圆锥曲线大题20道(含答案)
圆锥曲线测试题有答案)

圆锥曲线测试题1.过椭圆2241x y +=的一个焦点1F 的直线与椭圆交于,A B 两点,则A 与B 和椭圆的另一个焦点2F 构成的2ABF ∆的周长为( )A. 2B. 4C. 8D.2.已知,是椭圆:的两个焦点,在上满足的点的个数为()A. B. C. D. 无数个3.已知双曲线22221x y a b-=(0a >, 0b >)的右焦点为F ,若过点F 且倾斜角为60的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( ) A. ()1,2 B. (]1,2 C. [)2,+∞ D. ()2,+∞4.已知抛物线22y px =与直线40ax y +-=相交于,A B 两点,其中A 点的坐标是()1,2,如果抛物线的焦点为F ,那么FB FA +等于( )A. 5B. 6C.D. 75.设12,F F 是椭圆22221(0)x y a b a b+=>>的左右焦点,过12,F F 作x 轴的垂线交椭圆四点构成一个正方形,则椭圆的离心率e 为( )A.B. C. 2D. 6.设椭圆22162x y +=和双曲线2213x y -=的公共焦点为12,F F , P 是两曲线的一个公共点,则12cos F PF ∠ 的值等于( )A.13 B. 14 C. 19 D. 357.已知双曲线22221(0,0)x y a b a b-=>> 的左右焦点分别为12,F F ,以12F F 为直径的圆与双曲线渐近线的一个交点为()1,2 ,则此双曲线为 ( )A. 2214x y -=B. 2214y x -=C. 2212x y -=D. 2212y x -=8.顶点在坐标原点,对称轴为坐标轴,又过点()2,3-的抛物线方程是( )A. 294y x =B. 243x y =C. 294y x =-或243x y =-D. 292y x =-或243x y = 9.已知椭圆E 的中心在坐标原点,离心率为12, E 的右焦点与抛物线2:8C y x =的焦点重合, ,A B 是C 的准线与E 的两个交点,则AB =( ) A. 3 B. 6 C. 9 D. 1210.已知1F , 2F 是椭圆和双曲线的公共焦点, P 是它们的一个公共点,且1223F PF π∠=,则椭圆和双曲线的离心率之积的范围是( )A. ()1+∞,B. ()01,C.D.)+∞11.已知抛物线C : 24y x =的焦点为F ,过点F 且倾斜角为3π的直线交曲线C 于A , B 两点,则弦AB 的中点到y 轴的距离为( )A.163 B. 133 C. 83 D. 5312.已知双曲线222:14x y C a -=的一条渐近线方程为230x y +=, 1F , 2F 分别是双曲线C 的左,右焦点,点P 在双曲线C 上,且1 6.5PF =,则2PF 等于( ). A. 0.5 B. 12.5 C. 4或10 D. 0.5或12.513.已知椭圆以坐标轴为对称轴,且长轴是短轴的2倍,且过点()3,0P ,则椭圆的方程为__________.14.若抛物线y 2=2px (p >0)的焦点也是双曲线x 2-y 2=8的一个焦点,则p =______. 15.已知抛物线的方程为22(0)y px p =>, O 为坐标原点, A , B 为抛物线上的点,若OAB 为等边三角形,且面积为p 的值为__________.16.若,A B 分别是椭圆22:1(1)x E y m m+=>短轴上的两个顶点,点P 是椭圆上异于,A B 的任意一点,若直线AP 与直线BP 的斜率之积为4m-,则椭圆E 的离心率为__________.17.已知双曲线C 和椭圆22141x y +=. (Ⅰ)求双曲线C 的方程.(Ⅱ)经过点()2,1M 作直线l 交双曲线C 于A , B 两点,且M 为AB 的中点,求直线l 的18.已知抛物线2:2(03)C y px p =<<的焦点为F ,点(,Q m 在抛物线C 上,且3QF =。
全国卷高考数学圆锥曲线大题(带答案)

全国卷高考数学圆锥曲线大题(带答案)1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|.(Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程.(Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足:①(R);AG AD λλ=∈②2;GE GF GH +=③0.GH EF ⋅= 求点G 的横坐标的取值范围.2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程.3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是,425=x 其左、右顶点分别 是A 、B ;双曲线1:22222=-b y a x C 的一条渐近线方程为3x -5y=0.(Ⅰ)求椭圆C1的方程及双曲线C2的离心率;(Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若=. 求证:.0=•4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa.(1)用半焦距c表示椭圆的方程及tanα;(2)若2<tanα<3,求椭圆率心率e的取值范围.5. 已知椭圆2222byax+(a>b>0)的离心率36=e,过点A(0,-b)和B(a,0)的直线与原点的距离为23(1)求椭圆的方程(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C D两点问:是否存在k的值,使以CD为直径的圆过E点?请说明理由6. 在直角坐标平面中,ABC ∆的两个顶点B A ,的坐标分别为)0,1(-A ,)0,1(B ,平面内两点M G ,同时满足下列条件: ①0=++GC GB GA MCMB MA ==GM ∥AB(1)求ABC ∆的顶点C 的轨迹方程;(2)过点)0,3(P 的直线l 与(1)中轨迹交于F E ,两点,求PF PE ⋅的取值范围7. 设R y x ∈,,j i,为直角坐标平面内x 轴.y 轴正方向上的单位向量,若jy i x b j y i x a)2(,)2(-+=++=,且8||||=+b a(Ⅰ)求动点M(x,y)的轨迹C 的方程;(Ⅱ)设曲线C 上两点A .B ,满足(1)直线AB 过点(0,3),(2)若OB OA OP +=,则OAPB 为矩形,试求AB 方程.8. 已知抛物线C :)0,0(),(2>≠+=n m n x m y 的焦点为原点,C 的准线与直线 )0(02:≠=+-k k y kx l 的交点M 在x 轴上,l 与C 交于不同的两点A 、B ,线段AB 的垂直平分线交x 轴于点N (p ,0).(Ⅰ)求抛物线C 的方程; (Ⅱ)求实数p 的取值范围;(Ⅲ)若C 的焦点和准线为椭圆Q 的一个焦点和一条准线,试求Q 的短轴的端点的轨迹方程.9. 如图,椭圆的中心在原点,长轴AA 1在x 轴上.以A 、A 1为焦点的双曲线交椭圆于C 、D 、D 1、C 1四点,且|CD|=21|AA 1|.椭圆的一条弦AC 交双曲线于E ,设λ=EC AE ,当4332≤≤λ时,求双曲线的离心率e 的取值范围.x10. 已知三角形ABC 的三个顶点均在椭圆805422=+y x 上,且点A 是椭圆短轴的一个端点(点A 在y 轴正半轴上).若三角形ABC 的重心是椭圆的右焦点,试求直线BC 的方程; 若角A 为090,AD 垂直BC 于D ,试求点D 的轨迹方程.11. 如图,过抛物线24x y =的对称轴上任一点(0,)(0)P m m >作直线与抛物线交于,A B两点,点Q 是点P 关于原点的对称点.(1) 设点P 分有向线段AB 所成的比为λ,证明:()QP QA QB λ⊥-;(2) 设直线AB 的方程是2120x y -+=,过,A B 两点的圆C 与抛物线在点A 处有共同的切线,求圆C 的方程.12. 已知动点P (p ,-1),Q (p ,212p +),过Q 作斜率为2p 的直线l ,P Q 中点M 的轨迹为曲线C.(1)证明:l 经过一个定点而且与曲线C 一定有两个公共点; (2)若(1)中的其中一个公共点为A ,证明:AP 是曲线C 的切线; (3)设直线AP 的倾斜角为α,AP 与l 的夹角为β,证明:βα+或βα-是定值.13. 在平面直角坐标系内有两个定点12F F 、和动点P ,12F F 、坐标分别为)0,1(1-F 、)0,1(F 2,动点P 满足22|PF ||PF |21=,动点P 的轨迹为曲线C ,曲线C 关于直线y x =的对称曲线为曲线'C ,直线3-+=m x y 与曲线'C 交于A 、B 两点,O 是坐标原点,△ABO 的面积为7,(1)求曲线C 的方程;(2)求m 的值。
(完整版)圆锥曲线大题20道(含标准答案)

1.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.解:(Ⅰ)设双曲线方程为12222=-by a x ).0,0(>>b a由已知得.1,2,2,32222==+==b b ac a 得再由故双曲线C 的方程为.1322=-y x (Ⅱ)将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k即.13122<≠k k 且①设),(),,(B B A A y x B y x A ,则 ,22,319,312622>+>⋅--=-=+B A B A B A B A y y x x OB OA kx x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x.1373231262319)1(22222-+=+-+--+=k k k k k k k于是解此不等式得即,01393,213732222>-+->-+k k k k .3312<<k ② 由①、②得.1312<<k故k 的取值范围为).1,33()33,1(⋃-- 2..已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设=λ.(Ⅰ)证明:λ=1-e 2;(Ⅱ)确定λ的值,使得△PF 1F 2是等腰三角形.(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是2222222.,,1,).,0(),0,(b a c c b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由. 所以点M 的坐标是(a b c 2,-). 