第五讲 函数及其图象
函数完整版PPT课件
![函数完整版PPT课件](https://img.taocdn.com/s3/m/25a0ea4b0640be1e650e52ea551810a6f524c8ba.png)
三角函数图像变换规律
振幅变换
通过改变函数前的系数,实现对函数图 像的纵向拉伸或压缩。
周期变换
通过改变函数内的系数,实现对函数图 像的横向拉伸或压缩。
2024/1/28
相位变换
通过改变函数内的常数项,实现对函数 图像的左右平移。
上下平移
通过在函数后加减常数,实现对函数图 像的上下平移。
17
三角函数周期性、奇偶性和单调性
了直线在 $y$ 轴上的位置。
03
性质
当 $k > 0$ 时,函数单调递增 ;当 $k < 0$ 时,函数单调递
减。
8
二次函数表达式与图像
2024/1/28
二次函数表达式
$y = ax^2 + bx + c$($a neq 0$)
图像特点
一条抛物线,开口方向由 $a$ 决定($a > 0$ 时向上开口 ,$a < 0$ 时向下开口),对称轴为 $x = -frac{b}{2a}$ ,顶点坐标为 $left(-frac{b}{2a}, c frac{b^2}{4a}right)$。
对数函数性质
单调性、定义域、值域等 。
13
指数对数方程求解
指数方程求解
通过换元法、配方法等方法将指数方 程转化为代数方程求解。
指数对数混合方程求解
综合运用指数和对数的性质及运算法 则进行求解。
对数方程求解
通过换底公式、消去对数等方法将对 数方程转化为代数方程求解。
2024/1/28
14
04
三角函数及其性质
函数完整版PPT课件
2024/1/28
1
目录
2024/1/28
• 函数基本概念与性质 • 一次函数与二次函数 • 指数函数与对数函数 • 三角函数及其性质 • 反三角函数及其性质 • 复合函数与分段函数 • 参数方程与极坐标方程
函数及其图象PPT课件
![函数及其图象PPT课件](https://img.taocdn.com/s3/m/943fad5ae97101f69e3143323968011ca300f786.png)
s
s
s
s
t
t
O
O
A
B
O
t
C
t
O D
3、(09湖州市)如图,一只蚂蚁从 O 点出发,沿着扇形 OAB 的边缘匀速
爬行一周,设蚂蚁的运动时间为 t ,蚂蚁到 O 点的距离为 S ,则 S 关于 t 的函数图象大致为( C )
A
S
S
S
S
O
O
tO
tO
tO
t
第(3)题
B
A.
B.
C.
D.
4、(09内江市)打开某洗衣机开关(洗衣机内无水),在洗涤衣服时,洗衣机 经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗
(2)(09大连)函数y x 2 中,自变量x的取值范围是 ( D )
A.x < 2 B.x ≤2 C.x > 2 D.x≥2
x x 2
(3)(09哈尔滨)函数y=
的自变量 的取值范围是_____________.
x2
x (4)(09齐齐哈尔)函数 y x 的自变量 的取值范围是_x_≥_0_且__x_≠1 ___. x 1
5000
4000 3000 2000
乙
甲
A
1000
O
5
10 15
20 x(分)
(3)解: x 15 时,甲的路程是: 25015 5000 1250 米,
乙的路程是2000米, 两人相距:2000 — 1250 = 750米
在15<x<20的时段内, 乙速:2000÷(20 — 15)= 400 米/分 两人速度之差: 400 — 250 = 150米/分
热身练习:
函数及其图象函数的图像函数的图象
![函数及其图象函数的图像函数的图象](https://img.taocdn.com/s3/m/950aa4e8fc0a79563c1ec5da50e2524de418d04d.png)
2023函数及其图象•函数的基本概念•函数的图像•不同类型函数的图像目录•函数图像的应用•函数图像的艺术01函数的基本概念设x和y是两个变量,D是一个给定的集合,在D上有唯一确定的y值与x对应,则称y是x的函数,记作y=f(x)。
集合D称为函数的定义域,x称为自变量,y称为因变量。
函数的定义函数的表示方法图象法用图象表示函数,如f(x)=x^2的图象为开口向上的抛物线。
表象法用表格表示函数,如t=sin(x)。
解析法用等式表示函数,如y=2x+1。
函数的分类•常数函数:f(x)=c(c为常数)•一次函数:f(x)=kx+b(k,b为常数,k≠0)•二次函数:f(x)=ax^2+bx+c(a,b,c为常数,a≠0)•反比例函数:f(x)=k/x(k为常数,k≠0)•幂函数:f(x)=x^a(a为常数)•指数函数:f(x)=a^x(a为常数,a>0且a≠1)•对数函数:f(x)=log_a x(a为常数,a>0且a≠1)•复合函数:f(x)=u(x)+g(x),其中u和g都是简单函数。
02函数的图像1函数图像的概念23将函数表达式中自变量与因变量之间的关系用图形表示出来。
函数图像在平面直角坐标系中,以横轴表示自变量,纵轴表示因变量。
坐标系根据函数表达式的性质,图像呈现不同形状,如直线、曲线、折线等。
函数图像的形状描点法根据函数表达式,求出一些自变量对应的因变量值,然后在坐标系上描出对应的点,最后用平滑的曲线或直线将这些点连接起来。
图示法利用计算器或编程语言,直接在计算机上绘制出函数图像。
绘制函数图像的方法函数图像的变换伸缩将函数图像按比例进行缩放,可以是横向或纵向。
平移将函数图像沿横轴或纵轴方向移动一定距离。
翻折将函数图像以某一条直线或点为对称中心进行翻折。
复合变换以上变换可以同时进行,也可以多次进行。
旋转将函数图像按一定角度顺时针或逆时针旋转一定角度。
03不同类型函数的图像线性函数一次函数的图像是直线,表达式为$y=kx+b$,其中$k$是斜率,$b$是截距。
函数及其图象函数的图像平面直角坐标系
![函数及其图象函数的图像平面直角坐标系](https://img.taocdn.com/s3/m/78027d0e42323968011ca300a6c30c225801f065.png)
旋转变换是指将图形绕原点进行旋转,这种变换不改变图形的大小和形状。旋转变换可以 用矩阵表示,其中矩阵的元素表示旋转的角度和方向。
二维坐标系及其应用
二维坐标系定义
在平面上,通过两个相互垂直的坐标轴, 可以确定平面上任意一点的位置。这种由 两个相互垂直的坐标轴组成的坐标系称为 二维坐标系。
VS
THANKS
3
函数可以用数学表达式、图像或表格等方式来 表示。
函数的性质
函数具有单值性, 即对于每个输入值 ,只有一个输出值 与之对应。
函数的性质还包括 奇偶性、单调性、 周期性等。
函数还具有封闭性 ,即函数的输出值 与输入值的关系不 受外界干扰。
函数的分类
根据函数的定义域和值域的关系,函数可以分为单射函数、 满射函数和双射函数。
