中学七年级数学角的认识

合集下载

七年级数学关于角的知识点

七年级数学关于角的知识点

七年级数学关于角的知识点数学中的角,是两条射线相交所形成的图形部分,通常用字母表示,常见表示法有∠ABC、∠CBA、∠1等等。

在七年级数学中,角是重要的基础知识点,其中包括以下内容。

一、角的概念1. 角的定义角是由两条相交的线段所围成的部分。

2. 角的元素相交线段称为角的两边,交点称为角的顶点。

3. 角的度量单位角的度量单位是度,常用符号“°”表示。

4. 角的分类根据角的大小,可以将角分为锐角、直角、钝角和平角。

二、角的基本性质1. 角平分线角平分线是指将一个角等分成两个角的线段。

切线与圆相交于一点,则切线和所在点与圆心所在直线所夹角度数为90度。

2. 垂线从角的顶点引一条与角的底边垂直的线段,称为垂线。

3. 余角一个角的余角是指与这个角的角度和为90度的角。

三、角的度数表示1. 角度制角的度数表示方法称为角度制,即以度为单位来表示角的大小。

2. 弧度制角的度数表示方法称为弧度制,即以弧长所对应的圆心角的大小作为单位来表示角。

四、角的计算1. 角的度数计算①角的度数=圆周角度数×弧所对应的圆心角的大小÷360。

②圆周角度数为180度。

2. 锐角三角函数①正弦函数 sinA=∠BAC的对边BC÷斜边AC。

②余弦函数 cosA=∠BAC的邻边AB÷斜边AC。

③正切函数 tanA=∠BAC的对边BC÷邻边AB。

五、角的应用1. 角的测量在测量地球上两点之间的距离时,需测量两点所对应的两个角的大小,以计算出距离。

2. 角的投影在机械工程中,角的投影具有重要的应用。

3. 角的相等性相等角可以方便地解决一些几何问题。

以上是七年级数学中角的基本知识点,掌握这些知识对于数学的学习非常重要。

更高阶的数学知识,也需要角的知识作为基础,因此学好角的知识,非常有利于未来更好地学习数学。

七年级下册角的知识点总结

七年级下册角的知识点总结

七年级下册角的知识点总结角是初中数学中一个重要的概念,也是很多难题的解答基础。

在七年级数学下册里,角的相关知识点有很多,下面我们来做一次全面的总结。

一、角的定义、分类与记法1. 角的定义角是由两条射线共同起始于同一点而形成的图形,我们把共同的起点叫做角的顶点,两条射线叫做角的边。

在角的顶点处,可以用“∠”表示,比如∠ABC。

2. 角的分类按照角的大小可以分为锐角、直角、钝角三种。

锐角:小于90°的角。

直角:等于90°的角。

钝角:大于90°、小于180°的角。

3. 角的记法使用字母表示角的顶点,如∠ABC表示以点B为顶点的角。

若两个角相等,则可以用符号“≌”表示,比如∠ABC≌∠DEF。

二、角的度量1. 角度和以角度为单位的度量角的度量是用“度”为单位的,1°等于360分之一圆周角,即1圆周角等于360°。

2. 角的度量转换在角度的转换中,我们需要掌握以下几个角度的换算关系:1度=60分,1分=60秒,1圆周角=360度。

三、角的特殊角度1. 30°、45°、60°角30°角、45°角、60°角是常见的特殊角度。

在解决一些特殊难题时,常常使用这些角度。

30°角的正弦值、余弦值、正切值分别是1/2、√3/2、1/√3;45°角的正弦值、余弦值相等,都等于1/√2,正切值等于1;60°角的正弦值、余弦值分别是√3/2、1/2,正切值等于√3。

