带式运输机传动装置的设计说明
带式运输机传动装置的设计方案说明书
目录一、传动方案拟定------------------------------------2二、电动机的选择------------------------------------2三、计算总传动比及分配各级的传动比------------------4四、运动参数及动力参数计算--------------------------5五、传动零件的设计计算------------------------------5六、轴的设计计算------------------------------------9七、键联接的选择及计算-----------------------------17八、减速器箱箱盖及附件的设计计算-------------------18九、润滑与密封-------------------------------------20十、设计小结---------------------------------------20 十一、参考资料目录---------------------------------21一、传动方案拟定第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器(1)工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。
(2)小批量生产,带式输送机的传动效率为0.96。
(3)原始数据:滚筒圆周力F=2KN;带速V=1.3m/s;滚筒直径D=180mm。
1、电动机2、v带传动3、斜齿圆柱齿轮减速器4、联轴器5、带式运输机二、电动机的选择1、电动机类型和结构型式的选择:按已知的工作要求和条件,选用 Y系列三相异步电动机。
2、确定电动机的功率:<1)传动装置的总效率:η总=η带×η2轴承×η齿轮×η联轴器×η滚筒=0.96×0.992×0.98×0.99×0.97=0.89(2>电机所需的工作功率:P d=FV/1000η总=2000×1.3/1000×0.89=2.31KW3、确定电动机转速:滚筒轴的工作转速:N w=60×1000V/πD=60×1000×1.3/π×180=137.93r/min根据[2]表2.2中推荐的合理传动比范围,取V带传动比I v=2~4,单级圆柱齿轮传动比范围I c=3~8,则合理总传动比i的范围为i=6~32,故电动机转速的可选范围为n d=i×n w=<6~32)×137.93=828~4414r/min符合这一范围的同步转速有960 r/min和1420r/min。
带式运输机传动装置设计
带式运输机传动装置设计带式运输机是目前工业生产中最常用的机械装置之一,其用途十分广泛,既可用于运输矿石、煤炭、水泥等物料,也可用于运输成品等。
而在带式运输机的构造中,传动装置是其中重要的组成部分之一,它直接影响到带式运输机的运转效率、稳定性以及寿命等关键因素。
一、带式运输机传动装置的构成带式运输机传动装置的基本组成部分包括:动力源、电机、减速器、轴承、链轮等。
其中动力源可以有多种选择,如电动机、汽油发动机、液压式等,不过现在电动机是应用最广泛的一种动力源。
减速器是主要的传动装置,它可以将电机的高速旋转转换成带式运输机所需的低速大扭矩旋转,轴承和链轮则用来支撑带式运输机带轮的转动。
二、带式运输机传动装置的设计原则在带式运输机传动装置的设计中,需要注意以下几个方面的原则:1.传动效率高:传动效率是指带式运输机传动装置所传递的动力与输入动力之间的比值,传动效率越高,带式运输机则越省电、能效越高。
因此,在设计传动装置时,需要选择高效的减速器,并且尽可能保证传动链的高度匹配,避免传动能量损失。
2.结构合理:对于传动装置结构的设计,需要考虑整个装置的布局结构是否合理,尽量减少装置包括齿轮、链轮在内的零部件数量,简化结构,降低成本。
3.可维修性好:传动装置在使用过程中,因传动链条的磨损、轮辐的损坏等原因而导致的故障很常见,因此,设胆装置在设计时需要考虑其可维修性,降低维修成本及工期。
三、常用的带式运输机传动装置1.电机直接驱动法:这种直接驱动法的优点是结构简单,传动效率高,但其缺点在于电机需要马力较大,且因为是直接驱动,其载荷大,对运转设备的整体性能、承载能力要求高。
2.皮带传动法:皮带传动法也称为减速器传动法,是应用较广泛的驱动形式之一,其优点在于传动可靠,实现简单,另外它的传动特点恰好适合带式运输机的特性。
3.齿轮传动法:齿轮传动法在构造上较复杂,但是学聪巧妙地利用了不同形状、不同数量的齿轮组合来实现不同的传统比,因此,它能够提供较大扭矩、较佳的传动效率,广泛应用于重型带式运输机的传动装置中。
机械设计课程设计说明书(带式运输机传动装置)
机械设计课程设计说明书 机械设计课程设计说明书题号:43一、 传动方案-—V 带传动原始题目:课程设计题目五:带式运输机传动装置工作条件:连续单向运转,载荷平稳,空载起动,使用期限10年,小批量生产,两班制工作,运输带速度允许误差为±5%。
滚筒效率:ηj =0。
96(包括滚筒与轴承的效率损失)。
1-电动机 2-带传动 3-减速器 4-联轴器 5-滚筒 6-传送带原始数据题 号 41 42 4344 45 46 47 4849 50运输带工作拉力(N)1100 1150 1200 1250 1300 1350 1450 1500 1500 1600 运输带工作速度(m ·s -1) 1.50 1。
60 1。
70 1。
50 1.55 1.60 1.55 1。
65 1。
70 1.80 卷筒直径(mm) 250 260 270 240 250 260 250 260 280 300已知条件: 1.工作参数运输带工作拉力F = 1200N 。
运输带工作速度V =1。
70 m/s(允许带速误差±5%)。
滚筒直径D = 270 mm. 滚筒效率0。
96(包括滚筒与轴承的效率损失). 2.使用工况两班制工作,连续单向运转,载荷平稳,空载起动。
3.工作环境室内,灰尘较大,环境最高温度35℃。
4.动力来源三相交流电,电压380/220V. 5.寿命要求使用期限10年,其工作期限(使用折旧期)为10年,大修期4年,中修期2年,小修Fν期半年。
6.制造条件一般机械厂制造,小批量生产.二、选择电动机(1)确定电动机额定功率、工作功率(输出功率)动力来源:三相交流电,电压380/220V电动机是标准件,根据要求两班制,灰尘较大,最高温度35度,三相交流电,笼型异步,封闭式结构,电压380v,Y型根据,可得电动机额定功率因为总效率——为闭式齿轮传动效率(0.97);——带传动效率(0.96)--为滚动轴承效率(0。
