同时掷两枚相同的骰子,出现的点数的可能结果有36种,点数之和不大于7的有:()1,1,()1,2,()1,3,(1,4),()1,5,()1,6,(2,1),()2,2,(2,3),()2,4,()2,5, ()3,1,()3,2,()3,3,()3,4()4,1,()4,2,()4,3,()5,1,()5,2,()6,1,一共有21种,∴朝上的两个面上的两个点数的和不大于7的概率是2173612=, 故选:C .7. 小明将一个正方形纸对折两次,如图所示:并在中央点打孔再将它展开,展开后的图形是( )A. B. C. D.【答案】B【解析】【分析】本题主要考查了折叠的性质,解题的关键是熟练掌握折叠的性质,发挥空间想象力.动手按照图示顺序操作一下,先左右对折,再上下对折即可得出答案.【详解】解:动手按照图示顺序操作一下,先左右对折,再上下对折,所以得出的图是:故选:B .8. 把分数a 的分子扩大9倍,分母扩大11倍,得到一个新分数b ;把分数a 的分子扩大8倍,分母扩大9倍,得到一个新分数c ,那么b 和c 比较( )A. b c >B. b c <C. b c =D. 无法比较 【答案】B【解析】【分析】本题考查分式基本性质,分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变,根据分式的性质求解即可.【详解】解:根据题意得:b =,89c a =, ∵999811111999×==×,881188991199×==×, ∵81889999<, ∴81889999a a <, ∴b c <,故选:B .9. 有两根长短粗细不同的蚊香,短的一根可燃8小时,长的一根的可燃时间是短的一根12,同时点燃两根蚊香,经过3小时,它们的长短正好相等,未点燃之前,短蚊香比长蚊香短( )的A. 35B. 67C. 25D. 45【答案】A【解析】【分析】本题考查代数式的应用,用燃烧3小时后的蚊香长度表示出短蚊香和长蚊香的原长是解题的关键. 【详解】解:长的可燃时间为1842×=小时, 3小时后:短蚊香可燃时间为835−=小时,长蚊香可燃时间为431−=小时,设后来的长度为a , 则短蚊香的长度为85a ,长蚊香的长度为4a , ∴短蚊香比长蚊香短8445a a a −÷=35, 故选:A .10. 如图,把三角形DBE 沿线段折叠AC ,得到一个多边形DACEFB G ′,这个多边形的面积与原三角形面积的比是7:9,已知图2中阴影部分的面积为15平方厘米,那么原三角形的面积是( )平方厘米.A. 26B. 27C. 28D. 29【答案】B 【解析】 【分析】本题考查分数的应用.解题的关键是确定阴影部分的面积是原三角形面积的几分之几. 根据多边形的面积是原三角形面积的79,得到多边形中空白部分的面积是原三角形面积的29,进而得到阴影部分的面积是原三角形面积的59,再根据阴影部分的面积进行求解即可. 【详解】解:由题意,可知:多边形中空白部分的面积是原三角形面积的72199−=, 多边形中阴影部分的面积是原三角形面积的2251999−−=,则原三角形的面积是5915152795÷=×=(平方厘米) 故选B . 二.填空题(共10小题,满分20分)11. 2.737373…用四舍五入法保留两位小数是____.【答案】2.74【解析】【分析】本题主要考查了求一个数的近似数,根据四舍五入法求解即可.【详解】解:2.737373…小数位上第三位数字是7,75>,∴2.737373 2.74…≈, 故答案为:2.74.12. 一个长方形,周长24厘米,宽4厘米.如果长增加2厘米,那么面积是______平方厘米.【答案】40【解析】【分析】本题主要考查了长方体的周长公式以及面积公式, 根据长方形的周长可求出长方形的长,然后再根据长方形的面积公式计算即可得出答案.【详解】解:长方形的长为24248÷−=(厘米), 如果长长增加2厘米,则长变成8210+=(厘米), 所以长方形的面积为:104×=, 故答案为:40.13. 陈老师花了600元买了48个本和72支笔.已知每个本8元,那么每支笔____元.【答案】3【解析】【分析】题目主要考查有理数的四则混合运算的应用,理解题意,列式计算即可. 【详解】解:根据题意得:600488372−×=元, 故答案为:3.14. 用黑、白两种颜色的正六边形地砖按如下图所示规律铺地面,则第n 个图形有____块白色地砖.【答案】(42)n +##()24n +【解析】【分析】本题考查了规律型−图形变化类,解决本题的关键是根据图形的变化寻找规律,总结规律,运用规律.根据图示,第1个图形有白色地砖6块;第2个图形有白色地砖6410+=(块);第3个图形有白色地砖64414++=(块);.….;第5个图形白色地砖的块数:64(51)22+×−=(块);……;第n 个图形白色地砖的块数:64(1)(42)n n +×−=+块.据此解答.【详解】解:第1个图形有白色地砖6块,第2个图形有白色地砖6410+=(块), 第3个图形有白色地砖64414++=(块), 第5个图形白色地砖的块数:64(51)22+×−=(块), 第n 个图形白色地砖的块数:64(1)(42)n n +×−=+块,故答案为:(42)n +.15. 在一个棱长为8的立方体上切去一个三棱柱(如图),那么表面积减少____.【答案】28【解析】【分析】本题主要考查求三棱柱表面积,根据题意先求得原三棱柱的表面积,再求得切去一个三棱柱后形成新的表面积,作差即可. 【详解】解:原三棱柱的表面积为138********×+×+×××=, 切去一个三棱柱后形成新的表面积为5840×=,则表面积减少了684028−=.故答案为:28.16. 如图,把梯形ABCD 分割成一个平行四边形和一个三角形,已知:3:5BE EC =,如果三角形CDE 的面积是200平方厘米,则平行四边形ABED 的面积是____平方厘米的.【答案】240【解析】【分析】本题考查了比的应用,得出:6:5ABED DEC S S = 是解题关键;根据比的性质,结合平行四边形和三角形的面积公式即可求解;【详解】解:设平行四边形ABED 和三角形CDE 的高为h ,35BE EC :=: ,1:?:?6:52ABED DEC S S BE h CE h ∴== , 三角形CDE 的面积是200平方厘米,∴平行四边形ABED 面积为:62002405×=平方厘米, 故答案为:240 17. 下面这个几何体,是由10个小正方体组成的.想一想,至少再摆上____个小立方体,它就能拼成一个长方体了.【答案】8【解析】【分析】本题考查从不同方向看几何体,解题的关键是理解题意,灵活运用所学知识解决问题;根据几何体特征即可求解;【详解】解:这个几何体是由10个小正方形组成的,332108××−=(个)至少再摆上8个小立方体,它就能拼成一个长方体了,故答案为:818. “16 ☆”是一个四位数,它同时是2,3,5的倍数,其中☆所代表的数字是0,则 所代表的数字最小是____.【答案】2的【解析】【分析】本题考查倍数的特征及其应用,熟练掌握根据倍数的特征是解题的关键;根据倍数的特征求解即可;【详解】解:同时是2,3,5的倍数的特征:个位必须为0且各位上的数字之和为3的倍数, 因此可知,169++= ,2= ,故答案为:219. 在甲、乙、丙三缸酒精溶液中,纯酒精含量分别占48%、62.5%和23,已知三酒精溶液的总量是100千克,其中甲缸酒精溶液的量等于乙、丙两缸酒精溶液的总量,三缸溶液混合,酒精含量将达到56%,那么丙缸中纯酒精的量是____千克.【答案】12【解析】【分析】本题考查了百分数的应用,一元一次方程的应用;根据题意易得甲缸酒精溶液的量=乙缸酒精溶液的量+丙缸酒精溶液的量50=千克,从而可设丙缸中酒精溶液的量是x 千克,则乙缸中酒精溶液的量是()50x −千克,然后根据题意可得:()25048%62.5%5010056%3x x ×+−+×,最后进行计算即可解答. 【详解】解: 100千克,其中甲缸酒精溶液的量等于乙,丙两缸酒精溶液的总量,∴甲缸酒精溶液的量=乙缸酒精溶液的量+丙缸酒精溶液的量1100502=×=(千克), 设丙缸中酒精溶液的量是x 千克,则乙缸中酒精溶液的量是()50x −千克,由题意得:()25048%62.5%5010056%3x x ×+−+×, 解得:18x =, ∴丙缸中纯酒精的量218123=×=(千克), ∴丙缸中纯酒精的量是12千克,故答案为:12.20. 由200多枚棋子摆成一个n 行n 列的正方形,甲先从中取走10枚,乙再从中取走10枚……这样轮流取下去,直到取完为止,结果最后一枚被乙取走,乙一共取走了 ________枚棋子.【答案】126【解析】【分析】本题主要考查了完全平方数的性质,棋子数是一个完全平方数,最后一枚被乙取走,说明这个完全平方数的十位是奇数,找出200~300之间十位数是奇数的完全平方数即可求解.【详解】解: 棋子摆成n行n列的正方形,∴棋子数是一个完全平方数,最后一枚被乙取走,∴这个数的十位数是奇数,200~300间的完全平方数只有225,256,289,∴棋子数是256个,∴乙取走的棋子数为:24026126÷+=(个).故答案为:126.三.解答题(本大题共8小题,共60分)21. 请直接写出答案.(1)3.2 1.18+=(2)10.98−=(3)38415×=(4)60.5÷=(5)0.47 2.5××=(6)1132+÷=(7)3535 7878×÷×=(8)1542 111113×+=【答案】(1)4.38(2)0.02(3)2 5(4)12(5)7(6)5 6(7)25 64(8)1110 1573【解析】【分析】此题考查了有理数混合运算,小数的乘除法和减法的计算,是一个综合性题,我们要灵活运用小数计算的方法解答,计算除法时用商不变的规律思考,计算乘法时用积的变化规律思考,用整数减小数时,可以同时扩大小数位数的倍数,相减后再缩小回来,本题培养了学生计算能力(1)根据小数加小数计算法则计算即可;(2)根据小数减小数计算法则计算即可;(3)根据分数乘法法则计算即可;(4)根据小数除法法则计算即可;(5)根据乘法交换律,乘法法则计算即可;(6)先计算除法,再根据分数加法法则计算即可;(7)根据分数混合运算法则计算即可;(8)先计算括号里面的式子,再利用分数乘法法则计算即可【小问1详解】解:3.2 1.18 4.38+=小问2详解】10.980.02−=【小问3详解】3824155×=【小问4详解】60.512÷=【小问5详解】()0.47 2.50.4 2.577××=××=【小问6详解】11132513223666+÷=+=+=【小问7详解】3535552578788864×÷×=×=【小问8详解】【154215741110111113111431573×+=×= 22. 解方程.(1)13224x += (2)0.75:3:1.2=x(3)111523x x −= 【答案】(1)18(2)0.3(3)90【解析】【分析】本题考查解方程,注意书写格式,养成检验的好习惯.(1)根据等式的基本性质方程两边同时减去12,再同时除以2即可; (2)根据比例的基本性质化简方程,再根据等式的基本性质方程两边同时除以3即可;(3)先化简,再根据等式的基本性质方程两边同时除以16即可. 【小问1详解】 解:13224x += 113122242x +−=− 124x = 12224x ÷=÷ 18x 【小问2详解】解:0.75:3:1.2=x30.75 1.2x =×30.9x =0.3x =【小问3详解】解:111523x x −= 1156x = 11115666x ÷=÷ 90x =23. 计算下面各题,能简算的要求写出简便过程.(1)5721128336−+÷ (2)()130.58 4.870.4213 5.13 4.25×−+×−×;(3)91131624 ÷×−(4)1111121231234123410+++++++++++++++ 【答案】(1)152(2)12.75(3)34(4)911 【解析】【分析】题目主要考查有理数的四则混合运算,熟练掌握运算法则及运算律是解题关键.(1)将除法转化为乘法,然后运用乘法运算律计算即可;(2)运用乘法运算律先计算括号内的,然后再计算括号外的即可;(3)先计算小括号中的运算,然后计算乘法,最后计算除法即可;(4)将原式进行变形,然后运用简便方法计算即可.【小问1详解】 解:5721128336 −+÷572361283 =−+× 5723636361283=×−×+×6315242=−+ 63392=− 152=; 【小问2详解】()130.58 4.870.4213 5.13 4.25×−+×−×()()130.580.42 4.87 5.13 4.25 =×+−+×[]13110 4.25=×−×3 4.25=×12.75=;【小问3详解】91131624 ÷×− 913164 =÷× 94163=× 34=; 【小问4详解】1111121231234123410+++++++++++++++ 1111(12)22(13)32(14)42(110)102+++++×÷+×÷+×÷+×÷ 23344510112222=++++×××× )111111113402(2311145=×−+−+−++− 2()21111=×− 9222=× 911=. 24. 按要求画一画.(1)画出长方形绕点A顺时针旋转90°后的图形,并在图内标上①.(2)以点O为圆心,画一个半径是3m的圆.(3)在空白处画出原长方形按1:2缩小后的图形,并在图内标上②.【答案】(1)见详解(2)见详解(3)见详解【解析】【分析】本题主要考查作图,()1根据旋转的性质,绕点A作旋转图形;()2根据图中的圆心和已知小方格的长度作圆即可;()3根据题干要求画出长为2m,宽为1m的长方形即可.【小问1详解】解:如图,【小问2详解】解:见上图,【小问3详解】解:见上图,25. 下边是一个零件,由一个圆锥和圆柱组成,它的体积是600立方厘米,那么上面圆锥部分的体积是多少立方厘米?【答案】300立方厘米【解析】【分析】题目主要考查圆柱体积及圆锥体积的计算,设底面积为S ,则圆锥的体积为11243S S ×=,圆柱的体积为44S S ×=,得出两部分的体积相同即可求解.【详解】解:这个零件即圆柱和圆锥的底面都相同,设底面积为S , 则圆锥的体积为11243S S ×=,圆柱的体积为44S S ×=, ∴两部分的体积相同,∴上面圆锥部分的体积为:6002300÷=立方厘米.26. 芳芳从家出发去上学,走到A 地时,发现忘记带学具了,于是赶紧小跑回家;拿好学具后,怕上学迟到,就骑自行车赶往学校,芳芳的行程情况和时间分配如图.芳芳小跑回家的速度是多少?她骑自行车到学校用了多少时间?【答案】150米/分,12分钟【解析】【分析】题目主要考查从图象获取相关信息及扇形统计图的应用,根据题意及图象获取相关信息求解是即可.【详解】解:小跑回家的速度为:()45085150÷−=米/分, 骑自行车到学校用的时间为:525%60%12÷×=分钟.答:芳芳小跑回家的速度是15米/分;骑自行车到学校用的时间为12分钟.27. 一项工程,由甲队承租,需工期80天,工程费用100万元,由乙队承担,需工期100天,工程费用80万元.为了节省工期和工程费用,实际施工时,甲乙两队合做若干天后撤出一个队,由另一个队继续做到工程完成.结算时,共支出工程费用86.5万元,那么甲乙两队合做了多少天?【答案】甲、乙两队合作了26天【解析】【分析】此题考查的是一元一次方程的应用,找准等量关系列出方程是解决此题的关键.甲队工作x 天完成的工作量×甲队完成整个工程需要的费用+乙队整个工期完成的工作量×乙队完成整个工程需要的费用86.5=.【详解】解:设甲队工作x 天,则甲队完成的工作量为80x ,乙队完成的工作量为180x −, 由题意得,86.51008018080x x =×+×−, 解这个方程可得:26x =. 乙队工作的天数:261167.580100 −÷= (天), ∵2667.5<,∴撤出的一个队是甲队,则甲队工作的天数就是甲、乙两队合作的天数,答:甲、乙两队合作了26天.28. 如果一个四位数满足千位数字和十位数字的和为9,百位数字与个位数字的差为2,那么称M 为“跳跃数”.若一个四位“跳跃数”M 的千位数字与个位数字的2倍的和记作()P M ,百位数字与十位数字的和记作()Q M ,那么()()()P M F M Q M =为整数时,则称M 为“跳跃整数”. 例如:8614满足819,622+=−=,且()()86148816,8614617P Q =+==+=,即()()()167P M F M Q M ==不是整数,故8614不是“跳跃整数”. 又如:9503满足909,532+=−=,且()()95039615,9503505P Q =+==+=,即()()()1535P M F M Q M ===是整数,故9503是“跳跃整数”. (1)判断:5745 “跳跃整数”,5341 “跳跃整数”;(填“是”或“不是”); (2)证明:任意一个四位“跳跃数”与其百位数字的2倍之差能被11整除;(3)若2000100010010M a b c d =++++(其中14290909a b c d ≤≤≤≤≤≤≤≤,,,且a b c d、、、均为整数)是“跳跃整数”,请直接写出满足条件的所有M 的值.【答案】(1)不是,是(2)见解析 (3)9503或5341或3765【解析】【分析】本题考查了新定义运算,列代数式及整式的加减,关键是理解新定义,正确运用新定义解决问题.(1)根据新定义及其计算方法,即可一一判定;(2)设任意一个四位“跳跃数”千位上的数字为a ,百位上的数字为b ,则十位上的数字为9a −,个位上的数字为2b −,可得99010188M a b =++,()2119098M b a b −=++,据此即可证得; (3)根据题意和新定义可得:2192a c b d ++= −= 且212a d b c +++是整数,可得212352a d c b c b c ++−+=+++,再由82c a −=,a ,c 均为整数,可得c 是偶数,最后对c 的取值分别计算,即可分别求得. 【小问1详解】解:5745 满足549,752+=−=,且()574551015P =+=,(5745)=7+4=11Q , 即()()()5745155745=574511P F Q =,不是整数, 5745∴不是“跳跃整数”;5341 满足549,312+=−=,且()5341527P =+=,(5341)=3+4=7Q , 即()()()534175341==153417P F Q =, 5341∴是“跳跃整数”;【小问2详解】证明:设任意一个四位“跳跃数”的千位上的数字为a ,百位上的数字为b ,则十位上的数字为9a −,个位上的数字为2b −,()10001001092M a b a b ∴=++−+−100010090102a b a b ++−+−99010188a b =++()29909988119098M b a b a b ∴−=++=++,a ,b 均为整数,的9098a b ∴++也为整数,2M b ∴−能被11整除,∴任意一个四位“跳跃数”与其百位数字的 2 倍之差能被 11 整除;【小问3详解】解:()200010001001010002110010M a b c d a b c d =++++=++++ 是“跳跃整数”,2192a c b d ++= ∴ −=且212a d b c +++是整数, 把2192a c d b +=− =− 代入212a d b c +++,得 ()()92223525352c b b c c b c c b c b c b c b c −+−+−+−+−+===+++++ 219a c +=− ,82c a −∴=, a ,c 均为整数,8c − 是偶数,c ∴是偶数,09c ≤≤ ,∴当0c =时,52b+是整数, 29b ≤≤ ,b 为整数,∴当5b =时,52=35+是整数, 故此时,4a =,则219,5,0,3a b c d +====, =9503M ∴;当2c =时,6512=222b b −++−++是整数, 29b ≤≤ ,b 为整数,∴无满足条件的数;当4c =时,12572=244b b −++−++是整数, 29b ≤≤ ,b 为整数, ∴当3b =时,72=134−+是整数, 故此时,aa =2,则215,3,4,1a b c d +====, =5341M ∴;当6c =时,185132=266b b −++−++是整数, 29b ≤≤ ,b 为整数, ∴当7b =时,132=176−+是整数, 故此时,1a =,则213,7,6,5a b c d +====, =3765M ∴;当8c =时,245192=288b b −++−++是整数, 29b ≤≤ ,b 为整数,∴无满足条件的数;综上,满足条件的所有M 的值为或5341或3765.。