2. 补角、余角如果两个角的度数加起来等于90°,我们把它们叫做互为补角;如果加起来等于180°,则它们就叫做互为余角。

四、夹角、异面角1. 夹角夹角是由两条射线在同一平面内围成的角。

夹角的大小强调的是一个角的大小相对于另一个角的大小。

2. 异面角异面角是在不同平面内的两个角,它们之间没有公共部分。

七年级有关角的知识点

七年级有关角的知识点

七年级有关角的知识点角是初中数学中比较重要的一个概念,也是初学者需要深入理解的一个基础知识点。

本文将为大家详细介绍有关角的知识。

一、角的基本概念角是平面内由两条射线共同确定的图形部分,其中,共同确定角的两条射线称为角的边,两条射线的公共端点称为角的顶点。

二、角的名称及分类根据角的大小和类型不同,角可以被分类为以下几种:1. 零角:度数为0°,通常表示为∠AOB。

2. 直角:度数为90°,通常表示为∠COD,其中O为顶点,CO和OD是两条相互垂直的射线。

3. 钝角:度数大于90°,小于180°的角,通常表示为∠EOF,其中O为顶点,OE和OF是两条不共线的射线,且夹角大于90°。

4. 锐角:度数小于90°的角,通常表示为∠GOM,其中O为顶点,GO和OM是两条不共线的射线,且夹角小于90°。

5. 平角:度数为180°的角,通常表示为∠HOK,其中O为顶点,HO和OK是两条共线的射线。

三、角的表示方法角通常用记号∠ABC 来表示,其中 A、B 为射线的端点,C 为角的顶点。

四、角的度数和弧度制1. 角的度数制角的度数制是我们平时比较常用的角的表示方法。

通常将一个圆划分为360个等份,每一份的大小为1度。

因此,角的度数就是根据这360个等份来表示一个角的大小,我们可以用角度来表示角的大小。

例如:直角的度数就是90度。

2. 角的弧度制角的弧度制是另一种角的表示方法。

弧度制下,我们将一个圆的周长分成一份,这一份为2π。

这说明,一个完整的圆的弧度数为2π,一个半圆的弧度数为π。

由此可知,我们可以用弧度来表示角的大小。

五、角的性质1. 同一个平面上两个角垂直的充分必要条件是它们的度数和为90°。

2. 在同一个平面内,两个角互为补角的充分必要条件是它们的度数和为180°。

3. 平行的两条射线所构成的两个内角或两个外角,其中一个角的度数等于对角线所交的两条平行线的内部角的度数之和,另一个角的度数等于这两个内部角的差。

初中数学角的重要知识点总结

初中数学角的重要知识点总结

初中数学角的重要知识点总结
初中数学中,角是一个重要的概念。

下面是一些与角相关的重要知识点总结:
1. 角的定义:角是由两条射线所围成的图形,其中一条射线称为角的边,另一条射线
称为角的始边。

2. 角的度量:角的度量可以用角度来表示。

一周角等于360度。

常用的角度单位还有
弧度。

3. 角的分类:根据角的大小,可以将角分为锐角(小于90度),直角(等于90度),钝角(大于90度),和平角(等于180度)。

4. 角的实际意义:角可以用来表示物体之间的夹角,例如两条线的交点处的夹角。

5. 角的性质:角的两个重要性质是互补和补角。

两个角互补意味着它们的度数之和为90度;两个角补角意味着它们的度数之和为180度。

6. 角的大小比较:可以通过比较两个角的度数来判断它们的大小。

7. 角的运算:可以对角进行加法和减法运算,即将两个角的度数相加或相减。

8. 角的平分线:角的平分线是指将一个角分成两个相等的角的射线。

9. 相似角:相似角是指角的度数相等,但是形状和位置不同的角。

10. 角的度数单位换算:可以通过弧度和角度之间的换算来进行角度的单位转换。

以上是初中数学中关于角的重要知识点的总结。

掌握这些知识点可以帮助学生正确理解和运用角的概念,解决角的计算和应用问题。

6.3.1角的概念 课件(共35张PPT) 初中数学人教版(2024)七年级上册

6.3.1角的概念 课件(共35张PPT)  初中数学人教版(2024)七年级上册
用三个大写 字母表示
图例 A
O
B
用一个大写 字母表示
O
用数字表示
1
用希腊字母 表示
记法
方法解读
字母O表示顶点,要写在中 间,A,B表示角的两边上 的点,用该表示法可以表 示任何一个角。
当以某一个字母表示的点为 顶点的角只有一个时,可以 用这个顶点的字母来表示
在靠近角的顶点处加上 弧线,并标上数字或希 腊字母。该表示法形象 直观
巩固练习
1、下列图形是角吗?
2、判断题: (1)两条射线组成的图形叫角。 (2)角的大小与边的长短无关。 (3)角的两边是两条射线。
总结
定义
图例
组成元素
“静” 态的观

