数学中的中国传统文化问题大全
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学中的中国传统文化一、算法问题
1.用更相减损术求294和84的最大公约数时,需要做减法的次数为()
A.2 B.3
C.4 D.5
答案 C
解析(84,294)→(84,210)→(84,126)→(84,42)→(42,42),一共做了4次减法.
2.如图所示的程序框图的算法思路来源于我国古代数学名着《九章算术》中的“更相减损术”,
n
n次加法和n次乘法.对于计算机来说,做一次乘法运算所用的时间比做一次加法运算要长得多,所以此算法极大地缩短了CPU运算时间,因此即使在今天该算法仍具有重要意义.运用秦九韶算法计算f(x)=0.5x6+4x5-x4+3x3-5x当x=3时的值时,最先计算的是()
A.-5×3=-15
B.0.5×3+4=5.5
C.3×33-5×3=66
D.0.5×36+4×35=1 336.6
答案 B
解析f(x)=0.5x6+4x5-x4+3x3-5x=(((((0.5x+4)x-1)x+3)x+0)x-5)x,
然后由内向外计算,最先计算的是0.5×3+4=5.5.
5.若用秦九韶算法求多项式f(x)=4x5-x2+2当x=3时的值,则需要做乘法运算和加减法运算的次数分别为()
A.4,2 B.5,3
C.5,2 D.6,2
答案 C
解析∵f(x)=((((4x)x)x-1)x)x+2,∴乘法要运算5次,加减法要运算2次.
第三次运算,a=5,s=6×2+5=17,k=3,满足k>n,
输出s=17,故选C.
8.用秦九韶算法求多项式f(x)=x3-3x2+2x-11的值时,应把f(x)变形为()
A.x3-(3x+2)x-11 B.(x-3)x2+(2x-11)
C.(x-1)(x-2)x-11 D.((x-3)x+2)x-11
答案 D
解析f(x)=x3-3x2+2x-11=((x-3)x+2)x-11
9.用秦九韶算法求函数f(x)=3x5-2x4+2x3-4x2-7当x=2的值时,v3的结果是()
A.4 B.10
C.16 D.33
答案 C
解析函数f(x)=3x5-2x4+2x3-4x2-7=((((3x-2)x+2)x-4)x)x-7,
当x=2时,v0=3,v1=3×2-2=4,v2=4×2+2=10,v3=10×2-4=16.
10.用秦九韶算法求多项式f(x)=x6-5x5+6x4+x2+0.3x+2的值,当x=-2时,v1的值为()
A.20 B.61
C.183 D.548
答案 C
解析由程序框图知,初始值:n=4,x=3,v=1,i=3,第一次循环:v=6,i=2;第二次循环:v=20,i=1;第三次循环:v=61,i=0;第四次循环:v=183,i=1.结束循环,输出当前v的值183.
13.原始社会时期,人们通过在绳子上打结来计算数量,即“结绳计数”,当时有位父亲,为
了准确记录孩子的成长天数,在粗细不同的绳子上打结,由细到粗,满七进一,那么孩子已经出生多少天?()
A.1 326 B.510 C.429 D.336
答案 B
解析由题意满七进一,可得该图示为七进制数,
化为十进制数为1×73+3×72+2×7+6=510.
14.用秦九韶算法计算多项式f(x)=5x5+4x4+3x3+2x2+x+1,乘法运算次数为____________.加法运算次数为________.
n=
x
可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在222…中“…”即代表无限次重复,但原式却是个定值x.这可以通过方程2+x=x确定x
=2,则1+
1
1+1
1+…
=________.
答案1+5
2
解析 由题意,可令1+
1
1+11+…=x ,即1+1x =x ,即x 2-x -1=0,解得x =1+52(x =1-52舍),故1+11+11+…=1+52. 18.用辗转相除法求840与1 764的最大公约数.
答案 1 764=840×2+84,840=84×10+0,
∴840与1 764的最大公约数是84.
(2)用秦九韶算法计算函数f (x )=2x 4+3x 3+5x -4在x =2时的函数值.
答案 (1)1 785=840×2+105,840=105×8+0,
∴840与1 785的最大公约数是105.
(2)秦九韶算法如下:f (x )=2x 4+3x 3+5x -4=x (2x 3+3x 2+5)-4=x [x (2x 2+3x )+5]-4=x {x [x (2x +3)]+5}-4,故当x =2时,f (x )=2×{2×[2×(2×2+3)]+5}-4=62.
22.(1)用辗转相除法求779与247的最大公约数;
(2)利用秦九韶算法求多项式f (x )=2x 5+4x 4-2x 3+8x 2+7x +4当x =3时的值.
答案 (1)779=247×3+38,
247=38×6+19,
38=19×2.
故779与247的最大公约数是19;
(2)把多项式改成如下形式:
f(x)=2x5+4x4-2x3+8x2+7x+4=((((2x+4)x-2)x+8)x+7)x+4.
按照从内到外的顺序,依次计算一次多项式当x=3时的值:v0=2,v1=v0x+4=2×3+4=10,
v2=v1x-2=10×3-2=28,
v3=v2x+8=28×3+8=92,
(2)用“辗转相除法”求98和280的最大公约数.
答案(1)∵168-72=96,
96-72=24,
72-24=48,
48-24=24,
故72和168的最大公约数是24.
(2)∵280=2×98+84,
98=1×84+14,