浙江省温州市龙湾区龙湾区实验中学2023-2024学年七年级上学期期中数学试题
浙江省温州市龙湾区龙湾区实验中学2023-2024学年七年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题“”“”A .223B .223-C .2636.用代数式表示a 与5的差的平方是()A .225a -B .25a -C .25a -7.下列计算正确的是()A .326=B .()328-=C .239-=-8.五个国际大都市的时差(单位:时)在数轴上表示如下图,那么当北京时间为年11月9日9时,下列选项中时间正确的应该是()A .东京时间2023年11月9日8时B .迪拜时间2023年11C .伦敦时间2023年11月9日2时D .纽约时间2023年A.693B.700C.707D.二、填空题+元,那么减少300元记为11.如果银行账户余额增加500元记为50012.9的平方根是.13.魏晋时期,伟大的数学家刘徽通过“割圆术”得到圆周率的近似值为据3.141024精确到百分位是.14.比较大小:10-12-.15.我校即将举办数学节,现计划采购100本笔记本和200支记号笔,共支付18.如图,一个半圆形量角器和直尺的边落在数轴上,量角器的直径的两个端点分别与直尺的刻度0和12重合,数轴的原点和直尺上的刻度1-,则点A表示的数为.先将量角器绕滑动的滚动,最后A点到达数轴上的(2)观察(1)中的数轴,这四个数中绝对值最大的数是.21.如图所示为“活塞式灌装机”,它是利用移动活塞将直径为挤压出下阀口,从而对下方的矿泉水瓶进行注水.现需通过一次注水将一瓶容量为矿泉水注满,则需要移动活塞几厘米?(31L 1000cm =,结果保留22.小龙家电视背景墙设计成如图所示的对称图形,现准备绕阴影部分一周装饰灯带.(1)求所需的灯带的长度(用含a(2)若a取0.6米,灯带的价格为每米23.怎样邮寄瓯柑更经济?瓯柑是温州的特产,每年秋冬季是其盛产期.因此需要较多快递费的支出.素材1一客户在小温家定了10箱瓯柑,不足的千克数记为负数,记录如下表示:与标准质量的差值(单位:千克)箱数素材2据调查,某快递公司收费标准:首重千克的部分)2元/千克,不足装费30元.素材3据小温家常年的邮寄经验,瓯柑几乎无受损;一个包裹质量在5%,破损部分由小温家按售价进行赔偿,返还给顾客相应现金.。
2022-2023学年河南省实验中学七年级(下)期末数学试卷及答案解析
2022-2023学年河南省实验中学七年级(下)期末数学试卷一、选择题:(本大题共10小题,每小题3分,共30分)1.(3分)下列四个汉字是轴对称图形的是()A.实B.验C.中D.学2.(3分)经过多年的努力,我国在光刻机研发上已经取得了重大突破,前段时间上海微电子已经宣布成功研发出0.000000028米光刻机,这对于我国芯片制造业来说是一个非常振奋人心的消息.则数据“0.000000028”用科学记数法表示是()A.2.8×10﹣8B.2.8×10﹣9C.28×10﹣9D.2.8×10﹣10 3.(3分)下列运算正确的是()A.4a+3b=7ab B.(﹣b2)5=b10C.2x•3x3=6x4D.(m﹣n)2=m2﹣n24.(3分)如图,a∥b,c∥d,∠1=49°,则∠2的度数为()A.141°B.131°C.149°D.139°5.(3分)下列说法正确的是()A.“翻开七年级下册数学课本,恰好是第62页”是不可能事件B.某学生投篮5次,投中1次,则可断定他投篮命中的概率一定为20%C.投掷一枚质地均匀的硬币10000次,正面朝上的次数一定是5000次D.“从一副扑克牌中抽一张,恰好是大王”是随机事件6.(3分)若a2﹣2a=0,那么代数式(a+1)(a﹣1)﹣2a的值为()A.﹣2B.﹣1C.1D.07.(3分)如果三角形的两边长分别为3和6,那么这个三角形的周长可能是()A.10B.12C.16D.188.(3分)郑州的宇通公交车数量位列全国之首.某线路一辆公交车每月的乘车人数x(人)与每月利润(每月利润=每月票款收入﹣每月支出费用)y(元)的变化关系如表所示(每位乘客的票价固定不变).以下说法错误的是()x(人)…10002000300040005000…y(元)…﹣3000﹣1000100030005000…A.在变化过程中,自变量是每月乘车人数B.在变化过程中,每月的利润是因变量C.若当月乘客达到2500人时,该公交车不会亏损D.若当月乘客达到6000人时,该公交车盈利6000元9.(3分)若用如图①这样一副七巧板,拼成图②的图案,若七巧板面积为16,则图②中阴影部分的面积是()A.7B.8C.9D.1010.(3分)如图,将正方形EFGH叠放在正方形ABCD上,重叠部分LFKD是一个长方形,AL=4,CK=6.沿着LD、KD所在直线将正方形EFGH分成四个部分,若四边形ELDN 和四边形DKGM均为正方形,且它们的面积之和为100,则重叠部分长方形LFKD的面积为()A.40B.48C.42D.50二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)计算:2﹣2+(﹣2023)0=.12.(3分)如图所示,人字梯中间一般会设计一“拉杆”,这样做的依据是.13.(3分)如图,在Rt△ABC中,∠BAC=90°,∠B=65°.分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点E,F,作直线EF,交BC于点D,连接AD,则∠DAC的度数为.14.(3分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE为△ABD 的中线,若AB=8,CD=2,则△DBE的面积为.15.(3分)如图,有一张三角形纸片ABC,∠B=32°,∠A=100°,点D是AB边上的固定点,在BC上找一点E,将纸片沿DE折叠(DE为折痕),点B落在点F 处,当EF与AC边平行时,∠BDE的度数为.三、解答题(本大题共8小题,共75分)16.(8分)先化简,再求值:[(3x+y)(3x﹣y)+(x﹣y)2+2x(x﹣2y)]÷(2x),其中x =2,y=4.17.(8分)如图,已知在△ABC中,∠A=70°.(1)分别作∠B,∠C的平分线,它们交于点O(尺规作图,不写作法,保留作图痕迹);(2)当∠B=60°时,∠BOC的度数为.(3)当∠B=α时,∠BOC的度数为.18.(10分)如图,AB⊥BF,CD⊥BF,∠1=∠2,试说明∠3=∠E.证明:∵AB⊥BF,CD⊥BF(已知),∴∠ABD=∠CDF=90°()∴∥(同位角相等,两直线平行),∵∠1=∠2(已知),∴AB∥EF(),∴CD∥EF(),∴∠3=∠E().19.(9分)如图,在所给正方形网格(每个小网格的边长是1)图中完成下列各题.(1)格点△ABC(顶点均在格点上)的面积=;(2)画出格点△ABC关于直线DE对称的△A1B1C1;(3)在DE上画出点P,使PB+PC最小.20.(9分)小明想知道一堵墙上点A到地面的高度AO,AO⊥OD,但又没有直接测量的工具,于是设计了下面的方案,请你先补全方案,再说明理由.第一步:找一根长度大于OA的直杆,使直杆靠在墙上,且顶端与点A重合,记下直杆与地面的夹角∠ABO;第二步:使直杆顶端竖直缓慢下滑,直到∠OCD=∠ABO,标记此时直杆的底端点D;第三步:测量的长度,即为点A到地面的高度AO.请说明小明这样测量的理由.21.(9分)如图,一个均匀的转盘被平均分成10等份,分别标有1,2,3,4,5,6,7,8,9,10这10个数字.转动转盘,当转盘停止后,指针指向的数字即为转出的数字.两人参与游戏:一人转动转盘,另一人猜数,若所猜数字与转出的数字相符,则猜数的人获胜,否则转动转盘的人获胜.猜数的规则从下面两种中选一种:(1)猜“是3的倍数”或“不是3的倍数”;(2)猜“是大于6的数”或“不是大于6的数”.如果轮到你猜数,那么为了尽可能获胜,你将选择哪一种猜数方法?怎样猜?请说明理由.22.(10分)图①长方形ABCD,AD=24cm,点P从点A出发,沿A﹣B﹣C﹣D的路线以每秒3cm的速度匀速运动,到达点D时停止运动.图②是点P出发x秒时,△APD的面积S(cm2)与时间x(s)的关系图象.(1)在上述变化过程中,自变量是,因变量是;根据题目提供的信息,可得a=,b=;(2)点P在DC上运动时,PD的长度y(cm)与点P运动时间x(s)的关系式;(3)点P出发几秒时,△APD的面积是长方形ABCD面积的?23.(12分)(1)问题发现如图1,把一块三角板(AB=BC,∠ABC=90°)放入一个“U”形槽中,使三角形的三个顶点A、B、C分别在槽的两壁及底边上滑动,已知∠D=∠E=90°,在滑动过程中,发现与∠DAB始终相等的角是,与线段AD相等的线段是;(2)拓展探究如图2,在△ABC中,点D在边BC上,并且DA=DE,∠B=∠ADE=∠C.求证:△ADB≌△DEC.(3)能力提升如图3,在等边△DEF中,A,C分别为DE、DF边上的点,AE=4,连接AC,以AC为边在△DEF内作等边△ABC,连接BF,当∠CFB=30°时,请直接写出CD的长度.2022-2023学年河南省实验中学七年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题3分,共30分)1.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:选项C汉字能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;选项A、B、D的汉字不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定,由此即可得到答案.【解答】解:0.000000028=2.8×10﹣8.故选:A.【点评】本题考查科学记数法—表示较小的数,关键是掌握用科学记数法表示数的方法.3.【分析】利用合并同类项的法则,完全平方公式,单项式乘单项式的法则,积的乘方的法则对各项进行运算即可.【解答】解:A、4a与3b不属于同类项,不能合并,故A不符合题意;B、(﹣b2)5=﹣b10,故B不符合题意;C、2x•3x3=6x4,故C符合题意;D、(m﹣n)2=m2﹣2mn+n2,故D不符合题意;故选:C.【点评】本题主要考查合并同类项,积的乘方,单项式乘单项式,完全平方公式,解答的关键是对相应的运算法则的掌握.4.【分析】由平行线的性质可得∠3=∠1,∠2+∠3=180°,从而可求解.【解答】解:如图,∵a∥b,c∥d,∴∠3=∠1,∠2+∠3=180°,∵∠1=49°,∴∠3=49°,∴∠2=180°﹣∠3=131°.故选:B.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补.5.【分析】根据随机事件的定义和概率的意义逐项进行判断即可.【解答】解:A、“翻开七年级下册数学课本,恰好是第62页”是随机事件,故本选项不符合题意;B、某学生投篮5次,投中1次,则不能断定他投篮命中的概率一定为20%,故本选项不符合题意;C、投掷一枚质地均匀的硬币10000次,正面朝上的次数不一定是5000次,故本选项不符合题意;D、“从一副扑克牌中抽一张,恰好是大王”是随机事件,故本选项符合题意;故选:D.【点评】此题主要考查了随机事件和概率的意义和应用,要熟练掌握,解答此题的关键是要明确:概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.6.【分析】依据题意,首先运用平方差公式对所求代数式进行化简,然后将已知条件整体代入即可得解.【解答】解:由题意,(a+1)(a﹣1)﹣2a=a2﹣1﹣2a=a2﹣2a﹣1.∵a2﹣2a=0,∴(a+1)(a﹣1)﹣2a=0﹣1=﹣1.故选:B.【点评】本题主要考查了平方差公式及代数式求值,解题时要能熟练掌握公式的变形是关键.7.【分析】根据三角形三边关系定理求出第三边的范围,得到三角形的周长的范围,判断即可.【解答】解:∵三角形的两边长分别为3和6,∴第三边x的长度范围是6﹣3<x<6+3,即3<x<9,∴这个三角形的周长a范围是3+6+3<a<3+6+9,即12<a<18,故选:C.【点评】本题考查的是三角形的三边关系,掌握三角形三边关系定理:三角形两边之和大于第三边、三角形的两边差小于第三边是解题的关键.8.【分析】根据常量与变量的定义进行判断.【解答】解:A、由表格知,每月的利润y随着每月的乘车的人数x发生变化,自变量是每月乘车人数,故A正确,不符合题意;B、由表格知,每月的利润y随着每月的乘车的人数x发生变化,因变量是每月利润,故B正确,不符合题意;C、由表格分析知,当每月乘客的达到2500人时,y=0该公交车不会亏损,故C正确,不符合意意;D、由表格分析知,当每月乘客达到6000人时,该公交车利润为7000元,故D错误,符合题意;故选:D.【点评】本题考察了常量与变量,掌握常量与变量的定义是关键.9.【分析】设①中小正方形的边长为a,由已知条件可得a2=2,用a表示出②中阴影部分的面积,即可求出面积的值.【解答】解:设①中小正方形的边长为a,则大正方形的面积为4××2a•2a=8a2=16,∴a2=2,∴②中阴影部分的面积为×2a•2a+a2+2××2a•2a﹣a(2a+4a)=a2=7,故选:A.【点评】本题主要考查了三角形的面积.本题的关键是用一个字母来表示面积.10.【分析】利用正方形和长方形的性质,将LD与DK的关系表示出来,再利用阴影部分面积为100即可求出LD与DK,从而得到重叠部分长方形LFKD的面积.【解答】解:设LD=x,DK=y,∵四边形ELDN和四边形DKGM为正方形,∴DN=LD=x,DM=DK=y,∵四边形ABCD为正方形,∴AD=CD,∵AD=AL+LD,CD=CK+DK,∴AL+LD=CK+DK,∵AL=4,CK=6,∴4+x=6+y,∴x=y+2,∵正方形ELDN和正方形DKGM的面积之和为100,∴x2+y2=100,将x=y+2代入x2+y2=100中,得:(y+2)2+y2=100,解得:y=6或y=﹣8(舍),∴x=y+2=8,∴DL=8,DK=6,∴重叠部分长方形LFKD的面积=DL•DK=8×6=48.故选:B.【点评】本题考查正方形的性质,矩形的性质,完全平方公式,一元二次方程,解题的关键是利用图形面积之间的关系求解,熟练进行公式之间的转化变形.二、填空题(本大题共5小题,每小题3分,共15分)11.【分析】直接利用负整数指数幂的性质以及零指数幂的性质分别化简,进而得出答案.【解答】解:原式=+1=.故答案为:.【点评】此题主要考查了负整数指数幂的性质以及零指数幂的性质,正确化简各数是解题关键.12.【分析】根据三角形的稳定性解答即可.【解答】解:人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加其稳定性,故答案为:三角形具有稳定性.【点评】此题考查了三角形的性质,关键是根据三角形的稳定性解答.13.【分析】证明DA=DC,推出∠DAC=∠C,求出∠C即可.【解答】解:由作图可知DF垂直平分线段AC,∴DA=DC,∴∠DAC=∠C,∵∠BAC=90°,∠B=65°,∴∠C=90°﹣∠B=90°﹣65°=25°,∴∠DAC=25°.故答案为:25°.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,三角形内角和定理等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.14.【分析】过点D作DH⊥AB于点H,根据角平分线的性质得DH=CD=2,再根据DE 为△ABD的中线得BE=4,据此由三角形的面积公式可求出△DBE的面积.【解答】解:过点D作DH⊥AB于点H,∵AD平分∠BAC,DH⊥AB,∠C=90°,∴DH=CD=2,∵DE为△ABD的中线,∴,∴.故答案为:4.【点评】此题主要考查了角平分线的性质,三角形的面积公式,解答此题的关键是理解角平分线上的点到角两边的距离相等.15.【分析】利用平行线的性质及三角形内角和即可求解.【解答】解:∵EF∥AC,∴∠BEF=∠C=180°﹣∠A﹣∠B=180°﹣100°﹣32°=48°.∵∠BED=∠BEF=×48°=24°,∴∠BDE=180°﹣∠B﹣∠BED=180°﹣32°﹣24°=124°.故答案为:124°.【点评】本题是平行线性质的小应用.题目比较简单,但该内容非常重要,一定要熟练掌握.三、解答题(本大题共8小题,共75分)16.【分析】原式中括号里利用平方差公式,完全平方公式,以及单项式乘多项式法则计算,去括号合并后再利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=[(9x2﹣y2)+(x2﹣2xy+y2)+(2x2﹣4xy)]÷(2x)=(9x2﹣y2+x2﹣2xy+y2+2x2﹣4xy)÷(2x)=(12x2﹣6xy)÷(2x)=6x﹣3y,当x=2,y=4时,原式=12﹣12=0.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则及公式是解本题的关键.17.【分析】(1)根据要求作出图形;(2)利用三角形内角和定理以及角平分线的第一年求出∠OBC+∠OCB,可得结论;(3)计算方法类似(2).【解答】解:(1)图形如图所示:(2)∵∠ABC+∠ACB=180°﹣∠A=120°,∵BO平分∠ABC,OC平分∠ACB,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠CB)=60°,∴∠BOC=180°﹣(∠OBC+∠OCB)=120°.故答案为:120°;(3)∵∠ABC+∠ACB=180°﹣∠A=180°﹣α,∵BO平分∠ABC,OC平分∠ACB,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠CB)=90°﹣α,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+α.故答案为:90°+α.【点评】本题考查作图﹣复杂作图,角平分线的定义,三角形内角和定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.18.【分析】根据垂直定义得出∠ABD=∠CDF=90°,根据平行线的判定定理得出AB∥CD,AB∥EF,求出CD∥EF,再根据平行线的性质定理得出即可.【解答】解:∵AB⊥BF,CD⊥BF(已知),∴∠ABD=∠CDF=90°(垂直的定义),∴AB∥CD(同位角相等,两直线平行),∵∠1=∠2(已知),∴AB∥EF(内错角相等,两直线平行),∴CD∥EF(平行于同一直线的两直线平行),∴∠3=∠E(两直线平行,同位角相等),故答案为:垂直的定义;AB;CD;内错角相等,两直线平行;平行于同一直线的两直线平行;两直线平行,同位角相等.【点评】本题考查了平行线的性质定理和判定定理,能熟记平行线的性质定理和判定定理是解此题的关键,平行线的性质定理:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.19.【分析】(1)用△ABC所在的四边形的面积减去三个多余小三角形的面积即可;(2)从三角形各顶点向DE引垂线并延长相同的长度,找到对应点,顺次连接;(3)利用轴对称图形的性质可作点A关于直线DE的对称点A1,连接BA1,交直线DE 于点P,点P即为所求.=4×4﹣×4×2﹣×2×1﹣×4×3=5;故答案为:5;【解答】解:(1)S△ABC(2)所作图形如图所示:(3)如图所示:【点评】此题主要考查了根据轴对称作图,用到的知识点为:两点之间,线段最短.注意,作图形变换这类题的关键是找到图形的对应点.20.【分析】根据全等三角形的判定和性质定理即可得到结论.【解答】解:OD;理由:在△AOB与△DOC中,,∴△AOB≌△DOC(AAS),∴OA=OD.故答案为:OD.【点评】本题考查全等三角形的判定和性质,解题的关键是理解题意,灵活运用所学知识解决问题.21.【分析】分别求出各种情况下获胜的概率,比较得出答案.