“动” 态的观

有公共端点的

两条射线组成
的图形叫做角 顶点

角可以看作由 一条射线绕着 它的端点旋转 而形成的图形。
终边 始边
因此,54.26°= 54°15′36″.
例3 .把45°25′48″化成度.
解:45°25′48″ =45°+25′+48×(610)' =45°+25.8' =45°+25.8×(610)° =45.43°
巩固练习
例2:填空 ① 1小时= 60分, 1分= 60 秒. ② 3.3小时= 3 小时 18 分, 2小时30分= 2.5 小时. ③ 1°= 60 ′,1′= 60 ″. ④ 0.75°= 45 ′= 2700 ″, ⑤ 1800″= 0.5 °,39°36′= 39.6 °.
向两端 无限延 伸
0个
不可 度量
射线
·
A
B· l
1.射线AB 2.射线l

七年级角的基础知识点

七年级角的基础知识点

七年级角的基础知识点角是我们数学中常见的一个概念,也是初中数学学习中比较基础但又十分重要的知识点之一。

七年级角的基础知识点包括角的度数、角的分类以及角的计算等方面。

本篇文章将分别就这些方面来进行阐述。

一、角的度数1. 角的定义在平面内,由两条有公共端点的线段类似夹起来的图形称为角,公共端点称为角的顶点,用字母标记。

通常用大写字母表示角,如$\angle{ABC}$。

2. 角的度数基本概念角的度数是用角所对的弧长所对应的圆心角的度数来定义的。

一度是指圆的周长的$\dfrac{1}{360}$,度数用$\degree$表示。

3. 角的度数计算(1)角度数= $\dfrac{弧长}{周长} \times 360\degree$(2) 已知角度数,求圆扇弧长扇形占用了圆的一部分,其度数为$α$。

这时用所有圆周长$C$来度量圆,所以圆弧长即为:弧长=$\dfrac{α}{360}\times C$二、角的分类1. 按角度大小分类按照角的度数大小可以将角分为三种类型,即锐角、直角和钝角。

(1)锐角:角度小于$90\degree$。

(2)直角:角度为$90\degree$。

(3)钝角:角度大于$90\degree$,小于$180\degree$。

2. 按角的位置分类按照角所在的位置,角可以分为以下两种类型:(1)内角:在图形内部的角,如三角形和多边形内角。

(2)外角:在图形外部的角,与多边形内角相对应,对顶角相等。

三、角的计算1. 角的加减法(1)角对应部分之和的公式$\angle{AOB}$,$\angle{BOC}$对应部分相加等于$\angle{AOC}$。

(2)补角和余角①补角两个角的和等于直角,则这两个角互为补角,如图:$\angle{AOB}+\angle{BOC}=90\degree$,则$\angle{AOB}$和$\angle{BOC}$互为补角。

②余角两个角的和等于$\angle{180\degree}$,则这两个角互为余角,如图:$\angle{AOB}+\angle{BOC}=180\degree$,则$\angle{AOB}$和$\angle{BOC}$互为余角。

