100道指数和对数运算

合集下载

指数与对数运算练习题

指数与对数运算练习题

指数与对数运算练习题指数与对数运算练题1.用根式的形式表示下列各式(a>0):1) a^(1/2)2) a^(1/3)3) a^(1/4)4) a^22.用分数指数幂的形式表示下列各式:1) x^(y/3)2) (1/5)^(-3/4)3) (3ab^2)^24) 3a^45) a^33.求下列各式的值:1) 8^(1/3) = 22) 100^(1/2) = 103) (8/14)^(-3/4) = 98/274) (27/64)^(1/3) = 3/45) [(-2)^2] = 46) [(1-3/2)^2] = 1/47) 64^(1/2) = 8选择题:1.以下四式中正确的是(B)log2^1=12.下列各式值为的是(D)-53.log2^1/5^11/24的值是(A)-114.若m=lg5-lg2,则10m的值是(A)55.设N=11+log2^1/5^3,则(A)N=26.在b=loga-2(5-a)中,实数a的范围是(C)2<a<3或3<a<57.若log4[log3(log2x)]=1/2,则x^(1/2)等于(B)1/2填空题:10.用对数形式表示下列各式中的x:10x=25:x=log10(25)/log10(10)=2/1=22x=12:x=log2(12)/log2(2)=4/1=44x=16:x=log4(16)/log4(4)=2/1=211.lg1++=lg(1+1)=lg212.Log15(5)=1/m。

则log15(3)=log3(15)/log3(5)=1/(m*log3(5))13.lg2^2-lg4+1+|lg5-1|=2-2+1+|1-1|=114.(1) log3(2)=log6(3)/log6(2)2) (log6(3))^2+1-a=log6(12/a)log12(3)=log6(3)/log6(12)=log6(3)/[log6(2)+log6(6)]=log3(2 )/(1+1/2)=2log3(2)/3=2log12(3)/(log12(2)+log12(6))6、计算题1.2lg6-2lg5+lg2=lg(6^2/5)+lg2=lg(72/5)2.2lg5+lg2·lg50=2lg5+lg(2·5^2)=2lg5+lg50=lg(5^2·50)=lg12 503.2log3(2)-log3(32)+log3(8)-3log5(5)=2log3(2)-(log3(2^5)-log3(2^2))+log3(2^3)-(log5(5^3))=2log3(2)-log3(2^3)+log3(2^3)-3=2log3(2)-34.lg5·lg20-lg2·lg50-lg25=lg(5·20/2)-XXX(50)-XXX(25)=lg(50/2)-XXX(50)-XXX(25)=lg(1/2)-2lg(5)=log2-2log515.根据换底公式,log5(12)=log2(12)/log2(5)=log2(2^2·3)/log2(5)=2log2(2/5)+log2(3/5)19.根据3a=2,可得a=log2(8/9),代入log3(8)-2log3(6)中,得log3(8)-2log3(6)=log3(2^3)-2log3(2^2·3)=3log3(2)-2log3(2)-2log3(3)=log3(2)-2log3(3)16.根据对数的定义,可得a^m=2,a^n=3,代入a^(2m+n)中,得a^(2m+n)=a^(2loga(2)+loga(3))=a^loga(2^2·3)=621.lg25+lg2lg50+(lg2)^2=2+2lg5+4=6+2lg517.⑴2log2(8)=log2(8^2)=log2(64)=6⑵3log3(9)=log3(9^3)=log3(729)=6⑶2^18=18.⑴lg10-5=1-5=-4⑵⑶log2(8)=3提升题4.化简1)a·a·a/3= a^3/32)a·a/a= a3)3a·(-a)/9= -a^2/34) ba·a^2/a^21= b/a^195)log1(81)/log1(8/27)= log8/27(81)= log3(3^4)= 4log3(3)= 45.计算⑴ 325-125/45= 200/45= 40/9⑵ 23·31.5·612= 23·63·12=⑶ (-1)-4·(-2)^-3+(-9)·2-2·2^-2= -1-1/8-18+1/2= -1453/8⑷ 7/10+0.1-2+π= 37/10+π-1.9⑸ 41/24-32/27= 41/24-32/27·8/8= (41·27-32·24)/648= 5/726.解方程1)x-1/2=1/3,x=5/62)2x^4-1=15,2x^4=16,x^4=8,x=23) (0.5)1-3x=4,(0.5)^1=0.5,0.5·2^-6x=4,2^-7x=8,-7x=log2(8)=-3,x=3/77.解题1)a+a^-1=3,已知a+a^-1=3,两边平方得a^2+a^-2+2=9,所以a^2+a^-2=72)a+a^2=3,已知a+a^-1=3,两边平方得a^2+a^-2+2=9,所以a^2+a^-2=7,两边加1得a^2+a^-2+1=8,即(a+a^-1)^2=8,所以a+a^-1=±2√2,因为a+a^-1=3,所以a+a^-1=2√23)1-2x>0,所以x<1/24)33a-2b=3^3a^3·2^-2b=27/48.lg25+lg2·lg25+lg22=2+2lg5+1=3+2lg51.化简计算:log2 111 ·log3 ·log5 2589 - 3/42.化简:(log2 5+log4 0.2)(log5 2+log25 0.5)3.若XXX(x-y)+XXX(x+2y)=lg2+lgx+lgy,求的值.4.已知log2 3 =a,log3 7 =b,用a,b表示log42 56.5.计算,(1)51-log0.2 3xy;(2)log4 3·log9 2-log1 432;(3)(log2 5+log4 125)2·log3 21.化简计算:log2 111 ·log3 ·log5 2589 - 3/4.将log2 111分解为log2 3和log3 37的和,将log5 2589分解为log5 3和log5 863的和,然后应用对数乘法和对数减法规则,得出结果为log2 3+log3 37+log3-log5-log5 3-log5 863-3/4.2.化简:(log2 5+log4 0.2)(log5 2+log25 0.5)。