确定需要考察的函数表达式,例如y = x^2 + 2x + 1。
连接点
用平滑的曲线连接这些点。
选择x值
选择一系列x值,例如x = -5, -4, -3, ..., 5 。
描点
在平面直角坐标系上,以(x, y)的形式描出 每一个点。
计算y值
将每个x值代入函数表达式,计算对应的y 值。
插值法绘制函数图像
01
02
输入函数表达式
在绘图软件中输入需要绘制的函数表 达式。
03
设定x值范围
设定x值的范围,例如x = -5 to 5。
调整图像参数
可以调整图像的颜色、线型、坐标轴 范围等参数,以更好地展示函数的特 点。
05
04
绘制图像
使用绘图软件的相应功能,绘制函数 图像。
04
函数图像的分析与应用
函数的极值与最值
函数及其图象
![函数及其图象](https://img.taocdn.com/s3/m/a8c9fc22f01dc281e53af081.png)
4、已知a是整数,点A(2a+1,2+a)在第二象限内, 则a= -1 ,
2、函数自变量的取值范围 (只要使式子有意义)
函数形式
自变量的取值范围
整式
全体实数
分式
分母不为零的实数
二次根式
被开方数≥0
实际问题
使实际问题有意义
1、函数y= x 3中自变量的取值范围是 x≥3且x≠4
用水量(吨) 不超过10吨 超过10吨
水费(元) 每吨1.2元 超过的部分按每吨1.8元收费
(1)该市某户居民5月份用水x吨(x>10),
应交水费y(元)表示为
1、 点的位置及其坐标特征:
y
①.各象限内的点:
Q(0,b) Q(b,-b) C(m,n)
②.各坐标轴上的点:
(-,+)
M(a,b)
(+,+)
P(a,0)
o
x
N(a,-b()-,-)
(+,-)
③.各象限角平分线上的点:
D(-m,-n) P(a,a)
A(x,y)
B(-x,y)
④.对称于坐标轴的两点:
x 1 4
2.函数y= A.x≠0
Bx.x1>的1自变C量.xx的≥1取值范D.围x是>(0
B
)
3、已知等腰三角形的周长为10cm,将底边长y(cm)表示成腰长 x(cm)的函数关系式是y=10-2x,则其自变量x的取值范围是:
; 查重 查重软件 论文查重 免费论文查重 论文免费查重
⑤.对称于原点的两点:
1、点P(-3, 3 )到x轴的距离是 3 ,
到y轴的距离是 3 ,到原点的距离是 2 3 。
新高考2023版高考数学一轮总复习第2章第5讲指数与指数函数课件
![新高考2023版高考数学一轮总复习第2章第5讲指数与指数函数课件](https://img.taocdn.com/s3/m/41f644090a4e767f5acfa1c7aa00b52acfc79c8a.png)
1
2
D,左边=a3 ÷a-3 =a1=a,左边=右边.故选 D.
3.(必修 1P107T2 改编)设 a>0,将
a2 表示成分数指数幂,其结
3
a·
a2
果是
( C)
A.a12
B.a56
C.a76
D.a32
[解析] 由题意得
a2
=a2-12
-1 3
=a67
,故选 C.
3
a·
a2
4.(必修 1P109T4 改编)化简4 16x8y4(x<0,y<0)=__-__2_x_2y___.
当 n 为偶数时,正数的 n 次方根有__两__个___,
它们互为__相__反__数___
±n a
零的 n 次方根是零
负数没有偶次方 根
(2)两个重要公式 __a__,n为奇数,
①n an=|a|=____-a____a_a_≥a<00,, n为偶数.
②(n a)n=__a__(注意 a 必须使n a有意义).
3.f(x)=ax 与 g(x)=1ax(a>0 且 a≠1)的图象关于 y 轴对称.
题组一 走出误区
1.判断下列结论是否正确(请在括号中打“√”或“×”)
4
(1)
-44=-4.
m
(2)分数指数幂 an
可以理解为mn 个 a 相乘.
m
m
(3)a-n =-an (n,m∈N*).
(× ) (× ) (× )
考点突破·互动探究
考点一
例1
指数与指数运算——自主练透 (1)(多选题)下列命题中不正确的是
A.n an=a
B.a∈R,则(a2-a+1)0=1
函数图像ppt课件
![函数图像ppt课件](https://img.taocdn.com/s3/m/57b9146d4a35eefdc8d376eeaeaad1f3469311e1.png)
03
描点法
根据函数表达式,在坐标 系中逐个描出对应的点(x, y),然后用平滑的曲线将 这些点连接起来。
计算法
利用数学软件或计算器, 输入函数表达式,自动生 成函数图像。
表格法
根据函数表达式和已知数 据,制作表格,然后在坐 标系中根据表格数据绘制 出函数图像。
函数图像的观察与分析
观察图像形状
通过观察函数的图像,可以初 步判断函数的类型(如一次函 数、二次函数、三角函数等)
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
06
复合函数的图像
复合函数的定义与性质
总结词
理解复合函数的定义与性质是绘制和分 析其图像的基础。
VS
详细描述
复合函数是由两个或多个函数的组合而成 的函数。它具有一些特殊的性质,如复合 函数的导数、极限等。了解这些性质有助 于更好地绘制和分析复合函数的图像。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
二次函数的图像
二次函数的定义与性质
总结词
二次函数的定义、性质和 表达式
二次函数的定义
二次函数是指形式为 y=ax^2+bx+c(其中a、 b、c为常数,且a≠0)的 函数。
二次函数的性质
二次函数具有开口方向、 顶点、对称轴等性质,这 些性质决定了函数图像的 形状和位置。
复合函数图像的绘制
总结词
掌握绘制复合函数图像的方法是理解其性质 和应用的必要手段。
详细描述
绘制复合函数图像需要使用数学软件或绘图 工具,如Matlab、GeoGebra等。在绘制 过程中,需要注意函数的定义域、值域以及 函数的单调性、奇偶性等性质。
函数图像专题PPT课件图文
![函数图像专题PPT课件图文](https://img.taocdn.com/s3/m/48c89104ff4733687e21af45b307e87100f6f872.png)
2.(2011·福州质检)函数y=log2|x|的图象大致是( ) 答案 C 解析 函数y=log2|x|为偶函数,作出x>0时y=log2x的图象,图象关于y轴对称,应选C.
答案 A
4.(08·山东)设函数f(x)=|x+1|+|x-a|的图象关于直线x=1对称,则a的值为( ) A.3 B.2 C.1 D.-1 答案 A 解析 ∵函数f(x)图象关于直线x=1对称,∴f(1+x)=f(1-x),∴f(2)=f(0).即3+|2-a|=1+|a|,用代入法知选A.