带式运输机传动装置的设计
机械设计基础课程设计说明书带式运输机传动装置的设计A-5-------同轴式二级圆柱齿轮减速器的设计一.设计说明用于带式运输机的同轴式二级圆柱齿轮减速器;传动装置简图如右图所示;视情况可增加一级带传动或链传动;(1)带式运输机数据运输机工作轴转矩T=5300N·m运输带工作速度v=0.9m/s运输带滚筒直径D=450mm2工作条件单班制工作,空载启动,单向、连续运转,工作中有轻微振动;运输带速度允许速度误差为±5%;3使用期限工作期限为十年,检修期间隔为三年; 4生产批量及加工条件小批量生产;2.设计任务详见基本要求1选择电动机型号;二.选择电动机型号电动机是最常用的原动机,具有结构简单、工作可靠、控制简单和维护容易等优点;电动机的选择主要包括选择其类型和结构型式、容量功率和转速、确定具体型号;选择电动机类型根据任务书要求可知:本次设计的机械属于恒功率负载特性机械,且其负载较小,故采用Y型三相异步电动机全封闭结构即可达到所需要求;2、选择电动机容量工作机所需的功率其中带式输送机的效率电动机的输出功率其中η为电动机至滚筒主动轴传动装置的总效率,包括V带传动、一对齿轮传动、两对滚动轴承及联轴器等的效率,η值计算如下:由机械设计基础课程设计表10-1查得V带传动效率,一对齿轮传动的效率,一对滚动球轴承传动效率,联轴器效率,因此所以根据选取电动机的额定功率使,并由机械设计基础课程设计表10-110查得电动机的额定功率为确定电动机转速:滚筒转速为:取V带传动的传动比范围为:取单级齿轮传动的传动比范围为:则可得合理总传动比的范围为:故电动机转速可选的范围为:在这个范围内的电动机的同步转速有和两种,综合考虑电动机和传动装置的情况再确定最后的转速,为降低电动机的重量和成本,可选择同步转速为;根据同步转速查机械设计基础课程设计表10-110确定电动机型号为,其满载转速;此外,电动机的中心高、外形尺寸、轴伸尺寸等均可查表得出;三.选择联轴器,设计减速器总传动比的计算与分配电动机确定后面,根据电动机的满载转速和工作装置的转速,就可以计算传动装置的总传动比;总传动比的分配是个比较重要的问题;它将影响到传动装置的外轮廓尺寸、重量、润滑等许多问题;1、计算总传动比2、分配各级传动比为使带传动的尺寸不至过大,满足,可取,则齿轮的传动比传动装置的运动和动力参数计算传动装置的运动和动力参数是指各轴的转速、功率和转矩,这些参数是设计传动零件齿轮和带轮和轴时所必需的已知条件;计算这些参数时,可以按从高速轴往低速轴的顺序进行;1、各轴的转速2、各轴的功率3、各轴的转矩最后,将计算结果填入下表:轴名参数电动机轴Ⅰ轴Ⅱ轴滚筒轴转速n/r/min970323.3374.3374.33功率P/KW1110.5610.199.94转矩T/N.M108.3311.91309.221277.1传动比 i3 4.351效率η0.960.9650.975传动零件的设计计算设计时,一般先作减速器箱外传动零件的设计计算,以便确定减速器内的传动比及各轴转速、转矩的精确数值,从而使所设计的减速器原始条件比较准确;第一节减速器外传动零件的设计本传动方案中,减速器外传动即电动机与减速器之间的传动,采用V带传动;V 带已经标准化、系列化,设计的主要内容是确定V带型号和根数,带轮的材料、直径和轮毂宽度、中心距等;1、求计算功率查机械设计基础表13-8得,故2、选V带型号根据,由机械设计基础图13-15查出此坐标点位于B型号区域;3、求大、小带轮基准直径查机械设计基础表13-9,应不小于125mm,现取,由机械设计基础式13-9得式中;由机械设计基础表13-9,取;4、验算带速带速在范围内,合适;5、求V带基准长度和中心距初步选取中心距由机械设计基础式13-2得带长查机械设计基础表13-2,对B型带选用;再由机械设计基础式13-16计算实际中心距6、验算小带轮包角由机械设计基础式13-1得合适;7、求V带根数由机械设计基础式13-15得令,查机械设计基础表13-3得由机械设计基础式13-9得传动比查机械设计基础表13-5得由查机械设计基础表13-7得,查机械设计基础表13-2得,由此可得取5根;8、求作用在带轮轴上的压力查机械设计基础表13-1得,故由机械设计基础式13-17得单根V带的初拉力作用在轴上的压力9、带轮结构设计带轮速度,可采用铸铁材料;小带轮直径,采用实心式;大带轮直径,采用轮辐式;传动比及运动参数的修正外传动零件设计完成后,V带的传动比随之确定;用新的传动比对减速器内轴Ⅰ的转速、转矩数值进行修正;1、对轴Ⅰ转速的修正2、对轴Ⅰ转矩的修正最后,将修正结果填入下表:轴名参数电动机轴Ⅰ轴Ⅱ轴滚筒轴转速n/r/min970316.9974.3374.33功率P/KW1110.5610.199.94转矩T/N.M108.3318.141309.221277.1传动比 i 3.06 4.351效率η0.960.9650.975减速器内传动零件的设计减速器内的传动零件主要是指齿轮轴;本传动方案中的减速器采用直齿圆柱齿轮进行传动;直齿圆柱齿轮传动设计需要确定齿轮的材料、模数、齿数、分度圆、顶圆和根圆、齿宽和中心距等;1、选择材料及确定许用应力小齿轮用调质,齿面硬度,,机械设计基础表11-1,大齿轮用调质,齿面硬度,,机械设计基础表11-1;由机械设计基础表11-5,取,,2、按齿面接触强度设计设齿轮齿面按7级精度制造;取载荷系数机械设计基础表11-3,齿宽系数机械设计基础表11-6;小齿轮上的转矩取机械设计基础表11-4齿数取,则;故实际传动比;模数齿宽,取,,这里取;按机械设计基础表4-1取,小齿轮实际的分度圆直径,大齿轮实际的分度圆直径;齿顶高齿根高小齿轮齿顶圆直径小齿轮齿根圆直径大齿轮齿顶圆直径大齿轮齿根圆直径中心距3、验算轮齿弯曲强度齿形系数机械设计基础图11-8,机械设计基础图11-9 ,由机械设计基础式11-54、齿轮的圆周速度对照机械设计基础表11-2可知选用7级精度是合宜的;轴Ⅱ运动参数的修正内传动零件设计完成后,齿轮的传动比随之确定;用新的传动比对减速器内轴Ⅱ的转速、转矩数值进行修正;1、对轴Ⅱ、工作装置转速的修正2、对轴Ⅱ、工作装置转矩的修正最后,将修正结果填入下表:轴名参数电动机轴Ⅰ轴Ⅱ轴滚筒轴转速n/r/min970316.9974.0474.04功率P/KW1110.5610.199.94转矩T/N.M108.3318.141314.351282.1传动比 i 3.06 