【解答】解:(1)共有10种等可能出现的结果数,其中“是3的倍数”的有3种,“不是3的倍数”的7种,因此“是3的倍数”可能性是30%,“不是3的倍数”的可能性是70%,(2)共有10种等可能出现的结果数,其中“是大于6的数”的有4种,“不是大于6的数”的有6种,因此“是大于6的数”可能性是40%,“不是大于6的数”的可能性是60%,因此,猜数者选择“不是3的倍数”,这样获胜的可能性为70%,获胜的可能性最大.【点评】本题考查随机事件发生的概率,理解概率的意义,掌握概率的计算方法是正确解答的前提.22.【分析】(1)根据函数的图象可确定自变量和因变量,再由函数的图象得点P从点A运动到点B用时10s,从而得AB=30cm,进而可求出点P到达点B时△APD的面积即为a 的值;再根据BC=AD=21cm可求出点P从点B运动到点C所用的时间,进而可确定b 的值;(2)当点P在CD上运动时,运动的路程AB+BC+CP=3x,从而得CP=3x﹣54,进而得PD=﹣3x+84,据此可得出答案;(3)根据题意可知:点P在BC上运动时,△APD的面积保持不变,始终为360cm2,因此当△APD的面积是长方形ABCD面积的时,点P在AB上运动或在CD上运动;①当点P在AB上运动时得S=36x,然后列出方程,由此可求出x,②当点P在CD上运动时得S=﹣36x+1008,然后列出方程,由此可求出x.【解答】解:(1)根据函数的图象得:自变量是时间x(s),因变量是△APD的面积S (cm2),由函数的图象可知:点P从点A运动到点B用时10s,∵点P的运动速度为每秒3cm,∴运动的路程AB=3×10=30(cm),∵AD=24cm,当点P到达点B时,(cm2),∴a=360,∵四边形ABCD为长方形,∴BC=AD=24(cm),∴点P从点B运动到点C所用的时间为:24÷3=8(s),∴点P从点A→B→C所用的时间为:10+8=18(s),∴b=18.故答案为:时间x(s),△APD的面积S(cm2),360,18.(2)当点P在CD上运动时,运动的路程为:3x(cm),依题意得:AB+BC+CP=3x,即:30+24+CP=3x,∴CP=3x﹣54,∴PD=CD﹣CP=30﹣(3x﹣54)=﹣3x+84,∴PD的长度y(cm)与点P运动时间x(s)的关系式为:y=﹣3x+84,故答案为:y=﹣3x+108,(3)∵点P在BC上运动时,△APD的面积S保持不变,此时S=360(cm2),∴当△APD的面积是长方形ABCD面积的时,点P在AB上运动或在CD上运动;①当点P在AB上运动时,运动的路程AP=3x(cm),其中0<x≤10,=AD•AB=720cm2,∴,S长方形ABCD∴依题意得:,解得:x=5,即:点P出发5秒时,△APD的面积是长方形ABCD面积的.②当点P在CD上运动时,由(2)可知:PD=y=﹣3x+108,其中18≤x≤28,∴,依题意得:,解得:x=23,即:点P出发23秒时,△APD的面积是长方形ABCD面积的.综上所述:点P出发5秒或23秒时,△APD的面积是长方形ABCD面积的.【点评】此题主要考查了函数的图象,矩形的性质,三角形的面积,解答此题的关键是理解题意,读懂函数的图象,并从函数图象中提取解决问题的相关信息,难点是分类讨论思想在解答(3)中的应用.23.【分析】(1)根据直角三角形的性质及平角的定义推出∠BAD=∠EBC,利用AAS证明△ABD≌△BCE,根据全等三角形的性质得出AD=BE;(2)根据三角形外角性质推出∠CDE=∠BAD,利用AAS即可证明△ADB≌△DEC;(3)过点B作BM∥EF交DF于点M,根据等边三角形的性质推出DE=DF,AC=BC,∠D=∠DFE=∠ACB=60°,根据平行线的性质及等腰三角形的判定推出BM=FM,利用AAS证明△ACD≌△CBM,根据全等三角形的性质得出CD=BM=FM,AD=CM,根据线段的和差求解即可.【解答】(1)解:∵∠D=∠ABC=90°,∴∠DAB+∠ABD=90°,∠ABD+∠EBC=90°,∴∠BAD=∠EBC,在△ABD和△BCE中,,∴△ABD≌△BCE(AAS),∴AD=BE,故答案为:∠EBC;BE;(2)证明:∵∠ADC=∠ADE+∠CDE=∠B+∠BAD,∠B=∠ADE,∴∠CDE=∠BAD,在△ADB和△DEC中,,∴△ADB≌△DEC(AAS);(3)解:如图3,过点B作BM∥EF交DF于点M,∵△DEF、△ABC是等边三角形,∴DE=DF,AC=BC,∠D=∠DFE=∠ACB=60°,∵∠CFB=30°,BM∥EF,∴∠BFE=60°﹣30°=30°=∠MBF,∴∠MBF=∠CFB,∠CMB=∠MBF+∠CFB=60°,∴BM=FM,∵∠D=∠ACB=60°,∴∠DAC+∠ACD=120°,∠ACD+∠BCM=120°,∴∠DAC=∠BCM,在△ACD和△CBM中,,∴△ACD≌△CBM(AAS),∴CD=BM=FM,AD=CM,∴DF=CD+CM+FM=2CD+CM=2CD+AD,∵DE=AD+AE=DF,∴AE=2CD,∵AE=4,∴CD=2.【点评】此题是三角形综合题,考查了等边三角形的性质、平行线的性质、等腰三角形的判定、全等三角形的判定与性质等知识,熟练掌握等边三角形的性质、全等三角形的判定与性质并作出合理的辅助线是解题的关键。
内蒙古呼和浩特市实验中学东河校区2024-2025学年七年级上学期第一次月考数学试题
内蒙古呼和浩特市实验中学东河校区2024-2025学年七年级上学期第一次月考数学试题一、单选题1.在112-,12,20-,0,()5--,3-+中,负数的个数有()A .2个B .3个C .4个D .5个2.2024-的相反数是()A .2024B .2024-C .12024D .12024-3.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm ),其中不合格的是()A .Φ45.02B .Φ44.9C .Φ44.98D .Φ45.014.下列算式中:①()30--=;②()()330--+=;③()330-+-=;④()033--=;⑤()33--=-.其中正确的有()A .1个B .2个C .3个D .4个5.如图,用数轴上点M 表示有理数2,则点A 表示的有理数是()A .3-B . 1.5-C .6D .6-6.如图,是我国某市2023年12月份连续4天的天气预报数据,其中日温差最大的一天是()12月13日阴转多云2~8℃℃12月14日睛2~9℃℃12月15日阴0~9℃℃12月16日阴转多云3~11℃℃A .12月13日B .12月14日C .12月15日D .12月16日7.如图,在数轴上,点A 、B 分别表示a 、b ,且0a b +=,若6a b -=,则点A 表示的数为()A .3﹣B .0C .3D .6﹣8.下列说法中不正确的是()①符号不同的两个数互为相反数;②所有有理数都能用数轴上的点表示;③绝对值等于它本身的数是正数;④两数相加,和一定大于任何一个加数;⑤有理数可分为正数和负数.A .①②③⑤B .③④C .①③④⑤D .①④⑤9.有理数a b ,在数轴上的位置如图所示,则下列式子中正确的个数是()①0a b +>;②0a b -<;③a b >;④a b ->-.A .1B .2C .3D .410.小学时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将12345678----、、、、、、、分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中a b +的值为()A .6-或3-B .8-或1C .1-或4-D .1或1-二、填空题11.水位上升100米记作100+米,那么水位下降50米则表示为.12.把5(3)(7)(2)+----+写成省略括号和加号的形式是13.若11023x y ++-=,则x y -=.14.比较大小56--23-(填“>”“<”或“=”)15.若||2a =,3b =-,c 是最大的负整数,则a b c +-的值为.16.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图1表示的是()()22++-,根据刘徽的这种表示法,可推算图2表示的算式及其结果为.三、解答题17.计算:(1)()()7358--+---;(2)()()()22 4.70.4 3.35⎛⎫--+--+- ⎪⎝⎭;(3)()32117 3.25433⎛⎫+---- ⎪⎝⎭;(4)0.8 5.211.6 5.6--+-.18.把下列各数填入它所属的集合内:5.2,0,2π,227,()4+-,324-,()3--,0.15-,0.030030003-⋯(每两个3之间多个0)(1)分数集合:{…}(2)负数集合:{…}(3)有理数集合:{…}.(4)非负整数集合:{…}19.将下列各数在如图所示的数轴上表示出来,并用“<”把这些数连接起来.()2⎡⎤-+-⎣⎦、3-、()2.5--、()1+-、0、()2---20.出租车司机小李某天上午营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km )如下:-3,+5,-1,+1,-6,-2,问:(1)将最后一位乘客送到目的地时,小李在什么位置?(2)若汽车耗油量为0.2L/km (升/千米),这天上午小李接送乘客,出租车共耗油多少升?(3)若出租车起步价为8元,起步里程为3km (包括3km ),超过部分每千米1.5元,问小李这天上午共得车费多少元?21.某自行车厂计划一周生产1400辆自行车,平均每天生产200辆,由于各种原因,无法按计划进行生产,下表是一周的生产情况(超产为正,减产为负,单位:辆):星期一二三四五六日生产情况5+2-6-15+9-13-8+(1)根据记录可知,前4天共生产自行车______辆;(2)这一周自行车产量最多的一天比产量最少的一天多生产______辆:(3)该厂实行计件工资制,每生产一辆自行车厂方付给工人工资60元,超额完成计划任务的每辆奖励15元,没有完成计划任务的每辆车要扣15元,则该厂工人这一周的工资总额是多少?22.阅读下列材料:在数轴上表示5与2-的两点之间的距离为()()52527--=--=;在数轴上表示8-与5-的两点之间的距离为()()()()85583---=---=;在数轴上,若点A ,B 分别表示数a ,b ,则A ,B 两点之间的距离AB a b =-.回答下列问题:(1)在数轴上表示2-和5-的两点之间的距离为______;在数轴上表示数x 与3-的两点之间的距离为______.(2)当a b ≥时,a b -=______;当a b <时,a b -=______.(3)七年级探究性学习小组在数学老师的指导下,对式子23x x ++-进行探究:①请你画出数轴并说明,当表示数x 的点在表示2-与3的点之间移动时,23x x ++-的值总是一个固定的值,求这个固定的值:②若237x x ++-=,则x 的值为多少?。
北师大实验中学2023~2024学年第一学期七年级期中数学答案
北师大实验中学2023—2024学年度第一学期初一数学期中考试答案A卷一、选择题(本大题共10道小题,每小题3分,共30分)二、填空题(每小题2分,共20分)11、-6% ; 12、<; 13、3.03; 14、五,2;15、2; 16、7; 17、a=1,b=−2.18、20(60−x)=2×14x(不唯一); 19、81; 20、4,3≤a≤4;三、计算题(本大题共4道小题,每小题4分,共16分)21.−12+(+9)+(−5)−(−2) 22.−113×(−112)÷(12−13)=−12+9−5+2=−43×(−112)÷(16)=−17+11=−43×(−112)×6=−6=2323.(−13+34−712)÷(−124)24.−12022÷(−19)2×|−29|−42÷(−2)3=(−13+34−712)×(−24)=−1÷181×29−16÷(−8)=8−18+14=−1×81×29+2 =4=−18+2=−16四、解方程(本大题共2道小题,每小题5分,共10分)25.3x+12x+2=4x−6 26.x+36=1−3−2x4解:3x+12x−4x=−6−2解:2(x+3)=12−3(3−2x)−12x=−82x+6=12−9+6xx=162x−6x=12−9−6−4x=−3x=34五.解答题(本大题共4道小题,第27、28题每题5分,第29题6分,第30题8分,共24分)27.先化简,再求值:6b 2+(a 2b −3b 2)−2(2b 2−a 2b),其中a =−2 ,b =12.=6b 2+a 2b −3b 2−4b 2+2a 2b=−b 2+3a 2b当a =−2 ,b =12时,原式=−(12)2+3×(−2)2×12 =−14+6=534 28.(1)解:设老师总共买x 个练习本由题意,可列方程:4x +2×5=4×20+4×810(x −20)+14解得x =25答:老师买25本时,分两次购买与一次性购买所花费用相同(2)①直接购买20本,需要花费20×4+5=85元②多买一本21本时,需要花费21×4×0.8+14=81.2元故可以多买一本能更省钱.29.(1)P =3−2t ,Q =−7+5t(2)t =87、127、4、83 30.(1)m =2,n =1(2)①a =3n −1,b =−3n +2,c =3n②由题意,a +b +c =(3n −1)+(−3n +2)+(3n )=16解得n =5(3)674、67531.(1)1+3+5+7+5+3+1=32+42(2)1+3+5+⋯+(2n +1)+⋯+5+3+1=n 2+(n +1)2(3)2060532.(1)-6, -97(2)由题意,3m ⊕3m =(−1)m ∙m 2−2m =8m当m 为奇数时,原式为−m 2−2m =8m∴m 2=−10m (且m ≠0)∴m =−10(舍)当m 为偶数时,原式为 m 2−2m =8m∴m 2=10m (且m ≠0)∴m =10综上所述,m =1033.(1)N(1,1)=2,N(2,3)=12.(2)50 (3)4k2+2。
四川省成都市金牛实验中学2024-2025学年上学期七年级半期考试数学试题
四川省成都市金牛实验中学2024-2025学年 上学期七年级半期考试数学试题一、单选题1.计算3(2)b -的结果是( )A .38b -B .38bC .36b -D .36b 2.如图所示,小明的家在P 处,他想尽快赶到附近公路边搭顺风车,他选择P →C 路线,用几何知识解释其道理正确的是( )A .两点确定一条直线B .垂线段最短C .两点之间线段最短D .经过一点有无数条直线3.随着人类基因组测序计划的逐步实施以及分子生物学相关学科的迅猛发展,越来越多的动植物、微生物基因组序列得以测定,已知某种基因芯片每个探针单元的面积为20.0000064cm ,将0.0000064用科学记数法表示应为( )A . 50.6410-⨯B . 56.410-⨯C . 66.410-⨯D . 76410-⨯4.如图,已知160∠=︒,260∠=︒,368∠=︒,则4∠等于( )A .68︒B .60︒C .102︒D .112︒5.如()x m +与()3x +的乘积中不含x 的一次项,则m 的值为( )A .3-B .3C .0D .16.如果229x m x ++是一个完全平方式,则m 的值是( )A .3B .3±C .6D .6±7.若8a b -=,2282a b +=,则2ab 的值为( )A .9B .9-C .18D .18-8.将一副三角板按如图的方式放置,则下列结论:①13∠=∠;②若230∠=︒,则有AC DE ∥;③若245∠=︒,则有BC AD ∥;④若4C ∠=∠,则必有230∠=︒,其中正确的有( )A .①②③B .①②④C .③④D .①②③④二、填空题9.计算:212y ⎛⎫-= ⎪⎝⎭ .10.已知25,23a b ==,求2a b +的值为 .11.已知()()2221x x x +--=,则2243x x -+的值为 .12.如图,AB DE ∥,20C ∠=︒,:4:3B D ∠∠=,那么BOE ∠= 度.13.如图,正方形ABCD 的边长为a ,点E 在AB 边上,四边形EFGB 也是正方形,它的边长为()b a b >,连接AF 、CF 、AC .若10a =,4b =,则AFC 的面积为 .三、解答题14.计算:(1)()22336x y xy -⋅;(2)()201232π-⎛⎫-+--- ⎪⎝⎭;(3)2202220242020-⨯;(4)()()23224842ab a b ab a b -÷--.15.先化简,再求值:x(x-4y)+(2x+y )(2x-y )-(2x-y )2,其中x ,y 满足|x-2|+(y+1)2= 0.16.如图,在四边形ABCD 中,180A ABC ∠+∠=︒,BD CD ⊥于点D ,EF CD ⊥于点F ,试说明12∠=∠.请补全证明过程,即在横线处填上结论或理由.解:∵180A ABC ∠+∠=︒(已知),∴AD ∥______,(_____________________),∴1∠=______,(_____________________),∵BD CD ⊥,EF CD ⊥(已知),∴BD ∥______,∴2∠=______,(_____________________),∴1∠=______17.如图,AB ∥DC ,AC 和BD 相交于点O ,E 是CD 上一点,F 是OD 上一点,且∠1=∠A .(1)求证:FE ∥OC ;(2)若∠BOC 比∠DFE 大20°,求∠OFE 的度数.18.乘法公式的探究及应用.数学活动课上,老师准备了若干个如图1的三种纸片,A 种纸片边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片长为a 、宽为b 的长方形,并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积.方法1: ; 方法2: .(2)观察图2,请你写出下列三个代数式:()2a b +,22a b +,ab 之间的等量关系. ;(3)类似的,请你用图1中的三种纸片拼一个图形验证:()()22232a b a b a ab b ++=++ (4)根据(2)题中的等量关系,解决如下问题:①已知:5a b +=,2211a b +=,求ab 的值;②已知()()222020202234x x -+-=,求()22021x -的值.四、填空题19.若23x =,25y =,则322x y -= .20.如图,已知边长为a ,b 的长方形,若它的周长为20,面积为32,则22a b +的值为 .21.若规定符号a b c d 的意义是:a b ad bc c d =-,则当2230m m --=时,23122m m m m ---的值为 .22.图1是长为a ,宽为()b a b >的小长方形纸片,将6张如图1的纸片按图2的方式不重叠地放在长方形ABCD 内,已知CD 的长度固定不变,BC 的长度可以变化,图中阴影部分(即两个长方形的面积分别表示为12,S S ,若12S S S =-,且S 为定值,则a ,b 满足的数量关系: .23.如图,AB CD ∥,BE 平分ABF ∠,DCF ECF ∠=∠,已知15F E ∠-∠=︒,则ABE DCF ∠+∠= 度.五、解答题24.观察下列各式:()()2111x x x -+=-()()23111x x x x -++=-()()324111x x x x x -+++=-…(1)根据以上规律,则()()76543211x x x x x x x x -+++++++= .(2)你能否由此归纳出一般性规律:()()1211n n x x x x ---++⋯++= .(3)根据上述的规律,求2383912222+++⋯++的值.(4)根据上述的规律,求104950333+⋯++的值.25.2012年起,重庆实施阶梯电价,市民家庭每月用电量使用情况不同,按照用电量区间价格缴纳用电费用,其收费标准如下表:阶梯电价分三个档次.档次用电量每度电价格第一档不超过200度的部分0.52元第二档超过200度不超过400度的部分0.57元第三档超过400度的部分0.82元设某用户每月用电量为x 度,应交电费为y 元.(1)直接写出y 与x 的关系式;(2)小明家6、7月份共用电800度,应交电费471元,已知7月份的用电量比6月份的用电量大,求小明家6、7月份各用电多少度?26.【阅读理解】如图①,已知点A 是BC 外一点,连接AB AC ,,求BAC B C ∠+∠+∠的度数.(1)请将下面推理过程补充完整;解:如图①,过点A 作ED BC ,则B EAB C ∠=∠∠=,________.因为________________________180=︒,所以180B BAC C ∠+∠+∠=︒.【解题反思】从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将BAC B C ∠∠∠,,“凑”在一起,得出角之间的关系,使问题得以解决.【方法运用】(2)如图②,已知AB ED ,试说明:180D BCD B ∠+∠-∠=︒.【深化拓展】(3)已知AB CD ,点C 在点D 的右侧,60ADC ∠=︒,BE 平分ABC DE ∠,平分ADC BE DE ∠,,交于点E ,点E 在AB 与CD 两条平行线之间.①如图③,若点B 在点A 的左侧,50ABC ∠=︒,求BED ∠的度数.②如图④,若点B 在点A 的右侧,100ABC ∠=︒,直接写出BED ∠的度数.。