由).,(),(2a eaa b e a c AB AM λλ=+-=得即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得证法二:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是).,0(),0,(a ea-设M 的坐标是00(,),x y00(,)(,),a aAM AB x y a e eλλ=+=u u u u r u u u r 由得所以⎪⎩⎪⎨⎧=-=.)1(00a y e a x λλ因为点M 在椭圆上,所以,122220=+by a x即.11)1(,1)()]1([22222222=-+-=+-e e b a a e aλλλλ所以 ,0)1()1(2224=-+--λλe e解得.1122e e -=-=λλ即(Ⅱ)解法一:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d ,由,1||1|0)(|||21221c eec a e a c e d PF =+-=+++-==得.1122e ee =+-所以.321,3122=-==e e λ于是即当,32时=λ△PF 1F 2为等腰三角形. 解法二:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|, 设点P 的坐标是),(00y x ,则0000010.22y x ce y x c e a -⎧=-⎪+⎪⎨+-⎪=+⎪⎩,2022023,12(1).1e x c e e a y e ⎧-=⎪⎪+⎨-⎪=⎪+⎩解得由|PF 1|=|F 1F 2|得,4]1)1(2[]1)3([2222222c e a e c e c e =+-+++- 两边同时除以4a 2,化简得.1)1(2222e e e =+- 从而.312=e 于是32112=-=e λ 即当32=λ时,△PF 1F 2为等腰三角形. 3.设R y x ∈,,j i ρρ、为直角坐标平面内x 轴、y 轴正方向上的单位向量,若j y i x b j y i x a ρρρρϖρ)3( ,)3(-+=++=,且4=+b a ϖϖ.(Ⅰ)求点),(y x P 的轨迹C 的方程;(Ⅱ)若A 、B 为轨迹C 上的两点,满足MB AM =,其中M (0,3),求线段AB 的长. [启思]4.已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. (Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R ∈+=μλμλ,证明22μλ+为定值. 解:本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分.(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+ 则直线AB 的方程为c x y -=,代入12222=+b y a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221b a b a c a x x b a c a x x +-=+=+ 由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴ 即232222cba c a =+,所以36.32222a b a c b a =-=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ),(y x M Θ在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由(1)知.21,23,23222221c b c a c x x ===+ [变式新题型3]抛物线的顶点在原点,焦点在x 轴上,准线l 与x 轴相交于点A(–1,0),过点A 的直线与抛物线相交于P 、Q 两点.(1)求抛物线的方程;(2)若FP •FQ =0,求直线PQ 的方程;(3)设=λAQ (λ>1),点P 关于x 轴的对称点为M ,证明:FM =-λFQ ..6.已知在平面直角坐标系xoy 中,向量32),1,0(的面积为OFP ∆=,且,3OF FP t OM j ⋅==+u u u r u u u r u u u u r u u ur r .(I )设4t OF FP θ<<u u u r u u u r求向量与 的夹角的取值范围;(II )设以原点O 为中心,对称轴在坐标轴上,以F 为右焦点的椭圆经过点M ,且||,)13(,||2c t c 当-==取最小值时,求椭圆的方程.7.已知(0,2)M -,点A 在x 轴上,点B 在y 轴的正半轴,点P 在直线AB 上,且满足,AP PB =-u u u r u u u r ,0MA AP ⋅=u u ur u u u r . (Ⅰ)当点A 在x 轴上移动时,求动点P 的轨迹C 方程;(Ⅱ)过(2,0)-的直线l 与轨迹C 交于E 、F 两点,又过E 、F 作轨迹C 的切线1l 、2l ,当12l l ⊥,求直线l 的方程.8.已知点C 为圆8)1(22=++y x 的圆心,点A (1,0),P 是圆上的动点,点Q 在圆的半径CP 上,且.2,0AM AP AP MQ ==⋅(Ⅰ)当点P 在圆上运动时,求点Q 的轨迹方程; (Ⅱ)若直线12++=k kx y 与(Ⅰ)中所求点Q的轨迹交于不同两点F ,H ,O 是坐标原点,且4332≤⋅≤OH OF ,求△FOH 的面积已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过()2,0A -、()2,0B 、31,2C ⎛⎫ ⎪⎝⎭三点.(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l :()1y k x =-(0k ≠)与椭圆E 交于M 、N 两点,证明直线AM 与直线BN 的交点在直线4x =上.10.如图,过抛物线x 2=4y 的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点。
(完整版)圆锥曲线经典题目(含答案)

圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。
圆锥曲线综合训练题(分专题,含答案)

圆锥曲线综合训练题一、求轨迹方程:1、(1)已知双曲线1C 与椭圆2C :2213649x y +=有公共的焦点,并且双曲线的离心率1e 与椭圆的离心率2e 之比为73,求双曲线1C 的方程. (2)以抛物线28y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程. (1)解:1C 的焦点坐标为(0,13).±213e =由1273e e =得113e =设双曲线的方程为22221(,0)y x a b a b -=>则2222213139a b a b a ⎧+=⎪⎨+=⎪⎩ 解得229,4a b == 双曲线的方程为22194y x -= (2)解:设点00(,),(,)M x y P x y ,则00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴00262x x y y =-⎧⎨=⎩.代入2008y x =得:2412y x =-.此即为点P 的轨迹方程.2、(1)ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,建立适当的坐标系求此三角形重心G 的轨迹和顶点A 的轨迹.(2)△ABC 中,B(-5,0),C(5,0),且sinC-sinB=53sinA,求点A 的轨迹方程.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x .设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有⎪⎪⎩⎪⎪⎨⎧='='33yy x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).(2)分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R (R 为外接圆半径),可转化为边长的关系. 解:sinC-sinB=53sinA 2RsinC-2RsinB=53·2RsinA ∴BC AC AB 53=- 即6=-AC AB (*)∴点A 的轨迹为双曲线的右支(去掉顶点) ∵2a=6,2c=10 ∴a=3, c=5, b=4所求轨迹方程为116922=-y x (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支) 3、如图,两束光线从点M (-4,1)分别射向直线y = -2上两点P (x 1,y 1)和Q (x 2,y 2)后,反射光线恰好通过椭圆C :12222=+by a x (a >b >0)的两焦点,已知椭圆的离心率为21,且x 2-x 1=56,求椭圆C 的方程. 解:设a =2k ,c =k ,k ≠0,则b =3k ,其椭圆的方程为1342222=-ky k x . 由题设条件得:114)2(120x x k ----=--+, ①224)2(120x x k ----=--+, ②x 2-x 1=56, ③ 由①、②、③解得:k =1,x 1=511-,x 2=-1,所求椭圆C 的方程为13422=+y x . 4、在面积为1的PMN ∆中,21tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为焦点且过P 点的椭圆方程.∴所求椭圆方程为1315422=+y x 解:以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设),(y x P .则⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-=-.1,21,2cy c x yc x y∴⎪⎪⎩⎪⎪⎨⎧===233435c c y c x 且即)32,325(P ∴⎪⎪⎩⎪⎪⎨⎧=-=+,43,13412252222b a ba 得⎪⎩⎪⎨⎧==.3,41522b a (1)求线段PQ 的中点的轨迹方程;(2)设∠POQ 的平分线交PQ 于点R (O 为原点),求点R 的轨迹方程.解:(1)设线段PQ 的中点坐标为M (x ,y ),由Q (4,0)可得点P (2x -4,2y ),代入圆的方程x 2+y 2=4可得(2x -4)2+(2y )2=4,整理可得所求轨迹为(x -2)2+y 2=1.