指数对数运算练习题 道 附答案

指数对数运算练习题 道 附答案

每天一刻钟,数学点点通郭大侠的数学江湖指数对数运算练习题1.已知,b=0.32,0.20.3c =,则a,b,c 三者的大小关系是()A.b>c>aB.b>a>cC.a>b>cD.c>b>a2.已知432a =,254b =,1325c =,则(A)b a c <<(B)a b c <<(C)b c a<<(D)c a b<<3.三个数6log ,7.0,67.067.0的大小顺序是()A.7.07.0666log 7.0<< B.6log 67.07.07.06<<C.67.07.07.066log << D.7.067.067.06log <<4.已知4log ,4.0,22.022.0===c b a ,则()A.c b a >>B.a c b>>C.c a b>>D.b c a>>5.设 1.1 3.13log 7,2,0.8ab c ===则()A.c a b <<B.ba c << C.ab c << D.bc a <<6.三个数3.0222,3.0log ,3.0===c b a 之间的大小关系是()A.b c a <<B.c b a <<C.ca b <<D.ac b <<7.已知 1.22a =,0.80.5b =,2log 3c =,则()A.a b c>>B.c b a <<C.c a b>>D.a c b>>8.已知132a -=,21211log ,log 33b c ==,则()A.a b c>>B.a c b>>C.c a b>>D.c b a >>9.已知0.30.2a =,0.2log 3b =,0.2log 4c =,则()A.a>b>cB.a>c>bC.b>c>aD.c>b>a10.设0.61.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是()(A)a b c <<(B) a c b <<(C)b a c <<(D)b c a<<试卷第2页,总8页11.设a=34⎛⎫ ⎪⎝⎭0.5,b=43⎛⎫ ⎪⎝⎭0.4,c=log 34(log 34),则()A.c<b<a B.a<b<c C.c<a<bD.a<c<b12.已知132a -=,21211log ,log 33b c ==,则()A.a b c>>B.a c b>>C.c a b>>D.c b a>>13.已知03131log 4,(),log 105a b c ===,则下列关系中正确的是()A.a b c >>B.b a c >>C.a c b >>D.c a b>>14.设0.5342log log 2a b c π-===,,,则()A.b a c>> B. b c a >> C.a b c >> D.a c b>>15.设0.90.48 1.512314,8,(2y y y -===,则()A.312y y y >>B.213y y y >>C.132y y y >>D.123y y y >>16.设12log 5a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则()A .a b c<<B .c b a<<C .c a b<<D .b a c<<17.设221333111(,(),()252a b c ===,则,,a b c 的大小关系是()A.a b c >>B.c a b >>C.a c b>> D.c b a>>18.已知0.5log sin a x =,0.5log cos b x =,0.5log sin cos c x x =,,42x ππ⎛⎫∈ ⎪⎝⎭,则,,a b c 的大小关系为()A.b a c>> B.c a b>> C.c b a>> D.b c a>>19.设0.50.82x =,2log y =sin1z =,则x 、y 、z 的大小关系为()A.x y z<< B.y z x<< C.z x y<< D.z y x<<每天一刻钟,数学点点通郭大侠的数学江湖20.若21log 0,(12ba <> ,则()A .1,0a b >>B .1,0a b ><C .01,0a b <<> D .01,0a b <<< 21.已知1122log log a b <,则下列不等式一定成立的是()A.1143ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭B.11a b> C.()ln 0a b -> D.31a b-<22.计算(1)(2)1.0lg 10lg 5lg 2lg 125lg 8lg --+23.计算:1132081()274e π-⎛⎫⎛⎫--++ ⎪ ⎪⎝⎭⎝⎭;②2lg 5lg 4ln ++.24.化简下列各式(其中各字母均为正数):(1)131.5-×76⎛⎫-⎪⎝⎭0+80.25)6;211113322---()(3)41332233814a a bb a⎛÷⨯⎝--+25.(12分)化简或求值:(1)110232418(22(2)()5427--+⨯-;(2)2lg5+试卷第4页,总8页每天一刻钟,数学点点通郭大侠的数学江湖26.(12分)化简、求值:(1)220.53327492()()(0.008)8925---+⨯;(2)计算2lg 5lg8000(lg 11lg 600lg 36lg 0.0122⋅+--27.(本小题满分10分)计算下列各式的值:(1)2203227()(1()38-+-;(2)5log 33332log 2log 32log 85-+-试卷第6页,总8页28.计算:(1)0021)51(1212)4(2---+-+-;(2)3log 5.222ln 001.0lg 25.6log +++e 29.(本题满分12分)计算以下式子的值:1421(0.252--+⨯;(2)7log 237log 27lg 25lg 47log 1++++.30.计算(1)7log 203log lg 25lg 47(9.8)+++-(2)32310641(833()1(416-+--π-每天一刻钟,数学点点通郭大侠的数学江湖31.计算:()10012cos3022π-⎛⎫-+- ⎪⎝⎭.32.(本题满分12分)计算(1)5log 923215log 32log (log 8)2+-(2)())121023170.0272179--⎛⎫⎛⎫-+-- ⎪ ⎪⎝⎭⎝⎭33.(1)化简:1222232()()()a b ab a b ---⋅÷;.34.计算:(1)2482(2013)ππ---⨯--(26cos 45-o试卷第8页,总8页35.(1)计算3log 238616132(log 4)(log 27)log 82log 3--+.(2)若1122x x-+=,求1223x x x x --++-的值.36.求值:(122316ln 4⎛⎫-+ ⎪⎝⎭37.(1)求值:(2)已知31=+x x 求221xx +的值38.计算:(1)943232053312332278-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⨯-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛(2)23log 32lg 222lg 52lg ++-39.下列四个命题:①11(0,),()()23xxx ∃∈+∞>;②23(0,),log log x x x ∃∈+∞<;③121(0,),()log 2xx x ∀∈+∞>;④1311(0,),(log 32xx x ∀∈<.其中正确命题的序号是.40.(23227log 28-⎛⎫--- ⎪⎝⎭=_____________________________参考答案1.A【来源】2013-2014学年福建省三明一中高二下学期期中考试文科数学试卷(带解析)【解析】试题分析:由指数函数的单调性可知0.3xy =是单调递减的所以0.50.20.30.3<即a<c<1;2xy =是单调增的,所以0.30221y =>=,即可知A 正确考点:指数函数比较大小.2.A【来源】2016年全国普通高等学校招生统一考试理科数学(新课标3卷精编版)【解析】试题分析:因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A.【考点】幂函数的性质.【技巧点拨】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决.3.D【来源】2013-2014学年广西桂林十八中高二下学期开学考理科数学试卷(带解析)【解析】试题分析:0.70661>=,6000.70.71<<=,0.70.7log 6log 10<=,所以60.70.7log 600.716<<<<.考点:用指数,对数函数特殊值比较大小.4.A .【来源】2014届安徽“江淮十校”协作体高三上学期第一次联考理数学卷(带解析)【解析】试题分析:因为0,10,1<<<>c b a ,所以c b a >>,故选A.考点:利用指数函数、幂函数、对数函数的单调性比较数式的大小.5.B【来源】2014年全国普通高等学校招生统一考试文科数学(安徽卷带解析)【解析】试题分析:由题意,因为3log 7a=,则12a <<; 1.12b =,则2b >; 3.10.8c =,则00.81c <=,所以c a b<<考点:1.指数、对数的运算性质.6.C【来源】2014-2015学年山东省德州市重点中学高一上学期期中考试数学试卷(带解析)【解析】试题分析:∵200.31a <=<,22b log 0.3log 10=<=,0.30221c =>=,∴c a b <<考点:根式与分数指数幂的互化及其化简运算.7.D【来源】2014届河北省唐山市高三年级第三次模拟考试文科数学试卷(带解析)【解析】试题分析:∵ 1.222a =>,0.800.51<<,21log 32<<,∴a c b >>.考点:利用函数图象及性质比较大小.8.C【来源】2014年全国普通高等学校招生统一考试文科数学(辽宁卷带解析)【解析】试题分析:因为132(0,1)a -=∈,221log log 103b =<=,112211log log 132c =>=,故c a b >>.考点:指数函数和对数函数的图象和性质.9.A【来源】2014届浙江省嘉兴市高三上学期9月月考文科数学试卷(带解析)【解析】试题分析:由指数函数和对数函数的图像和性质知0a >,0b <,0c <,又对数函数()0.2log f x x =在()0,+∞上是单调递减的,所以0.20.2log 3log 4>,所以a b c >>.考点:指数函数的值域;对数函数的单调性及应用.10.C【来源】2015年全国普通高等学校招生统一考试文科数学(山东卷带解析)【解析】由0.6xy =在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,又0.61.51>,故选C .考点:1.指数函数的性质;2.函数值比较大小.11.C【来源】2014届上海交大附中高三数学理总复习二基本初等函数等练习卷(带解析)【解析】由题意得0<a<1,b>1,而log 34>1,c=log 34(log 34),得c<0,故c<a<b.12.C【来源】2014年全国普通高等学校招生统一考试理科数学(辽宁卷带解析)【解析】试题分析:1032122110221,log 0,log log 31,33ab c -<=<==<==>所以c a b >>,故选C.考点:1.指数对数化简;2.不等式大小比较.13.A.【来源】2015届湖南省益阳市箴言中学高三第一次模拟考试文科数学试卷(带解析)【解析】试题分析:∵33log 4log 31a =>=,01(15b ==,11331log 10log 13c =<=,∴a b c >>.考点:指对数的性质.14.A【来源】2015届河南省八校高三上学期第一次联考文科数学试卷(带解析)【解析】试题分析:∵0.53422,,a b log c log π-===,0.52112>-,341122>,=log log π.∴>>b a c .故选:A.考点:不等式比较大小.15.C【来源】2012-2013学年广东省执信中学高一下学期期中数学试题(带解析)【解析】试题分析:根据题意,结合指数函数的性质,当底数大于1,函数递增,那么可知0.9 1.80.48 1.44 1.5 1.5123142,82,()22y y y -======,结合指数幂的运算性质可知,有132y y y >>,选C.考点:指数函数的值域点评:解决的关键是以0和1为界来比较大小,属于基础题。