思考题1 将函数y=lg(x+1)的图象沿x轴对折,再向右平移一个单位,所得图象的解析式为________. 【答案】 y=-lgx
题型二 知式选图或知图选式问题 例2 (2011·合肥模拟)函数f(x)=loga|x|+1(0<a<1)的图象大致为( )
【解析】 首先分析奇偶性,知函数为偶函)=1,∴选A.
1.函数图象的三种变换 (1)平移变换:y=f(x)的图象向左平移a(a>0)个单位,得到y=f(x+a)的图象;y=f(x-b)(b>0)的图象可由y=f(x)的图象向右平移b个单位而得到;y=f(x)的图象向下平移b(b>0)个单位,得到y=f(x)-b的图象;y=f(x)+b(b>0)的图象可由y=f(x)的图象向上平移b个单位而得到.总之,对于平移变换,记忆口诀为:左加右减上加下减.
【答案】 C
题型三 函数图象的对称性 例3 (1)已知f(x)=ln(1-x),函数g(x)的图象与f(x)的图象关于点(1,0)对称,则g(x)的解析式为________________. (2)设函数y=f(x)的定义域为实数集R,则函数y=f(x-1)与y=f(1-x)的图像关于( ) A.直线y=0对称 B.直线x=0对称 C.直线y=1对称 D.直线x=1对称
函数的基本性质ppt课件
![函数的基本性质ppt课件](https://img.taocdn.com/s3/m/ada04914326c1eb91a37f111f18583d048640f7b.png)
1
即函数f(x)=x+ 为奇函数.
函数的基本性质
例1 判断下列函数的奇偶性:
(3)f(x)=0;
(2)f(x)= ;
解:(1)函数f(x)的定义域为R.
∀x∈R,都有-x∈R,且f(-x)=0=-f(x)=f(x),
函数f(x)既是奇函数,又是偶函数.
1
(2)函数f(x)=x+ 的定义域I为[0,+∞).
(1)若函数f(x)在区间[a,b]上是增(减)函数,则f(x)在区间
[a,b]上的最小(大)值是f(a),最大(小)值是f(b).
(2)若函数f(x)在区间[a,b]上是增(减)函数,在区间[b,c]
上是减(增)函数,则f(x)在区间[a,c]上的最大(小)值是f(b),
最小(大)值是f(a)与f(c)中较小(大)的一个.
当 > 0时,(1 ) − (2 )<0,即(1 ) < (2 )
所以函数() = + 在R上单调递增,即函数() = + 是增函数。
当 < 0时,(1 ) − (2 )>0,即(1 ) > (2 )
所以函数() = + 在R上单调递减,即函数() = + 是减函数。
1
(2)f(x)=x+
;
解:(1)函数f(x)=x4的定义域为R.
∀x∈R,都有-x∈R,且f(-x)=(-x)4=x4=f(x),
函数f(x)=x4为偶函数.
1
(2)函数f(x)=x+ 的定义域I为(-∞,0)∪(0,+∞).
1
1
∀x∈I,都有-x∈I,且f(-x)=-x+ =-(x+ )=-f(x),
中考复习(五)函数及其图象
![中考复习(五)函数及其图象](https://img.taocdn.com/s3/m/9bf5c96c7e21af45b307a8b2.png)
重点难点重点:1.基本概念:①平面直角坐标系:点的坐标,象限②函数、定义、表示方法、解析法、列表法、图象法、自变量、因变量、值域、定义域 ③基本函数:一次函数、正比例函数、二次函数、反比例函数2.性质:①一次函数 ②正比例函数 ③二次函数 ④反比例函数3.公式:①坐标平面内两点间的距离公式:21221221)()(||y y x x P P -+-=,其中),(111y x P ,),(222y x P②两点中点坐标公式:221x x x +=,221y y y +=,其中P (x ,y )为),(111y x P ,),(222y x P 的中点4.函数图象:五点法作二次函数图象5.待定系数法难点:1.函数的定义2.用待定系数法求正比例、反比例、一次函数和二次函数的解析式。
[讲一讲]例1:已知:等腰三角形的周长为20cm(1)写出底边长y (cm )与腰长x (cm )的函数关系式。
(2)求自变量x 的取值范围 (3)作出函数的图象分析:由等腰三角形周长=底边长+2腰长的关系可列出x 与y 的函数关系式,又因为三角形两边之和应大于第三边,则x 的取值范围可定,再作出函数图象。
解:(1)∵y+2x=0 ∴y=20-2x(2)∵2x>y 即2x>20-2x ∴x>5∵x-x<y∴y>0即20-2x>0 ∴x<10 ∴5<x<10 (例2:已知一次函数b x k y +=11交x 轴于点A (-4,0),交正比例函数x k y 22=的图象于点)23,1(-B ,求一次函数1y 和正比例函数2y 的解析式。
分析:由题意可知,A 、B 两点均在1y 上,B 点在2y 上,将点的坐标代入1y 、2y ,则可求出1k 、2k ,b解:把A (-4,0),)23,1(-B 代入b x k y +=11∵⎪⎩⎪⎨⎧+-=+-=b k b k 112340 ∴⎪⎩⎪⎨⎧==2211b k ∴2211+=x y把x=-1,23=y 代入x k y 22=∴223k -=∴232-=k∴x y 232-=例3:已知二次函数的对称轴方程是x+3=0,图象过(-1,0)且求y 轴交于点)25,0(-(1)写出解析表达式(2)函数有最大或最小值吗?如果有其值是多少? (3)当x 是何值时,此函数的值为零?(4)当x 为何值时,此函数的值随x 增大而增大?分析:可以先设二次函数解析式为c bx ax y ++=2,由三个已知条件可以确定函数解析式,再根据解析式求最值,函数值,确定增减性。
经典数学函数图像(大全)
![经典数学函数图像(大全)](https://img.taocdn.com/s3/m/90db7cbf534de518964bcf84b9d528ea81c72f0f.png)
经典数学函数图像(大全)1. 一次函数图像一次函数图像是一条直线,其一般形式为 y = mx + b,其中 m是斜率,b 是 y 轴截距。
当 m > 0 时,直线向上倾斜;当 m < 0 时,直线向下倾斜。
2. 二次函数图像二次函数图像是一个抛物线,其一般形式为 y = ax^2 + bx + c,其中 a、b、c 是常数。
当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
3. 三角函数图像三角函数图像包括正弦函数、余弦函数和正切函数。
正弦函数图像是一条波动曲线,余弦函数图像与正弦函数图像相似,但相位差为π/2。
正切函数图像是一条周期性振荡的曲线。
4. 指数函数图像指数函数图像是一条上升或下降的曲线,其一般形式为 y = a^x,其中 a 是底数,x 是指数。
当 a > 1 时,曲线上升;当 0 < a < 1 时,曲线下降。
5. 对数函数图像对数函数图像是一条上升或下降的曲线,其一般形式为 y =log_a(x),其中 a 是底数,x 是真数。
当 a > 1 时,曲线上升;当0 < a < 1 时,曲线下降。
6. 双曲函数图像双曲函数图像包括双曲正弦函数、双曲余弦函数和双曲正切函数。
双曲正弦函数和双曲余弦函数图像都是上升或下降的曲线,而双曲正切函数图像是一条周期性振荡的曲线。
7. 幂函数图像幂函数图像是一条上升或下降的曲线,其一般形式为 y = x^n,其中 n 是指数。