4.281效率η0.960.9650.975轴的设计计算第一节高速轴Ⅰ的计算已知轴Ⅰ传递的功率,转速,小齿轮的齿宽,齿数,模数,压力角,载荷平稳;1、初步估算轴的直径查机械设计基础表14-1轴的常用材料及其主要力学性能表,选取45号钢作为轴Ⅰ的材料,并进行调质处理;查机械设计基础表14-2常用材料的值和C值,取;由机械设计基础式14-2得考虑到有键槽的存在,轴径加大5%左右即取;2、轴的结构设计1确定轴的结构方案右轴承从轴的右端装入,靠轴肩定位;齿轮和左轴承从轴的左端装入,齿轮右侧端面靠轴肩定位,齿轮和左轴承之间用定位套筒使左轴承右端面得以定位,左右轴承均采用轴承端盖,齿轮采用普通平键得到圆周固定;2确定轴的各段直径轴结构示意图1轴段安装带轮,轴径取不大于70mm的标准值,这里取;2轴段安装轴承端盖,取;3轴段安装轴承,轴径为轴承内径的大小 ;查机械设计基础课程设计续表10-35:选取深沟球轴承6311,轴承内径,外径,轴承宽;这里取;轴两端安装轴承处轴径相等,则6段取;4轴段安装齿轮,齿轮内径,齿轮的轴向定位轴肩,取;3确定轴的各段长度结合绘图后确定各轴段长度如下:1轴段的长度取根据带轮结构及尺寸;2轴段总长度根据外装式轴承端盖的结构尺寸,起厚度,还有箱体的厚度取10mm;3轴段轴承的宽挡油环的长度和;4轴段因为小齿轮的齿宽为80mm,轴段的长度应比零件的轮毂短2-3mm,5轴段长度15mm;6轴段轴承的宽挡油环的长度和;3、按弯扭合成强度对轴Ⅰ的强度进行校核已知:转矩,小齿轮分度圆直径;圆周力径向力法向力1绘制轴受力简图如下2绘制垂直面弯矩图如下垂直面内的轴承支反力:水平面内的轴承支反力:由两边对称,知截面C的弯矩也对称;截面C在垂直面弯矩为3绘制水平面弯矩图如下截面C在水平面上弯矩为:4绘制合弯矩图如上5绘制扭矩图如上扭矩:6当量弯矩计算扭矩产生的扭转力按脉动循环变化,取α=0.6,截面C处的当量弯矩:7校核危险截面C的强度判定危险截面为第四段轴的中心面,轴的材料选用45钢,调质处理,查机械设计基础表14-1得;查机械设计基础表14-3查得则:∴该轴强度足够;第二节低速轴Ⅱ的计算已知轴Ⅱ传递的功率,转速,大齿轮的齿宽,齿数,模数,压力角,载荷平稳;1、初步估算轴的直径查机械设计基础表14-1轴的常用材料及其主要力学性能表,选取45号钢作为轴Ⅰ的材料,并进行正火处理;查机械设计基础表14-2常用材料的值和C值,取;由机械设计基础式14-2得根据联轴器结构及尺寸,取;2、轴的结构设计1确定轴的结构方案右轴承从轴的右端装入,靠轴肩定位;齿轮和左轴承从轴的左端装入,齿轮右侧端面靠轴肩定位,齿轮和左轴承之间用定位套筒使左轴承右端面得以定位,左右轴承均采用轴承端盖,齿轮采用普通平键得到圆周固定;(2)确定轴的各段直径轴结构示意图由图中个零件配合尺寸关系知;,,,;3确定轴的各段长度结合绘图后确定各轴段长度如下:1轴段的长度取根据联轴器结构及尺寸;2轴段总长度根据外装式轴承端盖的结构尺寸,其厚度,还有箱体的厚度取10mm;3轴段轴承的宽挡油环的长度和;4轴段因为大齿轮的齿宽为75mm,轴段的长度应比零件的轮毂短2-3mm;5轴段;6轴段;3、按弯扭合成强度对轴Ⅱ的强度进行校核已知:转矩:,大齿轮分度圆直径;圆周力径向力法向力(1)绘制轴受力简图如下(2)绘制垂直面弯矩图如下垂直面内的轴承支反力:水平面内的轴承支反力:由两边对称,知截面C的弯矩也对称;截面C在垂直面弯矩为3绘制水平面弯矩图如下截面C在水平面上弯矩为:(4)绘制合弯矩图如上5绘制扭矩图如上扭矩:6当量弯矩计算扭矩产生的扭转力按脉动循环变化,取α=0.6,截面C处的当量弯矩:7校核危险截面C的强度判定危险截面为第四段轴的中心面,轴的材料选用45钢,正火处理,查机械设计基础表14-1得;查机械设计基础表14-3查得则:∴该轴强度足够;键的选择与强度验算1、高速轴Ⅰ上键的选择与校核(1)最小直径处:1选择键型:该键为静联接,为了便于安装固定,选择普通A型平键;2确定键的尺寸:该轴上最小直径为,轴长,查机械设计基础课程设计表10-33得,用于此处连接的键的尺寸为;3强度校核:轴所受转矩;查机械设计基础表10-10,取,;由机械设计基础式10-26有:键连接的挤压强度;由机械设计基础式10-27有:键连接的压强;强度满足要求;该键标记为:键;(2)齿轮处1)选择键型:该键为静联接,为了便于安装固定,选择普通A型平键;2确定键的尺寸:该轴上最小直径为,轴长,查机械设计基础课程设计表10-33得,用于此处连接的键的尺寸为;3)强度校核:查机械设计基础表10-10,取,;由机械设计基础式10-26有:键连接的挤压强度;由机械设计基础式10-27有:键连接的压强;强度满足要求;该键标记为:键;2、低速轴Ⅱ上键的选择与校核1最小直径处1选择键型:该键为静联接,为了便于安装固定,选择普通A型平键;2确定键的尺寸:该轴上最小直径为,轴长,查机械设计基础课程设计表10-33得,用于此处连接的键的尺寸为;3强度校核:轴所受转矩;查机械设计基础表10-10,取,;由机械设计基础式10-26有:键连接的挤压强度;由机械设计基础式10-27有:键连接的压强;强度满足要求;该键标记为:键2齿轮处:1选择键型:该键为静联接,为了便于安装固定,选择普通A型平键;2确定键的尺寸:该轴上最小直径为,轴长,查机械设计基础课程设计表10-33得,用于此处连接的键的尺寸为;3)强度校核:查机械设计基础表10-10,取,;由机械设计基础式10-26有:键连接的挤压强度;由机械设计基础式10-27有:键连接的压强;强度满足要求;该键标记为:键;滚动轴承的选择及联轴器的选择第一节滚动轴承的选择根据设计条件,轴承预计寿命:小时1、计算高速轴处的轴承对于高速轴处的轴承选择,首先考虑深沟球轴承;初选用6311型深沟球轴承,其内径为55mm,外径为120mm,宽度为29mm,极限转速脂:5300r/min;极限转速油:6700r/min;因轴承工作温度不高、载荷平稳,查机械设计基础表16-8及表16-9,取;由于轴向力的影响可以忽略不计,即,取X=1,Y=0.则当量动载荷,转速n=316.99r/min,小时,;由机械设计基础式16-3得:所需径向基本额定动载荷查机械设计基础课程设计表10-35得:,故选用6311型深沟球轴承符合要求;2、计算低速轴处的轴承对于低速轴处的轴承选择,考虑深沟球轴承,初选6018型深沟球轴承,其内径为90mm,外径为140mm,宽度为24mm,极限转速脂:4300r/min;极限转速油:5300r/min;因轴承工作温度不高、载荷平稳,查机械设计基础表16-8及表16-9,取;由于轴向力的影响可以忽略不计,即,取X=1,Y=0.