(完整版)指数与对数运算(含答案),推荐文档

(完整版)指数与对数运算(含答案),推荐文档

指数与对数运算1.的大小关系是( )0.90.7 1.1log 0.8,log 0.9, 1.1a b c ===A . B . C . D .c a b >>a b c >>b c a >>c b a>>【答案】A【解析】因为,,,所以,故选A .0.70log 0.81a <=< 1.1log 0.90b =<0.91.11c =>c a b >>2.三个数20.60.6,ln 0.6,2a b c ===之间的大小关系是( )A .b c a <<B .c b a <<C .c a b <<D .ac b <<【答案】C【解析】,故选C .20.600.61,ln 0.60,21c a b <<<>∴>>3.设0.012log 3,lna b c ===,则( )A .c a b << B .a b c << C .a c b << D .b a c<<【答案】A【解析】先和0比较,0.0122log log 10,30,ln10a b c =>==>=<= 得到c 最小;再与1比较0.01022log log 21,33a b =<==>,得到b 最大.故选A .4.若4log 3a =,则22a a -+= . 【答案】334【解析】,3log 213log 24==a 3log 2=33431322=+=+-a a 5.已知,那么等于( )0)](log [log log 237=x 21-xA .B .C .D .31633342【答案】D 【解析】根据,可得,即,解得,所以0)](log [log log 237=x ()32log log 1x=2log 3x =328x ==,故选择D 11228x --==6.若且则 , .1,1,a b >>lg()lg lg ,a b a b +=+11a b +=lg(1)lg(1)a b -+-=【答案】1,0【解析】得lg()lg lg ,a b a b +=+,111a b ab a b+=∴+=lg(1)lg(1)a b -+-=lg(1)(1)lg(1)lg10a b ab a b --=--+==7. 已知是方程01422=+-x x 的两个根,则2(lg ba 的值是 .lg ,lg ab 【答案】2【解析】由是方程01422=+-x x 的两个根可得:,,lg ,lg a b lg lg 2a b +=1lg lg 2a b ⋅=所以2)(lg ba ()()22lg lg lg lg 4lg lg 2ab a b a b =-=+-⋅=8.解方程:122log (44)log (23)x x x ++=+-【答案】.2x =【解析】解方程则:则:122log (44)log [2(23)]x x x ++=-1442(23)x x x ++=-43240x x -⋅-=则:或(舍)∴.经检验满足方程.24x =21x =-2x =2x =9.解方程(1) (2)231981-=x x 444log (3)log (21)log (3)-=+++x x x 【答案】(1)或;(2)2=x 1=x 0x =【解析】(1) 解得,或2322299,32,320--=∴-=--+=x x x x x x 2=x 1=x (2)440.25log (3)log (21)log (3)x x x -=+++44log (3)log (21)(3)3(21)(3)x x x x x x -=++∴-=++得或,经检验为所求.4=-x 0x =0x =10.计算下列各式的值(1) (2)210321(0.1)2()4--++3log lg 25lg 4+【答案】(1)5(2)72【解析】(1)210321(0.1)2()4--++5221=++=(2)3log lg 25lg 4++27223=+=11.化简求值:(1);313373329a a a a ⋅÷--(2);22)2(lg 20lg 5lg 8lg 325lg +++(3).13063470.001(168--++【答案】(1)1;(2)3;(3)89.【解析】(1)因为有意义,所以,所以原式3-a0>a =。

