带式运输机传动装置2
带式运输机传动装置设计
带式运输机传动装置设计带式运输机是目前工业生产中最常用的机械装置之一,其用途十分广泛,既可用于运输矿石、煤炭、水泥等物料,也可用于运输成品等。
而在带式运输机的构造中,传动装置是其中重要的组成部分之一,它直接影响到带式运输机的运转效率、稳定性以及寿命等关键因素。
一、带式运输机传动装置的构成带式运输机传动装置的基本组成部分包括:动力源、电机、减速器、轴承、链轮等。
其中动力源可以有多种选择,如电动机、汽油发动机、液压式等,不过现在电动机是应用最广泛的一种动力源。
减速器是主要的传动装置,它可以将电机的高速旋转转换成带式运输机所需的低速大扭矩旋转,轴承和链轮则用来支撑带式运输机带轮的转动。
二、带式运输机传动装置的设计原则在带式运输机传动装置的设计中,需要注意以下几个方面的原则:1.传动效率高:传动效率是指带式运输机传动装置所传递的动力与输入动力之间的比值,传动效率越高,带式运输机则越省电、能效越高。
因此,在设计传动装置时,需要选择高效的减速器,并且尽可能保证传动链的高度匹配,避免传动能量损失。
2.结构合理:对于传动装置结构的设计,需要考虑整个装置的布局结构是否合理,尽量减少装置包括齿轮、链轮在内的零部件数量,简化结构,降低成本。
3.可维修性好:传动装置在使用过程中,因传动链条的磨损、轮辐的损坏等原因而导致的故障很常见,因此,设胆装置在设计时需要考虑其可维修性,降低维修成本及工期。
三、常用的带式运输机传动装置1.电机直接驱动法:这种直接驱动法的优点是结构简单,传动效率高,但其缺点在于电机需要马力较大,且因为是直接驱动,其载荷大,对运转设备的整体性能、承载能力要求高。
2.皮带传动法:皮带传动法也称为减速器传动法,是应用较广泛的驱动形式之一,其优点在于传动可靠,实现简单,另外它的传动特点恰好适合带式运输机的特性。
3.齿轮传动法:齿轮传动法在构造上较复杂,但是学聪巧妙地利用了不同形状、不同数量的齿轮组合来实现不同的传统比,因此,它能够提供较大扭矩、较佳的传动效率,广泛应用于重型带式运输机的传动装置中。
带式运输机传动装置的设计
机械设计基础课程设计说明书带式运输机传动装置的设计A-5-------同轴式二级圆柱齿轮减速器的设计一.设计说明用于带式运输机的同轴式二级圆柱齿轮减速器;传动装置简图如右图所示;视情况可增加一级带传动或链传动;(1)带式运输机数据运输机工作轴转矩T=5300N·m运输带工作速度v=0.9m/s运输带滚筒直径D=450mm2工作条件单班制工作,空载启动,单向、连续运转,工作中有轻微振动;运输带速度允许速度误差为±5%;3使用期限工作期限为十年,检修期间隔为三年; 4生产批量及加工条件小批量生产;2.设计任务详见基本要求1选择电动机型号;二.选择电动机型号电动机是最常用的原动机,具有结构简单、工作可靠、控制简单和维护容易等优点;电动机的选择主要包括选择其类型和结构型式、容量功率和转速、确定具体型号;选择电动机类型根据任务书要求可知:本次设计的机械属于恒功率负载特性机械,且其负载较小,故采用Y型三相异步电动机全封闭结构即可达到所需要求;2、选择电动机容量工作机所需的功率其中带式输送机的效率电动机的输出功率其中η为电动机至滚筒主动轴传动装置的总效率,包括V带传动、一对齿轮传动、两对滚动轴承及联轴器等的效率,η值计算如下:由机械设计基础课程设计表10-1查得V带传动效率,一对齿轮传动的效率,一对滚动球轴承传动效率,联轴器效率,因此所以根据选取电动机的额定功率使,并由机械设计基础课程设计表10-110查得电动机的额定功率为确定电动机转速:滚筒转速为:取V带传动的传动比范围为:取单级齿轮传动的传动比范围为:则可得合理总传动比的范围为:故电动机转速可选的范围为:在这个范围内的电动机的同步转速有和两种,综合考虑电动机和传动装置的情况再确定最后的转速,为降低电动机的重量和成本,可选择同步转速为;根据同步转速查机械设计基础课程设计表10-110确定电动机型号为,其满载转速;此外,电动机的中心高、外形尺寸、轴伸尺寸等均可查表得出;三.选择联轴器,设计减速器总传动比的计算与分配电动机确定后面,根据电动机的满载转速和工作装置的转速,就可以计算传动装置的总传动比;总传动比的分配是个比较重要的问题;它将影响到传动装置的外轮廓尺寸、重量、润滑等许多问题;1、计算总传动比2、分配各级传动比为使带传动的尺寸不至过大,满足,可取,则齿轮的传动比传动装置的运动和动力参数计算传动装置的运动和动力参数是指各轴的转速、功率和转矩,这些参数是设计传动零件齿轮和带轮和轴时所必需的已知条件;计算这些参数时,可以按从高速轴往低速轴的顺序进行;1、各轴的转速2、各轴的功率3、各轴的转矩最后,将计算结果填入下表:轴名参数电动机轴Ⅰ轴Ⅱ轴滚筒轴转速n/r/min970323.3374.3374.33功率P/KW1110.5610.199.94转矩T/N.M108.3311.91309.221277.1传动比 i3 4.351效率η0.960.9650.975传动零件的设计计算设计时,一般先作减速器箱外传动零件的设计计算,以便确定减速器内的传动比及各轴转速、转矩的精确数值,从而使所设计的减速器原始条件比较准确;第一节减速器外传动零件的设计本传动方案中,减速器外传动即电动机与减速器之间的传动,采用V带传动;V 带已经标准化、系列化,设计的主要内容是确定V带型号和根数,带轮的材料、直径和轮毂宽度、中心距等;1、求计算功率查机械设计基础表13-8得,故2、选V带型号根据,由机械设计基础图13-15查出此坐标点位于B型号区域;3、求大、小带轮基准直径查机械设计基础表13-9,应不小于125mm,现取,由机械设计基础式13-9得式中;由机械设计基础表13-9,取;4、验算带速带速在范围内,合适;5、求V带基准长度和中心距初步选取中心距由机械设计基础式13-2得带长查机械设计基础表13-2,对B型带选用;再由机械设计基础式13-16计算实际中心距6、验算小带轮包角由机械设计基础式13-1得合适;7、求V带根数由机械设计基础式13-15得令,查机械设计基础表13-3得由机械设计基础式13-9得传动比查机械设计基础表13-5得由查机械设计基础表13-7得,查机械设计基础表13-2得,由此可得取5根;8、求作用在带轮轴上的压力查机械设计基础表13-1得,故由机械设计基础式13-17得单根V带的初拉力作用在轴上的压力9、带轮结构设计带轮速度,可采用铸铁材料;小带轮直径,采用实心式;大带轮直径,采用轮辐式;传动比及运动参数的修正外传动零件设计完成后,V带的传动比随之确定;用新的传动比对减速器内轴Ⅰ的转速、转矩数值进行修正;1、对轴Ⅰ转速的修正2、对轴Ⅰ转矩的修正最后,将修正结果填入下表:轴名参数电动机轴Ⅰ轴Ⅱ轴滚筒轴转速n/r/min970316.9974.3374.33功率P/KW1110.5610.199.94转矩T/N.M108.3318.141309.221277.1传动比 