当 n > 0 时,曲线上升;当 n < 0 时,曲线下降。
8. 反比例函数图像反比例函数图像是一条双曲线,其一般形式为 y = k/x,其中 k是常数。
当 k > 0 时,曲线位于第一和第三象限;当 k < 0 时,曲线位于第二和第四象限。
经典数学函数图像(大全)3. 反三角函数图像反三角函数是三角函数的反函数,包括反正弦函数、反余弦函数和反正切函数。
第5讲 指数函数及其图像(教师版)
![第5讲 指数函数及其图像(教师版)](https://img.taocdn.com/s3/m/6f9ff79f581b6bd97e19ea0e.png)
第五讲指数函数及其图像1.分数指数幂(1)规定:正数的正分数指数幂的意义是a mn=na m(a>0,m,n∈N*,且n>1);正数的负分数指数幂的意义是amn=1na m(a>0,m,n∈N*,且n>1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理数指数幂的运算性质:a r a s=a r+s,(a r)s=a rs,(ab)r=a r b r,其中a>0,b>0,r,s∈Q. 2.指数函数的图象与性质y=a x a>10<a<1图象定义域(1)R值域(2)(0,+∞)性质(3)过定点(0,1)(4)当x>0时,y>1;当x<0时,0<y<1(5)当x>0时,0<y<1;当x<0时,y>1(6)在(-∞,+∞)上是增函数(7)在(-∞,+∞)上是减函数【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)na n=(na)n=a.(×)(2)分数指数幂a mn可以理解为mn个a相乘.(×)(3)(-1)24=(-1)12=-1.(×)(4)函数y=a-x是R上的增函数.(×)(5)函数y=a21+x(a>1)的值域是(0,+∞).(×) (6)函数y=2x-1是指数函数.(×)1.若a =(2+3)-1,b =(2-3)-1,则(a +1)-2+(b +1)-2的值是( )A .1 B.14 C.22 D.23答案 D解析 ∵a =(2+3)-1=2-3,b =(2-3)-1=2+3, ∴(a +1)-2+(b +1)-2=(3-3)-2+(3+3)-2 =112-63+112+63=23.2.函数f (x )=a x -1a(a >0,a ≠1)的图象可能是( )答案 D解析 函数f (x )的图象恒过(-1,0)点,只有图象D 适合.3.(教材改编)已知0.2m <0.2n ,到m ________n (填“>”或“<”). 答案 >解析 设f (x )=0.2x ,f (x )为减函数, 由已知f (m )<f (n ),∴m >n .4.若函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则实数a 的取值范围是________________. 答案 (-2,-1)∪(1,2)解析 由y =(a 2-1)x 在(-∞,+∞)上为减函数,得0<a 2-1<1,∴1<a 2<2,即1<a <2或-2<a <-1.5.函数y =8-23-x (x ≥0)的值域是________. 答案 [0,8)解析 ∵x ≥0,∴-x ≤0,∴3-x ≤3, ∴0<23-x ≤23=8,∴0≤8-23-x <8, ∴函数y =8-23-x 的值域为[0,8).题型一 指数幂的运算例1 化简:(1)a 3b 23ab 2(a 14b 12)4a13-b13(a >0,b >0);(2)()21103227()0.00210(52)(23).8----+--+-解 (1)原式=(a 3b 2a 13b 23)12ab 2a13-b 13=a 3111263+-+b 111233+--=ab -1. (2)原式=1223271()850052--⎛⎫ ⎪⎝⎭-+-1- =122381()527500⎛⎫ ⎪⎝⎭-+-10(+2)+1 =49+105-105-20+1=-1679. 思维升华 (1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,还应注意:①必须同底数幂相乘,指数才能相加;②运算的先后顺序. (2)当底数是负数时,先确定符号,再把底数化为正数.(3)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.(1)[(0.06415)-2.5]23-3338-π0=_______________________________. (2) (14)12-·(4ab -1)3(0.1)-1·(a 3·b -3)12=________.答案 (1)0 (2)85解析 (1)原式=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫641 0001552-23-⎝⎛⎭⎫27813-1=⎣⎡⎦⎤⎝⎛⎭⎫4103152()523⨯-⨯-⎣⎡⎦⎤⎝⎛⎭⎫32313-1=52-32-1=0.(2)原式=2×432×a 32b32-10a 32b32-=85. 题型二 指数函数的图象及应用例2 (1)函数f (x )=a x -b的图象如图所示,其中a ,b 为常数,则下列结论正确的是( ) A .a >1,b <0 B .a >1,b >0 C .0<a <1,b >0 D .0<a <1,b <0(2)若曲线|y |=2x +1与直线y =b 没有公共点,则b 的取值范围是________. 答案 (1)D (2)[-1,1]解析 (1)由f (x )=a x -b 的图象可以观察出,函数f (x )=a x -b 在定义域上单调递减,所以0<a <1.函数f (x )=a x -b 的图象是在f (x )=a x 的基础上向左平移得到的,所以b <0,故选D. (2)曲线|y |=2x +1与直线y =b 的图象如图所示,由图象可知:如果|y |=2x +1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1]. 思维升华 (1)已知函数解析式判断其图象一般是取特殊点,判断选项中的图象是否过这些点,若不满足则排除.(2)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.(3)有关指数方程、不等式问题的求解,往往利用相应的指数型函数图象,数形结合求解.(1)如图,面积为8的平行四边形OABC,对角线AC⊥CO,AC与BO交于点E.某指数函数y=a x (a>0,且a≠1)经过点E,B,则a等于()A. 2B.3C.2 D.3(2)已知函数f(x)=|2x-1|,a<b<c且f(a)>f(c)>f(b),则下列结论中,一定成立的是() A.a<0,b<0,c<0 B.a<0,b≥0,c>0C.2-a<2c D.2a+2c<2答案(1)A(2)D解析(1)设点E(t,a t),则点B坐标为(2t,2a t).因为2a t=a2t,所以a t=2.因为平行四边形OABC的面积=OC×AC=a t×2t=4t,又平行四边形OABC的面积为8,所以4t=8,t=2,所以a2=2,a= 2.故选A.(2)作出函数f(x)=|2x-1|的图象,如图,∵a<b<c,且f(a)>f(c)>f(b),结合图象知0<f(a)<1,a<0,c>0,∴0<2a<1.∴f(a)=|2a-1|=1-2a<1,∴f(c)<1,∴0<c<1.