七年级关于角的知识点

七年级关于角的知识点

七年级关于角的知识点角是初中数学中的重要概念,是几何图形中的基本元素之一。

在数学学习过程中,学生需要掌握角的定义、角的度量、角的分类等知识点。

以下将详细介绍七年级关于角的知识点。

一、角的定义角是由两条不同的射线以一个公共端点为顶点所组成的图形。

角的顶点可以用大写拉丁字母表示,两条射线可以用这个字母后面加上不同的点来表示,例如∠ABC,其中∠表示角,B为顶点,A,C为射线。

二、角的度量1. 角度:度是角的度量单位,度的符号是“°”,一个完整的圆周被分成360等份,每一等份的角度为1度。

2. 角度的计算公式:角度数=圆周长/360°。

例如,在一个圆形的周长为8π米的情况下,它所对应的圆心角的角度数为:8π/2π × 180°/360°=90°。

3. 角度的度数:钝角的度数大于90度,锐角的度数小于90度,直角的度数等于90度。

三、角的分类1. 顶角与边角:如果一个角的两条边恰好是一个封闭图形的两条边,则这个角被称为顶角,否则为边角。

2. 对顶角与相邻角:如果两个角共享一个公共顶点,且它们的非公共边形成一个直线,则这两个角被称为对顶角。

如果两个角共享一个公共顶点和一段边,则这两个角被称为相邻角。

3. 同位角:同位角是两个平行线作为被截线的两个对角线所形成的对应角。

一般用f表示同位角,它们的度数相等。

四、角的运算1. 两个角的和:两个角的和是由这两个角的度数的和给出的。

2. 两个角的差:两个角的差是由这两个角的度数的差给出的。

3. 判断角的大小:比较两个角的大小可以通过比较它们的度数,同时也可以通过图形判断。

以上就是七年级关于角的知识点的介绍。

掌握好这些知识点,可以帮助学生更好地理解和解决几何问题。

七年级数学 第12讲 角的认识(解析版)

七年级数学 第12讲 角的认识(解析版)