指数与对数运算专题

指数与对数运算专题

指数与对数运算专题指数与对数运算指数1、根式根式是指数的一种表示方式。

当x=a^n (n>1且n∈N)时,称x为a的n次方根。

正数的奇次方根是正数,负数的奇次方根是负数,零的奇次方根是零;正数的偶次方根是两个绝对值相等符号相反的数,负数没有偶次方根。

2、有理数指数幂有理数指数幂的意义是:a^m/n,当a>0,m,n∈N*,n>1时,表示a的m次方根的n次方;当a<0,m,n∈N*,n为奇数时,表示a的m次方根的n次方,为负数;当a≥0,m,n∈N*,n为偶数时,表示a的m次方根的n次方,为绝对值相等符号相反的数。

对数1、对数的基本概念对数是指数的一种表示方式。

当a>0,a≠1,且a的b次幂等于N时,b叫做以a为底N的对数,记作log_a N。

常用的对数有以10为底的lgN和以自然常数e为底的lnN。

2、对数的性质负数和零没有对数,即N>0;底的对数等于1,即log_a a=1.3、对数的运算性质如果a>0,a≠1,M>0,N>0,那么log_a (MN)=log_aM+log_a N;log_a (M/N)=log_a M-log_a N;log_a(M^n)=nlog_a M。

换底公式是log_a N=log_b N/log_b a,推论是log_b N=1/log_b (N/a)。

典型例题】题型一、根式的化简、指数幂的运算例题1:化简7^(-2/7)和4(a^-2)^4.例题2:计算log_2 16-log_2 4+log_2 8.1、正确的式子是C.a=12、由3a=4b=36可得a=12,b=9,代入21/ab可得21/(12*9)=7/43、将a2-2a+1=a-1移项得a2-3a+2=0,解得a=1或a=2,所以a的取值范围为{1,2}4、①将lgx+lg(x+3)=1化简得x(x+3)=10,解得x=2或x=5,所以解为{x=2,x=5};②将lg2x+3lgx-4=0化简得x3=8,解得x=2,所以解为{x=2}5、(1)(325-125)/425=0.4;(2)log612-2log6+3log2+3log3=2log2+log3+log17=1+0.477+1.230=2.7076、①将4=81化为4=22,81=34,得到2x=4/3,解得x=lg2/3;②将24x+1-17*4x+8=0化简得(2x+1)(12x-5)=0,解得x=-1/2或x=5/12,所以解为{x=-1/2,x=5/12}7、(1)6/48+1/3+3/16+1/25+1/8-2-1=0.283;(2)由lg22=1,lg250=2+lg25=4,lg40=1+lg4+lg10=3,代入式子得lg4+3=2+3=5,所以结果为58、将3=4=6化为3=2^lg3.4=2^lg4.6=2^lg6,代入abc/(2^lg221)=(3/2)*(4/3)*(6/4)=1,所以证毕。