∴1<2c<2,∴f(c)=|2c-1|=2c-1,又∵f(a)>f(c),∴1-2a>2c-1,∴2a+2c<2,故选D.题型三 指数函数的图象和性质命题点1 比较指数式的大小例3 (1)下列各式比较大小正确的是( ) A .1.72.5>1.73 B .0.6-1>0.62 C .0.8-0.1>1.250.2 D .1.70.3<0.93.1(2)设a =⎝⎛⎭⎫3525,b =⎝⎛⎭⎫2535,c =⎝⎛⎭⎫2525,则a ,b ,c 的大小关系是________. 答案 (1)B (2)a >c >b解析 (1)A 中, ∵函数y =1.7x 在R 上是增函数, 2.5<3,∴1.72.5<1.73,错误;B 中,∵y =0.6x 在R 上是减函数,-1<2, ∴0.6-1>0.62,正确;C 中,∵(0.8)-1=1.25,∴问题转化为比较1.250.1与1.250.2的大小. ∵y =1.25x 在R 上是增函数,0.1<0.2, ∴1.250.1<1.250.2,即0.8-0.1<1.250.2,错误; D 中,∵1.70.3>1,0<0.93.1<1, ∴1.70.3>0.93.1,错误.故选B. (2)∵y =⎝⎛⎭⎫25x为减函数, ∴⎝⎛⎭⎫2535<⎝⎛⎭⎫2525 即b <c ,又a c =⎝⎛⎭⎫35 25⎝⎛⎭⎫25 25=⎝⎛⎭⎫3225>⎝⎛⎭⎫320=1, ∴a >c ,故a >c >b .命题点2 解简单的指数方程或不等式例4 设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)答案 C解析 当a <0时,不等式f (a )<1可化为⎝⎛⎭⎫12a-7<1,即⎝⎛⎭⎫12a <8,即⎝⎛⎭⎫12a <⎝⎛⎭⎫12-3,因为0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1可化为a <1,所以0≤a <1.故a 的取值范围是(-3,1),故选C.命题点3 和指数函数有关的复合函数的性质例5 设函数f (x )=ka x -a -x (a >0且a ≠1)是定义域为R 的奇函数. (1)若f (1)>0,试求不等式f (x 2+2x )+f (x -4)>0的解集;(2)若f (1)=32,且g (x )=a 2x +a -2x -4f (x ),求g (x )在[1,+∞)上的最小值.解 因为f (x )是定义域为R 的奇函数,所以f (0)=0,所以k -1=0,即k =1,f (x )=a x -a -x . (1)因为f (1)>0,所以a -1a >0,又a >0且a ≠1,所以a >1.因为f ′(x )=a x ln a +a -x ln a =(a x +a -x )ln a >0,所以f (x )在R 上为增函数,原不等式可化为f (x 2+2x )>f (4-x ), 所以x 2+2x >4-x ,即x 2+3x -4>0, 所以x >1或x <-4.所以不等式的解集为{x |x >1或x <-4}. (2)因为f (1)=32,所以a -1a =32,即2a 2-3a -2=0,所以a =2或a =-12(舍去).所以g (x )=22x +2-2x -4(2x -2-x ) =(2x -2-x )2-4(2x -2-x )+2.令t (x )=2x -2-x (x ≥1),则t (x )在(1,+∞)为增函数(由(1)可知),即t (x )≥t (1)=32,所以原函数为ω(t )=t 2-4t +2=(t -2)2-2,所以当t =2时,ω(t )min =-2,此时x =log 2(1+2).即g (x )在x =log 2(1+2)时取得最小值-2. 思维升华 指数函数的性质及应用问题解题策略(1)比较大小问题.常利用指数函数的单调性及中间值(0或1)法.(2)简单的指数方程或不等式的求解问题.解决此类问题应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)解决指数函数的综合问题时,要把指数函数的概念和性质同函数的其他性质(如奇偶性、周期性)相结合,同时要特别注意底数不确定时,对底数的分类讨论.(1)已知函数f (x )=2|2x-m |(m 为常数),若f (x )在区间[2,+∞)上是增函数,则m 的取值范围是________.(2)如果函数y =a 2x +2a x -1(a >0,a ≠1)在区间[-1,1]上的最大值是14,则a 的值为( ) A.13 B .1 C .3D.13或3 答案 (1)(-∞,4] (2)D解析 (1)令t =|2x -m |,则t =|2x -m |在区间[m 2,+∞)上单调递增,在区间(-∞,m2]上单调递减.而y =2t 为R 上的增函数,所以要使函数f (x )=2|2x -m |在[2,+∞)上单调递增,则有m2≤2,即m ≤4,所以m 的取值范围是(-∞,4]. (2)令a x =t ,则y =a 2x +2a x -1=t 2+2t -1 =(t +1)2-2.当a >1时,因为x ∈[-1,1],所以t ∈[1a ,a ],又函数y =(t +1)2-2在⎣⎡⎦⎤1a ,a 上单调递增, 所以y max =(a +1)2-2=14,解得a =3(负值舍去). 当0<a <1时,因为x ∈[-1,1],所以t ∈[a ,1a ],又函数y =(t +1)2-2在[a ,1a ]上单调递增,则y max =(1a +1)2-2=14,解得a =13(负值舍去).综上知a =3或a =13.4.换元法在和指数函数有关的复合函数中的应用典例 (1)函数y =⎝⎛⎭⎫14x -⎝⎛⎭⎫12x+1在区间[-3,2]上的值域是________.(2)函数f (x )=⎝⎛⎭⎫12221-++x x 的单调减区间为________________________________. 思维点拨 (1)求函数值域,可利用换元法,设t =⎝⎛⎭⎫12x ,将原函数的值域转化为关于t 的二次函数的值域.(2)根据复合函数的单调性“同增异减”进行探求. 解析 (1)因为x ∈[-3,2], 所以若令t =⎝⎛⎭⎫12x ,则t ∈⎣⎡⎦⎤14,8, 故y =t 2-t +1=⎝⎛⎭⎫t -122+34. 当t =12时,y min =34;当t =8时,y max =57.故所求函数值域为⎣⎡⎦⎤34,57. (2)设u =-x 2+2x +1, ∵y =⎝⎛⎭⎫12u在R 上为减函数,∴函数f (x )=⎝⎛⎭⎫12221-++x x 的减区间即为函数u =-x 2+2x +1的增区间.又u =-x 2+2x +1的增区间为(-∞,1], ∴f (x )的减区间为(-∞,1]. 答案 (1)⎣⎡⎦⎤34,57 (2)(-∞,1]温馨提醒 (1)解决和指数函数有关的复合函数的单调性或值域问题时,要熟练掌握指数函数的单调性,搞清复合函数的结构,利用换元法转化为基本初等函数的单调性或值域问题;(2)换元过程中要注意“元”的取值范围的变化.[方法与技巧]1.通过指数函数图象比较底数大小的问题,可以先通过令x=1得到底数的值,再进行比较.2.指数函数y=a x (a>0,a≠1)的性质和a的取值有关,一定要分清a>1与0<a<1.3.对与复合函数有关的问题,要弄清复合函数由哪些基本初等函数复合而成.[失误与防范]1.恒成立问题一般与函数最值有关,要与方程有解区别开来.2.