第12讲角的认识1.掌握角的概念及角的表示方法,并能进行角度的互换;2.认识钟面角、方位角,并掌握其运算;3.掌握运用尺规作已知角,相等角等。

知识点1:角的概念1.角的定义:(1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.如图1所示,角的顶点是点O,边是射线OA、OB.(2)定义二:一条射线绕着它的端点旋转而形成的图形,射线旋转时经过的平面部分是角的内部.如图2所示,射线OA 绕它的端点O 旋转到OB 的位置时,形成的图形叫做角,起始位置OA 是角的始边,终止位置OB 是角的终边.注意:(1)两条射线有公共端点,即角的顶点;角的边是射线;角的大小与角的两边的长短无关.(2)平角与周角:如图1所示射线OA 绕点O 旋转,当终止位置OB 和起始位置OA 成一条直线时,所形成的角叫做平角,如图2所示继续旋转,OB 和OA 重合时,所形成的角叫做周角.2.角的表示法:角的几何符号用“∠”表示,角的表示法通常有以下四种:图1图2注意:用数字或小写希腊字母表示角时,要在靠近角的顶点处加上弧线,且注上阿拉伯数字或小写希腊字母.3.角的画法(1)用三角板可以画出30°、45°、60°、90°等特殊角.(2)用量角器可以画出任意给定度数的角.(3)利用尺规作图可以画一个角等于已知角.知识点2:角度制及其换算角的度量单位是度、分、秒,把一个周角平均分成360等份,每一份就是1°的角,1°的160为1分,记作“1′”,1′的160为1秒,记作“1″”.这种以度、分、秒为单位的角的度量制,叫做角度制.1周角=360°,1平角=180°,1°=60′,1′=60″.注意:在进行有关度分秒的计算时,要按级进行,即分别按度、分、秒计算,不够减,不够除的要借位,从高一位借的单位要化为低位的单位后再进行运算,在相乘或相加时,当低位得数大于60时要向高一位进位.知识点3:钟表上有关夹角问题钟表中共有12个大格,把周角12等分、每个大格对应30°的角,分针1分钟转6°,时针每小时转30°,时针1分钟转0.5°,利用这些关系,可帮助我们解决钟表中角度的计算问题.知识点4:方位角在航行和测绘等工作中,经常要用到表示方向的角.例如,图中射线OA的方向是北偏东60°;射线OB的方向是南偏西30°.这里的“北偏东60°”和“南偏西30°”表示方向的角,就叫做方位角.注意:(1)正东,正西,正南,正北4个方向不需要用角度来表示.(2)方位角必须以正北和正南方向作为“基准”,“北偏东60°”一般不说成“东偏北30°”.(3)在同一问题中观察点可能不止一个,在不同的观测点都要画出表示方向的“十字线”,确定其观察点的正东、正西、正南、正北的方向.(4)图中的点O是观测点,所有方向线(射线)都必须以O为端点.考点1:度分秒的换算例1.(2022秋•榆阳区校级期末)若∠α=5.15°,则∠α用度、分、秒表示为()A.5°15'B.5°1′5″C.5°9′D.5°30′【答案】C【解答】解:∠α=5.15°=5°+0.15×60′=5°+9′=5°9′.故选:C.【变式1-1】(2022秋•绥德县期末)20°13'12″化为用度表示是()A.20.12°B.20.2°C.20.20°D.20.22°【答案】D【解答】解:20°13'12″=20.22°.故选:D.【变式1-2】(2022秋•汉寿县期末)将30.24°用度、分、秒表示为()A.30°12′24″B.30°14′24″C.30°14′25″D.30°15′28″【答案】B【解答】解:30.24°=30°+(0.24×60)'=30°14'+(0.4×60)''=30°14'24'',故选:B.【变式1-3】(2022秋•高碑店市期末)已知∠1=38°36',∠2=38.36°,∠3=38.6°,则下列说法正确的是()A.∠1=∠2B.∠1=∠3C.∠2=∠3D.∠1,∠2,∠3互不相等【答案】B【解答】解:∵1°=60′,∴36′=0.6°,∴∠1=38°36'=38.6°,∵∠3=38.6°,∴∠1=∠3,故选:B.考点2:角的概念和表示例2.(2022秋•河东区期末)下列图形中,能用∠1,∠ACB,∠C三种方法表示同一个角的是()A.B.C.D.【答案】C【解答】解:A、能用∠1,∠ACB表示,不能用∠C表示,故选项不符合题意;B、能用∠1,∠ACB表示,不能用∠C表示同一个角,故选项不符合题意;C、能用∠1,∠ACB,∠C表示同一个角,故选项符合题意;D、∠1和∠ACB表示不同的角,故选项不符合题意;故选:C.【变式2-1】(2022秋•河池期末)如图,下列说法正确的是()A.∠1与∠BOC表示同一个角B.