i 3.06 4.351效率η0.960.9650.975减速器内传动零件的设计减速器内的传动零件主要是指齿轮轴;本传动方案中的减速器采用直齿圆柱齿轮进行传动;直齿圆柱齿轮传动设计需要确定齿轮的材料、模数、齿数、分度圆、顶圆和根圆、齿宽和中心距等;1、选择材料及确定许用应力小齿轮用调质,齿面硬度,,机械设计基础表11-1,大齿轮用调质,齿面硬度,,机械设计基础表11-1;由机械设计基础表11-5,取,,2、按齿面接触强度设计设齿轮齿面按7级精度制造;取载荷系数机械设计基础表11-3,齿宽系数机械设计基础表11-6;小齿轮上的转矩取机械设计基础表11-4齿数取,则;故实际传动比;模数齿宽,取,,这里取;按机械设计基础表4-1取,小齿轮实际的分度圆直径,大齿轮实际的分度圆直径;齿顶高齿根高小齿轮齿顶圆直径小齿轮齿根圆直径大齿轮齿顶圆直径大齿轮齿根圆直径中心距3、验算轮齿弯曲强度齿形系数机械设计基础图11-8,机械设计基础图11-9 ,由机械设计基础式11-54、齿轮的圆周速度对照机械设计基础表11-2可知选用7级精度是合宜的;轴Ⅱ运动参数的修正内传动零件设计完成后,齿轮的传动比随之确定;用新的传动比对减速器内轴Ⅱ的转速、转矩数值进行修正;1、对轴Ⅱ、工作装置转速的修正2、对轴Ⅱ、工作装置转矩的修正最后,将修正结果填入下表:轴名参数电动机轴Ⅰ轴Ⅱ轴滚筒轴转速n/r/min970316.9974.0474.04功率P/KW1110.5610.199.94转矩T/N.M108.3318.141314.351282.1传动比 i 3.06 4.281效率η0.960.9650.975轴的设计计算第一节高速轴Ⅰ的计算已知轴Ⅰ传递的功率,转速,小齿轮的齿宽,齿数,模数,压力角,载荷平稳;1、初步估算轴的直径查机械设计基础表14-1轴的常用材料及其主要力学性能表,选取45号钢作为轴Ⅰ的材料,并进行调质处理;查机械设计基础表14-2常用材料的值和C值,取;由机械设计基础式14-2得考虑到有键槽的存在,轴径加大5%左右即取;2、轴的结构设计1确定轴的结构方案右轴承从轴的右端装入,靠轴肩定位;齿轮和左轴承从轴的左端装入,齿轮右侧端面靠轴肩定位,齿轮和左轴承之间用定位套筒使左轴承右端面得以定位,左右轴承均采用轴承端盖,齿轮采用普通平键得到圆周固定;2确定轴的各段直径轴结构示意图1轴段安装带轮,轴径取不大于70mm的标准值,这里取;2轴段安装轴承端盖,取;3轴段安装轴承,轴径为轴承内径的大小 ;查机械设计基础课程设计续表10-35:选取深沟球轴承6311,轴承内径,外径,轴承宽;这里取;轴两端安装轴承处轴径相等,则6段取;4轴段安装齿轮,齿轮内径,齿轮的轴向定位轴肩,取;3确定轴的各段长度结合绘图后确定各轴段长度如下:1轴段的长度取根据带轮结构及尺寸;2轴段总长度根据外装式轴承端盖的结构尺寸,起厚度,还有箱体的厚度取10mm;3轴段轴承的宽挡油环的长度和;4轴段因为小齿轮的齿宽为80mm,轴段的长度应比零件的轮毂短2-3mm,5轴段长度15mm;6轴段轴承的宽挡油环的长度和;3、按弯扭合成强度对轴Ⅰ的强度进行校核已知:转矩,小齿轮分度圆直径;圆周力径向力法向力1绘制轴受力简图如下2绘制垂直面弯矩图如下垂直面内的轴承支反力:水平面内的轴承支反力:由两边对称,知截面C的弯矩也对称;截面C在垂直面弯矩为3绘制水平面弯矩图如下截面C在水平面上弯矩为:4绘制合弯矩图如上5绘制扭矩图如上扭矩:6当量弯矩计算扭矩产生的扭转力按脉动循环变化,取α=0.6,截面C处的当量弯矩:7校核危险截面C的强度判定危险截面为第四段轴的中心面,轴的材料选用45钢,调质处理,查机械设计基础表14-1得;查机械设计基础表14-3查得则:∴该轴强度足够;第二节低速轴Ⅱ的计算已知轴Ⅱ传递的功率,转速,大齿轮的齿宽,齿数,模数,压力角,载荷平稳;1、初步估算轴的直径查机械设计基础表14-1轴的常用材料及其主要力学性能表,选取45号钢作为轴Ⅰ的材料,并进行正火处理;查机械设计基础表14-2常用材料的值和C值,取;由机械设计基础式14-2得根据联轴器结构及尺寸,取;2、轴的结构设计1确定轴的结构方案右轴承从轴的右端装入,靠轴肩定位;齿轮和左轴承从轴的左端装入,齿轮右侧端面靠轴肩定位,齿轮和左轴承之间用定位套筒使左轴承右端面得以定位,左右轴承均采用轴承端盖,齿轮采用普通平键得到圆周固定;(2)确定轴的各段直径轴结构示意图由图中个零件配合尺寸关系知;,,,;3确定轴的各段长度结合绘图后确定各轴段长度如下:1轴段的长度取根据联轴器结构及尺寸;2轴段总长度根据外装式轴承端盖的结构尺寸,其厚度,还有箱体的厚度取10mm;3轴段轴承的宽挡油环的长度和;4轴段因为大齿轮的齿宽为75mm,轴段的长度应比零件的轮毂短2-3mm;5轴段;6轴段;3、按弯扭合成强度对轴Ⅱ的强度进行校核已知:转矩:,大齿轮分度圆直径;圆周力径向力法向力(1)绘制轴受力简图如下(2)绘制垂直面弯矩图如下垂直面内的轴承支反力:水平面内的轴承支反力:由两边对称,知截面C的弯矩也对称;截面C在垂直面弯矩为3绘制水平面弯矩图如下截面C在水平面上弯矩为:(4)绘制合弯矩图如上5绘制扭矩图如上扭矩:6当量弯矩计算扭矩产生的扭转力按脉动循环变化,取α=0.6,截面C处的当量弯矩:7校核危险截面C的强度判定危险截面为第四段轴的中心面,轴的材料选用45钢,正火处理,查机械设计基础表14-1得;查机械设计基础表14-3查得则:∴该轴强度足够;键的选择与强度验算1、高速轴Ⅰ上键的选择与校核(1)最小直径处:1选择键型:该键为静联接,为了便于安装固定,选择普通A型平键;2确定键的尺寸:该轴上最小直径为,轴长,查机械设计基础课程设计表10-33得,用于此处连接的键的尺寸为;3强度校核:轴所受转矩;查机械设计基础表10-10,取,;由机械设计基础式10-26有:键连接的挤压强度;由机械设计基础式10-27有:键连接的压强;强度满足要求;该键标记为:键;(2)齿轮处1)选择键型:该键为静联接,为了便于安装固定,选择普通A型