(2)设点R (x ,y ),P (m ,n ),由已知|OP |=2,|OQ |=4,∴21||||=OQ OP ,由角平分线性质可得||||||||RQ PR OQ OP ==21,又∵点R 在线段PQ 上,∴|PR |=21|RQ |,∴点R 分有向线段PQ 的比为21,由定比分点坐标公式可得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=32211021342211421n n y m m x ,即⎪⎪⎩⎪⎪⎨⎧=-=23243y n x m ,∴点P 的坐标为⎪⎭⎫ ⎝⎛-23 ,243y x ,代入圆的方程x 2+y 2=4可得42324322=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-y x , 即234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0). ∴点R 的轨迹方程为234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0).6、已知动圆过定点()1,0,且与直线1x =-相切.(1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=uu u v uuu v若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设M 为动圆圆心, F ()1,0,过点M 作直线1x =-的垂线,垂足为N ,由题意知:MF MN =, 即动点M 到定点F 与定直线1x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中()1,0F 为焦点,1x =-为准线, ∴ 动点R 的轨迹方程为x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠, 由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+=△216160k =->,11k k <->或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=u u u r u u u r ,即 ()11,OP x y =u u u r ,()22,OQ x y =u u u r,于是12120x x y y +=,即()()21212110ky y y y --+=,2221212(1)()0k y y k y y k +-++=,2224(1)40k k k k k +-+=g ,解得4k =-或0k =(舍去),又41k =-<-, ∴ 直线l 存在,其方程为440x y +-=7、设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程;(II )若A 、B 分别为l l 12、上的点,且2512||||AB F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线;(III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP OQ →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.解:(I )Θe c a =∴=2422, Θc a a c 22312=+∴==,,∴-=双曲线方程为y x 2231,渐近线方程为y x =±334分(II )设A x y B x y ()()1122,,,,AB 的中点()M x y ,[]Θ2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y ,即则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分) (III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[]ΘOP OQ x x y y x x k x x x x k x x x x i →→=∴+=∴+--=∴+-++=·00110101212122121221212()()()()由得则,y k x y x k x k x k x x k k x x k k ii =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l .8、设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN⊥MQ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠则111111(,),(,),(,),P x y Q x y T x y ----……1分221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩L L L L L L L L ………3分 由(1)-(2)可得1.3MN QN k k •=-…6分又MN⊥MQ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x =直线QN 的方程为1111()3yy x x y x =+-,又直线PT 的方程为11.x y x y =-从而得1111,.22x x y y ==-所以112,2.x x y y ==-代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程. 9、已知:直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。
圆锥曲线专题20题练习含答案

1.如图,曲线22:1(0,0)x y E m n m n+=>>与正方形L(1)求m n +的值; (2)设直线:l y x b =+交曲线E 于A ,B ,交L 于C ,D ,是否存在这AB 成等差数列?若存在,求出实数b样的曲线E ,使得CA ,的取值范围;若不存在,请说明理由.2.已知点1(0,)2F ,直线l :12y =-,P 为平面上的动点,过点P 作直线l 的垂线,垂足为H ,且满足()0HF PH PF ⋅+=. (1)求动点P 的轨迹C 的方程;(2)过点F 作直线'l 与轨迹C 交于A ,B 两点,M 为直线l 上一点,且满足MA MB ⊥,若MAB ∆的面积为'l 的方程.3.已知圆22:4O x y +=,点(F ,以线段FP 为直径的圆内切于圆O ,记点P 的轨迹为C . (1)求曲线C 的方程;(2)若()11,A x y ,()22,B x y 为曲线C ,且⊥m n ,试问AOB △的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.4.(12分)已知抛物线()2:20C y px p =>的焦点F 与椭圆22:12x T y +=的一个焦点重合,点()0,2M x 在抛物线上,过焦点F 的直线l 交抛物线于A,B 两点.(1)求抛物线C 的标准方程以及MF 的值.(2)记抛物线的准线l x '与轴交于点H ,试问是否存在常数R λ∈,使得AF FB λ= ,且22854HA HB +=都成立.若存在,求出λ的值;若不存在,请说明理由.5.设抛物线)0(42>=m mx y 的准线与x 轴交于1F ,抛物线的焦点2F ,以21,F F 为焦点,离心率21=e 的椭圆与抛物线的一个交点为)362,32(E ;自1F 引直线交抛物线于Q P ,两个不同的点,设F F 11λ=.(1)求抛物线的方程椭圆的方程; (2)若)1,21[∈λ,求||PQ 的取值范围.6. 已知抛物线的焦点为,为轴上的点.2:4E x y =F (),0P a x(1)当时,过点作直线与相切,求切线的方程;(2)存在过点且倾斜角互补的两条直线,,若,与分别交于,和,四点,且与的面积相等,求实数的取值范围.7.设点A 为圆C :224x y +=上的动点,点A 在x 轴上的投影为Q ,动点M 满足2MQ AQ =,动点M 的轨迹为E .(1)求E 的方程;(2)设E 与y 轴正半轴的交点为B ,过点B 的直线l 的斜率为k (0k ≠),l 与E 交于另一点为P ,若以点B 为圆心,以线段BP 长为半径的圆与E 有4个公共点,求k 的取值范围.8.已知椭圆()2222:10x y E a b a b+=>>的左焦点1F 与抛物线24y x =-的焦点重合,椭圆E的离心率为,过点()3,04M m m ⎛⎫> ⎪⎝⎭作斜率不为0的直线,交椭圆E 于,A B 两点,点5,04P ⎛⎫⎪⎝⎭,且PA PB ⋅ 为定值.(1)求椭圆E 的方程; (2)求OAB △面积的最大值.9.已知椭圆1C ,抛物线2C 的焦点均在x 轴上,1C 的中心和2C 的顶点均为原点O ,从1C ,2C 上分别取两个点,将其坐标记录于下表中:12(2)若直线():0l y kx m k =+≠与椭圆1C 交于不同的两点,M N ,且线段MN 的垂直平分线过定点1,08G ⎛⎫⎪⎝⎭,求实数的取值范围. 10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为分别为椭圆的左、右焦点,点在椭圆上,当时,内切圆的半径为.(1)求椭圆的方程;0a ≠P l E l P 1l 2l 1l 2l E A B C D FAB ∆FCD ∆a(2)已知直线与椭圆相较于两点,且,当直线的斜率之和为2时,问:点到直线的距离是否存在最大值?若存在,求出最大值;若不存在,说明理由.11. 已知抛物线2:C y x =-,点A ,B 在抛物线上,且横坐标分别为12-,32,抛物线C 上的点P 在A ,B 之间(不包括点A ,点B ),过点B 作直线AP 的垂线,垂足为Q . (1)求直线AP 斜率k 的取值范围; (2)求|||PA PQ ⋅的最大值.12. 如图,分别过椭圆()2222:10x y E a b a b+=>>左、右焦点12,F F 的动直线12,l l 相交于P 点,与椭圆E 分别交于,A B 与,C D 不同四点,直线,,,OA OB OC OD 的斜率1234,,,k k k k 满足1234k k k k +=+.已知当1l 与x 轴重合时,AB =CD =(Ⅰ)求椭圆E 的方程;(Ⅱ)是否存在定点,M N ,使得PM PN +为定值?若存在,求出,M N 点坐标并求出此定值;若不存在,说明理由.13.