复合函数的问题,一定要注意函数的定义域.3.对可化为a2x+b·a x+c=0或a2x+b·a x+c≥0 (≤0)形式的方程或不等式,常借助换元法解决,但应注意换元后“新元”的范围.A组专项基础训练(时间:35分钟)1.函数f (x )=2|x -1|的图象是( )答案 B解析 ∵|x -1|≥0,∴f (x )≥1,排除C 、D. 又x =1时,|f (x )|min =1,排除A.故选项B 正确. 2.函数f (x )=a x -2+1(a >0且a ≠1)的图象必经过点( ) A .(0,1) B .(1,1) C .(2,0) D .(2,2)答案 D解析 ∵a 0=1,∴f (2)=2,故f (x )的图象必过点(2,2).3.已知a =22.5,b =2.50,c =(12)2.5,则a ,b ,c 的大小关系是( )A .a >c >bB .c >a >bC .b >a >cD .a >b >c 答案 D解析 a >20=1,b =1,c <(12)0=1,∴a >b >c .4.若函数f (x )=a |2x -4|(a >0,a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2] 答案 B解析 由f (1)=19得a 2=19,所以a =13或a =-13(舍去),即f (x )=(13)|2x -4|.由于y =|2x -4|在(-∞,2]上递减,在[2,+∞)上递增, 所以f (x )在(-∞,2]上递增,在[2,+∞)上递减.故选B.5.若关于x 的方程|a x -1|=2a (a >0且a ≠1)有两个不等实根,则a 的取值范围是( ) A .(0,1)∪(1,+∞) B .(0,1) C .(1,+∞) D.⎝⎛⎭⎫0,12 答案 D解析 方程|a x -1|=2a (a >0且a ≠1)有两个实数根转化为函数y =|a x -1|与y =2a 有两个交点. ①当0<a <1时,如图(1),∴0<2a <1,即0<a <12.②当a >1时,如图(2),而y =2a >1不符合要求.综上,0<a <12.6.计算:12104334372()()82()263-⨯--+=________.答案 2解析 原式=⎝⎛⎭⎫23×1+234×214-⎝⎛⎭⎫2313=2. 7.已知正数a 满足a 2-2a -3=0,函数f (x )=a x ,若实数m 、n 满足f (m )>f (n ),则m 、n 的大小关系为________. 答案 m >n解析 ∵a 2-2a -3=0,∴a =3或a =-1(舍). 函数f (x )=3x 在R 上递增,由f (m )>f (n ),得m >n .8.已知函数f (x )=2x -12x ,函数g (x )=⎩⎪⎨⎪⎧f (x ),x ≥0,f (-x ),x <0,则函数g (x )的最小值是________.答案 0解析 当x ≥0时,g (x )=f (x )=2x -12x 为单调增函数,所以g (x )≥g (0)=0;当x <0时,g (x )=f (-x )=2-x -12-x 为单调减函数,所以g (x )>g (0)=0,所以函数g (x )的最小值是0.9.已知函数f (x )=⎝⎛⎭⎫13243-+ax x . (1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值.解 (1)当a =-1时,f (x )=⎝⎛⎭⎫13243--+x x , 令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝⎛⎭⎫13t 在R 上单调递减, 所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2). (2)令g (x )=ax 2-4x +3,f (x )=⎝⎛⎭⎫13g (x ),由于f (x )有最大值3,所以g (x )应有最小值-1,因此必有⎩⎨⎧a >0,3a -4a =-1,解得a =1,即当f (x )有最大值3时,a 的值为1.10.已知函数f (x )=e x -e -x (x ∈R ,且e 为自然对数的底数). (1)判断函数f (x )的单调性与奇偶性;(2)是否存在实数t ,使不等式f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立?若存在,求出t ;若不存在,请说明理由. 解 (1)∵f (x )=e x -⎝⎛⎭⎫1e x, ∴f ′(x )=e x +⎝⎛⎭⎫1e x ,∴f ′(x )>0对任意x ∈R 都成立, ∴f (x )在R 上是增函数.∴f (x )的定义域为R ,且f (-x )=e -x -e x =-f (x ), ∴f (x )是奇函数.(2)存在.由(1)知f (x )在R 上是增函数和奇函数, 则f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立, ⇔f (x 2-t 2)≥f (t -x )对一切x ∈R 都成立, ⇔x 2-t 2≥t -x 对一切x ∈R 都成立,⇔t 2+t ≤x 2+x =⎝⎛⎭⎫x +122-14对一切x ∈R 都成立, ⇔t 2+t ≤(x 2+x )min =-14⇔t 2+t +14=⎝⎛⎭⎫t +122≤0, 又⎝⎛⎭⎫t +122≥0,∴⎝⎛⎭⎫t +122=0,∴t =-12. ∴存在t =-12,使不等式f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立.B 组 专项能力提升 (时间:20分钟)11.函数f (x )=a |x +1|(a >0,a ≠1)的值域为[1,+∞),则f (-4)与f (1)的关系是( ) A .f (-4)>f (1) B .f (-4)=f (1) C .f (-4)<f (1) D .不能确定答案 A解析 由题意知a >1,∴f (-4)=a 3,f (1)=a 2,由单调性知a 3>a 2,∴f (-4)>f (1).12.已知实数a ,b 满足等式⎝⎛⎭⎫12a =⎝⎛⎭⎫13b,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中不可能成立的关系式有( ) A .1个 B .2个 C .3个 D .4个 答案 B解析 函数y 1=⎝⎛⎭⎫12x 与y 2=⎝⎛⎭⎫13x 的图象如图所示.由⎝⎛⎭⎫12a =⎝⎛⎭⎫13b得a <b <0或0<b <a 或a =b =0.故①②⑤可能成立,③④不可能成立.13.关于x 的方程⎝⎛⎭⎫32x =2+3a5-a 有负数根,则实数a 的取值范围为__________. 答案 ⎝⎛⎭⎫-23,34 解析 由题意,得x <0,所以0<⎝⎛⎭⎫32x<1, 从而0<2+3a 5-a<1,解得-23<a <34.14.当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x <0恒成立,则实数m 的取值范围是________. 答案 (-1,2)解析 原不等式变形为m 2-m <⎝⎛⎭⎫12x, 因为函数y =⎝⎛⎭⎫12x 在(-∞,-1]上是减函数, 所以⎝⎛⎭⎫12x ≥⎝⎛⎭⎫12-1=2,当x ∈(-∞,-1]时,m 2-m <⎝⎛⎭⎫12x恒成立等价于m 2-m <2,解得-1<m <2.15.