平键;2确定键的尺寸:该轴上最小直径为,轴长,查机械设计基础课程设计表10-33得,用于此处连接的键的尺寸为;3)强度校核:查机械设计基础表10-10,取,;由机械设计基础式10-26有:键连接的挤压强度;由机械设计基础式10-27有:键连接的压强;强度满足要求;该键标记为:键;2、低速轴Ⅱ上键的选择与校核1最小直径处1选择键型:该键为静联接,为了便于安装固定,选择普通A型平键;2确定键的尺寸:该轴上最小直径为,轴长,查机械设计基础课程设计表10-33得,用于此处连接的键的尺寸为;3强度校核:轴所受转矩;查机械设计基础表10-10,取,;由机械设计基础式10-26有:键连接的挤压强度;由机械设计基础式10-27有:键连接的压强;强度满足要求;该键标记为:键2齿轮处:1选择键型:该键为静联接,为了便于安装固定,选择普通A型平键;2确定键的尺寸:该轴上最小直径为,轴长,查机械设计基础课程设计表10-33得,用于此处连接的键的尺寸为;3)强度校核:查机械设计基础表10-10,取,;由机械设计基础式10-26有:键连接的挤压强度;由机械设计基础式10-27有:键连接的压强;强度满足要求;该键标记为:键;滚动轴承的选择及联轴器的选择第一节滚动轴承的选择根据设计条件,轴承预计寿命:小时1、计算高速轴处的轴承对于高速轴处的轴承选择,首先考虑深沟球轴承;初选用6311型深沟球轴承,其内径为55mm,外径为120mm,宽度为29mm,极限转速脂:5300r/min;极限转速油:6700r/min;因轴承工作温度不高、载荷平稳,查机械设计基础表16-8及表16-9,取;由于轴向力的影响可以忽略不计,即,取X=1,Y=0.则当量动载荷,转速n=316.99r/min,小时,;由机械设计基础式16-3得:所需径向基本额定动载荷查机械设计基础课程设计表10-35得:,故选用6311型深沟球轴承符合要求;2、计算低速轴处的轴承对于低速轴处的轴承选择,考虑深沟球轴承,初选6018型深沟球轴承,其内径为90mm,外径为140mm,宽度为24mm,极限转速脂:4300r/min;极限转速油:5300r/min;因轴承工作温度不高、载荷平稳,查机械设计基础表16-8及表16-9,取;由于轴向力的影响可以忽略不计,即,取X=1,Y=0.则当量=74.04r/min,小动载荷,转速n2时,;由机械设计基础式16-3得:所需径向基本额定动载荷查机械设计基础课程设计表10-35得:,故选6018型深沟球轴承符合要求;第二节联轴器的选择轴Ⅰ与V带轮通过键连接来传递力和扭矩,不需用联轴器;轴Ⅱ与滚筒之间用联轴器联接实现力和扭矩的传递;需选用合适的联轴器;考虑此运输机的功率不大,工作平稳,考虑结构简单、安装方便,故选择弹性柱销联轴器;计算转矩按下式计算:式中 T——名义转矩;N·mm;——工作情况系数;KA取K=1.5,则A=74.04r/min输出轴输出段直径为d=80mm;轴Ⅱ的转速为n2查机械设计课程上机与设计表14-5,可选择YL14或YLD14型弹性联轴器;第七章减速器润滑与密封1、润滑齿轮圆周速度,采用油池润滑,圆柱齿轮浸入油的深度约一个齿高,大齿轮的齿顶到油底面的距离≥30~60mm;选择油面的高度为40mm;并考虑轴承的润滑方式,计算:高速轴:低速轴:;所以选用脂润滑,润滑脂的加入量为轴承空隙体积的,采用稠度较小润滑脂;2、密封为了防止润滑油或脂漏出和箱体外杂质、水及灰尘等侵入,减速器在轴的伸出处、箱体的结合面处和轴承盖、窥视孔及放油孔与箱体的结合面处需要密封;轴伸出处的滚动轴承密封装置采用毛毡圈密封,由机械原理课程上机与设计表15-15可得,其中输入轴按密封圈密封处直径:,选择毛毡圈尺寸:;输出轴按密封圈密封处直径:;选择毛毡圈尺寸:;第八章减速器附件选择1、轴承端盖轴承端盖全部采用外装式轴承端盖,并根据机械设计课程上机与设计表13-4与表15-3进行选择;1、高速轴的轴承端盖轴承外径,螺栓直径,端盖上螺栓数目6;,,,,,取,,取;2、低速轴的轴承端盖:轴承外径,螺栓直径,端盖上螺栓数目6;,,,,,取,, 取2、通气器减速器工作时,由于箱体内部温度升高,气体膨胀,压力增大,使得箱体内外压力不等;为使箱体内受热膨胀的气体自由排出,以保持箱体内外压力平衡,不致使润滑油沿分箱面或轴伸密封件处向外渗漏,需要顶部或直接在窥视孔盖板上设置通气器;本设计将通气器安装在窥视孔盖板上;选用通气帽根据机械设计课程上机与设计表15-5进行选择;3、窥视孔窥视孔用于检查传动零件的啮合、润滑及齿轮损坏情况,并兼做注油孔,可向减速器箱体内注入润滑油,观察孔应设置在减速器箱盖上方的适当位置,以便直接进行观察并使手能伸入箱体内进行操作,平时观察孔用盖板盖住;查机械设计基础课程设计表5-16,取窥视孔孔盖的结构尺寸如下:150200100150M620 6个124、油标为指示减速器内油面的高度符合要求,以便保持箱内正常的油量,在减速器箱体上需设置油面指示装置;本设计选用长形油标,油标尺中心线与水平面成45度,注意加工油标凸台和安装油标时,不与箱体凸缘或吊钩相干涉;查机械设计课程上机与设计表15-10,选择A80 GB1161油标;5、放油孔及放油螺塞为排放减速器箱体内油污和便于清洗箱体内部,在箱座油池的最低处设置放油孔,箱体内底面做成斜面、向放油孔方向倾斜1度到2度,油孔附近作成凹坑,以便污油排尽;平时用放油螺塞将放油孔堵住圆柱螺纹油塞自身不能8、地脚螺栓为防止减速器倾倒和振动,减速器底座下部凸缘应设有地脚螺钉与地基连接;地脚螺钉为M24 取4个;9、箱体设计箱盖壁厚:10mm,箱座底凸缘厚度:10mm,地脚螺钉直径:24mm;数目:4个,轴承旁联结螺栓直径:16mm;。
二级减速器设计说明书
机械设计课程设计说明书设计题目:带式运输机传动装置设计姓名:班级:学号:指导教师:机械工程学院二○一八年十二月目录一、题目及设计要求 (1)1、设计题目 (1)2、设计数据与要求 (1)3、设计任务 (1)二、传动方案的分析和拟定 (3)三、电动机的选择 (5)3.1选择电动机的结构和类型 (5)3.2传动比的分配 (6)3.3传动系统的运动和动力计算 (7)四、减速器齿轮传动的设计计算 (9)4.1高速级斜齿圆柱齿轮的设计计算 (9)4.2低速级直齿圆柱齿轮的设计计算 (15)4.3两级圆柱齿轮减速器的传动误差校核 (20)五、减速器轴的设计 (21)5.1轴的设计与校核 (21)5.2键的选择与校核 (35)5.3轴承的选择与寿命校核 (37)六、箱体的设计 (43)6.1箱体附件 (43)6.2铸件减速器机体结构尺寸计算表 (43)七、减速器的密封与润滑 (45)八、设计小结 (47)参考文献一、题目及设计要求1、设计题目设计带式运输机装置中的动力传动装置。