(本小题满分12分)已知椭圆C: 12222=+by a x (a>b>0)的离心率为22,过右焦点F 且与长轴垂直的直线被椭圆截得的线段长为2,0为坐标原点. (1)求椭圆C 的标准方程;(2)设经过点M(0,2)作直线l 交椭圆C 于A 、B 两点,求△AOB 面积的最大值及相应的直线l 的方程.1.【答案】(1)16m n +=;(2【解析】(1,得()28160n m x mx m mn +-+-=,有()()2644160m m n m mn ∆=-+-=,···········2分 化简的()4640mn m n mn +-=.又0m >,0n >,所以0mn >从而有16m n +=;···········4分 (2)由2AB CA BD =+,AB =···········5分 ,得()2220n m x bmx mb mn +++-=, 由2224440nmb n m m n ∆=-++>可得216b m n <+=,且122bmx x n m-+=+,212mb mn x x n m -=+,···········7分···········8分 323=,···········10分符合216b m n <+=,故当实数b 时,存在直线和曲线E ,使得CA ,AB ,BD 成等差数列.···········12分 2.解:(1)设(,)P x y ,则1(,)2H x -,1(,1),(0,),2HF x PH y ∴=-=--1(,)2PF x y =-- ,(,2)PH PF x y +=-- ,()0HF PH PF += ,220x y ∴-=,即轨迹C 的方程为22x y =.(II )法一:显然直线l '的斜率存在,设l '的方程为12y kx =+,由2122y kx x y ⎧=+⎪⎨⎪=⎩,消去y 可得:2210x kx --=, 设1122(,),(,)A x y B x y ,1(,)2M t -,121221x x kx x +=⎧∴⎨⋅=-⎩,112211(,),(,)22MA x t y MB x t y =-+=-+ MA MB ⊥ ,0MA MB ∴= ,即121211()()()()022x t x t y y --+++=2121212()(1)(1)0x x x x t t kx kx ∴-+++++=,22212210kt t k k ∴--+-++=,即2220t kt k -+=∴2()0t k -=,t k ∴=,即1(,)2M k -,∴212|||2(1)AB x x k =-==+,∴1(,)2M k -到直线l '的距离2d ==,3221||(1)2MABS AB d k ∆==+=,解得1k =±, ∴直线l '的方程为102x y +-=或102x y -+=. 法2:(Ⅱ)设1122(,),(,)A x y B x y ,AB 的中点为()00,y x E则211121212120212222()()2()2AB x y y y x x x x y y x k x x x y ⎧=-⎪⇒-+=-⇒==⎨-=⎪⎩ 直线'l 的方程为012y x x =+, 过点A,B 分别作1111B 于,于l BB A l AA ⊥⊥,因为,⊥MA MB E 为AB 的中点,所以在Rt AMB 中,11111||||(||||)(||||)222==+=+EM AB AF BF AA BB 故EM 是直角梯形11A B BA 的中位线,可得⊥EM l ,从而01(,)2M x -点M 到直线'l的距离为:2d ==因为E 点在直线'l 上,所以有20012y x =+,从而21200||1212(1)AB y y y x =++=+=+由2011||2(22MAB S AB d x ==⨯+= 01x =± 所以直线'l 的方程为12y x =+或12y x =-+.3.【答案】(1)2214y x +=;(2)答案见解析.【解析】(1)取(0,F ',连结PF ',设动圆的圆心为M , ∵两圆相内切,∴122OM FP =-,又12OM PF =',∴4PF PF FF +=>='',···········3分∴点P 的轨迹是以F ,F '为焦点的椭圆,其中24a =,2c =,∴2a =,c =,∴2221b a c =-=,∴C 的轨迹方程为2214y x +=.···········5分(2)当AB x ⊥轴时,有12x x =,12y y =-,由⊥m n ,得112y x =,又221114y x +=,∴1x =1y =∴11112122AOB S x y ∆=⨯⨯=⨯=.···········7分 当AB 与轴不垂直时,设直线AB 的方程为y kx m =+,()2224240k x kmx m +++-=, 则12224kmx x k -+=+,212244m x x k -=+,···········9分由0⋅=m n ,得121240y y x x +=,∴()()121240kx m kx m x x +++=, 整理得()()22121240k x x km x x m ++++=,···········10分 ∴2224m k =+,12m21m==,综上所述,AOB △的面积为定值.···········12分5.解:(1)设椭圆的标准方程为)0(12222>>=+b a by ax ,由题意得⎪⎪⎩⎪⎪⎨⎧=-==+211924942222a b a ac b a ,解得⎪⎩⎪⎨⎧==3422b a∴椭圆的方程为13422=+y x ∴点2F 的坐标为)0,1(,∴1=m ,∴抛物线的方程是x y 42=(2)由题意得直线PQ 的斜率存在,设其方程为)0)(1(≠+=k x k y ,由⎩⎨⎧=+=xy x k y 4)1(2消去x 整理得0442=+-k y ky ()∵直线PQ 与抛物线交于两点, ∴016162>-∆k ,设),(),,(2211y x Q y x P ,则421=y y ①,ky y 421=+②, ∵Q F P F 11λ=,)0,1(1-F ∴),1(),1(2211y x y x +=+λ ∴21y y λ=,③由①②③消去21,y y 得22)1(4+=λλk . ∴||PQ 22221221222121616)11(4))[(11())(11(kk ky y y y ky y k-+=-++=-+=441616kk -=,即=2||PQ 441616k k -,将22)1(4+=λλk 代入上式得,=2||PQ 16)21(16)12(16)4(222224-++=-++=-+λλλλλλλ,∵λλλ1)(+=f 在)1,21[∈λ上单调递减,∴)21()()1(f f f ≤<λ,即2512≤+<λλ, ∴<041716)21(2≤-++λλ, ∴217||0≤<PQ ,即||PQ 的取值范围为]217,0(. 6.解:(1)设切点为则. ∴点处的切线方程为. ∵过点,∴,解得或. 当时,切线的方程为或. (2)设直线的方程为,代入得, ①,得, ②由题意得,直线的方程为, 同理可得,即, ③ ②×③得,∴.④设,,则,.∴.点到的距离为,200,3x Q x ⎛⎫⎪⎝⎭002x x l x yk ===Q ()200042x x y x x -=-l P ()200042x x a x -=-02x a =00x =0a ≠l 0y =20ax y a --=1l ()y k x a =-24x y =2440x kx ka -+=216160k ka ∆=->()0k k a ->2l ()y k x a =--()0k k a --->()0k k a +>()2220k k a ->22a k <()11,A x y ()22,B x y 224x x k +=224x x ka=AB =FAB d =∴的面积为同理的面积为由已知得,化简得, ⑤欲使⑤有解:则,∴.又,得,∴. 综上,的取值范围为或或.7.解:(1)设点(,)M x y ,由2MQ AQ =,得(,2)A x y ,由于点A 在圆C :224x y +=上,则2244x y +=,即点M 的轨迹E 的方程为2214x y +=. (2)由(1)知,E的方程为2214x y +=, 因为E 与y 轴的正半轴的交点为B ,所以(0,1)B ,所以故B 且斜率为k 的直线l 的方程为1y kx =+(0k ≠).由221,1,4y kx x y =+⎧⎪⎨+=⎪⎩得22(14)80k x kx ++=, 设11(,)B x y ,22(,)P x y ,因此10x =,22814kx k =-+,12|||BP x x =-=由于圆与椭圆的公共点有4个,由对称性可设在y 轴左侧的椭圆上有两个不同的公共点P ,T ,满足||||BP BP =,此时直线BP 斜率0k >,FAB ∆41S =+FCD ∆41S =-4141+=-()2221a k -=22a <a <22212a k k=-<21k ≠21a ≠a 1a <<-11a -<<1a <<设直线BT 的斜率为1k ,且10k >,1k k ≠,则||BT ==10-=,即221(14(14k k +=+所以222222111()(18)0k k k k k k -++-=, 由于12k k ≠,因此222211180k k k k ++-=,故22122111198188(81)k k k k +==+--. 因为20k >,所以21810k ->,因此22119188(81)8k k =+>-,又因为0k >,所以k >, 又因为1k k ≠,所以2222180k k k k ++-≠,所以428210k k --≠,又因为0k >,解得2k ≠,所以)k ∈+∞ , 综上所述,k的取值范围为(,()-∞+∞ .8.(本小题满分12分)【答案】(1)2212x y +=;(2). 【解析】(1)设1(,0)F c ,∵抛物线24y x =﹣的焦点坐标为(1,0)-,且椭圆E 的左焦点1F 与抛物线24y x =﹣的焦点重合,∴1c =,···········2分 又椭圆Ea =···········3分 于是有2221b ac ==﹣.故椭圆E 的标准方程为:2212x y +=.···········4分 (2)设11,A x y (),22,B x y (),直线的方程为:x ty m =+, 由2222x ty m x y =+⎧⎨+=⎩整理得2222220t y tmy m +++=()﹣ 12222tm y y t -+=+,212222m y y t -=+,···········6分 115(,)4PA x y =- ,225(,)4PB x y =- , 121255()()44PA PB x x y y ⋅=--+ 2212125525(1)()()4216t y y tm t y y m m =++-++-+222225(2)(2)5722216m m t m m m t -+-+-=+--+.