则当量=74.04r/min,小动载荷,转速n2时,;由机械设计基础式16-3得:所需径向基本额定动载荷查机械设计基础课程设计表10-35得:,故选6018型深沟球轴承符合要求;第二节联轴器的选择轴Ⅰ与V带轮通过键连接来传递力和扭矩,不需用联轴器;轴Ⅱ与滚筒之间用联轴器联接实现力和扭矩的传递;需选用合适的联轴器;考虑此运输机的功率不大,工作平稳,考虑结构简单、安装方便,故选择弹性柱销联轴器;计算转矩按下式计算:式中 T——名义转矩;N·mm;——工作情况系数;KA取K=1.5,则A=74.04r/min输出轴输出段直径为d=80mm;轴Ⅱ的转速为n2查机械设计课程上机与设计表14-5,可选择YL14或YLD14型弹性联轴器;第七章减速器润滑与密封1、润滑齿轮圆周速度,采用油池润滑,圆柱齿轮浸入油的深度约一个齿高,大齿轮的齿顶到油底面的距离≥30~60mm;选择油面的高度为40mm;并考虑轴承的润滑方式,计算:高速轴:低速轴:;所以选用脂润滑,润滑脂的加入量为轴承空隙体积的,采用稠度较小润滑脂;2、密封为了防止润滑油或脂漏出和箱体外杂质、水及灰尘等侵入,减速器在轴的伸出处、箱体的结合面处和轴承盖、窥视孔及放油孔与箱体的结合面处需要密封;轴伸出处的滚动轴承密封装置采用毛毡圈密封,由机械原理课程上机与设计表15-15可得,其中输入轴按密封圈密封处直径:,选择毛毡圈尺寸:;输出轴按密封圈密封处直径:;选择毛毡圈尺寸:;第八章减速器附件选择1、轴承端盖轴承端盖全部采用外装式轴承端盖,并根据机械设计课程上机与设计表13-4与表15-3进行选择;1、高速轴的轴承端盖轴承外径,螺栓直径,端盖上螺栓数目6;,,,,,取,,取;2、低速轴的轴承端盖:轴承外径,螺栓直径,端盖上螺栓数目6;,,,,,取,, 取2、通气器减速器工作时,由于箱体内部温度升高,气体膨胀,压力增大,使得箱体内外压力不等;为使箱体内受热膨胀的气体自由排出,以保持箱体内外压力平衡,不致使润滑油沿分箱面或轴伸密封件处向外渗漏,需要顶部或直接在窥视孔盖板上设置通气器;本设计将通气器安装在窥视孔盖板上;选用通气帽根据机械设计课程上机与设计表15-5进行选择;3、窥视孔窥视孔用于检查传动零件的啮合、润滑及齿轮损坏情况,并兼做注油孔,可向减速器箱体内注入润滑油,观察孔应设置在减速器箱盖上方的适当位置,以便直接进行观察并使手能伸入箱体内进行操作,平时观察孔用盖板盖住;查机械设计基础课程设计表5-16,取窥视孔孔盖的结构尺寸如下:150200100150M620 6个124、油标为指示减速器内油面的高度符合要求,以便保持箱内正常的油量,在减速器箱体上需设置油面指示装置;本设计选用长形油标,油标尺中心线与水平面成45度,注意加工油标凸台和安装油标时,不与箱体凸缘或吊钩相干涉;查机械设计课程上机与设计表15-10,选择A80 GB1161油标;5、放油孔及放油螺塞为排放减速器箱体内油污和便于清洗箱体内部,在箱座油池的最低处设置放油孔,箱体内底面做成斜面、向放油孔方向倾斜1度到2度,油孔附近作成凹坑,以便污油排尽;平时用放油螺塞将放油孔堵住圆柱螺纹油塞自身不能8、地脚螺栓为防止减速器倾倒和振动,减速器底座下部凸缘应设有地脚螺钉与地基连接;地脚螺钉为M24 取4个;9、箱体设计箱盖壁厚:10mm,箱座底凸缘厚度:10mm,地脚螺钉直径:24mm;数目:4个,轴承旁联结螺栓直径:16mm;。
大连理工大学带式运输机传动装置设计说明
机械设计课程练习第一部分:机械设计课程设计概述一,课程设计的目的《机械设计》是一门专业基础课,旨在培养学生的机械设计能力。
课程设计是机械设计最后一个重要的实践教学环节,也是机电专业学生第一次综合性的机械设计训练。
其目的是:(1)通过课程设计,培养学生综合应用机械设计等先修课程的理论知识,解决实际工程问题。
通过实际的设计训练,可以巩固和提高理论知识。
(2)通过课程设计的实践,使学生掌握一般机械设计的基本方法和步骤,培养学生的独立设计能力。
(3)机械设计基本技能的培训,包括培训、计算、绘图能力、计算机辅助设计能力,以及对设计资料(手册、图集、标准、规则等)的熟悉和应用。
).二、课程设计的内容和任务1、课程设计的能力本课程设计选择齿轮减速器作为设计题目,设计的主要内容包括以下几个方面:(1)拟定和分析传动装置的运动和动力参数;(2)选择电机,计算传动装置的运动和功率参数;(3)设计计算传动部件,检查轴、轴承、联轴器、键等。
(4)绘制减速器的装配图和典型零件图,并用AutoCAD绘制;(5)编写设计计算说明书。
2.课程设计的任务本课程设计要求在两周内完成以下任务:(1)绘制减速器装配图1(A1图);(2)零件工作图2(轴和齿轮图A3);(3)设计计算说明书一份。
三、课程设计的步骤课程设计是一项综合性、系统性的机械设计训练,因此应遵循机械设计过程的一般规律,一般遵循以下步骤:(1)设计准备:认真研究设计任务书,明确设计要求和条件,认真阅读减速器参考图,拆卸减速器,熟悉设计对象。
(2)传动装置的总体设计。
根据设计要求,制定传动装置的总体布局,选择原动机,计算传动装置的运动和动力参数。
(3)传动件装配图设计计算前,计算各级传动件的参数,确定其尺寸,选择联轴器的类型和规格。
一般先算外部传动部分,再算传动部分。
(4)设计计算装配图,选择配套零件,绘制装配草图,完成装配图。
(5)零件施工图设计。
零件的工作图纸应包括制造和检验零件的所有要求。
带式运输机传动装置的设计
带式运输机传动装置的设计带式运输机作为一种常见的输送设备,广泛应用于工业生产中的物料输送领域。
而带式运输机的传动装置则是其重要的组成部分,它直接影响到带式运输机的运行效率和使用寿命。
因此,合理的带式运输机传动装置设计是确保带式运输机正常工作的关键。
本文将对带式运输机传动装置的设计进行详细分析和讨论。
一、带式运输机传动装置的作用带式运输机传动装置是由电机、减速器、联轴器和带轮组成的。
其作用是将电机输出的旋转运动转换成驱动带式运输机运转的线性运动。
传动装置的效率直接关系到带式运输机的输出功率和能源消耗。
因此,合理的传动装置设计可以提高带式运输机的输送能力和运行效率。
二、带式运输机传动装置的设计原则1. 稳定性传动装置的稳定性是设计的关键,主要表现在两个方面。
一是电机的输出功率和电流应该与带式运输机的负载相匹配,保证带式运输机的输出功率稳定,避免电机过载和齿轮传动磨损。
二是传动装置的结构和组合应该合理,能够有效地抵抗带式运输机的外部载荷和应力变化,确保带式运输机的稳定运行。
2. 可靠性传动装置作为带式运输机的核心组件之一,其可靠性对于带式运输机的正常运行至关重要。
因此,在设计传动装置时,应该选择高品质、高耐用性的电机和减速器,并采用合理的材料和工艺,以确保带式运输机的稳定、可靠、长期运行。