指数函数和对数函数练习题

指数函数和对数函数练习题

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载指数函数和对数函数练习题地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第三章指数函数和对数函数§1正整数指数函数§2指数扩充及其运算性质1.正整数指数函数函数y=ax(a>0,a≠1,x∈N+)叫作________指数函数;形如y=kax(k∈R,a>0,且a≠1)的函数称为________函数.2.分数指数幂(1)分数指数幂的定义:给定正实数a,对于任意给定的整数m,n(m,n互素),存在唯一的正实数b,使得bn=am,我们把b叫作a的 eq \f(m,n) 次幂,记作b=;(2)正分数指数幂写成根式形式:= eq \r(n,am) (a>0);(3)规定正数的负分数指数幂的意义是:=__________________(a>0,m、n∈N+,且n>1);(4)0的正分数指数幂等于____,0的负分数指数幂__________.3.有理数指数幂的运算性质(1)aman=________(a>0);(2)(am)n=________(a>0);(3)(ab)n=________(a>0,b>0).一、选择题1.下列说法中:①16的4次方根是2;② eq \r(4,16) 的运算结果是±2;③当n为大于1的奇数时, eq \r(n,a) 对任意a∈R都有意义;④当n 为大于1的偶数时, eq \r(n,a) 只有当a≥0时才有意义.其中正确的是( )A.①③④ B.②③④ C.②③ D.③④2.若2<a<3,化简 eq \r(2-a2) + eq \r(4,3-a4) 的结果是( )A.5-2a B.2a-5 C.1 D.-13.在(- eq \f(1,2) )-1、、、2-1中,最大的是( )A.(- eq \f(1,2) )-1 B. C. D.2-14.化简 eq \r(3,a\r(a)) 的结果是( )A.a B. C.a2 D.5.下列各式成立的是( )A. eq \r(3,m2+n2) = B.( eq \f(b,a) )2=C. eq \r(6,-32) =D. eq \r(\r(3,4)) =6.下列结论中,正确的个数是( )①当a<0时,=a3;② eq \r(n,an) =|a|(n>0);③函数y=-(3x-7)0的定义域是(2,+∞);④若100a=5,10b=2,则2a+b=1.A.0 B.1C.2 D.3二、填空题7. eq \r(6\f(1,4)) - eq \r(3,3\f(3,8)) + eq \r(3,0.125) 的值为________.8.若a>0,且ax=3,ay=5,则=________.9.若x>0,则(2+)(2-)-4·(x-)=________.三、解答题10.(1)化简: eq \r(3,xy2·\r(xy-1)) · eq \r(xy) ·(xy)-1(xy≠0);(2)计算:+ eq \f(-40,\r(2)) + eq \f(1,\r(2)-1) - eq \r(1-\r(5)0) ·.11.设-3<x<3,求 eq \r(x2-2x+1) - eq \r(x2+6x+9) 的值.12.化简:÷(1-2 eq \r(3,\f(b,a)) )× eq \r(3,a) .13.若x>0,y>0,且x- eq \r(xy) -2y=0,求 eq \f(2x-\r(xy),y +2\r(xy)) 的值.§3指数函数(一)1.指数函数的概念一般地,________________叫做指数函数,其中x是自变量,函数的定义域是____.2.指数函数y=ax(a>0,且a≠1)的图像和性质一、选择题1.下列以x为自变量的函数中,是指数函数的是( )A.y=(-4)x B.y=πxC.y=-4x D.y=ax+2(a>0且a≠1) 2.函数f(x)=(a2-3a+3)ax是指数函数,则有( )A.a=1或a=2 B.a=1C.a=2 D.a>0且a≠13.函数y=a|x|(a>1)的图像是( )4.已知f(x)为R上的奇函数,当x<0时,f(x)=3x,那么f(2)的值为( )A.-9 B. eq \f(1,9)C.- eq \f(1,9) D.95.如图是指数函数①y=ax;②y=bx;③y=cx;④y=dx的图像,则a、b、c、d与1的大小关系是( )A.a<b<1<c<dB.b<a<1<d<cC.1<a<b<c<dD.a<b<1<d<c6.函数y=( eq \f(1,2) )x-2的图像必过( )A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限二、填空题7.函数f(x)=ax的图像经过点(2,4),则f(-3)的值为________.8.若函数y=ax-(b-1)(a>0,a≠1)的图像不经过第二象限,则a,b必满足条件________.9.函数y=8-23-x(x≥0)的值域是________.三、解答题10.比较下列各组数中两个值的大小:(1)0.2-1.5和0.2-1.7;(2)和;(3)2-1.5和30.2.11.2000年10月18日,美国某城市的日报以醒目标题刊登了一条消息:“市政委员会今天宣布:本市垃圾的体积达到50 000 m3”,副标题是:“垃圾的体积每三年增加一倍”.如果把3年作为垃圾体积加倍的周期,请你根据下面关于垃圾的体积V(m3)与垃圾体积的加倍的周期(3年)数n的关系的表格,回答下列问题.(1)设想城市垃圾的体积每3年继续加倍,问24年后该市垃圾的体积是多少?(2)根据报纸所述的信息,你估计3年前垃圾的体积是多少?(3)如果n=-2,这时的n,V表示什么信息?(4)写出n与V的函数关系式,并画出函数图像(横轴取n轴).(5)曲线可能与横轴相交吗?为什么?能力提升12.定义运算a⊕b= eq \b\lc\{\rc\(\a\vs4\al\co1(a a≤b,b a>b)) ,则函数f(x)=1⊕2x的图像是( )13.定义在区间(0,+∞)上的函数f(x)满足对任意的实数x,y都有f(xy)=yf(x).(1)求f(1)的值;(2)若f( eq \f(1,2) )>0,解不等式f(ax)>0.(其中字母a为常数).§3指数函数(二)1.下列一定是指数函数的是( )A.y=-3x B.y=xx(x>0,且x≠1)C.y=(a-2)x(a>3) D.y=(1- eq \r(2) )x 2.指数函数y=ax与y=bx的图像如图,则( )A.a<0,b<0 B.a<0,b>0C.0<a<1,b>1 D.0<a<1,0<b<13.函数y=πx的值域是( )A.(0,+∞) B.[0,+∞)C.R D.(-∞,0)4.若( eq \f(1,2) )2a+1<( eq \f(1,2) )3-2a,则实数a的取值范围是( )A.(1,+∞) B.( eq \f(1,2) ,+∞) C.(-∞,1) D.(-∞, eq \f(1,2) ) 5.设 eq \f(1,3) <( eq \f(1,3) )b<( eq \f(1,3) )a<1,则( ) A.aa<ab<ba B.aa<ba<abC.ab<aa<ba D.ab<ba<aa6.