···········8分 要使PA PB ⋅ 为定值,则22522212m m m -+--=,解得1m =或23m =(舍), ···········9分当1m =时,2122|)2t AB y y t +==+﹣,···········10分点O 到直线AB的距离d =,···········11分OAB △面积1s ==. ∴当0t =,OAB △··········12分 9.【答案】(1)1C :22143x y +=.22:4C y x =;(2),⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭. 【解析】(1)设抛物线()22:20C y px p =≠,则有()220y p x x =≠,据此验证4个点知(3,-,()4,4-在抛物线上,易求22:4C y x =.·········2分 设()2222:10x y C a b a b +=>>,把点()2,0-,⎭代入得: 222412614⎧=+⎪⎪⎨⎪⎪⎩=a ab ,解得2243==⎧⎨⎩a b ,所以1C 的方程为22143x y +=.·········5分 (2)设()11,M x y ,()22,N x y ,将y kx m =+代入椭圆方程,消去y 得()2223484120k x kmx m +++-=, 所以()()()22284344120km k m ∆=-+->,即2243m k <+.① 由根与系数关系得122834km x x k+=-+,则122634m y y k +=+,·········7分 所以线段MN 的中点P 的坐标为2243,3434km m k k ⎛⎫- ⎪++⎝⎭.·········8分 又线段MN 的垂直平分线的方程为118y x k ⎛⎫=-- ⎪⎝⎭,·········9 由点P 在直线上,得22314134348m km k k k ⎛⎫=--- ⎪++⎝⎭, 即24830k km ++=,所以()21438m k k =-+,·········10分 由①得()2222434364k k k +<+,所以2120k >,即k <或k >,所以实数的取值范围是,⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭.·········12分 10.(1)依题意: PF 1 + PF 2 − F 1F 2 2=r ,则 PF 1 + PF 2 − F 1F 2 =4−2 3,即2a −2c =4−2 3又c a = 32,联立解得:a =2,c = 3,故b =1,所以椭圆的方程为x 24+y 2=1 (2)设, 联立直线和椭圆的方程得:, 当时有: 由得:,即, 整理得:,所以, 化简整理得:,代入得:, 解之得:或, 点到直线的距离, 设,易得或,则, 当时;当时,, 若,则;若,则,当时, 综上所述:,故点到直线的距离没有最大值.11.(1)由题可知11(,)24A --,39(,)24B -,设2(,)p p P x x -,1322p x -<<,所以 21412p p x k x -+=+12p x =-+∈(1,1)-,故直线AP 斜率k 的取值范围是(1,1)-.(2)直线11:24AP y kx k =+-,直线93:042BQ x ky k ++-=,联立直线AP ,BQ 方程可知点Q 的横坐标为223422Q k k x k --=+,||PQ =()Q p x x -22341()222k k k k --=+-+2=1||)2p PA x =+)k =-,所以3||||(1)(1)PA PQ k k ⋅=-+,令3()(1)(1)f x x x =-+,11x -<<,则2'()(1)(24)f x x x =---22(1)(21)x x =--+,当112x -<<-时'()0f x >,当112x -<<时'()0f x <,故()f x 在1(1,)2--上单调递增,在1(,1)2-上单调递减. 故max 127()()216f x f =-=,即||||PA PQ ⋅的最大值为2716. 12.解:(Ⅰ)当1l 与x 轴重合时,1230k k k k +=+=,即34k k =-2l ∴垂直于x轴,得2AB a ==,223b CD a ==得a b =,∴椭圆E 的方程为:22132x y +=. (Ⅱ)焦点12,F F 坐标分别为()()1,0,1,0-当直线1l 或2l 斜率不存在时,P 点坐标为()1,0-或()1,0当直线1l 、2l 斜率存在时,设斜率分别为12,m m ,设()()1122,,,A x y B x y , 由()2211321x y y m x ⎧+=⎪⎨⎪=+⎩得:()2222111236360m x m x m +++-= 由求根公式并化简得:211221623m x x m +=-+或2112213623m x x m -⋅=+ 121212112112121212111422y y x x x x m k k m m x x x x x x m ⎛⎫⎛⎫++++=+=+=+=- ⎪ ⎪-⎝⎭⎝⎭ 同理:2342242m k k m +=--.1234k k k k +=+ ,()()1212212212442022m m m m m m m m -=-⇒⋅+-=--,由题意知:210m m -≠,1220m m ∴⋅+=. 设(),P x y ,则+2=01+1y y x x ⋅-,即()22112y x x +=≠± 当直线1l 或2l 斜率不存在时,P 点坐标为()1,0-或()1,0,也满足此方程,所以点P 在椭圆()22112y x x +=≠±上,存在点()0,1M -和()0,1N ,使得PM PN +为定值,定值为。
圆锥曲线大题综合(含答案)

圆锥曲线大题综合1.(2022秋·广东江门·高二台山市第一中学校考期中)求适合下列条件的圆锥曲线的标准方程:(1)以直线y =为渐近线,焦点是()3,0-,()3,0的双曲线;(2)离心率为45,短轴长为6的椭圆.2.(2022秋·广东江门·高二校考期中)已知抛物线22(0)y px p =>的焦点F 到其准线的距离为4.(1)求p 的值;(2)过焦点F 且斜率为1的直线与抛物线交于A ,B 两点,求||AB .3.(2022秋·广东深圳·高二深圳市南头中学校考期中)椭圆C 的中心在坐标原点O ,焦点在x 轴上,椭圆C经过点()0,1且长轴长为(1)求椭圆C 的标准方程;(2)过点()1,0M 且斜率为1的直线l 与椭圆C 交于A ,B 两点,求弦长AB .4.(2022秋·广东江门·高二校考期中)椭圆C :22221(0)x y a b a b +=>>2.(1)求椭圆C 的标准方程;(2)经过点A (2,3)且倾斜角为π4的直线l 与椭圆交于M ,N 两点,求|MN |.5.(2022秋·广东江门·高二校考期中)已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,2a =.(1)求椭圆C 的标准方程;(2)经过点(2,3)A 且倾斜角为π4的直线l 与椭圆交于M ,N 两点,求线段MN 的长.6.(2022秋·广东梅州·高二校考期中)已知P 为椭圆E :22221x y a b+=(0)a b >>上任意一点,F 1,F 2为左、右焦点,M 为PF 1中点.如图所示:若1122OM PF +=,离心率e =(1)求椭圆E 的标准方程;(2)已知直线l 倾斜角为135°,经过(2,1)-且与椭圆交于A ,B 两点,求弦长|AB|的值.7.(2022秋·广东广州·高二校联考期中)已知椭圆的中心在原点,离心率为12,一个焦点是(,0)F m -(m 是大于0的常数).(1)求椭圆的方程;(2)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M .若||2||MQ QF =,求直线l 的斜率.8.(2022秋·广东深圳·高二深圳市南头中学校考期中)已知椭圆C :()222210x y a b a b+=>>过点()2,1P ,且离心率2e =.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点,若AB =l 方程.9.(2022秋·广东深圳·高二深圳外国语学校校考期中)已知点()11,0F -,圆()222116F x y -+=:,点Q 在圆2F 上运动,1QF 的垂直平分线交2QF 于点P .(1)求动点P 的轨迹C 的方程;(2)直线l 与曲线C 交于M N 、两点,且MN 中点为()1,1,求直线l 的方程.10.(2022秋·广东广州·高二校联考期中)已知两定点()4,0A -,()1,0B -,动点P 满足2PA PB =,直线:l ()()211530m x m y m +++--=.(1)求动点P 的轨迹方程,并说明轨迹的形状;(2)记动点P 的轨迹为曲线E ,把曲线E 向右平移1个单位长度,向上平移1个单位长度后得到曲线E ',求直线l 被曲线E '截得的最短的弦长;(3)已知点M 的坐标为()5,3,点N 在曲线E '上运动,求线段MN 的中点H 的轨迹方程.11.(2022秋·广东江门·高二台山市第一中学校考期中)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,且经过点31,2P ⎛⎫⎪⎝⎭.(1)求椭圆C 的方程;(2)若直线y kx m =+与椭圆C 交于M N 、两点,O 为坐标原点,直线OM ON 、的斜率之积等于34-,试探求OMN 的面积是否为定值,并说明理由.12.(2022秋·广东江门·高二校考期中)动点N (x ,y )与定点F (1,0)的距离和N 到定直线2x =的距离的比是常数22.(1)求动点N 的轨迹C 的方程;(2)过点F 的直线l 与曲线C 交于A ,B 两点,点(2,0)M ,设直线MA 与直线MB 的斜率分别为1k ,2k .随着直线l 的变化,12k k +是否为定值?请说明理由.13.(2022秋·广东广州·高二校考期中)已知椭圆2222:1(0)x y a b a b Γ+=>>的右顶点坐标为(2,0)A ,左、右焦点分别为12,F F ,且122F F =,(1)求椭圆Γ的方程;(2)若直线L 与椭圆Γ相切,求证:点12,F F 到直线L 的距离之积为定值.14.(2022秋·广东广州·高二校联考期中)如图,已知圆22:430M x x y -++=,点()1,P t -为直线:1l x =-上一动点,过点P 引圆M 的两条切线,切点分别为A ,B(1)求直线AB 的方程,并写出直线AB 所经过的定点的坐标;(2)求线段AB 中点的轨迹方程;15.(2022秋·广东江门·高二校考期中)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,点在椭圆C 上,点F 是椭圆C 的右焦点.