3. 经济性传动装置的设计也要考虑经济性,尽量减少造价和能源消耗等方面的损失。
通过合理的组合和选材,降低资金和能源的耗费,同时确保带式运输机的运行效率,提升带式运输机的经济价值。
三、带式运输机传动装置的设计方案在设计带式运输机传动装置时,需要考虑以下几个方面:1. 电机选择电机是带式运输机传动装置的重要组成部分。
在选择电机时,需要考虑带式运输机的负载和输出功率,确保电机的额定功率能够满足带式运输机的运行需求。
同时,应该选择优质、高马力、高效率的电机,以确保带式运输机的稳定运行,同时降低能源消耗。
2. 减速器选择减速器是将电机的高速旋转运动转换成带式运输机所需的低速大转矩的设备。
机械设计课程设计带式运输机传动装置
为了检查传动件啮合情况,润滑状态以及向箱内注油,在箱盖上部便于观察传动件啮合区的位置开足够大的检查孔,用螺钉予以固定,盖板与箱盖凸台接合面间加装防渗漏的纸质封油垫片。
4.通气器
为沟通箱体内外的气流使箱体内的气压不会因减速器运转时的温升而增大,从而造成减速器密封处渗漏,在箱盖顶部或检查孔盖板上安装通气器。
5.轴承座
轴承盖结构采用螺柱联接式,材料为铸铁(HT150),轴承采用刮油板为使油沟中的油能顺利进入轴承室。
6.定位销
为确定箱座与箱盖的相互位置,保证轴承座孔的镗孔精度与装配精度,应在箱体的联接凸缘上距离尽量远处安置两个定位销,并尽量设置在不对称位置。圆锥销公称直径(小端直径)可取 , 为箱座,箱盖凸缘联接螺栓的直径;取长度应稍大于箱体联接凸缘的总厚度,以利装拆。
因 ,取
=0.776
Ⅴ.螺旋角系数 。由《机械设计》查得弹性影响系数 。
Ⅵ. 接触疲劳极限应力 ;接触疲劳极限极限应力 。
Ⅶ.计算应力循环次数
Ⅷ. 接触疲劳寿命系数 ; 。
Ⅸ. 计算接触疲劳许用应力
取安全系数S=1
2>.设计计算
Ⅰ.试算小齿轮分度圆直径
54.02mm
Ⅱ.计算圆周速度
0.63m/s
Ⅲ.计算载荷系数
合理
6、轴的设计、计算及校核
选取轴的材料为45钢,正火处理。
根据《机械设计》,取C=118,。
则有: 14.13mm
22.45mm
35.63mm
上述所算均为轴的最小直径,考虑到1轴要与电动机联接,初算直径d1必须与电动机轴和联轴器空相匹配及d3必须和联轴器空相匹配,所以初定d1=28mm,d3=42mm,d2 =39mm。
(2)选取精度等级
带式运输机传动装置设计说明书
带式运输机传动装置设计说明书1. 引言本文档为带式运输机的传动装置设计说明书,旨在详细描述带式运输机传动装置的设计原理、参数选取和计算等内容。
带式运输机是一种用于物料输送的机械设备,传动装置作为核心组成部分之一,对其性能和可靠性有着重要影响。
通过本文档的阅读和理解,读者将了解到带式运输机传动装置的设计过程,以及对应的设计指导。
2. 设计原理带式运输机传动装置的设计原理基于传动轴和传动带的运动方式。
传动装置通过驱动轴传递动力给传动带,从而实现物料的输送。
设计原理包括以下几个方面的考虑:1.动力传递方式:传动装置可以采用电动机、液压马达或者内燃机等形式作为动力源,其中电动机是最常见的选择;2.传动装置的布局:传动装置的布局应考虑到整体设计的紧凑性和结构的稳定性,以保证传动装置的正常运行;3.传动装置的传动方式:传动装置可以采用齿轮传动、链条传动或者带传动等方式,根据实际需要选择合适的传动方式。
3. 参数选取和计算带式运输机传动装置的参数选取和计算是设计过程中的重要环节。
以下是几个关键参数的选取和计算方法的简要说明:3.1 动力计算动力计算是确定传动装置所需动力的重要步骤。
根据实际物料输送需求和传动装置的效率,可以计算出传动装置所需的最小动力。
动力计算公式如下:$$P = \\frac{Q \\cdot H}{η \\cdot 1000}$$其中,P为传动装置所需动力(单位:千瓦),Q为物料输送量(单位:吨/小时),H为提升高度(单位:米),η为传动装置效率(取值范围为0到1之间)。
3.2 速度计算速度计算是确定传动装置所需转速的重要步骤。
根据物料输送的要求和传动装置的传动比例,可以计算出传动装置所需的转速。
速度计算公式如下:$$N = \\frac{V}{\\pi \\cdot D}$$其中,N为传动装置所需转速(单位:转/分钟),V为物料输送速度(单位:米/秒),D为传动装置圆盘的直径(单位:米)。
带式运输机传动装置的设计
带式运输机传动装置的设计1. 引言带式运输机是一种常用的物料搬运设备,广泛应用于矿山、水泥厂、建筑工地等工业领域。
而传动装置则是带式运输机的核心组成部分,对其运行稳定性和效率起着重要的作用。
本文将详细介绍带式运输机传动装置的设计原理、主要组成部分以及设计方法。
2. 传动装置的设计原理传动装置的设计原理主要涉及到动力传递和力的平衡。
带式运输机传动装置通常由电动机、减速器、轴承以及传动带等组成。
其中电动机负责提供动力,减速器负责将电动机输出的高速旋转转矩转换为带式运输机需要的低速大转矩。
轴承则起到支撑和定位的作用,保证传动装置的稳定运行。
而传动带作为传递动力和物料的媒介,需要具备足够的强度和耐磨性。
3. 主要组成部分介绍3.1 电动机电动机是带式运输机传动装置的动力源,负责提供驱动力使带式运输机运行起来。
电动机的选型需要根据带式运输机的工作条件和运行要求进行合理选择,通常考虑到功率、转速、工作环境等因素。
3.2 减速器减速器负责将电动机输出的高速旋转转矩转换为带式运输机需要的低速大转矩。
在带式运输机传动装置中,常用的减速器有齿轮减速器、带轮减速器等。
减速器的选型需要根据带式运输机的工作负载和传动比等参数进行匹配。
3.3 轴承轴承起到支撑和定位的作用,保证传动装置的稳定运行。
其中常用的轴承类型有滚动轴承和滑动轴承,选择要根据带式运输机的工作负载、转速和工作环境等因素进行选择,保证轴承寿命和工作效果。
3.4 传动带传动带作为传递动力和物料的媒介,需要具备足够的强度和耐磨性。
常见的传动带材料有橡胶、聚酯纤维、尼龙等,选材要根据带式运输机的工作环境和运行要求进行选择,保证传动带的可靠性和使用寿命。
4. 设计方法带式运输机传动装置的设计方法可以分为以下几个步骤:4.1 确定传动装置的参数根据带式运输机的工作要求,确定传动装置的功率、转速和工作负载等参数。
这些参数直接影响到电动机、减速器和传动带的选型。
4.2 选型电动机和减速器根据传动装置的参数和工作要求,选型合适的电动机和减速器。
机械设计课程设计带式运输机传动装置
机械设计课程设计:带式运输机传动装置一、概述在机械设计课程中,带式运输机是常见的传输设备之一。
带式运输机广泛应用于矿石、建材、化工等行业,用于输送散状物料或成批物料。