广东省江门市实验中学(初中部)2024-2025学年七年级上学期期中考试数学试题(无答案)
实验中学(初中部)2024—2025学年度上期中考试七年级数学试卷本试卷共23题,满分120分,考试时间为120分钟一、选择题(共10小题,每小题3分,共30分)1.的绝对值是( ).A .B .4C .D.2.下列各组数中,互为倒数的是( ).A .与2B .与C .与D .与3.2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为( )A .B .C .D .4.“与1的差的2倍”用代数式可以表示成( ).A .B .C .D .5.下列方程属于一元一次方程的是( )A .B .C .D .6.实数,在数轴上的位置如图所示,则下列结论错误的是()A .B .C .D .7.方程移项后正确的是()A .B .C .D .8.下列计算正确的是( )A .B .C .D .9.对于多项式,下列说法正确的是( )A .是四次三项式B .一次项是C .最高次项系数是5D .常数项是710.现规定一种运算:,,,,…,则的值为()A .2025B .2024C .D .1二、填空题(共5小题,每小题3分,共15分)11.的相反数是________.12.一元一次方程的解是________.4-4-14-142-2-122-12-2-2-43.8410⨯53.8410⨯63.8410⨯538.410⨯m 2m 1-m 2-()21m -()21m -34x=321x y -=210a -=34x =ab 0ab <0a b<<0a b +<a b -<435x x -=+354x x +=+345x x -=-+354x x -=-354x x -=+234a a a +=235ab ba ab+=()22x y x y --=-+220xy x y -=2457x ax y -+-4x1!1=2!212=⨯=3!3216=⨯⨯=4!432124=⨯⨯⨯=2025!2024!202520242024-237x -=13.若与的和是单项式,则mn 的值为________.14.若,则________.15.苯是一种有机化合物,是组成结构最简单的芳香烃,可以合成一系列衍生物.如图是某小组用小木棒摆放的苯及其衍生物的结构式,第1个图形需要9根小木棒,第2个图形需要17根小木棒,第3个图形需要25根小木棒……按此规律,第n 个图形需要小木棒是________根.三、解答题(一)(本大题共3小题,每小题7分,共21分)16.计算:(1)(3分);(2)(4分);17.解方程:(1)(3分)(2)(4分).18.(7分)求多项式的值,其中.四、解答题(二)(本大题共3小题,每小题9分,共27分)19.若关于的多项式,不含项,求的值.20.(列方程解应用题)把若干宣纸分给七年级优秀绘画爱好者,若每人分3张,则剩余12本,若每人分5张,则缺10张,绘画爱好者有几人?这批宣纸有多少张.21.糖果厂生产一批水果糖,把这些水果糖平均分装在若干袋子里,每袋装的颗数()和总袋数()如下表:每袋装的颗数1012182024…总袋数360300200180150…(1)这批水果糖共有________________颗;(2)总袋数是怎样随着每袋装的颗数的变化而变化的:___________________________________________;(3)用表示总袋数,表示每袋装的颗数,用式子表示与的关系为________________,与成________________比例关系.(4)当时,的值是多少?五、解答题(三)(本大题共2小题,其中第22题13分,第23题14分,共27分)22.综合探究.【阅读材料】表示5与2之差的绝对值,可理解为5与2两数在数轴上所对的两点之间的距离;同样,表示5与之差的绝对值,可理解为5与两数在数轴上所对的两点之间的距离.【类比运用】(1)结合数轴计算:________,________;23m x y 3n x y 24(5)0a b -++=a b -=()()95123-+--+-()()()423642--⨯-+-÷-()53310x x --=+3221146y y +--=22225432x x x x x -++--2x =-x 32325272x ax y x x y +-+-2x y 45a -n m n mn m n m n m 50n =m 52-|5()|2--2-2-41-=32--=(2)若,则________________;【拓展提升】(3)若数轴上表示数的点位于与2之间,则________.(4)若,,且数,在数轴上所对应的点分别是点,,求,两点间的最大距离和最小距离;23.(列方程解应用题)A ,B 两地相距64千米,甲从A 地出发,每小时行14千米,乙从B 地出发,每小时行18千米.(1)若两人同时出发相向而行,则经过几小时两人相遇?(2)若甲在前,乙在后,两人同时同向而行,则几小时后乙追甲?(3)若两人同时出发相向而行,则经过几小时两人相距16千米?()13x --=x =a 4-42a a ++-=32a -=()21b --=a b A B A B。
广东实验中学2024~2025学年七年级上学期数学10月月考试卷
广东省广州市广东实验中学2024~2025学年七年级上学期数学10月月考试卷数学时间:60分钟 满分:100分一、选择题(第1-7题每小题3分,第8题5分,共26分) 1. 12024−的相反数是( )A. 2024−B. 12024C. 12024−D. 以上都不2. 点A 位于数轴原点的左侧,将点A 向右平移2个单位长度后,得到的点所表示的数是1−,则点A 所表示的数是( )A. 3−B. 2−C. 1−D. 13. 两江新区正加快打造智能网联新能源汽车产业集群,集聚了长安、长安福特、赛力斯、吉利、理想等10家整车企业,200余家核心零部件企业.小虎所在的生产车间需要加工标准尺寸为4.5mm 的零部件,其中()4.50.2mm ±范围内的尺寸为合格,则下列尺寸的零部件不合格的是( )A 4.4mm B. 4.5mm C. 4.6mm D. 4.8mm 4. 下列各组数相等的有( )A. ()22−与22−B. ()31−与()21−− C. 0.3−−与0.3 D. a 与a 5. 若2(1)20a b −++=,则a b +的值是( ) A. 1− B. 1 C. 0 D. 2 6. 若x 与3的绝对值相等,则x ﹣1等于( )A. 2B. ﹣2C. ﹣4D. 2或﹣4 7. 如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上“0cm ”和“3cm ”分别对应数轴上的3和0,那么刻度尺上“5.6cm ”对应数轴上的数为( )A. 1.4−B. 1.6−C. 2.6−D. 1.68. (多选题)如图,A 、B 两点在数轴上表示数分别为a 、b ,有下列结论:①0a b −<;②是.的0a b +>;③(1)(1)0b a −+>;④101b a −>−.其中正确的有( )A. ①B. ②C. ③D. ④二、填空题(每小题3分,共15分)9. 比较大小12−_______23−(填“>”或“<”) . 10. 若29x =,则x =______.11. 大于 4.6−而小于2.3的整数共有_______个.12. 设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a b c −+=______. 13. 三个有理数a 、b 、c ,满足0abc <,求abcabca b c abc +++=________. 三、解答题14. 把下列各数填入相应的大括号里:10%,6+−,38−,0, 2.6−,3.14,514,27−,π (1)整数集合:{________(2)负分数集合:{________......};(3)非负有理数集合:{________......}.15 计算:(1)(20)(9)(15)(7)+−−+−−+;(2)604( 2.5)(0.1)−×+−÷−; (3)134 2.5624 ×−−+−−; (4)()()241110.5233 −−−×−−−. 16. 如图,数轴上每个刻度为1个单位长度上点A 表示的数是3−.(1)在数轴上标出原点,并指出点B 所表示的数是_____;.(2)在数轴上找一点C ,使它与点B 的距离为2个单位长度,那么点C 表示的数为_____; (3)在数轴上表示以下各数,并用“<”号把这些数按从小到大连接起来:()12.5,4, 2.5, 1.5, 1.6,52−−−−+ 17. 已知5a =,3b =,且a b b a −=−,求a b −的值.18. 已知a b ,互为相反数,c d ,互为倒数,x 的绝对值为5.(1)a b +=,cd = ,x = . (2)求()()20242023a b cd cd x +++−−的值.19. 已知52−表示5与2这两个数在数轴上所对应的两点之间的距离,那么52+也可以看作5(2)−−,表示5与2−这两个数在数轴上所对应的两点间的距离.如图所示,52523AB =−=−=;5(2)527BC =−−=+=.(1)数轴上,有理数4与1−所对应的点之间的距离是________;(2)结合数轴找出符合条件的整数x ,使13x +=,求x 的值. (3)利用数轴分析,42x x ++−的最小值________.20. 某风筝加工厂计划一周生产某种型号的风筝700只,平均每天生产100只,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(增产记为正、减产记为负); 星期一 二 三 四 五 六 日 增减5+ 2− 4− 13+ 6− 6+ 3−(1)根据记录的数据,该厂生产风筝最多的一天是星期______;(2)产量最多的一天比产量最少的一天多生产多少只风筝?(3)该厂实行每周计件工资制,每生产一只风筝可得20元,若超额完成任务,则超过部分每只另奖5元;少生产一只扣4元,那么该厂工人这一周工资总额是多少元?21. 已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为12.动点P 从点A 出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为(0)t t >秒. 的(1)数轴上点B表示的数是;当点P运动到AB的中点时,它所表示的数是.(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发.求:①当点P运动多少秒时,点P追上点Q?②当点P运动多少秒时,点P与点Q间的距离为6个单位长度?。
浙江省宁波市鄞州区鄞州实验中学2023-2024学年七年级下学期期中数学试题
浙江省宁波市鄞州区鄞州实验中学2023-2024学年七年级下学期期中数学试题一、单选题1.下列计算正确的是( )A .632a a a ÷=B .2222a a a +=C .339a a a ⋅=D .()336a a = 2.下列方程中,是二元一次方程的是( )A .324x y z -=B .690xy +=C .123y x +=D .42x y =- 3.石墨烯是目前世界上最稀薄却也是最坚硬的纳米材料,同时还是导电性能最好的材料,其理论厚度仅0.00000000034米.数字0.00000000034用科学记数法可表示为( ). A .103.410-⨯ B .93.410-⨯ C .113.410-⨯ D .90.3410-⨯ 4.下列由左到右的变形,属于因式分解的是( )A .22(2)(2)4m n m n m n +-=-B .221()()1a b a b a b -+=+-+C .2824a b a ab =⋅D .422(21)my y y m -=-5.如图,下列结论中错误的是( )A .1∠与2∠是同旁内角B .1∠与6∠是内错角C .2∠与5∠是内错角D .3∠与5∠是同位角6.若关于,x y 的二元一次方程组42x y k x y k -=⎧⎨+=⎩的解也是二元一次方程27x y -=-的解,则k 的值是( )A .1-B .0C .1D .27.如图,由下列已知条件推出的结论中,正确的是( )A .由15∠=∠,可以推出AD BC ∥B .由26∠=∠,可以推出AB CD PC .由180ABC BCD ︒∠+∠=,可以推出AD BC ∥D .由1∠是4∠的余角,AC BD 、分别平分BCD ∠和ABC ∠,可以推出AB CD P 8.栖树一群鸦,鸦树不知数;三个坐一棵,五个地上落;五个坐一棵,闲了一棵树.请你动脑筋,鸦树各几何?歌谣大意是:一群乌鸦落在一片树上,如果三个乌鸦落在一棵树上,那么就有五个乌鸦没有树可落;如果五个乌鸦落在一棵树上,那么就有一棵树没有落乌鸦,请问乌鸦和树各多少?若设乌鸦有x 只,树有y 棵,由题意可列方程组( )A .3551y x y x +=⎧⎨-=⎩B .3551y x y x -=⎧⎨=-⎩C .5355x y y x ⎧+=⎪⎨⎪=-⎩D .5315x y x y -⎧=⎪⎪⎨⎪=-⎪⎩ 9.图1是长方形纸条,DEF α∠=,将纸条沿EF 折叠成折叠成图2,则图中的GFC ∠的度数是( )A .2αB .902α︒+C .1802α︒-D .1803α︒-10.如图,在长方形ABCD 中,6AB =,10BC =,其内部有边长为a 的正方形AEFG 与边长为b 的正方形HIJK ,两个正方形的重合部分也为正方形,且面积为5,若214S S =,则正方形AEFG 与正方形HIJK 的面积之和为( )A .20B .25C . 492D . 814二、填空题11.分解因式:2436a -=.12.若6m x =,2n x =-,则m n x -=.13.如果()224x mx x n ++=+,那么n =.14.如图,CD AB ∥,OE 平分AOD ∠,OE OF ⊥,50D ∠=︒,则BOF ∠=.15.若12,34m m x y +==+,用x 的代数式表示y 为16.如图,QP MN ∥,,A B 分别为直线,MN PQ 上两点,且60BAN ∠=︒,射线AE 从AM 开始绕点A 按顺时针方向旋转至AN 后立即回转,然后以不变的速度在AM 和AN 之间不停地来回旋转,射线BF 从BQ 绕点B 按逆时针方向同时开始旋转,射线AE 转动的速度是4/s ︒,射线BF 转动的速度是1/s ︒,在射线BF 到达BP 之前,当时间为秒时,射线AE 与射线BF 互相平行.三、解答题17.(1)计算:()()220240131π32-⎛⎫---⨯--- ⎪⎝⎭ (2)解方程组:()2111123x y x y ⎧+-=⎪⎨+=⎪⎩18.先化简,再求值:2[()2()()()](4)a b b a b a b a b b ----+-÷-,其中1a =,14b =-. 19.如图,ABC V 的三个顶点都在正方形网格的格点上(网格中每个小正方形的边长都为1个单位长度),将ABC V 平移,使点A 平移到图中1A 的位置,点B 的对应点是1B ,点C 的对应点是1C .(1)画出平移后的111A B C △;(2)线段AC 在平移的过程中扫过的面积是__________.20.如图1,点C ,D 在直线AB 上,180ACE BDF ∠+∠=︒,EF AB ∥.(1)求证:CE DF ∥;(2)如图2,DFE ∠的角平分线FG 交AB 于点G ,过点F 作FM FG ⊥交CE 的延长线于点M .若55CMF ∠=︒,求CDF ∠的度数.21.随着近一年来油价的波动调整,市场对新能源汽车的关注度也随之上涨,低碳绿色出行方式受到肯定,加之各地市对新能源汽车上牌等方面的支持,今年以来新能源汽车的月销量同比均呈现上升趋势.某汽车销售公司为提升业绩,计划购进一批新能源汽车进行销售,据了解2辆A 型汽车,3辆B 型汽车的进价共计95万元;3辆A 型汽车,2辆B 型汽车的进价共计105万元.(1)求A ,B 两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划正好用250万元购进以上两种型号的新能源汽车(两种型号的汽车均有购买),请你写出所有购买方案;(3)若该公司销售1辆A 型汽车可获利1.2万元,销售1辆B 型汽车可获利0.7万元,在(2)中的所有购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大,最大利润是多少元.22.把图1的长方形看成一个基本图形,用若干相同的基本图形进行拼图(重合处无缝隙).(1)如图2,将四个基本图形进行拼图,得到正方形ABCD 和正方形EFGH ,用两种不同的方法计算图中阴影部分的面积(用含a ,b 的代数式表示),并写出一个等式;(2)如图3,将四个基本图形进行拼图,得到四边形MNPQ ,求阴影部分的面积(用含a ,b 的代数式表示);(3)如图4,将图3的上面两个基本图形作为整体图形向左运动x 个单位,再向上运动2b 个单位后得到一个长方形图形,若AB b =,BC 把图中阴影部分分割成两部分,这两部分的面积分别记为1S ,2S ,若12m S S =-,求证:m 与x 无关.23.如图,直线AB CD P ,直线EF 与,AB CD 分别相交于点,G H ,()090EHD αα∠=︒<<︒.小宁将一个含60︒角的直角三角板()90,60PMN P PMN ∠=︒∠=︒按如图1放置,使点,N M 分别在直线,AB CD 上,且PM EF ∥.(1) 填空:PNB PMD ∠+∠______P ∠(填“>”“<”或“=”).(2)MNG ∠的平分线NO 交直线CD 于点O .①如图2,当NO EF ∥时,求α的度数;②如图3,小宁将三角板PMN 沿直线AB 左右移动,并保持PM EF ∥(点N 不与点G 重合),∠的度数(用含α的代数式表示).在平移的过程中求MON。
河南省商丘市永城市实验中学2023-2024学年七年级上学期期中数学试题
河南省商丘市永城市实验中学2023-2024学年七年级上学期
期中数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
A.0B.1C.2
5.在下列整式中,次数为3的单项式是()
二、填空题
四、计算题17.计算:
(1)()()()23594159--+---(2)()
1
52313-⨯+÷--
五、问答题
初步探究
(1)直接写出计算结果:2=③______,12⎛⎫
-= ⎪⎝⎭
⑤
(2)关于除方,下列说法错误的是______,A .任何非零数的圈2次方都等于1;B .对于任何正整数n ,11=ⓝ;C .34=④③
D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.深入思考
我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?
(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.5=⑥
______;12⎛⎫
- ⎪⎝⎭
⑩
=______.
(2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于(3)算一算:2
3112311233⎛⎫⎛⎫
⨯--- ⎪ ⎪⎛⎫÷-÷ ⎪④⑤⑥
.