(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于M ,N 两点,则在x 轴上是否存在一点P ,使得直线l 绕点F 无论怎样转动都有0PM PN k k +=?若存在,求出点P 的坐标;若不存在,请说明理由.16.(2022秋·广东广州·高二南海中学校考期中)在平面直角坐标系xOy 中,已知点()4,0A -,()4,0B ,M 是一个动点,且直线AM ,BM 的斜率之积是34-,记M 的轨迹为E .(1)求E 的方程;(2)若过点()2,0F 且不与x 轴重合的直线l 与E 交于P ,Q 两点,点P 关于x 轴的对称点为1P (1P 与Q 不重合),直线1PQ 与x 轴交于点G ,求点G 的坐标.17.(2022春·广东汕头·高二校考期中)已知椭圆C :()222210x y a b a b +=>>过点()2,1P ,且离心率2e =.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点.求PAB 面积的最大值.18.(2022春·广东广州·高二华南师大附中校考期中)如图,已知圆2222:1(0)x y C a b a b+=>>的左顶点(2,0)A -,过右焦点F 的直线l 与椭圆C 相交于M ,N 两点,当直线l x ⊥轴时,||3MN =.(1)求椭圆C 的方程;(2)记,AMF ANF 的面积分别为12,S S ,求12S S 的取值范围.19.(2022春·广东广州·高二二师番禺附中校考期中)已知点A的坐标为()-,点B的坐标为(),且动点M 到点A 的距离是8,线段MB 的垂直平分线交线段MA 于点P .(1)求动点P 的轨迹C 的方程;(2)已知(2,1)D -,过原点且斜率为k (0k >)的直线l 与曲线C 交于E 、F 两点,求DEF 面积的最大值.20.(2022春·广东深圳·高二深圳市龙岗区龙城高级中学校考期中)已知椭圆C :22221(0)x y a b a b+=>>的焦距为2,点31,2P ⎛⎫⎪⎝⎭在椭圆C 上.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两个动点,O 为坐标原点,且直线PM ,PN 的倾斜角互补,求OMN 面积的最大值.21.(2022春·广东深圳·高二校考期中)已知抛物线()2:20C x py p =>的焦点为F ,过F 的直线与抛物线C 交于A ,B 两点,当A ,B 两点的纵坐标相同时,4AB =.(1)求抛物线C 的方程;(2)若P ,Q 为抛物线C 上两个动点,()0PQ m m =>,E 为PQ 的中点,求点E 纵坐标的最小值.22.(2022秋·广东深圳·高二校考期中)已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为2,短轴顶点分别为M 、N ,四边形12MF NF 的面积为32.(1)求椭圆C 的标准方程;(2)直线l 交椭圆C 于A ,B 两点,若AB 的中点坐标为()2,1-,求直线l 的方程.23.(2022秋·广东广州·高二校联考期中)已知椭圆221:1164x y E +=,()22222:10,4x y E a b a a b+=>><的离心率相同.点()00,P x y 在椭圆1E 上,()11,A x y 、()22,B x y 在椭圆2E 上.(1)若2OP OQ =,求点Q 的轨迹方程;(2)设1E 的右顶点和上顶点分别为1A 、1B ,直线1AC 、1B D 分别是椭圆2E 的切线,C 、D 为切点,直线1AC 、1B D 的斜率分别是1k 、2k ,求2212k k ⋅的值;(3)设直线PA 、PB 分别与椭圆2E 相交于E 、F 两点,且()AB tEF t =∈R,若M 是AB 中点,求证:P 、O 、M 三点共线(O 为坐标原点).24.(2022秋·广东广州·高二校联考期中)如图,中心在原点O 的椭圆Γ的右焦点为()F ,长轴长为8.椭圆Γ上有两点P 、Q ,连接OP 、OQ ,记它们的斜率为OP k 、OQ k ,且满足14OP OQ k k ⋅=-.(1)求椭圆Γ的标准方程;(2)求证:22OP OQ +为一定值,并求出这个定值;(3)设直线OQ与椭圆Γ的另一个交点为R ,直线RP 和PQ 分别与直线x =M 、N ,若PQR 和PMN 的面积相等,求点P 的横坐标.25.(2022秋·广东·高二校联考期中)设椭圆Γ:()222210x y a b a b +=>>,1F ,2F 是椭圆Γ的左、右焦点,点A ⎛ ⎝⎭在椭圆Γ上,点()4,0P 在椭圆Γ外,且24PF =-(1)求椭圆Γ的方程;(2)若1,B ⎛ ⎝⎭,点C 为椭圆Γ上横坐标大于1的一点,过点C 的直线l 与椭圆有且仅有一个交点,并与直线PA ,PB 交于M ,N 两点,O 为坐标原点,记OMN ,PMN 的面积分别为1S ,2S ,求221122S S S S -+的最小值.26.(2022秋·广东阳江·高二统考期中)已知椭圆()2222:10y x C a b a b+=>>的上、下焦点分别为1F ,2F ,左、右顶点分别为1A ,2A ,且四边形1122A F A F 是面积为8的正方形.(1)求C 的标准方程.(2)M ,N 为C 上且在y 轴右侧的两点,12//MF NF ,2MF 与1NF 的交点为P ,试问12PF PF +是否为定值?若是定值,求出该定值;若不是,请说明理由.27.(2022春·广东广州·高二广东番禺中学校考期中)已知定点)P,圆Q :(2216x y +=,N 为圆Q 上的动点,线段NP 的垂直平分线和半径NQ 相交于点M .(1)求点M 的轨迹Γ的方程;(2)直线l :x ky n =+与曲线Γ相交于A ,B 两点,且以线段AB 为直径的圆经过点C (2,0),求ABC 面积的最大值.28.(2022春·广东广州·高二广州科学城中学校考期中)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为其短轴的两个端点与右焦点的连线构成正三角形.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设过点(0,2)P -的动直线l 与椭圆C 相交于M ,N 两点,当OMN 的面积最大时,求l 的方程.29.(2022秋·广东深圳·高二深圳市高级中学校考期中)曲线Γ上动点M 到A (﹣2,0)和到B (2,0)的斜率之积为﹣14.(1)求曲线Γ的轨迹方程;(2)若点P (x 0,y 0)(y 0≠0)为直线x =4上任意一点,PA ,PB 交椭圆Γ于C ,D 两点,求四边形ACBD 面积的最大值.30.(2022春·广东汕头·高二金山中学校考期中)已知椭圆()2222:10,0x y C a b a b+=>>的焦距为,经过点()2,1P -.(1)求椭圆C 的标准方程;(2)设O 为坐标原点,在椭圆短轴上有两点M ,N 满足OM NO =,直线PM PN ,分别交椭圆于A ,B .PQ AB ⊥,Q 为垂足.是否存在定点R ,使得QR 为定值,说明理由.圆锥曲线大题综合答案1.(2022秋·广东江门·高二台山市第一中学校考期中)求适合下列条件的圆锥曲线的标准方程:(1)以直线y =为渐近线,焦点是()3,0-,()3,0的双曲线;(2)离心率为45,短轴长为6的椭圆.(1)求p 的值;(2)过焦点F 且斜率为1的直线与抛物线交于A ,B 两点,求||AB .则直线AB 的方程为2,y x =-设()()1122,,,A x y B x y ,联立228y x y x=-⎧⎨=⎩,整理可得21240xx -+=,所以1212x x +=,由抛物线的性质可得12||12416AB x x p =++=+=.3.(2022秋·广东深圳·高二深圳市南头中学校考期中)椭圆C 的中心在坐标原点O ,焦点在x 轴上,椭圆C 经过点()0,1且长轴长为(1)求椭圆C 的标准方程;(2)过点()1,0M 且斜率为1的直线l 与椭圆C 交于A ,B 两点,求弦长AB .(1)求椭圆C 的标准方程;(2)经过点A (2,3)且倾斜角为π4的直线l 与椭圆交于M ,N 两点,求|MN |.(1)求椭圆C 的标准方程;(2)经过点(2,3)A 且倾斜角为π4的直线l 与椭圆交于M ,N 两点,求线段MN 的长.6.(2022秋·广东梅州·高二校考期中)已知P 为椭圆E :221x y a b+=(0)a b >>上任意一点,F 1,F 2为左、右焦点,M 为PF 1中点.如图所示:若1122OM PF +=,离心率e =(1)求椭圆E 的标准方程;(2)已知直线l 倾斜角为135°,经过(2,1)-且与椭圆交于A ,B 两点,求弦长|AB|的值.7.(2022秋·广东广州·高二校联考期中)已知椭圆的中心在原点,离心率为12,一个焦点是(,0)F m -(m 是大于0的常数).(1)求椭圆的方程;(2)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M .若||2||MQ QF =,求直线l 的斜率.8.(2022秋·广东深圳·高二深圳市南头中学校考期中)已知椭圆C :()222210x y a b a b+=>>过点()2,1P ,且离心率2e =.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B两点,若AB =l 方程.9.(2022秋·广东深圳·高二深圳外国语学校校考期中)已知点1,圆2,点在圆2F 上运动,1QF 的垂直平分线交2QF 于点P .(1)求动点P 的轨迹C 的方程;(2)直线l 与曲线C 交于M N 、两点,且MN 中点为()1,1,求直线l 的方程.:l ()()211530m x m y m +++--=.(1)求动点P 的轨迹方程,并说明轨迹的形状;(2)记动点P 的轨迹为曲线E ,把曲线E 向右平移1个单位长度,向上平移1个单位长度后得到曲线E ',求直线l 被曲线E '截得的最短的弦长;(3)已知点M 的坐标为()5,3,点N 在曲线E '上运动,求线段MN 的中点H 的轨迹方程.11.(2022秋·广东江门·高二台山市第一中学校考期中)已知椭圆22:1(0)x y C a b a b+=>>的离心率为12,且经过点31,2P ⎛⎫⎪⎝⎭.(1)求椭圆C 的方程;(2)若直线y kx m =+与椭圆C 交于M N 、两点,O 为坐标原点,直线OM ON 、的斜率之积等于34-,试探求OMN 的面积是否为定值,并说明理由.的比是常数2.(1)求动点N 的轨迹C 的方程;(2)过点F 的直线l 与曲线C 交于A ,B 两点,点(2,0)M ,设直线MA 与直线MB 的斜率分别为1k ,2k .