带式运输机的传动装置如图1所示。
图1 带式运输机的传动装置示意图2、设计数据与要求设计数据:运输带的工作拉力F = 2800 牛;运输带的工作速度v = 2.0 米/秒;卷筒直径D = 250 毫米;生产规模:中小批量生产;工作条件:两班制(每班工作8小时),连续单向运转,有轻微振动,室内工作,有粉尘;使用期限:8年,大修期为2~3年;运输带速度允许误差:±5%动力来源:电力,三相交流(380/220 V)。
3、设计任务1. 拟定至少三种传动方案,并对这些方案进行分析对比;2. 针对所选传动方案,进行原动机的选择与传动装置运动和动力参数的计算、传动件(如齿轮传动、带传动)的设计计算、轴的设计计算、轴承及其组合部件设计、键连接和联轴器的选择与校核计算、润滑及附件的设计等;3. 采用先进三维软件对其中一轴系进行三维建模;4. 装配图一张(A0);5. 零件工作图2张(传动零件A3);6. 编写设计计算说明书一份(不少于25页)。
二级直齿圆柱齿轮减速器。毕业设计论文
二级直齿圆柱齿轮减速器。
毕业设计论文1.引言2.传动方案的评述3.齿轮减速器的设计计算4.齿轮减速器的二维平面设计5.结论1.引言齿轮传动是一种应用广泛的传动形式,其特点是效率高、寿命长、维护简便。
本设计主要讲述了带式运输机的传动装置——二级圆柱齿轮减速器的设计过程。
2.传动方案的评述在传动方案的选择上,我们考虑到带式运输机需要匹配转速和传递转矩,因此选择了齿轮减速器作为传动装置。
经过对市面上的齿轮减速器进行比较和分析,最终决定采用二级圆柱齿轮减速器。
3.齿轮减速器的设计计算在齿轮减速器的设计计算中,我们首先选择了合适的电动机,并进行了齿轮传动、轴的结构设计、滚动轴承的选择和验算、联轴器的选择和验算、平键联接的校核、齿轮传动和轴承的润滑方式的设计计算。
这些步骤都是必要的,以确保齿轮减速器的正常运行。
4.齿轮减速器的二维平面设计为了更好地展示齿轮减速器的结构和零件,我们使用AutoCAD软件进行了二维平面设计。
通过绘制二维平面零件图和装配图,我们可以更清晰地了解齿轮减速器的结构和工作原理。
5.结论在本设计中,我们成功地设计出了带式运输机的传动装置——二级圆柱齿轮减速器。
通过传动方案的评述、齿轮减速器的设计计算和二维平面设计,我们可以更深入地了解齿轮减速器的结构和工作原理,为今后的机械设计提供了参考。
1.引言本文旨在介绍电动机传动装置的设计计算方法,以帮助工程师们在设计电动机传动装置时更加准确、高效地进行计算。
电动机传动装置作为机械传动的一种,广泛应用于各种机械设备中,具有传动效率高、结构简单、使用寿命长等优点。
2.电动机的选择2.1.电动机类型的选择在进行电动机选择时,需要根据具体的使用要求和工作环境来选择合适的电动机类型,包括直流电动机、交流电动机、无刷电机等。
同时,还需考虑电动机的功率、转速等参数。
2.2.电动机功率的选择选择电动机功率时需要根据传动装置的工作负载和传动效率来计算,以确保电动机具有足够的输出功率。
机械设计课程设计--带式运输机传动装置
机械设计课程设计计算说明书设计题目带式运输机传动装置目录一课程设计任务书2二设计要求2三设计步骤21. 传动装置总体设计方案 32. 电动机的选择 43. 确定传动装置的总传动比和分配传动比 54. 计算传动装置的运动和动力参数 65. 设计V带和带轮 76. 齿轮的设计 97. 滚动轴承和传动轴的设计 148. 键联接设计 289. 箱体结构的设计 2910.润滑密封设计 3111.联轴器设计 32四设计小结32五参考资料32111一课程设计任务书课程设计题目:设计带式运输机传动装置(简图如下)1——V带传动2——运输带3——一级圆柱齿轮减速器4——联轴器5——电动机6——卷筒原始数据:题号4567891011运送带工作拉力2500260028003300400450048005000 F/N运输带工作速度v/(m/s)卷筒直径D/mm400220350350400400500500工作条件:连续单向运转,载荷平稳,使用期限8年,小批量生产,两班制工作,运输带速度允许误差为±5%二. 设计要求1.减速器装配图一张。
1.传动装置总体设计方案2.绘制轴、齿轮零件图各一张。
3.设计说明书一份。
三. 设计步骤1. 传动装置总体设计方案本组设计数据:第十一组数据:运送带工作拉力F/N 5000 。
运输带工作速度v/(m/s) 。
卷筒直径D/mm 500 。
1)减速器为二级同轴式圆柱齿轮减速器。
3) 方案简图如上图4)该方案的优缺点:该工作机有轻微振动,由于V带有缓冲吸振能力,采用V带传动能减小振动带来的影响,并且该工作机属于小功率、载荷变化不大,可以采用V带这种简单的结构,并且价格便宜,标准化程度高,大幅降低了成本。
减速器部分一级圆NF1200=smv7.1=mmD270=7. 滚动轴承和传动轴的设计(一).轴的设计7. 滚动轴承和传动轴的设计(一).轴的设计Ⅰ.输出轴上的功率I I IP、转速I I In和转矩I I IT由上可知kwP16.2=I I I,min120rn=I I I,mmNT⋅⨯=I I I51072.1Ⅱ.求作用在齿轮上的力因已知低速大齿轮的分度圆直径mmmzd18693222=⨯==而NdTFt5.184922==I I INFFtr1.673costan==βα=aFⅢ.初步确定轴的最小直径材料为45钢,正火处理。
【机设课设】带式输送机的普通V带传动装置 第二组
机械设计课程设计计算说明书设计题目带式输送机的传动装置机械设计制造及其自动化专业 02班设计者郭神发黄哲陈雅孺指导老师杨胜培2017年12月15日湖南师范大学前言运输机械在运输工业中的地位十分重要,对运输工业现代化具有举足轻重的作用。
它可以提高劳动生产率,改善生产环境,降低生产成本,减少环境污染,增加产品质量,提高产品的档次,增加附加值从而增加市场竞争力,带来更大的社会效益和经济效益。
带式运输机传动装置设计过程中的主要内容为传动方案的分析与拟定;选择电动机;计算传动装置的运动参数和动力参数;传动零件、轴的设计计算;轴承、联接件、润滑密封和联轴器的选择计算;减速器箱体结构设计及其附件的设计、绘制装配图和零件工作图、编写设计计算说明书以及设计总结和答辩。