若指数函数f(x)=(a+1)x是R上的减函数,那么a的取值范围为( )A.a<2 B.a>2C.-1<a<0 D.0<a<1一、选择题1.设P={y|y=x2,x∈R},Q={y|y=2x,x∈R},则( )A.QP B.QPC.P∩Q={2,4} D.P∩Q={(2,4)}2.函数y= eq \r(16-4x) 的值域是( )A.[0,+∞) B.[0,4] C.[0,4) D.(0,4)3.函数y=ax在[0,1]上的最大值与最小值的和为3,则函数y=2ax-1在[0,1]上的最大值是( )A.6 B.1 C.3 D. eq\f(3,2)4.若函数f(x)=3x+3-x与g(x)=3x-3-x的定义域均为R,则( ) A.f(x)与g(x)均为偶函数 B.f(x)为偶函数,g(x)为奇函数C.f(x)与g(x)均为奇函数 D.f(x)为奇函数,g(x)为偶函数5.函数y=f(x)的图像与函数g(x)=ex+2的图像关于原点对称,则f(x)的表达式为( )A.f(x)=-ex-2 B.f(x)=-e-x+2C.f(x)=-e-x-2 D.f(x)=e-x+26.已知a=,b=,c=,则a,b,c三个数的大小关系是( )A.c<a<b B.c<b<aC.a<b<c D.b<a<c二、填空题7.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了________天.8.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=1-2-x,则不等式f(x)<- eq \f(1,2) 的解集是________________.9.函数y=的单调递增区间是________.三、解答题10.(1)设f(x)=2u,u=g(x),g(x)是R上的单调增函数,试判断f(x)的单调性;(2)求函数y=的单调区间.11.函数f(x)=4x-2x+1+3的定义域为[- eq \f(1,2) , eq\f(1,2) ].(1)设t=2x,求t的取值范围;(2)求函数f(x)的值域.能力提升12.函数y=2x-x2的图像大致是( )13.已知函数f(x)= eq \f(2x-1,2x+1) .(1)求f[f(0)+4]的值;(2)求证:f(x)在R上是增函数;(3)解不等式:0<f(x-2)< eq \f(15,17) .习题课1.下列函数中,指数函数的个数是( )①y=2·3x;②y=3x+1;③y=3x;④y=x3.A.0 B.1 C.2 D.32.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)等于( )A.-3 B.-1 C.1 D.33.对于每一个实数x,f(x)是y=2x与y=-x+1这两个函数中的较小者,则f(x)的最大值是( )A.1 B.0C.-1 D.无最大值4.将 eq \r(2\r(2)) 化成指数式为________.5.已知a=40.2,b=80.1,c=( eq \f(1,2) )-0.5,则a,b,c的大小顺序为________.6.已知+=3,求x+ eq \f(1,x) 的值.一、选择题1.的值为( )A. eq \r(2) B.- eq \r(2) C. eq\f(\r(2),2) D.- eq \f(\r(2),2)2.化简 eq \r(3,a-b3) + eq \r(a-2b2) 的结果是( ) A.3b-2a B.2a-3bC.b或2a-3b D.b3.若0<x<1,则2x,( eq \f(1,2) )x,(0.2)x之间的大小关系是( ) A.2x<(0.2)x<( eq \f(1,2) )x B.2x<( eq\f(1,2) )x<(0.2)xC.( eq \f(1,2) )x<(0.2)x<2xD.(0.2)x<( eq \f(1,2) )x<2x4.若函数则f(-3)的值为( )A. eq \f(1,8)B. eq\f(1,2)C.2 D.85.函数f(x)=ax-b的图像如图所示,其中a,b均为常数,则下列结论正确的是( )A.a>1,b>0B.a>1,b<0C.0<a<1,b>0D.0<a<1,b<06.函数f(x)= eq \f(4x+1,2x) 的图像( )A.关于原点对称B.关于直线y=x对称C.关于x轴对称D.关于y轴对称二、填空题7.计算:-(- eq \f(1,4) )0+160.75+=________________.8.已知10m=4,10n=9,则=________.9.函数y=1-3x(x∈[-1,2])的值域是________.三、解答题10.比较下列各组中两个数的大小:(1)0.63.5和0.63.7;(2)( eq \r(2) )-1.2和( eq \r(2) )-1.4;(3)和;(4)π-2和( eq \f(1,3) )-1.311.函数f(x)=ax(a>0,且a≠1)在区间[1,2]上的最大值比最小值大 eq \f(a,2) ,求a的值.能力提升12.已知f(x)= eq \f(a,a2-1) (ax-a-x)(a>0且a≠1),讨论f(x)的单调性.13.根据函数y=|2x-1|的图像,判断当实数m为何值时,方程|2x-1|=m无解?有一解?有两解?§4对数(一)1.对数的概念如果ab=N(a>0,且a≠1),那么数b叫做______________,记作__________,其中a叫做__________,N叫做________.2.常用对数与自然对数通常将以10为底的对数叫做__________,以e为底的对数叫做__________,log10N可简记为________,logeN简记为________.3.对数与指数的关系若a>0,且a≠1,则ax=N⇔logaN=____.对数恒等式:=____;logaax=____(a>0,且a≠1).4.对数的性质(1)1的对数为____;(2)底的对数为____;(3)零和负数________.一、选择题1.有下列说法:①零和负数没有对数;②任何一个指数式都可以化成对数式;③以10为底的对数叫做常用对数;④以e为底的对数叫做自然对数.其中正确命题的个数为( )A.1 B.2C.3 D.42.有以下四个结论:①lg(lg10)=0;②ln(ln e)=0;③若10=lg x,则x=100;④若e=ln x,则x=e2.其中正确的是( )A.①③ B.②④C.①② D.③④3.在b=log(a-2)(5-a)中,实数a的取值范围是( )A.a>5或a<2 B.2<a<5 C.2<a<3或3<a<5 D.3<a<44.方程= eq \f(1,4) 的解是( )A.x= eq \f(1,9) B.x= eq\f(\r(3),3)C.x= eq \r(3) D.x=95.若loga eq \r(5,b) =c,则下列关系式中正确的是( )A.b=a5c B.b5=acC.b=5ac D.b=c5a6.的值为( )A.6 B. eq \f(7,2)C.8 D. eq \f(3,7)二、填空题7.已知log7[log3(log2x)]=0,那么=________.8.