七、问答题
的值;若不存在,说明理由;
(5)现在点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,当点A与点B之间的距离为3个单位长度时,求点A所对应的数是多少?。
陕西省咸阳市实验中学2024-2025学年七年级上学期阶段性检测数学试卷(一)(含答案)
试卷类型:A咸阳市实验中学2024~2025学年度第一学期阶段性检测(一)七年级数学注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题)。
全卷共4页,总分120分。
考试时间120分钟。
2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名、班级和准考证号,同时用铅笔在答题卡上填涂对应的试卷类型信息点(A 或B )。
3.请在答题卡上各题的指定区域内作答,否则作答无效。
4.作图时,先用铅笔作图,再用规定签字笔描黑。
5.考试结束,本试卷和答题卡一并交回。
第一部分(选择题 共24分)一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.在数轴上表示的点与原点的距离为( )A.2B. C. D.02.下列各组数中,互为相反数的一组是( )A.5和 B.2和C.和D.和3.计算的结果是( )A.1B. C.5 D.4.有三个正方体木块,每一块的各面都写上不同的数字,三块的写法完全相同,现把它们摆放成如图所示的位置,请你判断数字4对面的数字是()A.6B.3C.2D.15.有理数,在数轴上的对应点的位置如图所示,则下列各式成立的是()A. B. C. D.6.下列各式计算正确的是( )A. B. C. D.7.将若干个相同的小正方体堆成如图所示的图形,若每个小正方体的棱长为,则这个图形的表面积为()2B 2-2-2±5-123-13-3-13()()32---1-5-a b 1a >-a b>-1b -<a b<33--=()33-+=33-=-()33--=aA. B. C. D.8.如图,数轴上、两点分别对应实数、,则下列结论正确的是()A.B. C. D.第二部分(非选择题 共96分)二、填空题(共5小题,每小题3分,计15分)9.比较大小:______.(填“>”,“<”,“=”号)10.若比平均分高5分记作+5分,那么分表示______.11.在图中剪去1个小正方形,使得到的图形经过折叠能够围成一个正方体,则要剪去的正方形对应的数字是______.12.如图是某几何体从不同方向看所得图形,根据图中数据,求得该几何体的侧面积为______.(结果保留)13.,是绝对值最小的数,是最大的负整数,则______.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)请把下列各数填入相应的集合中:,,5.2,0,,,,2024,,整数集合:{ …};负分数集合:{ …}.15.(10分)计算下列各题:(1);(2);230a 240a 250a 260a A B a b 0a b +>0a b +<0a b ->0a b ->34-45-2-π5a =b c a b c +-=2-12-2311653-0.3-()3--()()1111---()()3227-++(3);(4).16.(5分)一个几何体是由大小相同的小立方块搭成,其中小正方形上的数字表示在该位置上的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.17.(5分)若,求的值.18.(5分)如图,用经过、、三点的平面截去正方体的一角,变成一个新的多面体,若这个多面体的面数为,棱数为,求的值.19.(6分)若,互为相反数,,,互为倒数,求的值.20.(6分)请画出数轴,并在数轴上标出下列各数:0.5,,,,.并把它们用“>”连接起来.21.(6分)下表列出了国外几个城市与北京的时差.城市纽约巴黎东京芝加哥时差/h(1)如果现在北京的时间是17:00,那么现在的东京时间是几点?(2)小荣想在北京时间9:00给在巴黎的姑妈打电话,你认为合适吗?请说明理由;(3)王老师从北京乘坐早晨7:00的航班经过约到达纽约,那么王老师到达纽约时当地时间大约是几点?22.(6分)如图是一张铁片.(单位:米)(1)计算这张铁片的面积;(2)这张铁片能否做成一个无盖长方体盒子?若能,请计算它的体积;若不能,请说明理由.23.(6分)设表示取的整数部分,例如:,.()()()733510+-++-+-()()67128510⎛⎫---+-- ⎪⎝⎭202320240x y -++=x y +A B C m n m n +a b 5x =c d ()a b cd x --+-4-1132.5- 1.5-–137-1+–1420h []a a []2.32=[]55=(1)求的值;(2)令,求.24.(6分)近几年,全球的新能源汽车发展迅猛,尤其对于我国来说,新能源汽车产销量都大幅度增加.小明家新换了一辆新能源纯电汽车,他连续7天记录了每天行驶的路程(如表).以为标准,多于的记为“+”,不足的记为“”,刚好的记为“0”.第一天第二天第三天第四天第五天第六天第七天路程+8+2+15(1)请求出小明家的新能源汽车这7天一共行驶了多少千米?(2)已知汽油车每行驶需用汽油5.5升,汽油价为8.2元/升,而新能源汽车每行驶耗电量为15度,每度电为0.56元,小明家换成新能源汽车后这7天的行驶费用比原来节省多少钱?25.(7分)有理数,,在数轴上的位置如图所示,且表示数的点、数的点与原点的距离相等.(1)用“>”,“<”或“=”填空:______0,______0,______0;(2)求的值.26.(8分)如图1,、两点在数轴上对应的数分别为和6.(1)直接写出、两点之间的距离______;(2)若在数轴上存在一点,使得到的距离是到的距离的3倍,求点表示的数;(3)如图2,现有动点、,若点从点出发,以每秒4个单位长度的速度沿数轴向右运动,同时点从点出发,以每秒2个单位长度的速度沿数轴向左运动,当点到达原点后立即以每秒3个单位长度的速度沿数轴向右运动,求:当到的距离是到的距离的4倍时的运动时间的值.图1图2咸阳市实验中学2024-2025学年第一学期阶段性检测(一)答案一、选择题(每小题3分,共24分)题号12345678答案AABBCDDC[][]12 3.675⎡⎤--+⎢⎥⎣⎦{}[]a a a =-[]312 2.4644⎧⎫⎧⎫-+⎨⎬⎨⎬⎩⎭⎩⎭40km 40km 40km -40km ()km 6-5-–511+100km 100km a b c a b a b +a c -b c -11b a -+-A B 16-A B P P B A P P Q P A Q B Q O P O Q O t二、填空题(每小题3分,共15分)9.10.比平均分低2分11.212.13.6或三、解答题(共81分)14.(5分)整数集合:负分数集合:15.(10分)(1,2小题各2分;3,4两小题各3分)(1)0;(2);(3);(4)16、(5分)(从正面看为3分,从左面看为2分)解:如图所示:17、(5分)【详解】解:由题意,得:,,,..18、(5分)【详解】解:由图可知,这个多面体的面数是7,即.又因为正方体有12条棱,被截去了3条棱,截面为三角形,所以增加了3条棱,故棱数不变,即.所以.19、(6分)或6解:由题知:,①当时原式>2π4-(){}2,0,3,2017---⋅⋅⋅15,,0.323⎧⎫---⋅⋅⋅⎨⎬⎩⎭5-4-1192-1-20230x -=20240y +=2023x ∴=2024y =-202320241x y ∴+=-=-19m n +=7m =12n =71219m n +=+=4-0a b +=5x =±1cd =5x =∴a b cd x=++-015=+-4=-②当时原式的值为或620、(6分)【详解】解:如图21、(6分)解:(1)现在的东京是18点(2)不合适,理由如下:当北京市9点时,巴黎是凌晨2点,姑妈正在休息,所以不合适。
河南省实验中学2023-2024学年下学期七年级期中考试数学试题(含解析)
2023—2024学年下期期中考试七年级数学(时间:100分钟,满分:120分)一.选择题(本大题共10个小题,每小题3分,共30分)1.华为手机使用了自主研发的海思麒麟芯片,目前最新的型号是麒麟990.而麒麟990的晶体管栅极的宽度达到了毫米,将数据用科学记数法表示为( )A .B .C .D .2.下列计算正确的是( )A .B .C .D .3.如图,直线、交于点平分,若,则等于( )A .B .C .D .4.已知一个角的补角是它的余角的4倍,则这个角的度数是( )A .B .C .D .5.下列图形中,由,能得到的是( )A .B .C .D .6.如图,阴影部分是边长为a 的大正方形中剪去一个边长为b 的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形,给出下列四种割拼方法,其中能够验证平方差公式0.0000000070.0000000078710-⨯9710-⨯80.710-⨯90.710-⨯632a a a ÷=23245()ab a b -=325326b b b ⋅=2222a a -=AB CD ,O OE AOD ∠136∠=︒COE ∠72︒95︒100︒108︒30 45 60 67.5 12∠=∠AB CD ∥的有( )A .4个B .3个C .2个D .1个7.下列说法:①两点之间线段最短;②同角的余角相等;③相等的角是对顶角;④直线外一点与直线上各点连接的所有线段中,垂线段最短.其中正确的有( )A .1个B .2个C .3个D .4个8.一年365天,天安门广场的升旗仪式与太阳的节奏同步,唤醒一座城市的梦,唤醒一个国家的清晨.当升旗手匀速升旗时,旗子的高度(米)与时间(分)这两个变量之间的关系用图象可以表示为( )A .B .C .D .9.如图,将长方形的各边向外作正方形,若四个正方形周长之和为24,面积之和为12,则长方形的面积为()h t ABCD ABCDA .4B.C .5D .610.如图1,四边形是长方形,点P 从边上点E 出发,沿直线运动到长方形内部一点处,再从该点沿直线运动到顶点B ,最后沿运动到点C ,设点P 运动的路程为x ,的面积为y ,图2是y 关于x 变化的函数图象.根据图象下列判断不正确的是( )A .B .点E 为的中点C .当时,的面积为6D .当时,长度的最小值为1二.填空题(本大题共5个小题,每小题3分,共15分)11.若式子无意义,则实数x 的值为.12.计算 .13.计算:(-ab 2)3÷(-0.5a 2b) = .14.若中不含的一次项,则的值为15.如图,直角和直角中,,,,点D 在边上,将绕点O 按顺时针方向以每秒的速度旋转一周,在旋转的过程中,在第 秒时,边恰好与边平行.32ABCD AD BC CDP △6AB =AD 3x =APE V 38x ≤≤AP 0(2)x -2202420232025-⨯=142()(8)x x m x -+-x m AOB COD △90AOB COD ∠=∠=︒40B ∠=︒60C ∠=︒OA COD △5︒CD AB三.解答题(本大题共8小题,共75分)16.计算:(1);(2).(用乘法公式计算)17.先化简,再求值:,其中,18.已知:如图,点E 在上,,,垂足分别为D 、F ,点M 、G 在上,,.求证:.小勇在做上面这道题时用了以下推理过程.请帮他在横线上填写结论,在括号内填写推理依据.证明:∵,,垂足分别为D 、F (已知).∴,(____________).∴(等量代换).∴____________(同位角相等,两直线平行).∴(________________________).∵(已知).∴(____________).∴____________(________________________).∵(已知).∴(同位角相等,两直线平行).∴(____________).∴(________________________).19.苏老师非常喜欢自驾游,他为了了解新买轿车的耗油情况,将油箱加满后进行了耗油实22023014(1)(π3)3-⎛⎫-+⨯-+- ⎪⎝⎭22851308565-⨯+2[()()2224)]2(x y x y y x xy y ---+-÷1x =2y =BC BD AC ⊥EF AC ⊥AB AMD AGF ∠=∠12∠=∠180DMB ABC ∠+∠=︒BD AC ⊥EF AC ⊥=90BDC ∠︒90EFC ∠=︒BDC EFC ∠=∠2CBD ∠=∠12∠=∠1CBD ∠=∠AMD AGF ∠=∠GF MD ∥BC MD ∥180DMB ABC ∠+∠=︒验,得到了下表中的数据:行驶的路程0100200300400…油箱中的剩余油量5042342618…(1)在这个问题中,自变量是______,因变量是______;(2)该轿车油箱的容量为______L ,行驶时,油箱中的剩余油量为______L ;(3)苏老师将油箱加满后驾驶该轿车从A 地前往B 地,到达B 地时油箱中的剩余油量为,请求出A ,B 两地之间的距离.20.如图,在某住房小区的建设中,为了提高业主的宜居环境,小区准备在一个长为米,宽为米的长方形草坪上修建一横两竖,宽度均为b 米的通道.(1)通道的面积共有多少平方米?(2)若,剩余草坪的面积是216平方米,求出通道的宽度.21.微专题探究学习:《面积与完全平方公式》如图1,阴影部分是一个边长为a 的大正方形剪去一个边长为b 的小正方形和两个宽为b 的长方形之后所剩余的部分.(1)①图1中剪去的长方形的长为________,宽为________.②用两种方式表示阴影部分的面积为________或________.由此可以验证的公式为________________.(2)如图2,分别表示边长为a ,b 的正方形的面积,且A ,B ,C 三点在一条直线上,s km ()Q ()L 150km 22L (43)a b +(23)a b +2a b =12S S ,若,求图中阴影部分的面积.22.甲骑摩托车从A 地去B 地,乙开汽车从B 地去A 地,同时出发,匀速行驶,各自到达终点后停止,甲、乙两人间的距离为s (km )与甲行驶的时间为t (h )之间的关系如图所示.(1)以下是点M 、点N 、点P 所代表的实际意义,请将M 、N 、P 填入对应的括号里.①甲到达终点 ②甲乙两人相遇 ③乙到达终点(2)AB 两地之间的路程为 千米:(3)求甲、乙各自的速度;(4)甲出发多长时间后,甲、乙两人相距180千米?23.如图1,已知点D 是内部一点,交于点E .(1)尺规作图;作出射线,使得,交直线于点F ;(保留作图痕迹,不写作法)(2)请你直接写出与的数量关系:____________.(3)如图2,定理:在直角三角形中,,如果,那么它所对的边等于的一半.请同学们借助上述定理内容完成下面的任务:如图1,若,,,点P 从点F 出发,沿的路线运动,到点D 停止,点P 的速度为,运动时间为t 秒,当的面积为时,请求出t的值.12408S S AB +==,ABC ∠DE AB ∥BC DF DF BC ∥AB B ∠EDF ∠MNQ 90N ∠=︒30M ∠=︒NQ MQ 30B ∠=︒4cm FB =3cm BE =F B E D →→→2cm/s BEP △22cm参考答案与解析1.B 【分析】本题考查用科学记数法表示较小的数,一般形式为,其中,为由原数左边起第一个不为零的数字前面的0的个数所决定.与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:.故选:B2.C【分析】本题主要考查了积的乘方和幂的乘方,单项式乘以单项式,同底数幂除法和合并同类项等计算,熟知相关计算法则是解题的关键.【详解】解:A .,原式计算错误,不符合题意;B .,原式计算错误,不符合题意;C .,原式计算正确,符合题意;D .,原式计算错误,不符合题意.故选:C .3.D【分析】本题考查的是邻补角的概念、角平分线的定义.根据邻补角的概念求出,根据角平分线的定义求出,再根据邻补角的概念计算,得到答案.【详解】解:∵,∴,∵平分,∴,∴,故选:D .4.C【分析】本题考查补角、余角的概念,运用补角、余角概念列方程是解决问题的关键.设这个角为,依据题意列方程求解.【详解】解:设这个角为,则它的余角为,补角为据题意得方程:10n a -⨯1||10a ≤<n 90.000000007710-=⨯633a a a ÷=()22346a b a b -=325326b b b ⋅=2222a a a -=AOD ∠DOE ∠136∠=︒1801144AOD ∠=︒-∠=︒OE AOD ∠1722DOE AOD ∠=∠=︒180108COE DOE ∠=︒-∠=︒x ︒x ︒()90x -︒()180x -︒;解得;故选:C .5.D【分析】根据平行线的判定定理逐一判断即可得出答案.【详解】解:A. 由,不能得到,此选项不符合题意;B. 由,得到,不能得出,此选项不符合题意;C. 由,不能得到,此选项不符合题意;D. 由,能得到,此选项符合题意;故选D .【点睛】本题考查了平行线的判定,熟练掌握判定定理是解题的关键.6.A【分析】图①:根据阴影部分的面积等于1个长方形(长为、宽为)的面积即可得;图②:根据阴影部分的面积等于1个平行四边形的面积之和即可得;图③:根据阴影部分的面积等于1个长方形(长为、宽为)的面积即可得;图④:根据阴影部分的面积等于1个平行四边形的面积之和即可得.【详解】解:图①:左边图中阴影部分面积为,右边图中阴影部分面积为,则有;图②:左边图中阴影部分面积为,右边图中阴影部分是一边长为,这条边上的高为的平行四边形,其面积为,则有;图③:左边图中阴影部分面积为,右边图中阴影部分面积为,则有;图④:左边图中阴影部分面积为,右边图中阴影部分是一边长为,这条边上的高为的平行四边形,其面积为,则有;综上,能够验证平方差公式的有4个,()180490x x -=-60x =︒12∠=∠AB CD ∥12∠=∠AC BD ∥AB CD ∥12∠=∠AB CD ∥12∠=∠AB CD ∥a b +a b -a b +a b -22a b -()()a b a b +-22()()a b a b a b -=+-22a b -a b +a b -()()a b a b +-22()()a b a b a b -=+-22a b -()()a b a b +-22()()a b a b a b -=+-22a b -a b +a b -()()a b a b +-22()()a b a b a b -=+-故选:A .【点睛】本题考查了平方差公式与图形面积,熟练掌握各图形的面积之间的联系是解题关键.7.C【分析】本题考查了两点之间线段最短,同角的余角相等,对顶角,垂线段最短,是基础概念题.熟练掌握以上知识点是解题的关键.【详解】解:①两点之间线段最短,正确,②同角的余角相等,正确,③相等的角是对顶角,错误,④直线外一点与直线上各点连接的所有线段中,垂线段最短,正确,故选:C8.B【分析】利用用图像表示变量间关系的方法解答即可.【详解】解∶∵升旗手匀速升旗,∴高度h 将随时间t 的增大而变增大,且变化快慢相同,∴应当用上升趋势的直线型表示,∴只有B 符合题意,故选∶B .【点睛】本题考查了用图象表示的变量间关系,根据题意明确因变量随自变量变化的趋势是解题的关键.9.B【分析】本题考查了完全平方公式的意义和应用,将完全平方公式变形得,即可求出答案.【详解】设长方形ABCD 的边,,根据题意可知,,即,,,()2222a b a ab b +=++()()2222a b a b ab +-+=AB a =AD b =8824a b +=222212a b +=3a b +=226a b +=()()2222363222a b a b ab +-+-∴===即长方形ABCD的面积为,故选:B .10.D 【分析】本题主要考查了动点问题的函数图象,三角形面积的相关计算,垂线段最短,在解题时根据函数的图象求出有关的线段的长度,分析各个选项即可得到答案.【详解】解:由题意知,当P 与B 重合时,,最大,当点P 在上运动,逐渐减小,直至P 与C 重合时,则,,的最大值,,A 正确;由函数图象可知,当时,的面积始终为12,设边的高为h ,此时,如图,点P 在上,,,,点E 是的中点,B 正确;点E 是的中点,,,当时,,C 正确;点P 从的中点出发,作,,连接,328x =CDP S △BC CDP S △16x =1688BC ∴=-=CDP S △1242BC CD =⋅=6CD AB ∴==03x ≤≤CDP △CDP △CD 12CDP S CD h =⋅ EF EF AD ⊥1122CDP S CD DE =⋅=△4DE ∴=∴AD AD 3EF =∴4AE =∴3x =162AEP S AE EF =⋅= AD AH BF ⊥GF AB ⊥AF则,,,,当时,长度的最小值为,D 错误.故选:D .11.2【分析】本题考查了零指数幂,掌握中是解题关键.根据零指数幂的意义可得时,无意义,即可求解.【详解】解:式子无意义,,,故答案为:2.12.1【分析】把原式变形为,再利用平方差公式计算即可得到答案,熟练掌握平方差公式是解题的关键.【详解】解:故答案为:113.【分析】先计算积的乘方,再计算单项式除单项式即可.【详解】(-ab 2)3÷(-0.5a 2b) 85BF EF =-=4GF AE ==1122ABF S AB GF BF AH =⋅=⋅ 245AH ∴=∴38x ≤≤AP 245∴01a =0a ≠20x -= 0(2)x -20x ∴-=2x ∴=()()220242024120241--+()()22a b a b a b +-=-2202420232025-⨯()()220242024120241=--+()22202420241=--22202420241=-+1=51ab 321436211642a b a b ⎛⎫=-÷- ⎪⎝⎭故答案为:【点睛】本题考查了幂的运算,熟练掌握积的乘方、同底数幂的除法的运算法则是解题的关键.14.-8【分析】首先利用多项式乘法法则计算出(x 2﹣x +m )(x ﹣8),再根据积不含x 的一次项,可得含x 的一次项的系数等于零,即可求出m 的值.【详解】解:(x 2﹣x +m )(x ﹣8)=x 3﹣8x 2﹣x 2+8x +mx ﹣8m=x 3﹣9x 2+(8+m )x ﹣8m ,∵不含x 的一次项,∴8+m =0,解得:m =﹣8.故答案为﹣8.【点睛】本题主要考查多项式乘以多项式的法则,注意不含某一项就是说含此项的系数等于0.15.20或56【分析】本题考查了平行线的判定,平行线的性质,难点在于分情况讨论,作出图形更形象直观.作出图形,分①两三角形在点O 的同侧时,设与相交于点E ,根据两直线平行,同位角相等可得,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出,然后求出旋转角,再根据每秒旋转列式计算即可得解;②两三角形在点O 的异侧时,延长与相交于点E ,根据两直线平行,内错角相等可得,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出,然后求出旋转角度数,再根据每秒旋转列式计算即可得解.【详解】解:①两三角形在点O 的同侧时,如图1,设与相交于点E ,3261132a b --=5132ab =5132ab CD OB 40CEO B ∠=∠=︒DOE ∠AOD ∠5︒BO CD 40CEO B ∠=∠=︒DOE ∠5︒CD OB∵,∴,∵,,∴,∴,∴旋转角,∵每秒旋转,∴时间为秒;②两三角形在点O 的异侧时,如图2,延长与相交于点E ,∵,∴,∵,,∴,∴,∴旋转角为,∵每秒旋转,∴时间为秒;综上所述,在第20或56秒时,边恰好与边平行.故答案为:20或56.16.(1)6AB CD 40CEO B ∠=∠=︒60C ∠=︒90COD ∠=︒906030D ︒︒∠=-=︒403010DOE CEO D ∠=∠-∠=︒-︒=︒9010100AOD AOB DOE ∠=∠+∠=︒+︒=︒5︒100520︒÷︒=BO CD AB CD 40CEO B ∠=∠=︒60C ∠=︒90COD ∠=︒906030D ︒︒∠=-=︒403010DOE CEO D ∠=∠-∠=︒-︒=︒27010280︒+︒=︒5︒280556︒÷︒=CD AB(2)400【分析】本题考查了负整数指数幂,零指数幂,有理数的乘方,完全平方公式,熟练掌握以上知识是解题的关键.(1)根据负整数指数幂,零指数幂,有理数的乘方进行计算即可求解;(2)根据完全平方公式进行计算即可求解;【详解】(1);(2).17.;【分析】此题考查了整式的混合运算−化简求值,原式括号中利用完全平方公式,平方差公式计算,合并后利用多项式除以单项式法则计算得到最简结果,把与的值代入计算即可求出值.【详解】解:;当,时,原式18.见解析【分析】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.根据平行线的判定得到,等量代换得到,根据平行线的判定定理得到,证得,根据平行线的性质即可得到结论.22023014(1)(π3)3-⎛⎫-+⨯-+- ⎪⎝⎭()9411=+⨯-+941=-+6=22851308565-⨯+()28565=-220=400=4-y x 2-x y 2[()()2224)]2(x y x y y x xy y---+-÷()22224424242x y xy xy x y xy xy y=+---++-÷()2282y xy y=-÷4y x =-1x =2y =242=-=-BD EF ∥1CBD ∠=∠GF BC ∥GF MD ∥【详解】证明:∵,,垂足分别为D 、F (已知).∴,(垂直的定义).∴(等量代换).∴(同位角相等,两直线平行).∴(两直线平行,同位角相等).∵(已知).∴(等量代换).∴(内错角相等,两直线平行).∵(已知).∴(同位角相等,两直线平行).∴(平行于同一条直线的两条直线平行).∴(两直线平行,同旁内角互补).19.(1);(2)50,38(3)A 、B 两地之间的距离为【分析】(1)通过观察统计表可知:轿车行驶的路程是自变量,油箱剩余油量是因变量;(2)由表格可知,开始油箱中的油为,每行驶,油量减少,据此可得答案;(3)由表格可知,开始油箱中的油为,每行驶,油量减少,据此可得Q 与s 的关系式,把代入函数关系式求得相应的s 值即可.【详解】(1)解:上表反映了轿车行驶的路程和油箱剩余油量之间的关系,其中轿车行驶的路程是自变量,油箱剩余油量是因变量;答:A ,B 两地之间的距离为.(2)解:由表格可知,开始油箱中的油为,每行驶,油量减少,据此可得Q 与s 的关系式为,当时,,故答案是:50,38;(3)解:(3)由(2)得,BD AC ⊥EF AC ⊥=90BDC ∠︒90EFC ∠=︒BDC EFC ∠=∠BD EF ∥2CBD ∠=∠12∠=∠1CBD ∠=∠GF BC ∥AMD AGF ∠=∠GF MD ∥BC MD ∥180DMB ABC ∠+∠=︒(km)s (L)Q 350km(km)s (L)Q 50L 100km 8L 50L 100km 8L 22Q =(km)s (L)Q (km)s (L)Q 350km 50L 100km 8L 500.08Q s =-150s =500.0815038Q =-⨯=L ()500.08Q s =-当时,得,解得.答:A 、B 两地之间的距离为.【点睛】此题考查了函数的有关概念,解决问题的关键是能够根据统计表提供的信息,解决有关的实际问题.20.(1)(2)2米【分析】本题主要考查了整式乘法的应用,平移的性质,把通道都平移到一个顶点附近,使剩余的面积为一个长方形是解题的关键.(1)先把通道都平移到一个顶点附近,使剩余的面积为一个长方形,再根据长方形的面积公式求得剩余草坪的面积,(2)根据,剩余草坪的面积是216平方米,列出方程求解即可.【详解】(1);(2)∵,剩余草坪的面积是216平方米,∴,即,解得:(负值舍去),即通道的宽度是2米.21.(1)①,b ;②;;(2)12【分析】(1)①根据题意结合图形即可得到答案;②根据阴影部分面积是一个边长为的正方形面积,阴影部分面积等于大正方形面积减去两个长方形面积再减去一个小正方形面积,据此表示出阴影部分面积即可得到答案;(2)根据题意可得,进而根据完全平方公式的变形求出,进22Q =22500.08s =-350s =350km 228102a ab b ++2a b =()()42332a b b a b b -++-()()242a b a b +=+228102a ab b =++2a b =()22682110222b b b b ⨯⨯=++254216b =2b =a b -()2a b -222a ab b -+()2222a b a ab b -=-+a b -22408a b a b +=+=,12ab =而求出阴影部分面积即可.【详解】(1)解:①由题意得,图1中剪去的长方形的长为,宽为b ,故答案为:,b ;②阴影部分面积是一个边长为的正方形面积,即,阴影部分面积等于大正方形面积减去两个长方形面积再减去一个小正方形面积,即,∵两种表示方法的面积相等,∴,故答案为:;;(2)解:∵,∴,∴,∴,∴.【点睛】本题主要考查了完全平方公式在几何图形中的应用,正确理解题意并熟知完全平方公式是解题的关键.22.(1)P ;②M ;③N .(2)240.(3)甲的速度是40千米/时,乙的速度是80千米/时.(4)h 或【分析】(1)甲到达终点时S 应该最大,因为甲的速度小;甲乙两人相遇时S 为0;乙到达终点时S 不算最大,因为此时甲还没有到达终点.据此三点可得答案.(2)(1)中S 的最大值即为AB 两地之间的路程.(3)由(1)可得甲、乙的行驶时间,再根据速度=路程÷时间可以得到求解.(4)根据路程差÷速度=时间差可以得解.【详解】(1)由分析可知P 为甲到达终点时,M 为甲乙两人相遇时,N 为乙到达终点时.a b -a b -a b -()2a b -()22222222222a b a b b a ab b b a ab b ---=-+-=-+()2222a b a ab b -=-+()2a b -222a ab b -+()2222a b a ab b -=-+12408S S AB +==,22408a b a b +=+=,()()2222644024ab a b a b =+-+=-=12ab =12122ab a S b =⨯==阴影129h.2故答案为:①P ;②M ;③N ;(2)根据函数图象和图象中的数据可知甲、乙两人间的最大距离为240千米,所以AB 两地之间路程为240千米.故答案为:240;(3)由(1)可得甲、乙的行驶时间分别为6h 和3h ,所以甲的速度是:240÷6=40 km/h ,乙的速度是:240÷3=80km/h ;(4)①相遇之前:(240﹣180)÷(40+80)=(小时)②相遇之后:3+(180-120)÷40=(小时).故答案为: h 或【点睛】本题考查函数图象在实际问题中的应用,正确理解图象各点意义、熟练把握行程问题各量的等量关系是解题关键.23.(1)见解析(2)(3)或【分析】(1)尺规作即可;(2)由可得,再结合(1)即可推得结论;(3)根据题意分两种情况讨论:当点P 在线段上时和点P 在线段上,过点P 作于点Q ,根据题意求出,然后利用勾股定理和含角直角三角形的性质求解即可.【详解】(1)如图,作,射线即为所求;(2)∵,∴,∵,∴;1.29.2129h.2B EDF∠=∠23t =296E EDF D C ∠=∠DE AB ∥B DEC ∠=∠BF ED PQ BE ⊥43PQ =30︒E EDF D C ∠=∠DF DE AB ∥B DEC ∠=∠E EDF D C ∠=∠B EDF ∠=∠(3)如图所示,当点P 在线段上时,过点P 作于点Q∵的面积为∴,即解得∵∴∴∴;当点P 在线段上时,同理可得,∴点P 运动的路程为∴.综上所述,或.【点睛】本题考查了基本的尺规作图以及平行线的判定和性质,勾股定理,含角直角三角形的性质,属于基本题型,熟练掌握平行线的判定和性质是解题关键.BF PQ BE ⊥BEP △22cm 122BE PQ ⋅=1322PQ ⨯=43PQ =30B ∠=︒823PB PQ ==43FP FB PB =-=42233t =÷=ED 83PE =8294333++=2929236t =÷=23t =29630︒。
2023-2024学年山西省太原实验中学七年级(下)期末数学试卷及答案解析.