主要依据《机械设计》和其他学科所学的知识,《机械设计课程设计指导手册》相关的规定和设计要求,《机械设计课程设计图册》相关部分的参考以及其他设计手册和参考文献的查阅,最后还有老师在整个课设过程中的指导和不断的纠正,来完成本次的课程设计。
通过这次课程设计,培养了我们独立机械设计的能力,对机械总体的设计有了一个宏观的认识,对具体的结构及其作用和各部分之间的关系有了更加深刻的了解,考虑问题更加全面,不仅要考虑工艺性,标准化,还要考虑到经济性,环境保护等。
综合各种因素得到一个相对合理的方案。
本次设计过程涉及到机械装置的实体设计,涉及零件的应力、强度的分析计算,材料的选择、结构设计等,涉及到以前学过的工程制图、工程材料、机械设计制造、公差配合与技术测量、理论力学、材料力学、机械原理等方面的知识,是对以前所学知识的一次实践应用,考验学生的综合能力,是一次十分难得的机会。
目录1.设计概述 (1)1.1设计目的 (1)1.2设计步骤 (1)1.3课程设计中应该注意的问题 (2)2.设计任务要求 (3)2.1设计题目 (3)2.2设计参数 (3)2.3设计任务 (3)2.4拟定传动方案 (3)2.4.1拟定方案的任务 (3)2.4.2选择传动机构的类型 (4)2.4.3确定最终传动方案 (4)3.传动方案简述 (6)3.1传送方案说明 (6)3.2电动机的选择 (6)3.3总传动比的确定及各级传动比的分配 (6)3.3.1电动机主要参数 (6)3.3.2各级传动比的分配 (6)3.4各轴转速、转矩与输入功率 (7)4.带传动设计与校核 (9)4.1原始数据 (9)4.2带的设计计算 (9)4.3 V带传动主要参数汇总表 (11)4.4带轮材料及结构 (12)5.轴的设计 (13)5.1轴的结构设计 (13)5.2 I轴的直径计算 (13)6.带轮设计 (15)7.键联接强度的计算 (17)8.普通 V 带传送装置的装配图和零件图(见附件 1) (19)9.设计小结 (19)1.设计概述1.1设计目的机械设计课程是培养学生具有机械设计能力的技术基础课。
带式运输机的传动装置
带式运输机的传动装置1. 引言带式运输机是一种常见的物料输送设备,广泛应用于煤矿、建材、化工等行业。
其传动装置作为带式运输机的核心组成部分,对其运行稳定性、能效以及运输能力有着重要影响。
本文将对带式运输机的传动装置进行详细介绍,包括传动方式、传动元件以及常见故障及其处理方法。
2. 传动方式带式运输机的传动方式主要有两种:机械传动方式和电动传动方式。
2.1 机械传动方式机械传动方式是指通过传统的机械元件(如链条、齿轮)实现带式运输机的传动。
机械传动方式的优点是结构简单、容易维修,适用于一些传输能力较小的场合。
然而,机械传动方式的传动效率较低,噪音和振动较大,且容易受到外界环境的影响。
2.2 电动传动方式电动传动方式是指通过电动机驱动带式运输机的传动。
电动传动方式的优点是传动效率高、运行稳定,适用于大型带式运输机的应用场合。
电动传动方式需要配备电机控制系统,使得设备的启停和传动参数的控制更加灵活。
3. 传动元件带式运输机的传动装置包括多个传动元件,下面将对常见的传动元件进行介绍。
3.1 传动带传动带是带式运输机传动的核心部件,承担着将动力从电动机传递到带式运输机的任务。
传动带的选用应考虑传输能力、耐磨性、耐油性等因素。
常见的传动带有橡胶带、聚酯带等。
3.2 传动轮传动轮是传动带的驱动元件,通常由铸铁或钢铸成。
传动轮的形状和材料的选择会直接影响到传动带的传动效率和使用寿命。
传动轮应具有良好的磨损性能和耐用性,以保证带式运输机的正常运行。
3.3 传动箱传动箱是带式运输机传动的调节和转向装置,其作用是调整传动带的速度和方向。
传动箱通常由减速机、连杆、联轴器等组成,具有传动效率高、运行平稳等优点。
4. 常见故障及处理方法带式运输机的传动装置在长时间运行中可能会出现各种故障,下面将介绍几种常见的故障及其处理方法。
4.1 传动带松动传动带松动会导致传动效率下降甚至传动带脱落。
处理方法包括定期检查传动带的松紧度,必要时进行调整,且定期更换磨损严重的传动带。
机械设计课程设计带式运输机传动装置两级圆锥圆柱齿轮减速器
机械设计基础课程设计设计说明书题目:带式运输机传动装置两级圆锥-圆柱齿轮减速器机械设计基础课程设计任务书题目设计带式运输机传动装置传动系统图:图一连续单向运转,工作时有轻微振动,小批量生产,单班制工作,使用期限8年,运输带速度允许误差为±5%要求完成:1.减速器装配图1张(A2)。
2.零件工作图2张(齿轮和轴)。
3.设计说明书1份,6000-8000字。
开始日期 2010年 12 月 06 日完成日期 20010 年 12 月 31 日目录1选择电动机 (1)1.1电动机类型和结构型式 (1)1.2电动机容量 (1)1.3电动机的转速 (2)1.4电动机的技术数据和外形,安装尺寸 (2)2 计算传动装置总传动比和分配各级传动比 (3)2.1传动装置总传动比 (3)2.2分配各级传动比 (3)3计算传动装置的运动和动力参数 (4)3.1各轴转速 (4)3.2各轴输入功率 (4)3.3各轴转矩 (4)4传动件的设计计算 (6)4.1圆锥直齿轮设计 (6)4.1.1选定齿轮齿轮类型、精度等级、材料及齿数 (6)4.1.2按齿面接触强度设计 (6)4.1.3校核齿根弯曲疲劳强度 (8)4.1.4几何尺寸计算 (9)4.2圆柱直齿齿轮设计 (10)4.2.1选定齿轮精度等级、材料及齿数 (10)4.2.2按齿面接触强度设计由设计 (10)4.2.3按齿根弯曲疲劳强度设计 (10)5轴的设计计算 (15)5.1输入轴设计 (15)5.2中间轴设计 (21)5.3输出轴设计 (26)6滚动轴承的选择及校核计算 (32)6.1输入轴滚动轴承计算 (32)7键联接的选择及校核计算 (33)7.1输入轴键计算 (33)7.2中间轴键计算 (33)7.3输出轴键计算 (33)8.联轴器的选择及校核计算 (34)8.1各种联轴器的比较 (34)8.1.1 刚性联轴器 (34)8.1.2弹性元件的挠性联轴器 (34)8.2联轴器的选择 (34)8.3联轴器的校核计算 (35)9.减速器附件的选择 (36)9.1视孔盖和窥视孔 (36)9.2放油孔与螺塞 (36)9.3油标 (36)9.4通气孔 (36)9.5起盖螺钉 (36)9.6定位销 (36)9.7吊环 (37)10.润滑与密封 (38)11.铸铁直齿锥齿轮减速器箱体结构尺寸的确定 (39)12.设计小结 (40)13.参考文献 (41)图5-1轴的载荷分析由于该轴与连轴器相连的一端直径要与电机相同,Tca应小于联轴器的公称转矩,所以查标准GB/T5014-2003或文献【4】,选。