∠1=∠2C.∠2与∠AOB表示同一个角D.图中只有两个角,即∠1和∠2【答案】A【解答】解:A.∠1与∠BOC表示同一个角,该选项正确,故符合题意;B.∠1=∠2不一定成立,该选项错误,故不符合题意;C.∠2与∠AOC表示同一个角,该选项错误,故不符合题意;D.图中有三个角,分别为∠1、∠2和∠AOB,该选项错误,故不符合题意.故选:A.【变式2-2】(2022秋•曲靖期末)下列图形中,能用∠AOB,∠O,∠1三种表示方法表示同一个角的是()A.B.C.D.【答案】A【解答】解:根据角的概念,选项A可以用∠AOB,∠O,∠1三种表示方法表示同一个角,故选:A.【变式2-3】(2022秋•吉安期末)拿一个10倍的放大镜看一个1°的角,则这个角为()A.100°B.10°C.1°D.不能确定,视放大镜的距离而定【答案】C【解答】解:放大镜只能放大物体的大小,而角度只是形状,是不能被放大镜改变的,所以,拿一个10倍的放大镜看一个1°的角,则这个角仍为1°.故选:C.考点3:作图-基本作图例3.(2023春•和平区月考)已知:∠AOB及边OB上一点C.求作:∠DCB,使得∠DCB=∠AOB.要求:尺规作图,保留作图痕迹,不写作法(说明:作出一个即可).【答案】见解答.【解答】解:如图:∠DCB即为所求.【变式3-1】(2023春•云岩区校级期中)尺规作图:如图,已知∠α,请你利用尺规作图作∠AOB,使∠AOB=∠α.(不写作法,保留作图痕迹)【答案】见解析.【解答】解:如图所示:【变式3-2】(2023春•连平县期中)如图(1)利用尺规作∠CED,使得∠CED=∠A.(不写作法,保留作图痕迹).(2)判断直线DE与AB的位置关系:平行或相交.【答案】(1)见解答;(2)平行或相交.【解答】解:(1)如图1,如图2;(2)如图1,∵∠CED=∠A,∴DE∥AB,;如图2,DE与AB相交.故答案为平行或相交.【变式3-3】(2023春•惠来县期中)如图,已知∠AOB,点P是OB边上的一点.在∠AOB的内部,求作∠BPC使∠BPC=∠AOB.要求:尺规作图,不写作法,保留作图痕迹)【答案】见解答.【解答】解:如图,∠BPC为所作.考点4:钟面角例4.(2022秋•叙州区期末)如图,当7时30分时,时钟上的时针与分针的夹角为()A.50°B.45°C.42.5°D.40°【答案】B【解答】解:由题意得:1.5×30°=45°,故选:B.【变式4-1】(2022秋•通道县期末)如图,1时30分的时候,钟表的时针与分针所组成的小于平角的角的角度是135°.【答案】135°.【解答】解:∵钟表圆盘为360°,一共有12个间隔,∴每个间隔为360°÷12=30°,∵1时30分之间有4.5个间隔,∴钟表的时针与分针所组成的小于平角的角的角度是4.5×30°=135°.故答案为:135°.【变式4-2】(2022秋•绥宁县期末)如图,钟表上10点整时,时针与分针所成的角是60°.【答案】60°.【解答】解:∵钟面分成12个大格,每格的度数为30°,∴钟表上10点整时,时针与分针之间是2个大格,所成的角是2×30°=60°.故答案为:60°考点5:方位角例5.(2022秋•澄迈县期末)如图,以点O为观测点,点A在点O北偏东20°30′的方向上,点B 在点O南偏西50°的方向上,则∠AOB的度数是()A.70°30′B.150°C.150°30′D.160°30′【答案】C【解答】解:如图:由题意得:∠AOC=20°30′,∠BOD=40°,∠COD=90°,∴∠AOB=∠AOC+∠COD+∠BOD=20°30′+90°+40°=150°30′,故选:C.【变式5-1】(2022秋•沙坪坝区校级期末)如图,已知轮船A在灯塔P的北偏东30°30'方向,轮船B在灯塔P的南偏东70°20'方向,则∠APB的度数是()A.60°30'B.18°40'C.79°10'D.80°10'【答案】C【解答】解:如图:由题意得:∠APC=30°30′,∠DPB=70°20',∴∠APB=180°﹣∠APC﹣∠DPB=179°60′﹣(30°30′+70°20′)=179°60′﹣100°50′=79°10′,故选:C.【变式5-2】(2023•河北)淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70°的方向,则淇淇家位于西柏坡的()A.南偏西70°方向B.南偏东20°方向C.北偏西20°方向D.北偏东70°方向【答案】D【解答】解:如图:由题意得:∠ABC=70°,AB∥CD,∴∠ABC=∠DCB=70°,∴淇淇家位于西柏坡的北偏东70°方向,故选:D.