2023-2024学年山西省太原实验中学七年级(下)期末数学试卷一、选择题(本大题共有10个小题,每小题3分,共30分)1.(3分)下列汉字可以看作轴对称图形的是()A.B.C.D.2.(3分)下列说法正确的是()A.随机抛掷一枚均匀的硬币,落地后反面一定朝上B.从1、2、3、4、5中随机取一个数,取得奇数的可能性较大C.某彩票的中奖率为35%,说明买100张彩票,有35张获奖D.打开电视,中央一套一定在播放新闻联播3.(3分)如图,直线a∥b,直线c与直线a,b分别相交于点A,B,AC⊥b,垂足为C.若∠1=45°,则∠2=()A.52°B.45°C.38°D.26°4.(3分)下列方程组是二元一次方程组的是()A.B.C.D.5.(3分)已知实数a<b,则下列结论错误的是()A.a+1<b+1B.a﹣3<b﹣3C.﹣2a<﹣2b D.5a<5b6.(3分)不等式﹣3x﹣2≥4的解集在数轴上表示为()A.B.C.D.7.(3分)小王准备在红旗街道旁建一个送奶站,向居民区A,B提供牛奶,要使A,B两小区到送奶站的距离之和最小,则送奶站C的位置应该在()A.B.C.D.8.(3分)某项目化学习小组的同学在水中掺入酒精,充分混合后,放入冰箱冷冻室.根据实验数据作出混合液温度y(℃)随时间t(min)变化而变化的图象.下列说法不正确的是()A.在这个变化过程中,自变量是时间,因变量是混合液的温度B.混合液的温度随着时间的增大而下降C.当时间为19min时,混合液的温度为﹣7℃D.当10<t<18时,混合液的温度保持不变9.(3分)如图所示,在平面直角坐标系中,正方形OABC的顶点A和C分别在y轴和x轴上,正方形的面积为2,则C点的坐标是()A.B.C.D.10.(3分)如图,在正△ABC中,点D是BC边上任意一点,过点D作DF⊥AC于F,DE⊥BC交AB于点E,则∠EDF的度数为()A.50°B.60°C.65°D.75°二、填空题(本大题共有5个小题,每小题3分,共15分)11.(3分)已知关于x的方程2x+a﹣5=0的解是x=2,则a的值为.12.(3分)如果a<b,那么﹣2+2a﹣2+2b(横线上填“>”,“<”或“=”).13.(3分)七巧板起源于我国宋代,后流传于世界各国.在“综合与实践”课堂上,兴趣小组同学用一张正方形纸板依据图1,经过折叠、剪切,制作了如图2所示的七巧板,再拼成如图3所示的作品,最后在作品上随机钉一枚图钉,将其固定在桌面上,则图钉的钉尖恰好落在①区域的概率是.14.(3分)如图,AB∥DE,∠1=26°,∠2=116°,则∠BCD=°.15.(3分)如图,两个全等的直角三角形重叠在一起,将其中一个直角三角形沿AB的方向平移,平移的距离为线段AA′的长,则阴影部分的面积为.三、解答题(本大题共有8个小题,共75分)16.(9分)(1)解一元一次方程:;(2)解方程组:.(3)解不等式组:,并将解集在数轴上表示出来.17.(6分)课堂上,老师设计了“接力游戏”,规则:一列同学每人只完成解不等式的一步变形,即前一个同学完成一步,后一个同学接着前一个同学的步骤进行下一步变形,直至解出不等式的解集.请根据下面的“接力游戏”回答问题.任务一:①在“接力游戏”中,乙同学是根据进行变形的.A.等式的基本性质B.不等式的基本性质C.乘法对加法的分配律②在“接力游戏”中,出现错误的是同学,这一步错误的原因是.任务二:在“接力游戏”中该不等式的正确解集是.任务三:除纠正上述错误外,请你根据平时的学习经验,针对解不等式时还需要注意的事项给同学们提一条建议.接力游戏老师甲同学3(3x+1)﹣6>2(5x﹣4)乙同学9x+3﹣6>10x﹣8丙同学9x﹣10x>﹣8﹣3+6丁同学﹣x>﹣5戊同学x>518.(6分)如图,三角形ABC中,点D在AB上,点E在BC上,点F,G在AC上,连接DG,BG,EF.已知∠1=∠2,∠3+∠ABC=180°,求证:BG∥EF.将证明过程补充完整,并在括号内填写推理依据.证明:∵(已知)∴DG∥BC()∴.∠CBG=()∵∠1=∠2(已知)∴∠2=(等量代换)∴BG∥EF()19.(8分)如图,三角形ABC三个顶点的坐标分别是A(﹣3,﹣2),B(0,﹣1),C(﹣1,1),将三角形ABC进行平移后,点A的对应点A′为(1,0),点B的对应点是B′,点C的对应点是C′.(1)画出平移后的三角形A′B′C′并写出B′,C′的坐标;(2)写出由三角形ABC平移得到三角形A′B′C′的过程;(3)求出三角形A′B′C′的面积.20.(10分)2022年3月28日是第27个全国中小学生安全教育日.某校为调查本校学生对安全知识的了解情况,从全校学生中随机抽取若干名学生进行测试,测试后发现所有测试的学生成绩均不低于50分.将全部测试成绩x(单位:分)进行整理后分为五组(50≤x<60,60≤x<70,70≤x<80,80≤x <90,90≤x≤100),并绘制成频数分布直方图(如图).请根据所给信息,解答下列问题:(1)在这次调查中,一共抽取了名学生;(2)若测试成绩达到80分及以上为优秀,请你估计全校960名学生对安全知识的了解情况为优秀的学生人数;(3)为了进一步做好学生安全教育工作,根据调查结果,请你为学校提两条合理化建议.21.(10分)某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台.①求A种型号的电风扇最多能采购多少台?②若超市销售完这50台电风扇能实现利润超过1850元的目标,有几种采购方案?22.(13分)【教材呈现】已知a+b=5,ab=3,求(a﹣b)2的值.【例题讲解】同学们探究出解这道题的两种方法:方法一方法二∵(a+b)2=a2+2ab+b2∴a2+b2=(a+b)2﹣2ab ∵a+b=5,ab=3,∴a2+b2=25﹣6=19∵(a﹣b)2=a2﹣2ab+b2∴(a﹣b)2=19﹣6=13∵(a+b)2=a2+2ab+b2,∵(a﹣b)2=a2﹣2ab+b2,∴(a﹣b)2=(a+b)2﹣∵a+b=5,ab=3,∴(a﹣b)2=13.(1)请将方法二补充完整;【方法运用】(2)解答以下问题:已知,求的值.【拓展提升】(3)如图,以Rt△ABC的直角边AB,BC为边作正方形ABDE和正方形BCFG.若△ABC的面积为5,正方形ABDE和正方形BCFG面积和为36,求AG的长度.23.(13分)如图1,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)观察猜想:将图1中的三角尺OCD沿AB的方向平移至图2的位置,使得点O与点N重合,CD 与MN相交于点E,则∠CEN=;(2)操作探究:将图1中的三角尺OCD绕点O按顺时针方向旋转,使一边OD在∠MON的内部,如图3,且OD恰好平分∠MON,CD与NM相交于点E,求∠CEN的度数;(3)深化拓展:将图1中的三角尺OCD绕点O按沿顺时针方向旋转一周,在旋转的过程中,当边OC 旋转多少度时,边CD恰好与边MN平行?2023-2024学年山西省太原实验中学七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共有10个小题,每小题3分,共30分)1.【分析】根据轴对称图形的概念求解.【解答】解:汉字“振”、“兴”、“中”、“华”四个字中,只有“中”沿中间的竖线折叠,直线两旁的部分能完全重合,则“中”是轴对称图形,故选:C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】概率值只是反映了事件发生的机会的大小,不是会一定发生.不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1.【解答】解:A、随机抛掷一枚均匀的硬币,落地后反面有可能朝上,故A错误;B、从1、2、3、4、5中随机取一个数,取得奇数的可能性较大,故B正确;C、某彩票的中奖率为35%,说明买100张彩票,有可能获奖,故C错误;D、打开电视,中央一套有可能在播放新闻联播,故D错误;故选:B.【点评】本题考查了概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小是解题关键.3.【分析】由平行线的性质及互余关系可得∠2的度数.【解答】解:∵a∥b,AC⊥b,∴AC⊥a,∴∠1+∠2=90°,∴∠2=90°﹣∠1=45°.故选:B.【点评】本题考查了平行线的性质、垂直的性质及互余关系,平行线的性质是解题的关键.4.【分析】根据二元一次方程组的定义求解即可.由两个一次方程组成,并含有两个未知数的方程组叫做二元一次方程组.【解答】解:A.是二元一次方程组,故此选项符合题意;B.有一个方程含有分式,不是二元一次方程组,故此选项不符合题意;C.有一个方程的次数是2,不是二元一次方程组,故此选项不符合题意;D.有一个方程的次数是2,不是二元一次方程组,故此选项不符合题意;故选:A.【点评】本题主要考查了二元一次方程的定义.解题时一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”.5.【分析】根据不等式的性质,可得答案.【解答】解:A.两边都加1,不等号的方向不变,故A正确,不符合题意;B.两边都减3,不等号的方向不变,故B正确,不符合题意;C.两边都乘以﹣2,不等号的方向改变,故C错误,符合题意;D.两边都乘以5,不等号的方向不变,故D正确,不符合题意.故选:C.【点评】本题考查了不等式的性质,掌握不等式的性质是解题的关键.6.【分析】解不等式,在数轴上表示解集即可.【解答】解:﹣3x﹣2≥4,﹣3x≥6,x≤﹣2.在数轴上表示解集为:故选:C.【点评】本题考查一元一次不等式的求解及在数轴上表示解集,准确解不等式并表示解集是本题的关键.7.【分析】本题利用轴对称的性质,将折线最短问题转化为两点之间,线段最短问题,结合三角形的三边关系解题即可.【解答】解:如图:作点A关于街道的对称点A′,连接A′B交街道所在直线于点C,∴A′C=AC,∴AC+BC=A′B,在街道上任取除点C以外的一点C′,连接A′C′,BC′,AC′,∴AC′+BC′=A′C′+BC′,在△A′C′B中,两边之和大于第三边,∴A′C′+BC′>A′B,∴AC′+BC′>AC+BC,∴点C到两小区送奶站距离之和最小.故选:C.【点评】本题考查轴对称﹣最短路线的问题,将折线最短问题转化为两点之间,线段最短问题.会作对称点是解此类问题的基础,要求学生能熟练掌握,并熟练应用.另外本题的解决还应用了三角形的三边关系:三角形的两边之和大于第三边.本题还会有变式:请你找出点C的位置.8.【分析】观察函数图象,通过函数图象中的信息对每一项判断即可解答.【解答】解:根据图象可知:在这个变化过程中,自变量是时间,因变量是混合液的温度,∴A项的说法正确,故A项不符合题意;根据图象可知:混合液的温度0~10小时之间随着时间的增大而下降,在10~18小时之间随着时间的增大混合液的温度保持不变,在18~20小时之间随着时间的增大混合液的温度减小,∴B项的说法不正确,故B项符合题意;根据图象可知:当时间为19min时,混合液的温度为﹣7℃,∴C项的说法正确,∴C项不符合题意;根据图象可知:当10<t<18时,混合液的温度保持不变,∴D项的说法正确,故D项不符合题意;故选:B.【点评】本题考查了从函数图象中获取信息,读懂函数图象是解题的关键.9.【分析】根据正方形的面积公式即可求出OC长度,再用平面直角坐标系坐标的特点即可求出C点的坐标.【解答】解:∵正方形的面积为2,∴,∵C点在x轴的负半轴上,∴.故选:D.【点评】本题考查了平面直角坐标系中坐标,解题的关键在于熟练掌握每个象限点的坐标的特性.10.【分析】先根据等边三角形的性质得出∠C=60°,根据直角三角形的性质求出∠CDF=90°﹣60°=30°,再根据平角定义求解即可.【解答】解:∵△ABC是等边三角形,∴∠C=60°,∵DE⊥BC交AB于E,DF⊥AC于F,∴∠BDE=∠CFD=90°,∴∠CDF=90°﹣60°=30°,∴∠EDF=180°﹣90°﹣30°=60°,故选:B.【点评】本题考查的是等边三角形的性质,熟练掌握等边三角形的性质是解题的关键.二、填空题(本大题共有5个小题,每小题3分,共15分)11.【分析】把x=2代入方程即可得到一个关于a的方程,解方程即可求解【解答】解:把x=2代入方程,得:4+a﹣5=0,解得:a=1.故答案为:1.【点评】本题考查了方程的解的定义,理解定义是关键.12.【分析】根据不等式的性质即可得出答案.【解答】解:∵a<b,∴2a<2b,∴﹣2+2a<﹣2+2b,故答案为:<.【点评】本题考查了不等式的性质,掌握不等式的基本性质是本题的关键,不等式的基本性质是:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.13.【分析】图形①即为四边形BEGH,计算与正方形面积的比解题即可.【解答】解:∵①的面积即四边形BEGH的面积,是△BIC的面积的一半,即为正方形面积的,故答案为:.【点评】本题考查的几何概率,掌握几何概率即是面积比是解题的关键.14.【分析】由平行公理的推论得CF∥DE,其性质得求得∠4的度数为64°,再根据CF∥AB,得到∠1=∠3=26°,最后由角的和差求出∠BCD的度数为90°.【解答】解:过点C作CF∥AB,如图所示:∵AB∥DE,CF∥AB,∴CF∥DE,∴∠2+∠4=180°,又∵∠2=116°,∴∠4=180°﹣∠2=64°,又∵CF∥AB,∴∠1=∠3,又∵∠1=26°,∴∠3=26°,又∵∠BCD=∠3+∠4,∴∠BCD=90°,故答案为:90.【点评】本题综合考查了平行线的性质,角的和差等相关知识点,解题的关键是作辅助线构建平行线.15.【分析】将阴影部分的面积转化为直角梯形的面积计算即可.【解答】解:设BC交A′C′于H.∵两直角三角形全等,∴BC=B′C′=4,∵阴影部分的高为2,由平移的性质可知:阴影部分的面积=梯形BHC′B′的面积=×4×(2+4)=12,故答案为:12.【点评】考查了平移的性质,平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.三、解答题(本大题共有8个小题,共75分)16.【分析】(1)先去分母,再去括号,接着移项合并得到﹣x=4,然后把x的系数化为1即可;(2)利用加减消元法解方程组;(3)分别解两个不等式得到x≤1和x>﹣6,然后根据大小小大中间找确定不等式组的解集.【解答】解:(1)去分母,得3(x+2)﹣2(2x﹣1)=12,去括号,得3x+6﹣4x+2=12,移项,合并同类项,得﹣x=4,系数化为1,得x=﹣4;(2)①+②得3x=7,解得,将代入①得.解得.所以方程组的解为;(3)解不等式①得x>﹣6.解不等式(2)得x≤1.所以不等式组的解集为﹣6<x≤1,不等式组的解集在数轴上表示为:【点评】本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.也考查了解一元一次方程和解二元一次方程组.17.【分析】任务一,根据乘法分配律及不等式的性质进行解答即可;任务二,按解不等式的步骤求解;任务三,根据不等式的性质提出建议即可.【解答】解:任务一:老师,甲同学3(3x+1)﹣6>2(5x﹣4),利用了不等式的性质,计算正确;乙同学9x+3﹣6>10x﹣8,利用了乘法对加法的分配律,计算正确;丙同学9x﹣10x>﹣8﹣3+6,利用了不等式的性质,进行了移项,计算正确;丁同学﹣x>﹣5,合并同类项,计算正确,戊同学x>5,利用了不等式的性质,计算计算错误,不等式两边同时乘负数时,不等号的方向要改变;①故选:C;②故答案为:戊,不等式的两边同时乘以﹣1,不等号的方向没有改变;任务二:3(3x+1)﹣6>2(5x﹣4),9x+3﹣6>10x﹣8,9x﹣10x>﹣8﹣3+6,﹣x>﹣5,x<5,故答案为:x<5;任务三:答案不唯一,合理即可.例如:去括号时,括号前面是“﹣”,去括号后,括号内的每一项都要变号,或移项要变号.【点评】本题主要考查了一元一次不等式,掌握解一元一次不等式的一般步骤是解决本题的关键.18.【分析】根据平行线的判定和性质进行填空即可.【解答】证明:∵∠3+∠ABC=180°(已知),∴DG∥BC(同旁内角互补,两直线平行),∴∠CBG=∠1(两直线平行,内错角相等),∵∠1=∠2(已知),∴∠2=∠CBG(等量代换),∴BG∥EF(同位角相等,两直线平行),故答案为:∠3+∠ABC=180°;同旁内角互补,两直线平行;两直线平行,内错角相等;∠CBG;同位角相等,两直线平行.【点评】本题主要考查了平行线的性质和判定,解题的关键是要明确平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.19.【分析】(1)根据点A的平移方向即可画出△A′B′C′;(2)根据第(1)问求解即可;(3)用割补法求解即可.【解答】解:(1)如图所示,△A′B′C′即为所求:∴B′(4,1),C′(3,3);(2)△ABC先向右平移4个单位长度,再向上平移2个单位长度得到△A′B′C′;(3)如图所示:,答:△A′B′C′的面积是3.5.【点评】本题考查了作图﹣平移变换,涉及到平移和求三角形面积,熟记知识点是关键.20.【分析】(1)把各组频数相加即可;(2)利用样本估计总体即可;(3)根据(2)的结论解答.【解答】解:(1)4+6+10+12+8=40(名),故答案为:40;故优秀的学生人数约为480人;(3)加强安全教育,普及安全知识;通过多种形式,提高安全意识;结合校内,校外具体活动,提高避险能力.【点评】本题主要考查:频数(率)分布直方图,用样本估计总体,解题的关键是根据直方图得出解题所需数据及样本估计总体思想的运用.21.【分析】(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号4台B型号的电扇收入1200元,5台A型号6台B型号的电扇收入1900元,列方程组求解;(2)①设采购A种型号电风扇a台,则采购B种型号电风扇(50﹣a)台,根据金额不多余7500元,列不等式求解;②根据A种型号电风扇的进价和售价、B种型号电风扇的进价和售价以及总利润=一台的利润×总台数,列出不等式,求出a的取值范围,再根据a为整数,即可得出答案.