带式运输机传动装置圆锥-圆柱齿轮两级减速器设计说明书
带式运输机传动装置圆锥-圆柱齿轮两级减速器设计说明书设计说明书一、引言1.1 目的本设计说明书旨在详细描述带式运输机传动装置圆锥-圆柱齿轮两级减速器的设计过程、原理及相关参数,以便于生产制造和使用过程中的参考。
1.2 范围本设计说明书涵盖了带式运输机传动装置圆锥-圆柱齿轮两级减速器的整体设计、各部件选型、传动原理、安装调试要点等内容。
二、设计要求2.1 性能要求2.1.1 传动比:根据带式运输机的工作要求,确定合适的传动比。
2.1.2 扭矩传递:确保减速器能够传递带式运输机所需的扭矩,满足工作条件下的负载要求。
2.1.3 节能性:在保证传动可靠性的前提下,尽量提高传动效率,减少能量损失。
2.2 结构要求2.2.1 可靠性:减速器的结构设计应保证传动的可靠性,具备足够的寿命和抗疲劳能力。
2.2.2 紧凑性:设计要考虑减速器整体尺寸的紧凑性,满足带式运输机的紧凑布局要求。
2.2.3 维护方便性:结构设计应考虑维护保养的便捷性,方便日常维护和检修。
三、设计方案3.1 带式运输机传动装置圆锥-圆柱齿轮两级减速器的整体结构设计3.1.1 减速器的整体布局3.1.2 各部件之间的连接方式3.1.3 减速器的外形尺寸设计3.2 圆锥齿轮的设计3.2.1 齿轮参数计算3.2.2 齿轮加工工艺3.2.3 齿轮受力分析3.3 圆柱齿轮的设计3.3.1 齿轮参数计算3.3.2 齿轮加工工艺3.3.3 齿轮受力分析3.4 传动轴的设计3.4.1 材料选择和尺寸计算3.4.2 轴的加工工艺3.5 装配与调试要点3.5.1 组装顺序和方法3.5.2 轴承的选择和安装3.5.3 传动装置的调试与测试四、附件本文档涉及到以下附件:1、带式运输机传动装置圆锥-圆柱齿轮两级减速器的设计图纸2、齿轮加工工艺流程图3、轴的加工图纸及尺寸表4、传动装置的装配与调试记录表五、法律名词及注释5.1 传动比:指齿轮传动中输入齿轮转速与输出齿轮转速的比值。
二级减速器带式输送机传动装置设计说明书
计带式输送机传动装置组 组目 级 别 名题 班 諾程设计学号:************姓 指导老师:**目录一、........................................................... 设计任务书11•设计题目 (1)2 •原始数据 (1)二、......................................................... 传动方案分析21 •带传动 (2)2•齿轮传动 (2)三、......................................................... 电动机的选择3四、................................................................. 传动装置和动力装置参数计算............................................... 五、................................................................. 传动零件设计.............................................................1 .带传动设计 ....................................................2. ............................................................................................................. 齿轮传动设计............................................................六、................................................................. 轴的设计.................................................................1.输入轴.........................................................2.输出轴.........................................................七、................................................................. 轴承的选择计算...........................................................1.轴承I ......................................................2.轴承U ......................................................八、................................................................. 键联接的选择计算......................................................... 九、................................................................. 联轴器的选择计算........................................................十、润滑方式及密封...................................................十一、参考资料.......................................................十二、感受及体会.....................................................一、设计任务书1.设计题目:带式输送机传动装置1-V 嚼住张2-^3-4-^Si5-4S#E6-4ft原始数据:注:传动不逆转,载荷平稳,启动载荷为名义载荷的倍,输送带速度允许误差为土%。