已知定义在实数集R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x 4x +1.(1)求函数f (x )在(-1,1)上的解析式; (2)判断f (x )在(0,1)上的单调性;(3)当λ取何值时,方程f (x )=λ在(-1,1)上有实数解? 解 (1)∵f (x )是x ∈R 上的奇函数,∴f (0)=0. 设x ∈(-1,0),则-x ∈(0,1), f (-x )=2-x4-x +1=2x4x +1=-f (x ),∴f (x )=-2x 4x+1,∴f (x )=⎩⎪⎨⎪⎧-2x4x +1,x ∈(-1,0),0,x =0,2x 4x+1,x ∈(0,1).(2)设0<x 1<x 2<1,f (x 1)-f (x 2)=121212(22)(12),(41)(41)x x x x x x +--=++1212211222(22)(22)(41)(41)x x x x x x x x ++-+-++高三·数学(理)∵0<x 1<x 2<1,∴f (x 1)-f (x 2)>0,∴f (x )在(0,1)上为减函数. (3)∵f (x )在(0,1)上为减函数, ∴2141+1<f (x )<2040+1,即f (x )∈⎝⎛⎭⎫25,12. 同理,f (x )在(-1,0)上时,f (x )∈⎝⎛⎭⎫-12,-25. 又f (0)=0,当λ∈⎝⎛⎭⎫-12,-25∪⎝⎛⎭⎫25,12, 或λ=0时,方程f (x )=λ在x ∈(-1,1)上有实数解.1212022221+,=,x x x x ∴<>。
函数及其图像(课堂PPT)
![函数及其图像(课堂PPT)](https://img.taocdn.com/s3/m/2f2a8a68bcd126fff7050bea.png)
集合:A,B,C…表示;元素:a,b,c…表示
函数与极限
4
2.实数与数轴
实数R有理数Q分 整数 数(Z12负非, 整 负86 ,数 整)( 数(1,自2然,数集nN,:0),1,2, )
f
(
x
3)
1 2
0 x31 1 x32
1 2
3 x 2 2 x 1
故定义域是[-3, -1].
函数与极限
28
例3 脉冲发生器产生一个单三角脉冲,其波形如图
所示,写出电压U与时间t(t 0)的函数关系式.
解 当 t [0, ]时, 2
U
E
t
2E t;
2 当 t ( , ]时,
2. 函数中根式,要求负数不能开偶次方
3. 函数中有对数式,要求真数必须大于零
4. 函数中有对数式和反三角函数式,要求符合它们定义域
5. 若函数式是上述各式的混合式,则应取各部分定义域
的交集
函数与极限
20
例1 求下列函数的定义域
(1()1(y)1y)y44411x1x22x2 xxx222; ;
((22()2)y)yylglgxlxg11;x; 1 ; x x22x 2
2
U
( , E)
2
E
o
(,0) t
2
单三角脉冲信号的电压
U 0
(t )
E
0
2
即U 2E (t )
函数与极限
29
当 t (,) 时, U 0.
U
( , E)
2
函数及其图象函数的图像函数的图象
![函数及其图象函数的图像函数的图象](https://img.taocdn.com/s3/m/e6f060fbba4cf7ec4afe04a1b0717fd5370cb252.png)
在数据处理和分析中,通过绘制图像将数据呈现出来,帮助我 们更好地理解和分析数据。
04
函数的图象及其应用
图象的几何意义
点的坐标
函数图象上的每一个点都代表 一个坐标点,横坐标为自变量
,纵坐标为因变量。
曲线的形状
函数图象的形状可以反映函数 的性质,例如单调性、极值等
。
曲线的交点
函数图象的交点代表了两个函 数在某一点的值相等。
图象的物理意义
01
02
03
波动现象
函数图象可以描述波动现 象,例如振动、波动传播 等。
运动轨迹
函数图象可以描述物体的 运动轨迹,例如平动、转 动等。
图像处理
函数图象可以用于图像处 理中的滤波、变换等操作 。
图象在各领域的应用
数学领域
函数图象在数学领域中有着广泛的 应用,例如解方程、求最值、证明 定理等。
物理领域
函数图象可以描述物理现象和规律 ,例如力学、电磁学、光学等。
工程领域
函数图象可以用于工程设计、优化 和控制系统分析等。
社会科学领域
函数图象可以用于描述社会现象和 规律,例如人口统计、经济分析、 心理测试等。
THANKS
《函数及其图象函数的图像函数的 图象》
xx年xx月xx日
目 录
• 函数的概念 • 函数的图像 • 函数的图像表示 • 函数的图象及其应用
01
函数的概念
函数的定义
函数的定义
函数是数学上的一种概念,它表示一个变量和另一个变量之间的关系。这种关系 可以用一个公式或一个表格来表示。在一个函数中,被表示的变量被称为因变量 ,而决定因变量的变量被称为自变量。
函数的图像
图像的绘制
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五讲 函数及其图像学习目标1、知道平面直角坐标系、函数的定义、函数的图像。
2、知道点的坐标的特征并会应用。
一、知识回顾知识点1、平面直角坐标系⑴. 坐标平面上的点与有序实数对构成一一对应; ⑵. 各象限点的坐标的符号;点的位置 横坐标符号 纵坐标符号 第一象限 第二象限 第三象限 第四象限⑶. 坐标轴上的点的坐标特征.x 轴上的点______坐标为0, y 轴上的点______坐标为0. ⑷.各象限角平分线上的点的坐标特征⑴第一、三象限角平分线上的点,横、纵坐标 。
⑵第二、四象限角平分线上的点,横、纵坐标 。
⑸. 点P (a ,b )关于⎪⎩⎪⎨⎧原点轴轴y x对称点的坐标⎪⎩⎪⎨⎧----),(),(),(b a b a b a⑹.两点之间的距离⑺.线段AB 的中点C ,若),(),,(),,(002211y x C y x B y x A 则2,2210210y y y x x x +=+=知识点2、函数的概念⑴ 常量与变量:在某一变化过程中,可以取不同数值的量叫做变量;在某一变化过程中保持数值不变的量叫做常量.⑵ 函数:在某一变化过程中的两个变量x 和y ,如果对于x 在某一范围内的每一个确定的值,y 都有唯一确定的值和它对应,那么y 就叫做x 的函数,其中x 做自变量,y 是因变量. ⑶自变量取值范围的确定①整式函数自变量的取值范围是全体实数.②分式函数自变量的取值范围是使分母不为0的实数.22122121222111)()()()()1(y y x x P P y x P y x P -+-=, ,,,③二次根式函数自变量的取值范是使被开方数是非负数的实数若涉及实际问题的函数,除满足上述要求外还要使实际问题有意义. ⑷)函数值:对于自变量在取值范围内的一个值所求得的函数的对应值.⑸ 函数常用的表示方法:(1)图象法:形象、直观;(2)列表法:具体、准确;(3)解析法:抽象、全面。
⑹ 由函数的解析式作函数的图象,一般步骤是:列表、描点、连线.(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程;课前热身:1. 请你写出第四象限的点____________.2. 已知a 是整数,点A (2a +1,2+a )在第二象限,则a =________.3.点A (1,m )在函数y =2x 的图象上,则关于x 轴的对称点的坐标是___.4.函数y =21--x x 自变量x 的取值范围是__________________。