【解答】解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为200元、150元.(2)①设采购A种型号电风扇a台,则采购B种型号电风扇(50﹣a)台.依题意得:160a+120(50﹣a)≤7500,解得:a≤37,∵a是整数,∴a最大是37,答:超市最多采购A种型号电风扇37台时,采购金额不多于7500元.②设采购A种型号电风扇x台,则采购B种型号电风扇(50﹣x)台,根据题意得:(200﹣160)x+(150﹣120)(50﹣x)>1850,解得:x>35,∵x≤37,且x应为整数,∴超市能实现利润超过1850元的目标.相应方案有两种:当x=36时,采购A种型号的电风扇36台,B种型号的电风扇14台;当x=37时,采购A种型号的电风扇37台,B种型号的电风扇13台.【点评】此题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.22.【分析】(1)根据题目的推理过程,即可填空;(2)根据,,找到两者的关系,即可求解;(3)设AB=a,BC=b,则AG=a﹣b,根据(a﹣b)2=a2﹣2ab+b2=36﹣20=16,即可求解.【解答】解:(1)(a﹣b)2=(a+b)2﹣4ab,故答案为:4ab;(2)∵,∴;(3)设AB=a,BC=b,则AG=a﹣b,由题意可得:a2+b2=36,,∴(a﹣b)2=a2﹣2ab+b2=36﹣20=16.∵a﹣b>0,∴a﹣b=4,即AG=4.【点评】本题考查完全平方公式的应用,解题的关键是能够找到和的完全平方公式和差的完全平方公式的联系.23.【分析】(1)在△CEN中,依据三角形的内角和定理求解即可;(2)根据角平分线的定义求出∠DON=45°,利用内错角相等两直线平行求出CD∥AB,再根据两直线平行,同旁内角互补求解即可;(3)当CD在AB上方时,CD∥MN,设OM与CD相交于F,根据两直线平行,同位角相等可得∠OFD =∠M=60°,然后根据三角形的内角和定理列式求出∠MOD,即可得解;当CD在AB的下方时,CD ∥MN,设直线OM与CD相交于F,根据两直线平行,内错角相等可得∠DFO=∠M=60°,然后利用三角形的内角和定理求出∠DOF,再求出旋转角即可.【解答】解:(1)∵∠ECN=45°,∠ENC=30°,∴∠CEN=105°.故答案为:105°.(2)∵OD平分∠MON,∴∠DON=∠MON=×90°=45°,∴∠DON=∠D=45°,∴CD∥AB,∴∠CEN=180°﹣∠MNO=180°﹣30°=150°;(3)如图1,CD在AB上方时,设OM与CD相交于F,∵CD∥MN,∴∠OFD=∠M=60°,在△ODF中,∠MOD=180°﹣∠D﹣∠OFD,=180°﹣45°﹣60°,=75°,当CD在AB的下方时,设直线OM与CD相交于F,∵CD∥MN,∴∠DFO=∠M=60°,在△DOF中,∠DOF=180°﹣∠D﹣∠DFO=180°﹣45°﹣60°=75°,∴旋转角为75°+180°=255°,综上所述,当边OC旋转75°或255°时,边CD恰好与边MN平行.【点评】本题考查了旋转的性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形两锐角互余的性质,熟记各性质并熟悉三角板的度数特点是解题的关键。
2023—2024学年山东省青岛市城阳区实验中学七年级下学期期中考试数学试卷
2023—2024学年山东省青岛市城阳区实验中学七年级下学期期中考试数学试卷一、单选题(★★) 1. 下列运算正确的是()A.B.C.D.(★★) 2. 下列说法正确的是()A.相等的角是对顶角B.两点确定一条直线C.一个角的补角一定大于这个角D.两条直线被第三条直线所截,同位角相等(★) 3. “燕山雪花大如席,片片吹落轩辕台.”这是诗仙李白眼里的雪花.单个雪花的重量其实很轻,只有左右,用科学记数法可表示为()A.B.C.D.(★★★) 4. 柿子熟了,从树上落下来,下面的哪一幅图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况()A.B.C.D.(★★) 5. 若,则的补角等于()A.B.C.D.(★) 6. 数学源于生活,用于生活,我们要会用数学的眼光观察现实世界,会用数学的思维思考现实世界,会用数学的语言表达现实世界,例如,生活中木匠弹墨线、打靶瞄准、拉绳插秧等场景,就反映了直线的一个基本事实是()A.经过两点,有且仅有一条直线B.经过一点,有无数条直线C.垂线段最短D.两点之间,线段最短(★★) 7. 计算的结果是()A.B.C.D.(★★) 8. 电动曲臂式高空作业车在高空作业时只需一个人就可操作机器连续完成升降、前进、后退、转向等动作,极大地减少了操作人员的数量和劳动强度.如图所示是一辆正在工作的电动曲臂式高空作业车,其中,.若,则的度数为()A.B.C.D.(★★) 9. 如图,直线、交于点平分,若,则等于()A.B.C.D.(★★) 10. 研究表明,当潮水高度不低于时,货轮能够安全进出该港口,海洋研究所通过实时监测获得6月份某天记录的港口湖水高度和时间的部分数据,绘制出函数图像如图:小颖观察图象得到了以下结论:①当时,;②当时,y随x的增大而增大;③当时,y有最小值为80;④当天只有在时间段时,货轮适合进出此港口.以上结论正确的个数为()A.1个B.2个C.3个D.4个二、填空题(★★) 11. 计算: _____________ .(★★) 12. 数学学习小组准备利用一根弹簧制作一个简易弹簧秤(用于称物体的质量),需在刻度盘上标注刻度.经过四次试验与测量,得到弹簧的长度与所挂物体的质量之间的对应关系如下表:物体的质量1弹簧的长度10已知该弹簧在挂物体后,在弹性限度内能达到的最大长度为,则学习小组在刻度盘上需标注的最大量程是 _________ .(★★) 13. 若是一个完全平方式,则m的值是_________________(★) 14. 如图,阴影部分的面积为 ________ .(★★) 15. 某型号签字笔每支2.5元,小涵同学拿100元钱去购买了支该型号的签字笔,则所剩余的钱y(元)与x(支)的关系式是____________________ .(★★★) 16. 如图,若AB∥CD,则下列结论:①∠1=∠2;②∠3=∠4;③∠B=∠5;④∠B+∠BCD=180°成立的是 __________ (填序号)三、解答题(★★★) 17. 已知:如图,四边形.求作:点,使,且点在四边形的内部.(★★★) 18. 计算:(1) (运用整式乘法公式);(2) ;(3) ;(4) .(★★★) 19. 先化简,再求值:,其中,.(★★★) 20. 一个“数值转换机”如图所示,完成下表并回答下列问题:(1)根据上述计算你发现了什么规律?(2)请说明你发现的规律是正确的.(★★) 21. 如图,点E,F分别在上,,垂足为点O,,.请问吗?为什么?下面是小隋同学的思考过程,请你帮她补充完整(因为和所以分别用符号“∵”和“∴”表示).解:,∵(已知),∴(),∴(),∵ (已知),∴(),∴ (等量代换),∵(),∴(等式性质),∴ (已知)∴(),∴().(★★★) 22. 小杰与爸爸骑车从家到公园先上坡后下坡,在这段路上小杰骑车的路程s(千米)与骑车的时间t(分钟)之间的函数关系如图所示,请根据图中信息填空:(1)自变量是;(2)小杰去公园时上坡路长千米;(3)小杰下坡的速度为千米/分钟;(4)如果小杰回家时按原路返回,且上坡与下坡的速度不变,那么从公园骑车到家用的时间是分钟.(★★★) 23. 如图,,.若,求的度数.(★★★) 24. 【实践操作】在数学实践活动课上,同学们准备研究如下问题:如图,点A,O,B在同一条直线上,将一直角三角尺如图①放置,是直角,直角顶点与点O重合,平分.【问题发现】(1)若,求的度数;(2)猜想图①中和的度数之间的关系,写出你的结论,并说明理由.【变式探究】将这一直角三角尺如图②放置,其他条件不变,试探究和的度数之间的关系,写出你的结论,并说明理由.(★★★) 25. 通常,用两种不同的方法计算同一个图形的面积,可以得到一个恒等式.例如:如图①是一个长为2 a,宽为2 b的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的形状拼成一个正方形.请解答下列问题:(1)观察图②,请你写出,,之间的等量关系式:;(2)根据(1)中的等量关系式解决如下问题:若,,求的值;(3)将面积相等的方法迁移到体积相等,如图③表示的是一个棱长为的正方体,请你根据图③求这个正方体的体积,写出一个整式乘法的等式:.。
广东省广州市越秀区广东实验中学2023-2024学年七年级下学期期中数学试题(解析版)
广东实验中学2023-2024学年第二学期期中教学质量监测七年级数学一、选择题(本大题共10个小题,每小题3分,共30分)1. 下列四个数中,属于无理数的是()A. 0.65B. C. D. 【答案】C【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像,等有这样规律的数.据此解答即可.解:A 、是有理数,不是无理数,不符合题意;B、是有理数,不是无理数,不符合题意;CD是有理数,不是无理数,不符合题意,故选:C .2. 如图,,,则的度数是()A. 105°B. 75°C. 115°D. 65°【答案】B【解析】【分析】本题考查了平行线的性质,对顶角相等的性质,根据两直线平行,同位角相等求出,再根据对顶角相等解答.解:如图,∵,13π2π0.1010010001⋯0.65132=a b 275∠=︒1∠3∠a b∴,∴.故选:B .3. 如图,现要在李庄附近建一高铁站,为了使李庄的人乘车最方便,那么选高铁线上的点来建高铁站,理由是()A. 两点之间,线段最短B. 两点确定一条直线C. 垂线段最短D. 在同一平面内,过一点有且只有一条直线与这条直线垂直【答案】C【解析】【分析】本题主要考查了垂线段的性质,关键是掌握直线外的一点到直线上的点之间的距离,垂线段最短.解:根据垂线段最短可得:应建在A 处,理由:垂线段最短.故选:C .4. 若是关于的二元一次方程,则的值为()A. 1B. 3或1C. 3D. 3或0【答案】A【解析】【分析】本题主要考查了二元一次方程定义,正确理解二元一次方程的定义是解题关键,方程的两个未知数的系数不能为0是解题的易错点.根据二元一次方程的定义列绝对值方程求解即可.解:是关于的二元一次方程,∴且,解得:,故选:A5. 如图,在中,.把沿的方向平移到的位置,若,则下列结论中错误的是()的3275∠=∠=︒1375∠=∠=︒A ()231t xt y -+-=,x y ()231t x t y -+-=,x y 21t -=30t -≠1t =ABC 7BC =ABC RS DEF 4CF =A. B. C. D. 【答案】D【解析】【分析】本题考查了图形的平移.根据平移的性质,平移只改变图形的位置,不改变图形的大小与形状,平移后对应点的连线互相平行或在同一直线上,对各选项分析判断即可求解.解:∵把沿的方向平移到的位置,,,∴,,故选项AC 正确,不符合题意;∴,∴,选项B 正确,不符合题意;长度不能确定;故选项D 错误,符合题意;故选:D .6. 已知是二元一次方程解,则的值是()A. 2B. 4C. 6D. 9【答案】B【解析】【分析】本题主要考查根据二元一次方程的解求参数,把的值代入方程,根据等式的性质变形即可求解.解:根据题意得,,∴,故选:.7. 下列命题中为真命题的是()A. B. 过直线外一点,有且只有一条直线与这条直线平行C. 同旁内角互补D. 有理数与数轴上的点一一对应【答案】B【解析】【分析】本题主要考查真、假命题的判定,根据平方根的概念,平行线的判定,同旁内角,实数与数轴的的7EF =4BE =AC DF ∥7DF =ABC RS DEF 7BC =4CF =7EF BC ==AC DF ∥BC CE EF CE -=-4BE CF ==DF 12x y =⎧⎨=-⎩3ax by -=242a b +-x y ,23a b +=2(2)23224242b a b a +-=⨯+--==B 4=±关系即可求解.解:,故该选项错误,不符合题意,、过直线外一点有且只有一条直线与已知直线平行,故该选项正确,符合题意,、两直线平行,同旁内角互补,故该选项错误,不符合题意,、实数与数轴上的点一一对应,故该选项错误,不符合题意,故选:.8. 在平面直角坐标系中,点的坐标是,轴,,则点的坐标是()A. B. C. 或 D. 或【答案】D【解析】【分析】此题考查平面直角坐标系中点的坐标的表示,与x 轴垂直的直线的特征,正确表示点在直角坐标系中的位置是解题的关键.根据垂直于x 轴的性质,可得出点N 的横坐标为,再由即可得到点N 的坐标.解:点的坐标是,轴,点N 的横坐标为,,点B 的纵坐标为:或,点B 的坐标为:或.故选:D .9. 如图,将一张长方形纸片进行折叠,若,则的度数为()A. 130°B. 100°C. 80°D. 150°【答案】A【解析】【分析】本题主要考查平行线的性质,轴对称的性质,解答的关键是熟记平行线的性质并灵活运用.由题意可得,则有,结合所给的条件可求得,再由平行线的性质得A 4=BCD B M ()1,2-MN x ⊥3MN =N ()1,5-()2,2()2,2()4,2-()1,1--()1,5-1-3MN = M ()1,2-MN x ⊥∴1- 3MN =∴235+=231-=-∴()1,5-()1,1--2120∠-∠=︒EFC ∠AD BC ∥12180∠+∠=︒2100∠=︒,由折叠的性质可得,从而可求得.解:由题意得:,∴,,,∵,∴,解得:,∴,由折叠可得,∴,∴.故选:A .10. 如图,在平面直角坐标系中,点从原点出发,沿轴正方向按半圆形弧线不断向前运动,其移动路线如图所示,其中半圆的半径为1个单位长度,这时点的坐标分别为,则点的坐标为()A. B. C. D. 【答案】D【解析】【分析】本题主要考查找点的坐标规律,根据图形可知点的位置每4个数一个循环,横坐标为脚标数减1,,进而判断与的纵坐标相同,即可求解.解:∵,,,,∴根据图形可知点的位置每4个数一个循环,横坐标为脚标数减1,,∴与的纵坐标相同,∴故选:D.100DEG ∠=︒50DEF ∠=︒180130EFC DEF ∠︒∠=︒=-AD BC ∥12180∠+∠=︒2DEG ∠=∠180DEF EFC ∠+∠=︒2120∠-∠=︒22200∠=︒2100∠=︒100DEG ∠=︒DEF FEG ∠=∠50DEF ∠=︒180130EFC DEF ∠︒∠=︒=-A O x 1234A A A A 、、、()()()()12340,0,1,1,2,0,3,1A A A A -2024A ()2024,0()2025,1-()2023,1()2023,1-20244506÷=2024A 4A ()10,0A ()21,1A ()32,0A ()43,1A -20244506÷=2024A 4A ()20242023,1A -二、填空题(本大题共6个小题,每小题3分,共18分)11. 81的算术平方根是_____.【答案】9【解析】【分析】直接利用算术平方根的定义得出答案.解:81.故答案为:9.【点睛】此题主要考查了算术平方根的定义,正确把握算术平方根的定义是解题关键.12. 将方程x ﹣2y =5变形为用含x 的代数式表示y 的形式是y =_____.【答案】【解析】【分析】利用整式的性质,将y 留到等号的左边即可得到答案.方程x ﹣2y =5,解得:y =,故答案为【点睛】本题考查了代入法解二元一次方程,熟练掌握变形依据是解题的关键.13. 中国象棋具有悠久的历史,战国时期,就有了关于象棋的正式记载.如图是经典残局“七星聚会”的一部分,如果“车”的位置表示为,“兵”的位置表示为,那么“炮”的位置应表示为___________.【答案】【解析】【分析】此题主要考查了坐标确定位置,根据“车”的位置用建立平面直角坐标系,进而得出“炮”的位置,正确得出原点的位置是解题关键.9=52x -52x -52x -()2,2-()2,0-()01,()2,2-∵“车”的位置用表示,“兵”的位置表示为,∴以“兵”所在的行为轴,以“车”向左数两列所在的列线为轴,建立平面直角坐标系,如图所示,∴“炮”的位置应表示为,故答案为:.14. 如图,木棒与分别在处用可旋转的螺丝铆住,,,将木棒绕点逆时针旋转到与木棒平行的位置,则至少要旋转_________°.【答案】##度【解析】【分析】过点作,根据同位角相等,两条直线平行可得当时,即需要变小,即木棒绕点G 逆时针旋转即可.解:过点作,∴,∵,∴∠,()2,2-()2,0-x y ()01,()01,AB CD 、EF G H 、110EGB ∠=︒85EHD ∠=︒AB G CD 25︒25G MN CD ∥85EHD EGN ∠=∠=︒EGB ∠25︒AB 25︒G MN CD ∥85EHD EGN ∠=∠=︒110EGB ∠=︒1108525BGN EGB EGN ∠∠=-=︒-︒=︒∴需要变小,即木棒绕点G 逆时针旋转,故答案为:.【点睛】本题考查平行线的判定与性质,熟知平行线的判定与性质是解题的关键.15. 如图,直线,,,则__________°.【答案】【解析】【分析】本题考查的是平行公理的应用,平行线的性质,先求解,,如图,过作,证明,再利用平行线的性质进一步可得答案.解:∵,,∴,,如图,过作,∵,∴,∴,,∴,∴;故答案为:16. 定义:在平面直角坐标系中,将点变换为(为常数),我们把这种EGB ∠25︒AB 25︒25︒AB CD AE CE ⊥1126∠=︒C ∠=3690AEC ∠=︒18012654BAE ∠=︒-︒=︒E EG AB ∥AB EG CD ∥∥AE CE ⊥1126∠=︒90AEC ∠=︒18012654BAE ∠=︒-︒=︒E EG AB ∥AB CD ∥AB EG CD ∥∥54AEG BAE ∠=∠=︒C CEG ∠=∠905436CEG ∠=︒-︒=︒36C ∠=︒36xOy (),P x y (),P kx b by k ++k b 、变换称为“变换”.