其传动装置作为带式运输机的核心部分,对其传动效率、运行稳定性和寿命具有重要影响。
在机械设计课程设计中,对带式运输机传动装置的设计和优化是非常重要的。
二、带式运输机传动装置的结构及原理带式运输机传动装置主要由驱动装置、传动轮、传动带、张紧装置、托辊和支撑架等组成。
其工作原理是通过驱动装置带动传动轮,在带式运输机的运行中使传动带运动,从而达到物料输送的目的。
其中,传动轮是传动带与驱动装置之间的通联部件,同时还兼具传动和支撑传动带的功能。
张紧装置用于保持传动带适当的张紧度,以防止传动带在运行中产生松动或跳齿现象。
托辊用于支撑传动带,降低传动带与传动轮之间的摩擦力,减小传动带的磨损。
三、带式运输机传动装置的设计要点1. 驱动装置选择:根据带式运输机的工作条件和传动功率的要求,选择适当的电机或其他动力源作为驱动装置。
考虑到带式运输机在使用过程中需要频繁启停和重载能力要求高,应选择启动性能好、转矩稳定的电机。
2. 传动轮和传动带匹配:传动轮的直径与传动带的宽度应匹配,以保证传动带在运行时与传动轮的正常啮合。
还要考虑传动轮的材质和表面处理等对传动带的影响,以减小摩擦力,提高传动效率。
3. 张紧装置设计:张紧装置的设计应确保传动带在运行中保持适当的张紧度,不过紧或过松都会影响传动带的使用寿命和传动效率。
张紧装置的安装位置和调整方式也需要考虑。
4. 托辊布置和设计:托辊的布置应合理,能够支撑传动带的重量,在传动带弯曲处减小摩擦力。
托辊的数量和间距、使用材料等都需要进行合理选择和设计。
四、带式运输机传动装置的优化1. 传动带材料的选择:传动带的材料选择与其耐磨性、强度和伸长率等性能有关。
在不同工况下,应选择适当的传动带材料,以延长其使用寿命。
2. 传动轮表面处理:传动轮表面的处理对传动带的磨损和传动效率具有重要影响。
机械设计带式运输机的传动装置的设计
机械设计带式运输机的传动装置的设计一、引言带式运输机是一种广泛应用于大型矿山和矿物处理系统中的重要物料传输设备。
传输带作为基本的传输元件,主要负责将物料从一个点传输到另一个点。
因此,在带式运输机的设计中,传动装置的设计是非常关键的一环,它的质量和可靠性直接影响到设备的正常运行和生产效率。
本文将重点讨论机械设计带式运输机的传动装置的设计。
二、带式运输机传动装置的种类带式运输机的传动装置一般分为以下两种:机械传动和电动传动。
1. 机械传动机械传动通常采用减速机传递动力,常见的减速机有圆柱齿轮减速机、锥齿轮减速机、行星减速机等。
机械传动的特点是结构简单,传动效率高,并且不容易出现故障,可以在恶劣的环境下长期运行。
但是它的缺点是安装和维修难度较大,需要有专业技能的技术人员进行操作。
2. 电动传动电动传动采用电机传递动力,一般会对电机进行选型和特殊设计以满足带式运输机的工作要求。
电动传动的特点是结构简单,安装和维修相对方便,因为电机的控制较为成熟,所以可以根据需要实现多种控制方式,如定速控制、调速控制等。
然而,由于传动效率相对较低,同时容易发生电机故障,因此需要保持良好的维护和保养。
三、机械传动带式运输机传动装置的设计在机械传动带式运输机的传动装置设计中,需要考虑以下几个方面:1. 减速机的选择在机械传动带式运输机的传动装置中,减速机是比较关键的部件之一,它负责减少电机的转速并将动力传递到传动轴上。
在选择减速机时需要考虑以下因素:(1)传动比,需要根据带式运输机的工作条件、传送距离、传动功率等因素确定传动比。
(2)传动轴的位置,以确保传动装置的精准并且满足带式运输机的随动条件。
(3)传动轴的转速,在选择减速机的同时需要计算传动轴的合理转速,以确保传动装置的可靠性和稳定性。
2. 驱动皮带的选择带式运输机驱动皮带是连接电机和减速机输出轴的重要部件,它的质量和规格直接影响到传动装置的效率和可靠性。
在选择驱动皮带时需要考虑以下因素:(1)工作环境,根据带式运输机的应用环境和工作条件选择适当的带宽和长度。
带式运输机的传动装置的设计
带式运输机的传动装置的设计
传动装置的设计需要考虑以下几个方面:
1.传动方式的选择:传动方式有多种,常见的有机械传动和液压传动。
机械传动可以通过齿轮、链条等将动力传递给输送带,液压传动则通过液
压缸等将液压能转化为机械能。
选择传动方式需要根据具体的工艺要求和
现场条件来决定。
2.传动比的确定:传动比是指输送带的线速度与电动机转速之间的比值。
根据物料的输送距离和产量要求,可以确定相应的传动比,从而保证
输送带的速度适中,既不会出现物料堆积,也不会出现物料断流的情况。
3.电动机的选型:电动机是传动装置的驱动力源,需要根据输送带的
长度、物料的重量和输送速度等因素来选择适当的电动机。
一般情况下,
选用功率略大于实际需要的电动机,以保证传动装置的可靠性和运行稳定性。
4.传动装置的布置:传动装置的布置需要充分考虑设备的平衡性和紧
凑性。
将电动机和传动装置放置在输送带的一侧或两侧,可以避免设备的
重心偏移,提高设备的稳定性。
此外,还应合理安装防护罩,避免工人误伤。
5.传动装置的维护和保养:在传动装置的设计中,应考虑到维护和保
养的便捷性。
例如,采用可拆卸结构的传动链条和齿轮,可以方便地进行
检修和更换。
同时,应设备传动装置的润滑装置,保证传动部件的正常运转。
总之,带式运输机的传动装置的设计需要综合考虑输送带的工艺要求、输送距离和工作环境等因素,选择合适的传动方式和传动比,并采取适当
的布置和维护措施,以确保传动装置的可靠性和运行稳定性。
只有满足这些要求,带式运输机才能在工业生产中发挥其应有的作用。
带式运输机传动装置的设计
带式运输机传动装置的设计(1)输送皮带输送工件或物料。
输送皮带运行时,工件或物料在与皮带之间的摩擦力的作用下随皮带一起运动,使工件或物料从一个位置输送到另一个位置。
上方的皮带需要运送工件,为承载段;下方的皮带不工作,为返回段。
(2)驱动辊提供驱动动力,在电机驱动下转动,通过驱动辊与带之间的摩擦力驱动皮带运行。
(3)从动辊无动力滚筒,滚筒可绕轴线自由转动。
与驱动辊、张紧轮等共同作用,使皮带张紧并保持皮带与主驱动辊之间有足够的摩擦力。
(4)托板或托辊支撑皮带及皮带上方的工件或物料,不使皮带下垂。
对于要求皮带运行时平整度要求高的场合通常在皮带输送段的下方采用板状的托板,否则就采用能够自由转动的托辊即可。
由于皮带返回段上没有承载工件,通常都间隔采用托辊支承。
除此之外,完整的皮带输送系统还包括:(5)定位挡板由于输送工件时一般都需要使工件保持一定的位置,所以通常都在输送皮带的两侧设计定位挡板或挡条,使工件始终在直线方向上运动。