随着直线l的变化,12k k +是否为定值?请说明理由.13.(2022秋·广东广州·高二校考期中)已知椭圆2222:1(0)x y a b a bΓ+=>>的右顶点坐标为(2,0)A ,左、右焦点分别为12,F F ,且122F F =,(1)求椭圆Γ的方程;(2)若直线L 与椭圆Γ相切,求证:点12,F F 到直线L 的距离之积为定值.【详解】(1)因为12||22F F c ==,则c =1,因为2222,3a b a c ==-=,所以椭圆Γ的方程22143x y +=;(2)证明:椭圆Γ的左、右焦点分别为12(1,0),(1,0)F F -,①当直线l 垂直于x 轴时,因为直线l 与椭圆Γ相切,所以直线l 的方程为2x =±,此时点12,F F 到直线l 的距离一个为11d =,另一个为23d =,所以123d d =,②当直线l 不垂直于x 轴时,设直线l 的方程为y =kx +b ,联立2234120y kx b x y =+⎧⎨+-=⎩,消去y ,整理得222(34)84120k x kbx b +++-=,所以,222222644(34)(412)16(9123)k x k b k b ∆=-+-=+-,因为直线l 与椭圆Γ相切,Δ=0,所以,2234b k =+,因为1(1,0)F -到直线l 的距离为12||1-=+k b d k ,2(1,0)F 到直线l 的距离为22||1+=+k b d k ,所以,222221222222|||||||(34)||33|311111k b k b k b k k k d d k k k k k-+--++=⋅====+++++,所以点12,F F 到直线l 的距离之积为定值,且定值为3.14.(2022秋·广东广州·高二校联考期中)如图,已知圆22:430M x x y -++=,点()1,P t -为直线:1l x =-上一动点,过点P 引圆M 的两条切线,切点分别为A ,B(1)求直线AB 的方程,并写出直线AB 所经过的定点的坐标;(2)求线段AB 中点的轨迹方程;【详解】(1)因为PA ,PB 为圆M 的切线,所以90PBM PAM ∠=∠=︒,设PM 的中点为N ,所以点A ,B 在以PM 为直径的圆N 上,又点A ,B 在圆M 上,所以线段AB 为圆N 和圆M 的公共弦,因为圆22:430M x x y -++=①,AB的中点设为F点,由HF始终垂直干当P点在x轴上时,F点与H点的重合,M,得HM的中点坐标为⎛(2,0)⎝圆去掉点M,圆C上,点F是椭圆C的右焦点.(1)求椭圆C的方程;(2)过点F的直线l与椭圆C交于M,N两点,则在x轴上是否存在一点P,使得直线l绕点F无论怎样转k k+=?若存在,求出点P的坐标;若不存在,请说明理由.动都有0PM PN,M 是一个动点,且直线AM ,BM 的斜率之积是34-,记M 的轨迹为E .(1)求E 的方程;(2)若过点()2,0F 且不与x 轴重合的直线l 与E 交于P ,Q 两点,点P 关于x 轴的对称点为1P (1P 与Q 不重合),直线1PQ 与x 轴交于点G ,求点G 的坐标.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点.求PAB 面积的最大值.18.(2022春·广东广州·高二华南师大附中校考期中)如图,已知圆22:1(0)x y C a b a b+=>>的左顶点(2,0)A -,过右焦点F 的直线l 与椭圆C 相交于M ,N 两点,当直线l x ⊥轴时,||3MN =.(1)求椭圆C 的方程;(2)记,AMF ANF 的面积分别为12,S S ,求12S S 的取值范围.且动点M 到点A 的距离是8,线段MB 的垂直平分线交线段MA 于点P .(1)求动点P 的轨迹C 的方程;(2)已知(2,1)D -,过原点且斜率为k (0k >)的直线l 与曲线C 交于E 、F 两点,求DEF 面积的最大值.20.(2022春·广东深圳·高二深圳市龙岗区龙城高级中学校考期中)已知椭圆C :221(0)a b a b+=>>的焦距为2,点31,2P ⎛⎫⎪⎝⎭在椭圆C 上.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两个动点,O 为坐标原点,且直线PM ,PN 的倾斜角互补,求OMN 面积的最大值.交于A ,B 两点,当A ,B 两点的纵坐标相同时,4AB =.(1)求抛物线C 的方程;(2)若P ,Q 为抛物线C 上两个动点,()0PQ m m =>,E 为PQ 的中点,求点E 纵坐标的最小值.22.(2022秋·广东深圳·高二校考期中)已知椭圆C :()2210a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为22,短轴顶点分别为M 、N ,四边形12MF NF 的面积为32.(1)求椭圆C 的标准方程;(2)直线l 交椭圆C 于A ,B 两点,若AB 的中点坐标为()2,1-,求直线l 的方程.23.(2022秋·广东广州·高二校联考期中)已知椭圆1:1164x y E +=,()222:10,4E a b a a b +=>><的离心率相同.点()00,P x y 在椭圆1E 上,()11,A x y 、()22,B x y 在椭圆2E 上.(1)若2OP OQ =,求点Q 的轨迹方程;(2)设1E 的右顶点和上顶点分别为1A 、1B ,直线1AC 、1B D 分别是椭圆2E 的切线,C 、D 为切点,直线1AC 、1B D 的斜率分别是1k 、2k ,求2212k k ⋅的值;(3)设直线PA 、PB 分别与椭圆2E 相交于E 、F 两点,且()AB tEF t =∈R,若M 是AB 中点,求证:P 、O 、M 三点共线(O 为坐标原点).8.椭圆Γ上有两点P 、Q ,连接OP 、OQ ,记它们的斜率为OP k 、OQ k ,且满足14OP OQ k k ⋅=-.(1)求椭圆Γ的标准方程;(2)求证:22OP OQ +为一定值,并求出这个定值;(3)设直线OQ 与椭圆Γ的另一个交点为R ,直线RP 和PQ 分别与直线x =M 、N ,若PQR 和PMN 的面积相等,求点P 的横坐标.25.(2022秋·广东·高二校联考期中)设椭圆Γ:()2210a b a b +=>>,1F ,2F 是椭圆Γ的左、右焦点,点A ⎛ ⎝⎭在椭圆Γ上,点()4,0P 在椭圆Γ外,且24PF =-(1)求椭圆Γ的方程;(2)若1,2B ⎛- ⎝⎭,点C 为椭圆Γ上横坐标大于1的一点,过点C 的直线l 与椭圆有且仅有一个交点,并与直线PA ,PB 交于M ,N 两点,O 为坐标原点,记OMN ,PMN 的面积分别为1S ,2S ,求221122S S S S -+的最小值.26.(2022秋·广东阳江·高二统考期中)已知椭圆()22:10y x C a b a b+=>>的上、下焦点分别为1F ,2F ,左、右顶点分别为1A ,2A ,且四边形1122A F A F 是面积为8的正方形.(1)求C 的标准方程.(2)M ,N 为C 上且在y 轴右侧的两点,12//MF NF ,2MF 与1NF 的交点为P ,试问12PF PF +是否为定值?若是定值,求出该定值;若不是,请说明理由.)27.(2022春·广东广州·高二广东番禺中学校考期中)已知定点P ,圆Q :216x y +=,N 为圆Q 上的动点,线段NP 的垂直平分线和半径NQ 相交于点M .(1)求点M 的轨迹Γ的方程;(2)直线l :x ky n =+与曲线Γ相交于A ,B 两点,且以线段AB 为直径的圆经过点C (2,0),求ABC 面积的最大值.(1)因为N 为圆Q 上的动点,线段NP 的垂直平分线和半径NQ 相交于点M ,28.(2022春·广东广州·高二广州科学城中学校考期中)已知椭圆22:1(0)x y C a b a b+=>>的焦距为其短轴的两个端点与右焦点的连线构成正三角形.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设过点(0,2)P -的动直线l 与椭圆C 相交于M ,N 两点,当OMN 的面积最大时,求l 的方程.(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.29.(2022秋·广东深圳·高二深圳市高级中学校考期中)曲线Γ上动点M到A(﹣2,0)和到B(2,0)的斜率之积为﹣1 4.(1)求曲线Γ的轨迹方程;(2)若点P(x0,y0)(y0≠0)为直线x=4上任意一点,PA,PB交椭圆Γ于C,D两点,求四边形ACBD 面积的最大值.【点睛】熟练掌握直线与圆锥曲线位置关系及函数单调性是解题关键30.(2022春·广东汕头·高二金山中学校考期中)已知椭圆()22:10,0x y C a b a b+=>>的焦距为,经过点()2,1P -.(1)求椭圆C 的标准方程;(2)设O 为坐标原点,在椭圆短轴上有两点M ,N 满足OM NO =,直线PM PN ,分别交椭圆于A ,B .PQ AB ⊥,Q 为垂足.是否存在定点R ,使得QR 为定值,说明理由.。
圆锥曲线大题专题及答案

解析几何大题专题第一类题型 弦长面积问题1.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率是2,且过点P .直线2y x m =+与椭圆C 相交于,A B 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)求PAB △的面积的最大值;(Ⅲ)设直线,PA PB 分别与y 轴交于点,M N .判断||PM ,||PN 的大小关系,并加以证明.2. (本小题14分) 已知椭圆22:13+=x y C m m,直线:20+-=l x y 与椭圆C 相交于P ,Q 两点,与x 轴交于点B ,点,P Q 与点B 不重合.(Ⅰ)求椭圆C 的离心率;(Ⅱ)当2∆=OPQ S 时,求椭圆C 的方程;(Ⅲ)过原点O 作直线l 的垂线,垂足为.N 若λ=PN BQ ,求λ的值.3.(本小题共14分)已知椭圆2222:1(0)x yC a ba b+=>>离心率等于12,(2,3)P、(2,3)Q-是椭圆上的两点.(Ⅰ)求椭圆C的方程;(Ⅱ),A B是椭圆上位于直线PQ两侧的动点,若直线AB的斜率为12,求四边形APBQ面积的最大值.4.(本小题满分14分)已知椭圆C:2231(0)mx my m+=>的长轴长为O为坐标原点.(Ⅰ)求椭圆C的方程和离心率;(Ⅱ)设点(3,0)A,动点B在y轴上,动点P在椭圆C上,且P在y轴的右侧,若||||BA BP=,求四边形OPAB面积的最小值.5.(本小题共14分)已知椭圆C:2214xy+=,F为右焦点,圆O:221x y+=,P为椭圆C上一点,且P位于第一象限,过点P作PT与圆O相切于点T,使得点F,T在OP两侧.