【变式5-3】(2022秋•高碑店市期末)如图,点A在点O的北偏东28°方向,点B在点O的东偏南45°方向,∠AOB=107°.【答案】北偏东28°;107.【解答】解:如图:点A在点O的北偏东28°方向,点B在点O的东偏南45°方向,∠AOB=90°﹣28°+45°=107°,故答案为:北偏东28°;107.1.(2022•聊城)如图,△ABC中,若∠BAC=80°,∠ACB=70°,根据图中尺规作图的痕迹推断,以下结论错误的是()A.∠BAQ=40°B.DE=BD C.AF=AC D.∠EQF=25°【答案】见试题解答内容【解答】解:A.由作图可知,AQ平分∠BAC,∴∠BAP=∠CAP=∠BAC=40°,故选项A正确,不符合题意;B.由作图可知,MQ是BC的垂直平分线,∴∠DEB=90°,∵∠B=30°,∴DE=BD,故选项B正确,不符合题意;C.∵∠B=30°,∠BAP=40°,∴∠AFC=70°,∵∠C=70°,∴AF=AC,故选项C正确,不符合题意;D.∵∠EFQ=∠AFC=70°,∠QEF=90°,∴∠EQF=20°;故选项D错误,符合题意.故选:D.2.(2022•百色)如图,是求作线段AB中点的作图痕迹,则下列结论不一定成立的是()A.∠B=45°B.AE=EB C.AC=BC D.AB⊥CD 【答案】A【解答】解:由作图痕迹得CD垂直平分AB,AE=BE,AC=BC,AB⊥CD.所以A选项不一定成立,B、C、D选项成立.故选:A.3.(2022•舟山)用尺规作一个角的角平分线,下列作法中错误的是()A.B.C.D.【答案】D【解答】解:由图可知,选项A、B、C中的线都可以作为角平分线;选项D中的图作出的是平行四边形,不能保证角中间的线是角平分线,故选:D.4.(2022秋•定州市期末)如图,下列说法中不正确的是()A.∠1与∠AOB是同一个角B.∠α与∠COB是同一个角C.∠AOC可以用∠O来表示D.图中共有三个角:∠AOB,∠BOC,∠AOC【答案】C【解答】解:A、∠1与∠AOB是同一个角,正确,故A不符合题意;B、∠α与∠COB是同一个角,正确,故B不符合题意;C、在角的顶点处只有一个角时,才能用一个大写字母表示角,∠AOC不可以用∠O表示,故C符合题意;D、图中共有三个角,∠AOB,∠BOC,∠AOC,正确,故D不符合题意.故选:C.5.(2023•岳阳)如图,①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于DE的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC.若∠AOB=60°,则∠AOC =30°.【答案】30.【解答】解:∵由作法可知,OC是∠AOB的平分线,∴∠AOC=∠AOB==30°.故答案为:30.6.(2022•益阳)如图,PA,PB表示以P为起点的两条公路,其中公路PA的走向是南偏西34°,公路PB 的走向是南偏东56°,则这两条公路的夹角∠APB=90°.【答案】90.【解答】解:如图:由题意得:∠APC=34°,∠BPC=56°,∴∠APB=∠APC+∠BPC=90°,故答案为:90.7.(2022•陕西)如图,已知△ABC,CA=CB,∠ACD是△ABC的一个外角.请用尺规作图法,求作射线CP,使CP∥AB.(保留作图痕迹,不写作法)【答案】作图见解答过程.【解答】解:如图,射线CP即为所求.1.(2023•临沂)如图中用量角器测得∠ABC的度数是()A.50°B.80°C.130°D.150°【答案】C【解答】解:根据∠ABC起始位置BA,另一条边BC可得:∠ABC=130°.故选:C.2.(2023春•莱西市期中)如图,B,D,C三点在直线l上,点A在直线l外,下列说法正确的是()A.直线BD和直线CD表示的是同一条直线B.射线BD和射线CD表示的是同一条射线C.∠A和∠BAD表示的是同一个角D.∠1和∠B表示的是同一个角【答案】A【解答】解:A、直线BD和直线CD表示的是同一条直线正确,故A正确;B、射线BD和射线CD的端点不同,表示的是不同射线,故B不正确;C、点A处共三个角,不能将某个角表示成∠A,故C不正确;D、点B处有两个小于180°的角,不能将某个角表示成∠B,故D不正确;故选:A.3.(2023春•潍坊期中)图中能用一个大写字母表示的角有()个.A.1B.2C.3D.4【答案】B【解答】解:可以只用一个大写字母表示的角有∠A,∠B.故选:B.4.(2023•西和县一模)8点30分,时针与分针所夹的小于平角的角为()A.55°B.60°C.75°D.80°【答案】C【解答】解:由题意知,2.5×30°=75°,∴8点30分,时针与分针所夹的小于平角的角为75°,故选:C.5.