(6)张紧机构由于皮带在运动时会产生松弛,因此需要有张紧机构对皮带的张力进行调整,张紧机构也是皮带安装及拆卸必不可少的机构。
(7)机架皮带线机架可根据使用要求,设计成各种结构形式。
按材料类别可分为型材机架和焊接机架。
(8)电机驱动系统驱动辊的运动是由电机驱动来驱动的,通常是由电机经过减速器减速后再通过齿轮传动、链传动或同步带传动来驱动皮带驱动辊。
也有部分情况下将电机经过减速器减速后直接与皮带驱动辊连接,节省空间。
如图4所示,1-工件;2-皮带;3-挡板;4-电机;5-减速器。
从动力角度来看,分固定速度和可调速;从传输方向,可分单向传输和可变方向传输。
通常一套电机系统能够驱动的负载时有限的,对于长度较长(例如数十米)的皮带输送线,通常采用多段独立的皮带输送系统在一条直线上安装在一起拼接而成,也就是将多段独立的皮带输送系统按相同的高度固定安放在一条输送线上。
三、主要技术规格1、主要输送形式为:条形工作台、独立工作台、单边工作台、双边工作台和无工作台输送形式。
带式输送机传动装置课程设计说明书
带式输送机传动装置课程设计说明书机械课程设计说明书设计题⽇:带式输送机传动装置姓名:学号:专业:机械设计制造及其⾃动化完成⽇期:机械课程设计说明书、前⾔(⼀)设计任务设计⼀带式输送机⽤单级圆柱齿轮减速器。
已知运输带输送拉⼒F=2.6KN ,带速V=1.45m/s,传动滚筒直径D=420mm (滚筒效率为0.96)。
电动机驱动,预定使⽤寿命8年(每年⼯作300天),⼯作为⼆班⼯作制,载荷轻,带式输送机⼯作平稳。
⼯作环境:室内灰尘较⼤,环境最⾼温度35°动⼒来源:电⼒,相交流380/220伏。
图1带式输送机的传动装置简图1、电动机;2、三⾓带传动;3、减速器;4、联轴器;5、传动滚筒;6、⽪带运输机表1 常⽤机械传动效率机械传动类型传动效率n圆柱齿轮传动闭式传动0.96 —0.98 (7-9级精度)开式传动0.94 —0.96圆锥齿轮传动闭式传动0.94 —0.97 (7-8级精度)开式传动0.92 —0.95带传动平型带传动0.95 —0.98V型带传动0.94 —0.97滚动轴承(⼀对)0.98 —0.995联轴器0.99-0.995\传动类型选⽤指标平型带三⾓带齿轮传动功率(KW⼩(20)中(W 100)⼤(最⼤可达50000)■I"(⼆)设计⽬的《机械设计》课程是⼀门技术基础课,⽬的在于培养学⽣的机械设计能⼒。
课程设计是《机械设计》课程最后⼀个重要的实践性教学环节,也是机械类及近机械类专业学⽣第⼀次较为全⾯的机械设计训练。
本课程设计的主要⽬的是:1 ?培养学⽣利⽤所学知识,解决⼯程实际问题的能⼒;2 ?培养学⽣掌握⼀般机械传动装置、机械零件的设计⽅法及设计步骤;3?达到对学⽣进⾏基本技能的训练,例如:计算、绘图、熟悉和运⽤设计资料(⼿册、标准、图册和规范等)的能⼒。
(三)传动⽅案的分析机器⼀般是由原动机、传动装置和⼯作装置组成。
传动装置是⽤来传递原动机的运动和动⼒、变换其运动形式以满⾜⼯作装置的需要,是机器的重要组成部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械设计课程设计说明书设计题目:带式输送机传动系统设计系(院)别:纺织服装学院专业班级:纺织工程083班学生:方第超指导老师:桐生老师完成日期:2010年12月机械课程设计目录一课程设计书 2 二设计要求2三设计步骤21. 传动装置总体设计方案 32. 电动机的选择 43. 确定传动装置的总传动比和分配传动比 54. 计算传动装置的运动和动力参数 55. 设计V带和带轮 66. 齿轮的设计 87. 滚动轴承和传动轴的设计 198. 键联接设计 269. 箱体结构的设计 2710.润滑密封设计 3011.联轴器设计 30四设计小结31 五参考资料32第一章设计任务书1、设计的目的《械设计课程设计》是为机械类专业和近机械类专业的学生在学完机械设计及同类课程以后所设置的实践性教学环节,也是第一次对学生进行全面的,规的机械设计训练。
其主要目的是:(1)培养学生理论联系实际的设计思想,训练学生综合运用机械设计课程和其他选修课程的基础理论并结合实际进行分析和解决工程实际问题的能力,巩固、深化和扩展学生有关机械设计方面的知识。
(2)通过对通用机械零件、常用机械传动或简单机械设计,使学生掌握一般机械设计的程序和方法,树立正面的工程大合集思想,培养独立、全面、科学的工程设计能力。
(3)课程设计的实践中对学生进行设计基础技能的训练,培养学生查阅和使用标准规、手册、图册及相关技术资料的能力以及计算、绘图、数据处理、计算机辅助设计等方面的能力。
2、设计任务设计一用于带式输送机传动系统中的减速器。
要求传动系统中含有单级圆柱齿轮减速器及V带传动。
在课程设计中,一般要求每个学生完成以下容:1)减速器装配图一(A1号图纸)2)零件工作图2~3(如齿轮、轴或箱体等3)设计计算说明书一份(8000字左右)3、设计容一般来说,课程设计包括以下容:1)传动方案的分析和拟定2)电动机的选择3)传动系统的远动和动力参数的计算4)传动零件的设计计算5)轴的设计计算6)轴承、联接件、润滑密封及联轴器的选择和计算 7)箱体结构及附件的计算8)装配图及零件图的设计与绘制9)设计计算说明书的整理和编写10)总结和答辩第二章带式传动机传动系统设计1、设计题目:单级圆柱齿轮减速器及V带传动2、传动系统参考方案(如图):3、原始数据: F=2.3kN F:输送带工作拉力;V=1.1m/s V:输送带工作速度;D=300mm D:滚筒直径。
4、工作条件连续单向运转,空载启动,工作时有轻微震动,工作年限8年,两班制工作。
第三章电动机的选择1、电动机类型和结构型式的选择:按已知的工作要求和条件,选用 Y系列三相交流异步电动机(JB/T10391-2002)。
2、工作机所需要的有效功率根据已知条件,工作机所需要的有效功率Pw=F·V/1000=2300×1.1/1000=2.74kw设:η2w—输送机滚筒轴至输送带间的传动效率ηc—联轴器效率0.99ηg—闭式圆柱齿轮效率0.97ηb—一对滚动轴承效率0.98ηcy—输送机滚筒效率0.96估算传动系数总效率:η01=ηc=0.95η12=ηb·ηg=0.99×0.97=0.9603η34=ηb·ηc=0.99×0.99=0.9801η3w=ηb·ηcy=0.99×0.96=0.9504则传动系统的总效率η为:η=η01·η12·η34·η3w=0.95×0.9603×0.9801×0.9504=0.843、工作时电动机所需功率为:Pd= Pw/η=2.74/0.84=4.46 kw由表12-1可知,满足Pe≥Pd条件的Y系列三相交流异步电动机额定功率取为3.0 kw。