(Ⅰ)求椭圆C的焦距及离心率;(Ⅱ)求四边形OFPT面积的最大值.6.(本小题13分)已知抛物线C:y2=2px经过点P(2,2),A,B是抛物线C上异于点O的不同的两点,其中O为原点.(I)求抛物线C的方程,并求其焦点坐标和准线方程;(II)若OA OB,求△AOB面积的最小值.第二类题型 圆过定点问题( 包括点在圆上 点在圆外 点在圆内)1.(本小题满分14 分)已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,椭圆C 与y 轴交于A , B 两点,且|AB |=2.(Ⅰ)求椭圆C 的方程;(Ⅱ)设点P 是椭圆C 上的一个动点,且直线PA ,PB 与直线x =4分别交于M , N两点.是否存在点P 使得以MN 为直径的圆经过点(2,0)?若存在,求出点P 的横坐标;若不存在,说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.解:(Ⅰ)设双曲线方程为12222=-by a x ).0,0(>>b a由已知得.1,2,2,32222==+==b b ac a 得再由故双曲线C 的方程为.1322=-y x (Ⅱ)将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k即.13122<≠k k 且 ① 设),(),,(B B A A y x B y x A ,则 ,22,319,312622>+>⋅--=-=+B A B A BA B A y y x x OB OA k x x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x.1373231262319)1(22222-+=+-+--+=k k k k k k k于是解此不等式得即,01393,213732222>-+->-+k k k k .3312<<k ② 由①、②得 .1312<<k故k 的取值范围为).1,33()33,1(⋃-- 2..已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设AM =λAB .(Ⅰ)证明:λ=1-e 2;(Ⅱ)确定λ的值,使得△PF 1F 2是等腰三角形.(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是2222222.,,1,).,0(),0,(b a c c b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由. 所以点M 的坐标是(a b c 2,-). 由).,(),(2a eaa b e a c AB AM λλ=+-=得即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得证法二:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是).,0(),0,(a ea-设M 的坐标是00(,),x y00(,)(,),a aAM AB x y a e eλλ=+=由得所以⎪⎩⎪⎨⎧=-=.)1(00a y e a x λλ因为点M 在椭圆上,所以 ,122220=+by a x即.11)1(,1)()]1([22222222=-+-=+-e e b a a e aλλλλ所以 ,0)1()1(2224=-+--λλe e解得.1122e e -=-=λλ即(Ⅱ)解法一:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d ,由,1||1|0)(|||21221c eec a e a c e d PF =+-=+++-==得.1122e ee =+-所以.321,3122=-==e e λ于是即当,32时=λ△PF 1F 2为等腰三角形. 解法二:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|, 设点P 的坐标是),(00y x ,则0000010.22y x ce y x c e a -⎧=-⎪+⎪⎨+-⎪=+⎪⎩,2022023,12(1).1e x c e e a y e ⎧-=⎪⎪+⎨-⎪=⎪+⎩解得由|PF 1|=|F 1F 2|得,4]1)1(2[]1)3([2222222c e a e c e c e =+-+++- 两边同时除以4a 2,化简得.1)1(2222e e e =+- 从而.312=e 于是32112=-=e λ 即当32=λ时,△PF 1F 2为等腰三角形. 3.设R y x ∈,,j i、为直角坐标平面内x 轴、y 轴正方向上的单位向量,若j y i x b j y i x a )3( ,)3(-+=++=,且4=+b a.(Ⅰ)求点),(y x P 的轨迹C 的方程;(Ⅱ)若A 、B 为轨迹C 上的两点,满足MB AM =,其中M (0,3),求线段AB 的长. [启思]4.已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. (Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R OB OA OM ∈+=μλμλ,证明22μλ+为定值. 解:本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分.(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+则直线AB 的方程为c x y -=,代入12222=+by a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221ba b a c a x x b a c a x x +-=+=+ 由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与a 共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴ 即232222cba c a =+,所以36.32222a b a c b a =-=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x OM =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由(1)知.21,23,23222221c b c a c x x ===+ [变式新题型3]抛物线的顶点在原点,焦点在x 轴上,准线l 与x 轴相交于点A(–1,0),过点A 的直线与抛物线相交于P 、Q 两点.(1)求抛物线的方程;(2)若FP •FQ =0,求直线PQ 的方程;(3)设AP =λAQ (λ>1),点P 关于x 轴的对称点为M ,证明:FM =-λFQ . .6.已知在平面直角坐标系xoy 中,向量32),1,0(的面积为OFP j ∆=,且3,OF FP t OM OP j ⋅==+ .(I )设4t OF FP θ<<求向量与 的夹角的取值范围;(II )设以原点O 为中心,对称轴在坐标轴上,以F 为右焦点的椭圆经过点M ,且||,)13(,||2OP c t c OF 当-==取最小值时,求椭圆的方程.7.已知(0,2)M -,点A 在x 轴上,点B 在y 轴的正半轴,点P 在直线AB 上,且满足,AP PB =-,0MA AP ⋅=. (Ⅰ)当点A 在x 轴上移动时,求动点P 的轨迹C 方程;(Ⅱ)过(2,0)-的直线l 与轨迹C 交于E 、F 两点,又过E 、F 作轨迹C 的切线1l 、2l ,当12l l ⊥,求直线l 的方程.8. 已知点C 为圆8)1(22=++y x 的圆心,点A (1,0),P 是圆上的动点,点Q 在圆的半径CP 上,且.2,0AM AP AP MQ ==⋅(Ⅰ)当点P 在圆上运动时,求点Q 的轨迹方程; (Ⅱ)若直线12++=k kx y 与(Ⅰ)中所求点Q的轨迹交于不同两点F ,H ,O 是坐标原点, 且4332≤⋅≤OH OF ,求△FOH 的面积已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过()2,0A -、()2,0B 、31,2C ⎛⎫ ⎪⎝⎭三点.(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l :()1y k x =-(0k ≠)与椭圆E 交于M 、N 两点,证明直线AM 与直线BN 的交点在直线4x =上.10.如图,过抛物线x 2=4y 的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点。
(Ⅰ)设点P 分有向线段AB 所成的比为λ,证明);QB QA (QP λ-⊥(Ⅱ)设直线AB 的方程是x —2y+12=0,过A 、B 两点的圆C 与抛物线在点A 处有共同的切线,求圆C 的方程。
10. 已知平面上一定点(1,0)C -和一定直线: 4.l x =-P为该平面上一动点,作,PQ l ⊥垂足为Q ,0)2()2(=-⋅+→→→→PC PQ PC PQ .(1) 问点P在什么曲线上并求出该曲线方程;(2) 点O是坐标原点,A B 、两点在点P的轨迹上,若1OA OB OC λλ+=+(),求λ的取值范围.11. 如图,已知E 、F 为平面上的两个定点6||=EF ,10||=FG ,且EG EH =2,HP ·0=GE ,(G 为动点,P 是HP 和GF 的交点)(1)建立适当的平面直角坐标系求出点P 的轨迹方程;(2)若点P 的轨迹上存在两个不同的点A 、B ,且线段AB 的中垂线与EF(或EF 的延长线)相交于一点C ,则||OC <59(O 为EF 的中点).12.已知动圆过定点()1,0,且与直线1x =-相切. (1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=若存在,求出直线l 的方程;若不存在,说明理由.13.已知)0,1(),0,4(N M 若动点P 满足||6NP MP MN = (1)求动点P 的轨迹方C 的方程;(2)设Q 是曲线C 上任意一点,求Q 到直线0122:=-+y x l 的距离的最小值.19.如图,直角梯形ABCD 中,∠︒=90DAB ,AD ∥BC ,AB=2,AD=23,BC=21 椭圆F 以A 、B 为焦点且过点D ,GFPHEC BD(Ⅰ)建立适当的直角坐标系,求椭圆的方程; (Ⅱ)若点E 满足AB EC 21=,是否存在斜率 与的直线l k 0≠M 、F 交于椭圆N 两点,且||||NE ME =,若存在,求K 的取值范围;若不存在,说明理由。