带式运输机传动装置设计说明书
带式运输机传动装置设计说明书1. 引言本文档为带式运输机的传动装置设计说明书,旨在详细描述带式运输机传动装置的设计原理、参数选取和计算等内容。
带式运输机是一种用于物料输送的机械设备,传动装置作为核心组成部分之一,对其性能和可靠性有着重要影响。
通过本文档的阅读和理解,读者将了解到带式运输机传动装置的设计过程,以及对应的设计指导。
2. 设计原理带式运输机传动装置的设计原理基于传动轴和传动带的运动方式。
传动装置通过驱动轴传递动力给传动带,从而实现物料的输送。
设计原理包括以下几个方面的考虑:1.动力传递方式:传动装置可以采用电动机、液压马达或者内燃机等形式作为动力源,其中电动机是最常见的选择;2.传动装置的布局:传动装置的布局应考虑到整体设计的紧凑性和结构的稳定性,以保证传动装置的正常运行;3.传动装置的传动方式:传动装置可以采用齿轮传动、链条传动或者带传动等方式,根据实际需要选择合适的传动方式。
3. 参数选取和计算带式运输机传动装置的参数选取和计算是设计过程中的重要环节。
以下是几个关键参数的选取和计算方法的简要说明:3.1 动力计算动力计算是确定传动装置所需动力的重要步骤。
根据实际物料输送需求和传动装置的效率,可以计算出传动装置所需的最小动力。
动力计算公式如下:$$P = \\frac{Q \\cdot H}{η \\cdot 1000}$$其中,P为传动装置所需动力(单位:千瓦),Q为物料输送量(单位:吨/小时),H为提升高度(单位:米),η为传动装置效率(取值范围为0到1之间)。
3.2 速度计算速度计算是确定传动装置所需转速的重要步骤。
根据物料输送的要求和传动装置的传动比例,可以计算出传动装置所需的转速。
速度计算公式如下:$$N = \\frac{V}{\\pi \\cdot D}$$其中,N为传动装置所需转速(单位:转/分钟),V为物料输送速度(单位:米/秒),D为传动装置圆盘的直径(单位:米)。
带式运输机传动装置的设计
带式运输机传动装置的设计1. 引言带式运输机是一种常用的物料搬运设备,广泛应用于矿山、水泥厂、建筑工地等工业领域。
而传动装置则是带式运输机的核心组成部分,对其运行稳定性和效率起着重要的作用。
本文将详细介绍带式运输机传动装置的设计原理、主要组成部分以及设计方法。
2. 传动装置的设计原理传动装置的设计原理主要涉及到动力传递和力的平衡。
带式运输机传动装置通常由电动机、减速器、轴承以及传动带等组成。
其中电动机负责提供动力,减速器负责将电动机输出的高速旋转转矩转换为带式运输机需要的低速大转矩。
轴承则起到支撑和定位的作用,保证传动装置的稳定运行。
而传动带作为传递动力和物料的媒介,需要具备足够的强度和耐磨性。
3. 主要组成部分介绍3.1 电动机电动机是带式运输机传动装置的动力源,负责提供驱动力使带式运输机运行起来。
电动机的选型需要根据带式运输机的工作条件和运行要求进行合理选择,通常考虑到功率、转速、工作环境等因素。
3.2 减速器减速器负责将电动机输出的高速旋转转矩转换为带式运输机需要的低速大转矩。
在带式运输机传动装置中,常用的减速器有齿轮减速器、带轮减速器等。
减速器的选型需要根据带式运输机的工作负载和传动比等参数进行匹配。
3.3 轴承轴承起到支撑和定位的作用,保证传动装置的稳定运行。
其中常用的轴承类型有滚动轴承和滑动轴承,选择要根据带式运输机的工作负载、转速和工作环境等因素进行选择,保证轴承寿命和工作效果。
3.4 传动带传动带作为传递动力和物料的媒介,需要具备足够的强度和耐磨性。
常见的传动带材料有橡胶、聚酯纤维、尼龙等,选材要根据带式运输机的工作环境和运行要求进行选择,保证传动带的可靠性和使用寿命。
4. 设计方法带式运输机传动装置的设计方法可以分为以下几个步骤:4.1 确定传动装置的参数根据带式运输机的工作要求,确定传动装置的功率、转速和工作负载等参数。
这些参数直接影响到电动机、减速器和传动带的选型。
4.2 选型电动机和减速器根据传动装置的参数和工作要求,选型合适的电动机和减速器。
机械设计课程设计带式运输机传动装置
机械设计课程设计:带式运输机传动装置一、概述在机械设计课程中,带式运输机是常见的传输设备之一。
带式运输机广泛应用于矿石、建材、化工等行业,用于输送散状物料或成批物料。
其传动装置作为带式运输机的核心部分,对其传动效率、运行稳定性和寿命具有重要影响。
在机械设计课程设计中,对带式运输机传动装置的设计和优化是非常重要的。
二、带式运输机传动装置的结构及原理带式运输机传动装置主要由驱动装置、传动轮、传动带、张紧装置、托辊和支撑架等组成。
其工作原理是通过驱动装置带动传动轮,在带式运输机的运行中使传动带运动,从而达到物料输送的目的。
其中,传动轮是传动带与驱动装置之间的通联部件,同时还兼具传动和支撑传动带的功能。
张紧装置用于保持传动带适当的张紧度,以防止传动带在运行中产生松动或跳齿现象。
托辊用于支撑传动带,降低传动带与传动轮之间的摩擦力,减小传动带的磨损。
三、带式运输机传动装置的设计要点1. 驱动装置选择:根据带式运输机的工作条件和传动功率的要求,选择适当的电机或其他动力源作为驱动装置。
考虑到带式运输机在使用过程中需要频繁启停和重载能力要求高,应选择启动性能好、转矩稳定的电机。
2. 传动轮和传动带匹配:传动轮的直径与传动带的宽度应匹配,以保证传动带在运行时与传动轮的正常啮合。
还要考虑传动轮的材质和表面处理等对传动带的影响,以减小摩擦力,提高传动效率。
3. 张紧装置设计:张紧装置的设计应确保传动带在运行中保持适当的张紧度,不过紧或过松都会影响传动带的使用寿命和传动效率。
张紧装置的安装位置和调整方式也需要考虑。
4. 托辊布置和设计:托辊的布置应合理,能够支撑传动带的重量,在传动带弯曲处减小摩擦力。
托辊的数量和间距、使用材料等都需要进行合理选择和设计。
四、带式运输机传动装置的优化1. 传动带材料的选择:传动带的材料选择与其耐磨性、强度和伸长率等性能有关。
在不同工况下,应选择适当的传动带材料,以延长其使用寿命。
2. 传动轮表面处理:传动轮表面的处理对传动带的磨损和传动效率具有重要影响。