4、电动机转速的选择:nw=60000v/πd=60000×1.1/3.14×300=70.06r/min初选同步转速为1500r/min和1000r/min的电动机,由表12-1可知对应额定功率Pe为 3.0kw的电动机型号分别为Y132sM2-6和Y132s-4,现将两个型号的电动机有关技术数据及相应的算得的总传动比例表1-2中。
表1-2 方案的比较通过上述两种方案比较用以看出:方案Ⅰ选用的电动机转速高,质量轻,价格低,总传动比为13.38,故选方案Ⅰ较为合理,由表12-2查得电动机中心高H=132mm;轴伸出部分用于装联轴器轴段的直径和长度分别为:D=38mm和E=80 mm。
第四章各级传动比的分配1、总传动比: i总=nm/nw=960/63.70=15.07由传动方案图可知:i1=3; i2=5; i3=1传动系统各轴的转速,功率和转矩计算如下:1轴(电动机轴)n1=nm=960r/minP0=pd=4.46kwTd=9550·pd/nm=29.58N·m2轴(减速器高速轴)n2=n1/i1=320r/minP2=p0·n01=4.46×0.95=4.23kwT2=9550·p2/n2=126.24N·m3轴(减速器低速轴)n3=n2/i2=64r/minP3=P2×0.98×0.98×0.97=3.94kwT3=9550·p3/n3=587.92N·m4轴(工作轴)n4=n3=64r/minP4=P3×0.98×0.96=3.71kwT4=9550·p4/n4=553.60N·m2、将上述计算结果列于表1-3中以供应。
表1-3 传动系统的远动和动力参数第五章齿轮的设计1、选择材料和热处理方法,并确定材料的许用接触应力根据工作条件,一般用途的减速器可采用闭式软齿面传动。
查表5-6得小齿轮 45钢调制处理齿面硬度HBS1=230大齿轮 45钢正火处理齿面硬度 HBS2=190两齿轮齿面硬度差为40HBS,符合软齿面传动的设计要求2、确定材料许用接触应力查表5-11得,两实验齿轮材料接触疲劳强度极限应力为:δhlim1=480+0.93(HBS1-135)=480+0.93(230-135)=568.4Mpa δ-135)=480+0.93(190-135)=531.2 Mpa hlim2=480+0.93(HBS2由表5-12按一般重要性考虑,取接触疲劳强度的最小安全系数:s h lim1=1.0两齿轮材料的许用接触应力分别为[δH1]= δh lim1/ s h lim1=568.4 Mpa[δH2]= δh lim2/ s h lim1=531.2 Mpa3、根据设计准则,按齿面接触疲劳强度进行设计查表5-8,取载荷系数K=1.2;查表5-9,查取弹性系数Z E=189.8Mpa;取齿宽系数Ψd=1(闭式软齿面);[δH]取其中较小值为531.2Mpa 代入。
故d 1≥3242.5318.18954.33135.01069.82.1⎥⎦⎤⎢⎣⎡⨯⨯+⨯⨯⨯ =76.34mm 4、几何尺寸计算齿数 由于采用闭式软齿面传动,小齿轮齿数的推荐值是20~40,取Z 1=27,则Z 2= 81 模数 m=d1/Z1=2.83mm由表5-2,将m 转换为标准模数,取m=3mm 中心距 a=m(Z1+Z2)/2=162mm齿宽 b 2=Ψd d 1=1×76.34=76.34mm ,取整b 2=76mm b 1= 76+(5~10)mm ,取b 1=80mm 5、校核齿根弯曲疲劳强度 由校核公式(5-35) δF =mbd KT I12Y F Ys 查表5-10,两齿轮的齿形系数,应力校正系数分别是(Y F2 ,Ys 2 由线性插值法求出)Z 1 =27时 Y F1 =2.57 Ys 1=1.60Z 2 =81时 Y F2 =2.218 Ys 2 =1.77查表5-11,两实验齿轮材料的弯曲疲劳极限应力分别为 δf lim1 =190+0.2(HBS 1-135)=209 Mpa δf lim2 =190+0.2(HBS 2-135)=201 Mpa查表5-12,弯曲疲劳强度的最小安全系数为s F lim1 =1.0两齿轮材料的许用弯曲疲劳应力分别为[δF1]= δh lim1/ s h lim1 =209 Mpa[δF2]= δh lim2/ s h lim2 =201 Mpa将上述参数分别代入校核公式(5-35),可得两齿轮的齿根弯曲疲劳应力分别为δF1=m bd KT I 12Y F1Ys <[δF1]=209 Mpa δF2=mbd KT I 12Y F2Ys 2<[δF2]=201 Mpa 所以两齿轮的齿根弯曲疲劳强度均足够。
6、齿轮其他尺寸计算分度圆直径 d 1=mZ 1 =3×27=81 mmd 2=mZ 2 =3×81=243 mm齿顶圆直径 d a1=d 1+2h a =81+2×3=87mmd a2=d 2+2h a =243+2×3=249mm齿根圆直径 d f1=d 1-2h f =81-2×1.25=77.25mmd f2=d 2-2h f =243-2×1.25=239.25mm中心距 a=m(Z1+Z2)/2=162mm齿宽 b 1=80mm b 2=76mm7、选择齿轮精度等级齿轮圆周速度 v 1=10006011 d n π=1.36m/s 查表5-7,选齿轮精度等级:第Ⅱ公差组为9级,由“齿轮传动公差”查得小齿轮 9-9-8 GJ GB10095-88大齿轮 9-9-8 HK GB10095-88第六章 轴的设计从动轴的设计1、选取材料和热处理方法,并确定轴材料的许用应力:由于为普通用途,中小功率,选用45钢正火处理。
查表15-1得σb =600Mpa ,查表15-5得[σb ]-1=55 Mpa2、估算轴的最小直径:由表15-2查得A=110,根据公式(15-1)得:d1≥A 311n p =42.295mm 考虑轴端有一键槽,将上述轴径增大5%,即42.295×1.05=44.40mm 。
该轴的外端安装联轴器,为了补偿轴的偏差,选用弹性柱销联轴器。
查手册表选用柱销联轴器,其型号为为HL3,最小直径d1=45mm3、轴的设计计算并绘制结构草图:(1)确定轴上零件的布置方案和固定方法:参考一般减速器结构,将齿轮布置在轴的中部,对称于两端的轴承;齿轮用轴环和轴套作轴向固定,用平键和过盈配合(H7/r6)作轴向固定。
右端参考一般减速器结构,将齿轮布置在轴的中部,对称于两端的轴承齿轮用轴环和轴套作轴向固定,用平键和过盈配合(H7/r6)作周向固定,右端轴承用轴肩和过度配合(H7/K6)固定套圈;左端轴承用轴套和过渡配合(H7/K6)固定套圈。