已知点经过“变换”的对应点分别是,.若,则____________,___________.【答案】①. 3 ②. 或【解析】【分析】本体主要考查了解二元一次方程组,坐标与图形,先根据经过“变换”的对应点是得到,接方程组求出的值,进而表示出的坐标,再由,求出的值即可.解:∵点经过“变换”的对应点是,∴,解得:,∴∵,经过“变换”的对应点为,∴,∴轴,,∵,∴,∴解得或故答案为:3;或.三、解答题(本大题共8小题,共72分.解答应写出适当的文字说明、证明过程或演算步骤)17. 计算:(1(2SS ()()()2,1,,2,3,2A B m n C m n +SS ()5,3D ,E F 4S =三角形A E F k b +=n =1676-()2,1A SS ()5,3D 253k b b k +=⎧⎨+=⎩,k b E F ,4S =三角形A E F n ()2,1A SS ()5,3D 253k b b k +=⎧⎨+=⎩21k b =⎧⎨=⎩3k b +=(),2B m n ()3,2D m n +SS E F ,()()21222722E m n F m n ++++,,,EF x ∥6EF =4S =三角形A E F 122142EF n ⋅+-=32214n +-=16n =76-1676-+2332--【答案】(1)(2)【解析】【分析】本题考查了实数的混合运算,熟练掌握算术平方根和立方根的意义是解答本题的关键.(1)先算立方根和算术平方根,再算减法即可;(2)先算乘法和绝对值,再算加减即可.【小问1】;【小问2】.18. 解方程组:(1)(2)【答案】(1)(2)【解析】【分析】本题考查的是二元一次方程组的解法,掌握代入法与加减法解方程组是解本题的关键;43-9-1323=-+-43=-2332---292=--+9=-72345y x x y =-⎧⎨-=⎩()92153416s t s t +=⎧⎨--=⎩31x y =⎧⎨=⎩4332s t ⎧=⎪⎪⎨⎪=⎪⎩(1)直接利用代入法解方程组即可;(2)先把方程组整理为,再利用加减法解方程组即可.【小问1】解:,把①代入②得:,∴,解得:,把代入①得:,∴方程组的解为:;【小问2】,整理得:,∴得:,解得:,把代入②得:,解得:,∴方程组的解为:.19. 如图,是的平分线,,,求的度数.(请写出推理依据)184303410s t s t +=⎧⎨+=⎩①②72345y x x y =-⎧⎨-=⎩①②()34725x x --=1133x =3x =3x =1y =31x y =⎧⎨=⎩()92153416s t s t +=⎧⎨--=⎩184303410s t s t +=⎧⎨+=⎩①②-①②1520s =43s =43s =4410t +=32t =4332s t ⎧=⎪⎪⎨⎪=⎪⎩AE DAB ∠∥AE CB 40B ∠=︒C ∠【答案】【解析】【分析】此题主要考查了平行线的性质,以及角平分线的性质,首先根据平行线的性质可得,,再根据是的平分线,可得.利用等量代换可得.解:如图:∵(已知),∴(两直线平行,内错角相等),(两直线平行,同位角相等),又∵平分(已知),∴(角平分线定义),∴(等量代换).20. 如图,,,平分交于点,试说明.下面是小林同学的证明,请你完善解答过程,并在括号内填写相应的推理依据.证明:∵(已知)∴,()∵(已知)∴.(等量代换)∵(已知)∴=180°.()∴.(等式的性质)∵平分(已知)40︒1B ∠=∠2C ∠=∠AE BAD ∠12∠=∠40B C ∠=∠=︒AE BC 1B ∠=∠2C ∠=∠AE DAB ∠12∠=∠40C B ∠=∠=︒AD BC ∥1,60C B ∠=∠∠=︒DE ADC ∠BC E AB DE ∥AD BC ∥1______60∠=∠=︒1C ∠=∠60C B ∠=∠=︒AD BC ∥________C ∠+∠_______180********C ∠=︒-∠=︒-︒=︒DE ADC ∠∴.()∴.()∴.()【答案】见解析【解析】【分析】本题考查了平行线的判定与性质,熟记相关定理的内容,根据推理过程即可完善相关步骤.解:,(已知).(两直线平行,同位角相等),(已知).(等量代换),(已知).(两直线平行,同旁内角互补)∴(等式的性质)平分,(已知).(角平分线定义)(等量代换).(内错角相等,两直线平行)21. 已知一个数两个平方根分别为和.(1)求的值;(2)如图在数轴上,若点表示的数是,点表示的数是,点表示的数是,点在点的左侧且满足,求的立方根.【答案】(1)(2)【解析】【分析】本题考查平方根的含义,求一个数的立方根,二次根式的加减运算,理解题意是关键.(1)根据一个正数的两个平方根互为相反数,进行求解即可;(2)根据,先求解,可得,再根据立方根定义进行求解即可.的的111206022ADE ADC ∠=∠=⨯︒=︒1ADE ∠=∠AB DE ∥AD BC ∥ 160B ∴∠=∠=︒1C ∠=∠ 60C B ∴∠=∠=︒ AD BC ∥180C ADC ∴∠+∠=︒ADC ∠180********C =︒-∠=︒-︒=︒DE ADC ∠111206022ADE ADC ∴∠=∠=⨯︒=︒1ADE ∴∠=∠∴AB DE ∥ma a -m A a M m Bb B A 2BA AM=28b -+10m =22BA AM =b 28b -+【小问1】解:∵一个数的两个平方根分别为和,∴,解得:,∴;【小问2】∵点,点表示的数是,点表示的数是,点在点的左侧,∴,,∵,,解得:,∴;∴的立方根是;22. 如图,每个小方格都是边长为1个单位长度的正方形,建立如图所示的平面直角坐标系后,三角形的顶点坐标为.(1)把三角形向左平移5个单位长度再向上平移6个单位长度得到,在图中画出三角形ma a-0a a +-=a =210ma ==A M 10Bb B A AB b =-10AM =-2BA AM =(210b =20b =-28b -2028=--8=28b -2ABC ()()()1,4,5,5,5,1A B C ---ABC A B C ''';(2)(1)中的三角形面积为___________;(3)在轴的负半轴上是否存在点,使.若存在,求出点的坐标;若不存在,说明理由.【答案】(1)见解析(2)8(3)不存在,理由见解析.【解析】【分析】本题考查作图-平移变换,三角形的面积等知识,解题的关键是学会利用参数,构建方程解决问题.(1)利用平移变换的性质分别作出A ,B ,C 的对应点即可;(2)把三角形的面积面积公式计算即可;(3)设P 的坐标为.由.构建方程求出m 即可.【小问1】解:如图,即为所求;【小问2】解:的面积;【小问3】解:设在轴的负半轴上P 的坐标为.A B C '''A B C '''x P 12A B C S S ''''=三角形ABP 三角形P A B C '''、、()0m ,34A B P A B O A PO BPO S S S S '''''+-== A B C ''' A B C ''' 14482=⨯⨯=x ()0m ,由题意,,∴,解得,不合题意舍去故在轴的负半轴上不存在点,使.【点睛】本题考查作图-平移变换,三角形的面积等知识,解题的关键是学会利用参数,构建方程解决问题.23. 一个优秀的现代城市必定蕴含科技、人文、生态三大内涵.结合广州的规划目标和照明现状历史文化底蕴和现代化大都会地位,自2011年创办的“广州国际灯光节”,现与法国、悉尼并列为世界三大灯光节.广州采用"政府搭台、企业唱戏"的市场化模式,通过整合现有市场资源、引导企业参与,走市场化道路来举办年度公共文化盛事. 2023 年的广州国际灯光节分三大版块:“炫美湾区”、“光耀羊城”和“智造未来”.为保障市民游客安全有序、顺利参与,在广场两侧各安置了灯带,不间断地交叉照射巡视.如图 1,灯射线自逆时针旋转至便立即回转,灯射线自顺时针旋转至便立即回转.若灯转动的速度是/秒,灯转动的速度是/秒.假定广场两侧的灯带是平行的,即,且.1113(32)452932222A B C S ''=⨯+⨯+⨯⨯-⨯⨯=三角形2341A B P A B C S S ''''== ()()111314212224m m ⨯⨯+⋅-⨯-⨯⋅-=502m =>x P 12A B CS S ''''=三角形ABP 三角形A AN AM B BQ BP A a ︒B b ︒PQ MN ∥120ABQ ∠=︒(1)当时,灯射线经过多少秒,第一次照射到灯;(2)若,,且两灯同时转动.设两灯转动的时间为秒,若满足两灯的射线光束互相平行,求此时对应的;(3)两灯以(2)中的速度同时转动,如图2,在灯射线到达之前,若射出的光束交于点.①______________(用含的代数式表示);②作,请求出与的数量关系.【答案】(1)20(2)(3)①或;②或【解析】【分析】本题主要考查了平行线的性质与判定:(1)根据平行线的性质求出,据此可得答案;(2)分当时,当时,两种情况画出对应的图形讨论求解即可;(3)①分当时,当时,两种情况画出对应图形讨论求解即可;②根据①所求,分当时,当时,两种情况分别求出与即可得到答案.【小问1】解:∵,,∴,∵灯转动的速度是/秒,∴灯射线经过秒,第一次照射到灯;【小问2】解:如图所示,当时,∵,,∴,的3a =A B 3a =4b =()060t t <<B BP ,AC BC C BCA ∠=150DCA ∠=︒ABC ∠BCD ∠1807t =7t ︒3607t ︒-︒74240ABC BCD -=︒∠∠74ABC BCD=∠∠60BAN ∠=︒045t <≤4560t <<020t <<3045t <<020t <<3045t <<ABC ∠BCD ∠PQ MN ∥120ABQ ∠=︒60BAN ∠=︒A 3︒A 60203=B 045t <≤PQ MN ∥BQ AN ''∥180Q BQ BQ N BQ N NAN ''''+=︒=∠∠,∠∠∴,∴,解得;如图所示,当时,∵,,∴,∴,∴,解得(舍去);综上所述,;【小问3】解:①如图所示,当时,过点C 作,则,∴,∴;如图所示,当时,同理可得;180Q BQ NAN ''+=︒∠∠34180t t +=1807t =4560t <<PQ MN ∥BQ AN ''∥180Q BQ BQ N BQ N NAN ''''+=︒=∠∠,∠∠180Q BQ NAN ''+=︒∠∠33604180t t +-=180t =1807t =020t <<CE PQ ∥CE PQ MN ∥∥43BCE CBQ t ACE CAN t ==︒==︒∠∠,∠∠7BCA BCE ACE t =+=︒∠∠∠3045t <<180418033607BCA PBC MAC t t t =+=︒-︒+︒-︒=︒-︒∠∠∠综上所述,或,故答案为:或;②如图所示,当时,由(3)①得,∴,∵,∴;如图所示,当时,由(3)①得,∴,∵,∴;综上所述,或.24. 如图1,点,且满足.7BCA t =︒∠3607BCA t =︒-︒∠7t ︒3607t ︒-︒020t <<7ACB t =︒∠1507BCD ACD ACB t =-=︒-︒∠∠∠1204ABC ABD DBC t =-=︒-︒∠∠∠74240ABC BCD -=︒∠∠3045t <<3607ACB t =︒-︒∠7210BCD ACD ACB t =-=︒-︒∠∠∠4120ABC ABD DBC t =-=︒-︒∠∠∠74ABC BCD =∠∠74240ABC BCD -=︒∠∠74ABC BCD =∠∠()()0,3,,0M a N b -()280b a -++=(1)直接写出的坐标:,;(2)点以每秒2个单位长度从点向轴负半轴运动,同时,点以每秒3个单位长度从点向轴正半轴运动,直线交于点,设点运动的时间为秒.①当时,求证:;②如图2,当时,在线段上任取一点,连接.点为的角平分线上一点,且满足.请将图2补全,并求之间的数量关系.【答案】(1),(2)①证明见解析;②【解析】【分析】(1)由非负数的性质可得:,,从而可得答案;(2)利用三角形的面积公式证明,再进一步可得答案;(3)先根据题意补全图形,设,设,则,再证明,,再进一步可得答案.【小问1】解:∵,∴,,解得:,,∴点,【小问2】M N 、M N P M y Q N x ,NP MQ D ,P Q 12t <<MPD NQD S S =三角形三角形180QMN PNM ∠+∠=︒MQ E EO G OEQ ∠12GNP ONG ∠=∠NOE OEG G ∠∠∠、、()0,2()3,0-3NOE OEG NGE∠+∠=∠5a =3b =-PON MOQ S S = OEG QEG x ∠=∠=︒GNP y ∠=︒2ONG y ∠=︒32NOE y x ∠=︒+︒2OEG NGE x y ∠+∠=︒+︒()280b a -++=80b a -+=50a -=5a =3b =-()()0,2,3,0M N -①当时,,,∴,,∴,∴,∴;②如图,补全图形如下:∵点为的角平分线上一点,∴设,∵,设,则,如图,∵,∴,过作,∴,∴,,∴,12t <<22OP t =-33OQ t =-()1322332PON S t t =⨯-=- ()1233332MOQ S t t =⨯-=- PON MOQ S S = PON MOQ POQD POQD S S S S +=+ 四边形四边形DNQ DMP S S = G OEQ ∠OEG QEG x ∠=∠=︒12GNP ONG ∠=∠GNP y ∠=︒2ONG y ∠=︒180QMN PNM ∠+∠=︒MQ PN ∥G GT MQ ∥MQ GT PN ∥∥TGN PNG y ∠=∠=︒TGE QEG x ∠=∠=︒NGE x y ∠=︒+︒过作,而,∴,∴,,∴,而,∴,∴,∴.【点睛】本题考查的是非负数的性质,坐标与图形,三角形的面积的计算,平行线的性质,平行公理的应用,作出合适的辅助线是解本题的关键.O OK MQ ∥MQ PN ∥MQ OK PN ∥∥3KON ONP y ∠=∠=︒2KOE OEQ x ∠=∠=︒32NOE y x ∠=︒+︒2OEG NGE x y ∠+∠=︒+︒3363OEG NGE x y ∠+∠=︒+︒33234OEG NGE x y x ∠+∠=︒+︒+︒4NOE OEG =∠+∠3NOE OEG NGE ∠+∠=∠。
山东省青岛市城阳区城阳区实验中学2023-2024学年七年级上学期10月月考数学试题
山东省青岛市城阳区城阳区实验中学2023-2024学年七年级上学期10月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题...D.A ..C ..8.如图是一个正方体的表面展开图,这个正方体相对表面上所标的数字互为相反数,则x y +的值为()A .5-59.点A ,B 在数轴上的位置如图所示,其对应的有理数分别是论:①0b a ->;②A .①②③④B .①②③10.如图所示,在这个数据运算程序中,若开始输入的出的是8,返回进行第二次运算输出的是A .1B .2C .4二、填空题11.下列几何体中,属于柱体的有(填序号)12.比较大小:56-34-13.某一天早晨气温是-13℃,到了中午上升了12℃,到午夜又下降了气温是℃.14.粉笔在黑板上划过写出一个又一个字母,可解释为.15.已知2(2)|3|0a b -++=,则a b 的值是.16.若,a b 互为相反数,m 的绝对值为1,则代数式12a b m m+++的值为17.一个几何体由几个大小相同的小立方块搭成,从正面和上面看到的这个几何体的形状如图所示,若组成这个几何体的小立方块的个数为n ,则n 的最少值为18.下列图形都是由同样大小的小圆圈按一定规律组成的,按此规律排列下去,则第10个图形中的小圆圈的个数为.三、解答题(2)如图是由小正方体搭成的几何体从上面看到的图形,小正方形中的数字表示在该位置的小正方体的个数,请画出这个几何体从正面和左面看到的图形.21.把下列各数:5-22.计算题:(1)155112121277225⎛⎫⎛⎫⨯--⨯+-÷ ⎪ ⎪⎝⎭⎝⎭;(2)22823(23)-⨯--⨯;(3)(5)6(10)(-⨯⨯-⨯-(4)125(25)64-⨯--⨯(5)(12)5(14)(--+--(6)1113223⎛⎫⎛⎫+--- ⎪ ⎪⎝⎭⎝⎭23.某厂本周计划每天生产与计划生产量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数)星期增减(单位:辆)(1)写出该厂星期三生产电动车的数量;生产多少辆电动车?(3)请求出该厂在本周实际生产电动车的数量.24.有20筐白菜,以每筐记录如下:与标准质量的差值(单位:千克)筐数(1)今年国庆七天长假期间,小亮想参加某旅行社组织的青岛两日游,在出行日期上,他共有______种不同的选择.(2)星期天,小明、小强和小华三个好朋友去电影院观看《我和我的祖国》,售票员李阿姨为他们提供了第七排3号到16号的电影票让他们选择,如果他们想拿三张连号票,则一共有种不同的选择方法.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验中学七年级数学(下册)一元一次不等式1教案
课题一元一次不等式(第一课时)教师唐秀鹏
教学目标知识
技能
一元一次不等式概念及解一元一次不等式过程
与方
法
掌握解一元一次不等式的解法。
情感
态度
价值
观
会熟练求解一元一次不等式
教学重点一元一次不等式的解法
教学难点解一元一次不等式的步骤。
教学过程一、情景导入
一个一元一次方程,问学生如何解呢?
二、自学指导
认真看书122-1124页的内容,思考:
解一元一次不等式与解一元一次方程的区别和联系?
(从步骤、等号或不等号、解和解集来分析)
三、学生完成,教师讲解。
例1
(1)2(1+X)<3 (2)
2)解下列不等式
)5
(3
)5
(2
)2(
1
4
)3
(5
)1(
-
<
+
-
>
+
x
x
x
x
四、课堂小结
一元一次不等式的解法与等式的性质既有区别又有联系,只是特别要注意不等式两边同乘以或除以同一个负数时,不等号的方向要改变。
一元一次不等式的解法步骤。
221
.
23
x x
+-
≥。