机械设计带式运输机的传动装置的设计
机械设计带式运输机的传动装置的设计一、引言带式运输机是一种广泛应用于大型矿山和矿物处理系统中的重要物料传输设备。
传输带作为基本的传输元件,主要负责将物料从一个点传输到另一个点。
因此,在带式运输机的设计中,传动装置的设计是非常关键的一环,它的质量和可靠性直接影响到设备的正常运行和生产效率。
本文将重点讨论机械设计带式运输机的传动装置的设计。
二、带式运输机传动装置的种类带式运输机的传动装置一般分为以下两种:机械传动和电动传动。
1. 机械传动机械传动通常采用减速机传递动力,常见的减速机有圆柱齿轮减速机、锥齿轮减速机、行星减速机等。
机械传动的特点是结构简单,传动效率高,并且不容易出现故障,可以在恶劣的环境下长期运行。
但是它的缺点是安装和维修难度较大,需要有专业技能的技术人员进行操作。
2. 电动传动电动传动采用电机传递动力,一般会对电机进行选型和特殊设计以满足带式运输机的工作要求。
电动传动的特点是结构简单,安装和维修相对方便,因为电机的控制较为成熟,所以可以根据需要实现多种控制方式,如定速控制、调速控制等。
然而,由于传动效率相对较低,同时容易发生电机故障,因此需要保持良好的维护和保养。
三、机械传动带式运输机传动装置的设计在机械传动带式运输机的传动装置设计中,需要考虑以下几个方面:1. 减速机的选择在机械传动带式运输机的传动装置中,减速机是比较关键的部件之一,它负责减少电机的转速并将动力传递到传动轴上。
在选择减速机时需要考虑以下因素:(1)传动比,需要根据带式运输机的工作条件、传送距离、传动功率等因素确定传动比。
(2)传动轴的位置,以确保传动装置的精准并且满足带式运输机的随动条件。
(3)传动轴的转速,在选择减速机的同时需要计算传动轴的合理转速,以确保传动装置的可靠性和稳定性。
2. 驱动皮带的选择带式运输机驱动皮带是连接电机和减速机输出轴的重要部件,它的质量和规格直接影响到传动装置的效率和可靠性。
在选择驱动皮带时需要考虑以下因素:(1)工作环境,根据带式运输机的应用环境和工作条件选择适当的带宽和长度。
机械设计课程设计——设计带式运输机的传动装置
~ 269 HBW
, 3
539 Pa
~ 217 HBW
NL1=1.28×109 NL2=2.14×108 , ZNT1=0.92 ZNT2=0.98 , [σ H]1=524.4Mpa [σ H]2=343Mpa
大齿轮选用 45 材料,调质处理,硬度 162
B 569 MPa
d d 90 mm
1
ⅱ验算带速 v
v n
v
d d1 60000
6 . 68 m / s
214 . 5 mm a 780 mm
在 5~25 之间,满足带速要求
2
ⅲ计算从动带轮基准直径 d d 已知 i
2
取 a0
400 mm
3 . 3 ,取 0 . 02
d1
,
d d 1 id
1 180
57 . 3
dd dd
1
2
154 . 9
a
1 154 . 9 120
满足要求
i齿 4
ⅵ确定 V 带的根数
Z Pc
P0
P0 K K 2
Z 1 24 Z 2 96
根据《机械设计》 P94 表 5-6,得 P0
0 . 36 kw
Pr : 2 . 51 KW ~ 2 . 78 KW
(3)电机选择 根据《机械设计课程设计》P193 表 19-1 选择电动机型号为 Y10022-4. 其主要性能:额定功率为 3 KW ,满载转速为 1420 r / min 。 《机械设计课程设计》P15 表 2-3 三、计算总传动比和各级传动比 ①i
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带式运输机传动装置2
介绍
带式运输机是一种广泛应用于工业生产中的输送设备,广泛用于矿山、建筑、化工等领域。
它通过传动装置将动力传递给输送带,使得物料可以被持续地输送。
在本文档中,我们将重点介绍带式运输机的传动装置。
传动方式
带式运输机的传动方式多种多样,常见的传动方式包括机械传动、电动传动和液压传动等。
不同的传动方式各有特点,适用于不同的工况和需求。
下面我们将分别介绍这些传动方式。
机械传动
机械传动是通过齿轮、链条、皮带等机械装置将动力传递给输送带的一种传动方式。
机械传动的优点是传动效率高、结构简单,适用于长距离的输送。
常见的机械传动装置有传动齿轮、传动链条等。
电动传动
电动传动是通过电动机将动力传递给输送带的一种传动方式。
电动传动的优点是动力源丰富、控制灵活,可以根据需要进行变速和反向运行。
常见的电动传动装置有电动机和减速机。
液压传动
液压传动是通过液压装置将动力传递给输送带的一种传动方式。
液压传动的优点是传动平稳、能够承受较大的负载,适用于重载和大功率的输送。
常见的液压传动装置有液压泵、液压马达等。
传动装置的选型
在选择带式运输机的传动装置时,需要考虑以下几个因素:
1.功率需求:根据输送物料的重量和速度需求确定所需的传
动功率,从而选择适当的传动装置。
2.载荷要求:根据输送物料的重量和体积,确定所需的承载
能力,选择能够承受该载荷的传动装置。
3.工作环境:考虑带式运输机工作的环境条件,如温度、湿
度、粉尘等因素,选择适应该环境的传动装置。
4.维护和保养:考虑传动装置的维护难易度和保养成本,选
择易于维护和保养的传动装置。
在选型过程中,可以咨询专业的传动装置供应商或工程师,根据实际情况进行选择。
传动装置的维护与保养
为了确保带式运输机传动装置的正常运行和延长使用寿命,需要进
行定期的维护和保养。
以下是一些常见的维护和保养措施:
1.清洁:定期清洁传动装置的表面和内部,清除积尘和杂物,
确保传动装置的正常运行。
2.润滑:按照厂家的要求,定期给传动装置添加润滑油或润
滑脂,减少摩擦和磨损,保持传动装置的良好运转。
3.检查:定期检查传动装置的各个部件,如齿轮、链条、皮
带等,发现问题及时修复或更换,避免进一步损坏。
4.调整:根据实际情况,调整传动装置的张紧度、对中度等,
保持传动装置的正常工作状态。
通过科学的维护和保养,可以确保带式运输机传动装置的可靠性和
稳定性,延长使用寿命。
总结
带式运输机的传动装置在设备的正常运行和输送效率方面起着至关重要的作用。
不同的传动方式适用于不同的工况和需求,选用适当的传动装置对于设备的正常运行和延长使用寿命具有重要意义。
同时,定期的维护和保养能够确保传动装置的可靠性和稳定性。
在选型和使用过程中,建议咨询专业人士的意见,以获得更好的效果。