若log2(logx9)=1,则x=________.9.已知lg a=2.431 0,lg b=1.431 0,则 eq \f(b,a) =________.三、解答题10.(1)将下列指数式写成对数式:①10-3= eq \f(1,1 000) ;②0.53=0.125;③( eq \r(2) -1)-1= eq \r(2) +1.(2)将下列对数式写成指数式:①log26=2.585 0;②log30.8=-0.203 1;③lg 3=0.477 1.11.已知logax=4,logay=5,求A=的值.能力提升12.若loga3=m,loga5=n,则a2m+n的值是( )A.15 B.75C.45 D.22513.(1)先将下列式子改写成指数式,再求各式中x的值:①log2x=- eq \f(2,5) ;②logx3=- eq \f(1,3) .(2)已知6a=8,试用a表示下列各式:①log68;②log62;③log26.§4对数(二)1.对数的运算性质如果a>0,且a≠1,M>0,N>0,则:(1)loga(MN)=________________;(2)loga eq \f(M,N) =________;(3)logaMn=__________(n∈R).2.对数换底公式logbN= eq \f(logaN,logab) (a,b>0,a,b≠1,N>0);特别地:logab·logba=____(a>0,且a≠1,b>0,且b≠1).一、选择题1.下列式子中成立的是(假定各式均有意义)( )A.logax·logay=loga(x+y) B.(logax)n=nlogaxC. eq \f(logax,n) =loga eq \r(n,x)D. eq \f(logax,logay) =logax-logay2.计算:log916·log881的值为( )A.18 B. eq \f(1,18) C. eq \f(8,3) D. eq \f(3,8)3.若log5 eq \f(1,3) ·log36·log6x=2,则x等于( )A.9 B. eq \f(1,9) C.25D. eq \f(1,25)4.已知3a=5b=A,若 eq \f(1,a) + eq \f(1,b) =2,则A等于( )A.15 B. eq \r(15) C.± eq \r(15)D.2255.已知log89=a,log25=b,则lg 3等于( )A. eq \f(a,b-1)B. eq \f(3,2b-1)C. eq\f(3a,2b+1) D. eq \f(3a-1,2b)6.若lg a,lg b是方程2x2-4x+1=0的两个根,则(lg eq\f(a,b) )2的值等于( )A.2 B. eq \f(1,2) C.4 D. eq\f(1,4)二、填空题7.2log510+log50.25+( eq \r(3,25) - eq \r(125) )÷ eq\r(4,25) =______________.8.(lg 5)2+lg 2·lg 50=________.9.2008年5月12日,四川汶川发生里氏8.0级特大地震,给人民的生命财产造成了巨大的损失.里氏地震的等级最早是在1935年由美国加州理工学院的地震学家里特判定的.它与震源中心释放的能量(热能和动能)大小有关.震级M= eq \f(2,3) lg E-3.2,其中E(焦耳)为以地震波的形式释放出的能量.如果里氏6.0级地震释放的能量相当于1颗美国在二战时投放在广岛的原子弹的能量,那么汶川大地震所释放的能量相当于________颗广岛原子弹.三、解答题10.(1)计算:lg eq \f(1,2) -lg eq \f(5,8) +lg 12.5-log89·log34;(2)已知3a=4b=36,求 eq \f(2,a) + eq \f(1,b) 的值.11.若a、b是方程2(lg x)2-lg x4+1=0的两个实根,求lg(ab)·(logab+logba)的值.能力提升12.下列给出了x与10x的七组近似对应值:假设在上表的各组对应值中,有且仅有一组是错误的,它是第________组.( )A.二 B.四C.五 D.七13.一种放射性物质不断变化为其他物质,每经过一年的剩余质量约是原来的75%,估计约经过多少年,该物质的剩余量是原来的 eq \f(1,3) ?(结果保留1位有效数字)(lg 2≈0.301 0,lg 3≈0.477 1)§5对数函数(一)1.对数函数的定义:一般地,我们把______________________________叫做对数函数,其中x是自变量,函数的定义域是________.________为常用对数函数;y=________为自然对数函数.2.对数函数的图像与性质3.反函数对数函数y=logax(a>0且a≠1)和指数函数____________________互为反函数.一、选择题1.函数y= eq \r(log2x-2) 的定义域是( )A.(3,+∞) B.[3,+∞) C.(4,+∞) D.[4,+∞)2.设集合M={y|y=( eq \f(1,2) )x,x∈[0,+∞)},N={y|y=log2x,x∈(0,1]},则集合M∪N是( )A.(-∞,0)∪[1,+∞) B.[0,+∞)C.(-∞,1] D.(-∞,0)∪(0,1)3.已知函数f(x)=log2(x+1),若f(α)=1,则α等于( )A.0 B.1 C.2 D.3 4.函数f(x)=|log3x|的图像是( )5.已知对数函数f(x)=logax(a>0,a≠1),且过点(9,2),f(x)的反函数记为y=g(x),则g(x)的解析式是( )A.g(x)=4x B.g(x)=2x C.g(x)=9x D.g(x)=3x6.若loga eq \f(2,3) <1,则a的取值范围是( )A.(0, eq \f(2,3) ) B.( eq \f(2,3) ,+∞) C.( eq \f(2,3) ,1) D.(0, eq \f(2,3) )∪(1,+∞)二、填空题7.如果函数f(x)=(3-a)x,g(x)=logax的增减性相同,则a的取值范围是________.8.已知函数y=loga(x-3)-1的图像恒过定点P,则点P的坐标是________.9.给出函数,则f(log23)=________.三、解答题10.求下列函数的定义域与值域:(1)y=log2(x-2);(2)y=log4(x2+8).11.已知函数f(x)=loga(1+x),g(x)=loga(1-x),(a>0,且a≠1).(1)设a=2,函数f(x)的定义域为[3,63],求函数f(x)的最值.(2)求使f(x)-g(x)>0的x的取值范围.能力提升12.已知图中曲线C1,C2,C3,C4分别是函数y=x,y=x,y=x,y=x 的图像,则a1,a2,a3,a4的大小关系是( )A.a4<a3<a2<a1 B.a3<a4<a1<a2 C.a2<a1<a3<a4D.a3<a4<a2<a113.若不等式x2-logmx<0在(0, eq \f(1,2) )内恒成立,求实数m的取值范围.§5对数函数(二)1.函数y=logax的图像如图所示,则实数a的可能取值是( )A.5 B. eq \f(1,5)C. eq \f(1,e)D. eq \f(1,2)2.