(2022秋•焦作期末)下列图中的∠1也可以用∠O表示的是()A.B.C.D.【答案】A【解答】解:A、可以一个字母表示,故此选项正确B、必须三个字母表示,故此选项错误;C、必须三个字母表示,故此选项错误;D、必须三个字母表示,故此选项错误;.故选:A.6.(2022秋•嵩县期末)如图,下列说法中正确的是()A.OA的方向是北偏东30°B.OB的方向是北偏西60°C.OC的方向是南偏西15°D.OC的方向是南偏西75°【答案】D【解答】解:由方向角的定义可知,OA的方向是北偏东90°﹣30°=60°,因此选项A不符合题意;OB的方向是北偏西90°﹣60°=30°,因此选项B不符合题意;OC的方向是南偏西90°﹣15°=75°,因此选项C不符合题意;选项D符合题意;故选:D.7.(2022秋•迁安市期末)如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′,则∠2的度数是()A.27°40′B.62°20′C.57°40′D.58°20【答案】C【解答】解:∵∠BAC=60°,∠1=27°40′,∴∠EAC=32°20′,∵∠EAD=90°,∴∠2=90°﹣∠EAC=90°﹣32°20′=57°40′;故选:C.8.(2022秋•金台区校级期末)下列说法中正确的是()A.射线AB与射线BA是同一条射线B.两条射线组成的图形叫做角C.各边都相等的多边形是正多边形D.连接两点的线段的长度叫做两点之间的距离【答案】D【解答】解:A、射线AB与射线BA不是同一条射线,故此选项错误;B、有公共端点是两条射线组成的图形叫做角,故此选项错误;C、各边都相等、各角都相等的多边形是正多边形,故此选项错误;D、连接两点的线段的长度叫做两点之间的距离,故此选项正确.故选:D.9.(2022秋•六盘水期末)12点15分,时针与分针所夹的小于平角的角为()A.90°B.67.5°C.82.5°D.60°【答案】C【解答】解:12点15分,时针与分针相距2+=份,12点15分,时针与分针夹角是30°×=82.5°,故选:C.10.(2022秋•达川区校级期末)如图,AB是直线,O是直线上一点,OC、OD是两条射线,则图中小于平角的角有()A.3个B.4个C.5个D.6个【答案】C【解答】解:图中小于平角的角有:∠AOC,∠COD,∠BOD,∠AOD,∠COB,共5个.故选:C.11.(2022秋•娄星区期末)把8.32°用度、分、秒表示正确的是()A.8°3′2″B.8°30′20″C.8°18′12″D.8°19′12″【答案】D【解答】解:0.32°=(0.32×60)′=19.2′,0.2′=(0.2×60)″=12″,∴8.32°=8°19′12″,故选:D.12.(2023春•东平县期中)请计算13.17°=13°10′12″.【答案】13;10;12.【解答】解:∵1°=60′,∴0.17°=10.2′,∵1′=60″,∴0.2′=12″∴13.17°=13°10′12″故答案为:13;10;12.13.(2022秋•汉川市期末)如图,钟表的时针与分针所成角的度数为135°.【答案】135°.【解答】解:,即图中钟表的时针与分针所成角的度数为135°.故答案为:135°.14.(2023春•光明区校级期中)如图,一航班沿北偏东60°方向从A地飞往C地,到达C地上空时,由于天气情况不适合着陆,准备备降B地,已知C地在B地的北偏西45°方向,则其改变航向时∠α的度数为75°.【答案】75°.【解答】解:如图,由题意得∠EAC=60°,∠CBF=45°,AE∥BF,∴∠AFB=∠EAC=60°,∵∠α+∠CBF+∠CFB=180°,∴∠α=180°﹣(∠CBF+∠CFB)=180°﹣(60°+45°)=180°﹣105°=75°,故答案为:75°.15.(2023春•禅城区校级月考)如图,已知∠DCE,∠AOB,利用尺规作图比较它们的大小(不写作法,保留作图痕迹).【答案】见解析.【解答】解:如图,由图知,点A′在∠AOB的内部,所以∠AOB>∠DCE.16.(2023•未央区校级一模)如图,△ABC中,用尺规作图法作∠ABD=∠C,与边AC交于点D(保留作图痕迹,不用写作法)【答案】作图见解析部分.【解答】解:如图,射线BD即为所求.17.(2023春•寿阳县期中)已知∠α、∠β,求作:∠AOB,使∠AOB=∠α+∠β(保留作图痕迹).【答案】见试题解答内容【解答】解:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档