二、 例题辨析例1、等腰三角形周长为10cm ,底边BC 长为ycm ,腰AB 长为xcm ,(1)写出y 关于x 的函数关系式; (2)求x 的取值范围; (3)求y 的取值范围. 解:⑴ y =10-2x ⑵525<<x ⑶50<<y变式练习:1、盛满10千克水的水箱,每小时流出0.5千克的水,写出水箱中的剩余水量y (千克)与时间t (时)之间的函数关系是_____________,自变量t 的取值范围是____________.2、将完全相同的平行四边形和完全相同的菱形镶嵌成如图所示的图案。
设菱形中较小角为x 度,平行四边形中较大角为y 度,则y 与x 的关系式是 。
例2、函数12-+=x x y 中自变量x 的取值范围是( ) A .x ≥-2 B .x ≥-2且x ≠1 C .x ≠1 D .x ≥-2或x ≠1【答案】B变式练习:1.函数32+-=x x y 中自变量x 的取值范围是( ) A .x≥2且x≠-3 B .x≥2 C .x >2 D .x≥2且x≠02. 在函数21y x =-中自变量x 的取值范围在数轴上表示为( )A .B .C .D .例3. 对任意实数x ,点P (x ,x 2-2x )一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C变式练习:1.已知点(1-a,a+2)在第二象限,则a 的取值范围是( )A .a >-2 B. -2<a <1 C a <-2 D a >12. 对任意实数x ,点P (x-1,x+2)一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限例4、已知函数2()1f x x =+,其中f (a )表示x =a 时对应的函数值,如2(1)11f =+,2(2)12f =+,2()1f a a=+,则(1)(2)(3)(100)f f f f _ . 【答案】5151变式练习:已知1(0)()(0)0(0)x x f x x x π+>⎧⎪==⎨⎪<⎩,则{[(1)]}f f f -= .例5、湖南益阳,8,4分)如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A 处径直走到B 处,她在灯光照射下的影长l 与行走的路程s 之间的变化关系用图象刻画出来,大致图象是【答案】C变式练习:1、一艘轮船在长江航线上往返于甲、乙两地.若轮船在静水中的速度不变,轮船先从甲地顺水航行到乙地,停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用的时间为t (小时),航行的路程为s (千米),则s 与t 的函数图象大致是( )2、向最大容量为60升的热水器内注水,每分钟注水10升,注水2分钟后停止注水1分钟,然后继续注水,直至注满.则能反映注水量与注水时间函数关系的图象是 ()A B C D3、小高从家骑自行车去学校上学,先走上坡路到达点A ,再走下坡路到达点B ,最后走平路到达学校,所用的时间与路程的关系如图所示。
放学后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从学校到家需要的时间是( )A.14分钟B.17分钟C.18分钟D.20分钟三、 归纳总结归纳1. 函数自变量取值范围归纳2. 如何做图象信息题olsol sCDol sol sA B4000 5917 1200 2000 s(米) t(分钟)归纳3. 点的坐标的特征四、拓展延伸例1、如图是中国象棋棋盘的一部分,若○帅在点(1,-1)上,○车在点(3,-1)上,则○马在点( D ) A .(-1,1) B .(-1,2)C .(-2,1)D .(-2,2)变式练习:1、如图所示,在平面直角坐标系中,点A 、B 的坐标分别为(﹣2,0)和(2,0).月牙①绕点B 顺时针旋转900得到月牙②,则点A 的对应点A’的坐标为( ) A .(2,2) B .(2,4) C .(4,2) D .(1,2)2、若在象棋盘上建立直角坐标系,使“帥”位于点(-1,-2),“馬”位于点(2,-2),则“兵”位于点( )A.(-1,1)B.(-2,-1)C.(-3,1)D.(1,-2)例2、在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.(1)填写下列各点的坐标:A 4( , ),A 8( , ),A 12( , );O1 A 1A 2A 3 A 4 A 5A 6A 7 A 8 A 9A 10A 11 A 12A 12 xy(2)写出点A 4n 的坐标(n 是正整数); (3)指出蚂蚁从点A 100到点A 101的移动方向.解:⑴ A 4(2,0); A 8(4,0); A 12(6,0); ⑵ A 4n (2n ,0); ⑶ 向上.变式练习1、 在如图所示的直角坐标系中,四边形ABCD的各个顶点的坐标分别是A(0,0),B(2,5),C(9,8)D(12,0)确定这个四边形的面积。
你是怎样做的?五、课后作业1、点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( ) A 、(3,2) B 、 (3,2--) C 、 (2,3-) D 、(2,3-)2、 若点P (x,y )的坐标满足xy =0,则点P 的位置是( )A 、 在x 轴上B 、 在y 轴上C 、 是坐标原点D 、在x 轴上或在y 轴上3、已知互为相反数与3442++-b a a ,则),(b a P 关于y 轴对称点的坐标为 ( ) A 、 )3,2( B 、 )3,2(- C 、 )3,2(- D 、 )3,2(--4、在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有( )A. 1 个B. 2 个C.3 个D. 4个5、在如图的直角坐标系中,△ABC 的顶点都在网格点上,A 点坐标为(2,-1),则△ABC 的面积为____平方单位.yxD(12,0)C(9,8)0121110131211987654321987654321B(2,5)A(0,0)10第5题图D C 3-1BA O x yP DCBAOxy 6、函数32--=x x y 中自变量x 的取值范围是___________ 7、在平面直角坐标系内,已知点(1-2a ,a -2)在第四象限的角平分线上,求a =________ 8、如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD . (1)求点C ,D 的坐标及四边形ABDC 的面积ABDC S 四边形(2)在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S ∆=ABDC S 四边形,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.(3)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合)给出下列结论:①DCP BOP CPO ∠+∠∠的值不变,②DCP CPOBOP∠+∠∠的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.。