下列各组函数中,表示同一函数的是( )A.y= eq \r(x2) 和y=( eq \r(x) )2B.|y|=|x|和y3=x3C.y=logax2和y=2logaxD.y=x和y=logaax3.若函数y=f(x)的定义域是[2,4],则y=f(x)的定义域是( )A.[ eq \f(1,2) ,1] B.[4,16]C.[ eq \f(1,16) , eq \f(1,4) ] D.[2,4]4.函数f(x)=log2(3x+1)的值域为( )A.(0,+∞) B.[0,+∞)C.(1,+∞) D.[1,+∞)5.函数f(x)=loga(x+b)(a>0且a≠1)的图像经过(-1,0)和(0,1)两点,则f(2)=________.6.函数y=loga(x-2)+1(a>0且a≠1)恒过定点________________________________________________________________________.一、选择题1.设a=log54,b=(log53)2,c=log45,则( )A.a<c<b B.b<c<aC.a<b<c D.b<a<c2.已知函数y=f(2x)的定义域为[-1,1],则函数y=f(log2x)的定义域为( )A.[-1,1] B.[ eq \f(1,2) ,2]C.[1,2] D.[ eq \r(2) ,4]3.函数f(x)=loga|x|(a>0且a≠1)且f(8)=3,则有( )A.f(2)>f(-2) B.f(1)>f(2)C.f(-3)>f(-2) D.f(-3)>f(-4)4.函数f(x)=ax+loga(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为( )A. eq \f(1,4)B. eq \f(1,2) C.2 D.45.已知函数f(x)=lg eq \f(1-x,1+x) ,若f(a)=b,则f(-a)等于( )A.b B.-bC. eq \f(1,b) D.- eq \f(1,b)6.函数y=3x(-1≤x<0)的反函数是( )A.y=x(x>0) B.y=log3x(x>0)C.y=log3x( eq \f(1,3) ≤x<1) D.y=x( eq\f(1,3) ≤x<1)二、填空题7.函数f(x)=lg(2x-b),若x≥1时,f(x)≥0恒成立,则b应满足的条件是________.8.函数y=logax当x>2时恒有|y|>1,则a的取值范围是________.9.若loga2<2,则实数a的取值范围是______________.三、解答题10.已知f(x)=loga(3-ax)在x∈[0,2]上单调递减,求a的取值范围.11.已知函数f(x)= eq \f(1-ax,x-1) 的图像关于原点对称,其中a 为常数.(1)求a的值;(2)若当x∈(1,+∞)时,f(x)+(x-1)<m恒成立.求实数m的取值范围.能力提升12.若函数f(x)=loga(x2-ax+ eq \f(1,2) )有最小值,则实数a的取值范围是( )A.(0,1) B.(0,1)∪(1, eq \r(2) ) C.(1, eq \r(2) ) D.[ eq \r(2) ,+∞)13.已知logm4<logn4,比较m与n的大小.习题课1.已知m=0.95.1,n=5.10.9,p=log0.95.1,则这三个数的大小关系是( )A.m<n<p B.m<p<nC.p<m<n D.p<n<m2.已知0<a<1,logam<logan<0,则( )A.1<n<m B.1<m<n C.m<n<1 D.n<m<13.函数y= eq \r(x-1) + eq \f(1,lg2-x) 的定义域是( ) A.(1,2) B.[1,4]C.[1,2) D.(1,2]4.给定函数①y=,②y=(x+1),③y=|x-1|,④y=2x+1,其中在区间(0,1)上单调递减的函数序号是( )A.①② B.②③ C.③④ D.①④5.设函数f(x)=loga|x|,则f(a+1)与f(2)的大小关系是________________.6.若log32=a,则log38-2log36=________.一、选择题1.下列不等号连接错误的一组是( )A.log0.52.7>log0.52.8 B.log34>log65 C.log34>log56 D.logπe>logeπ2.若log37·log29·log49m=log4 eq \f(1,2) ,则m等于( )A. eq \f(1,4)B. eq \f(\r(2),2)C. eq \r(2) D.43.设函数若f(3)=2,f(-2)=0,则b等于( )A.0 B.-1 C.1 D.24.若函数f(x)=loga(2x2+x)(a>0,a≠1)在区间(0, eq \f(1,2) )内恒有f(x)>0,则f(x)的单调递增区间为( )A.(-∞,- eq \f(1,4) ) B.(- eq \f(1,4) ,+∞) C.(0,+∞) D.(-∞,- eq \f(1,2) )5.若函数若f(a)>f(-a),则实数a的取值范围是( )A.(-1,0)∪(0,1) B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(1,+∞) D.(-∞,-1)∪(0,1)6.已知f(x)是定义在R上的奇函数,f(x)在(0,+∞)上是增函数,且f( eq \f(1,3) )=0,则不等式f(x)<0的解集为( )A.(0, eq \f(1,2) ) B.( eq\f(1,2) ,+∞)C.( eq \f(1,2) ,1)∪(2,+∞) D.(0, eq\f(1,2) )∪(2,+∞)二、填空题7.已知loga(ab)= eq \f(1,p) ,则logab eq \f(a,b) =________.8.若log236=a,log210=b,则log215=________.9.设函数若f(a)= eq \f(1,8) ,则f(a+6)=________.三、解答题10.已知集合A={x|x<-2或x>3},B={x|log4(x+a)<1},若A∩B=∅,求实数a的取值范围.11.抽气机每次抽出容器内空气的60%,要使容器内的空气少于原来的0.1%,则至少要抽几次?(lg 2≈0.301 0)能力提升12.设a>0,a≠1,函数f(x)=loga(x2-2x+3)有最小值,求不等式loga(x-1)>0的解集.13.已知函数f(x)=loga(1+x),其中a>1.(1)比较 eq \f(1,2) [f(0)+f(1)]与f( eq \f(1,2) )的大小;(2)探索 eq \f(1,2) [f(x1-1)+f(x2-1)]≤f( eq \f(x1+x2,2) -1)对任意x1>0,x2>0恒成立.§6指数函数、幂函数、对数函数增长的比较1.当a>1时,指数函数y=ax是________,并且当a越大时,其函数值增长越____.2.当a>1时,对数函数y=logax(x>0)是________,并且当a越小时,其函数值________.3.当x>0,n>1时,幂函数y=xn是________,并且当x>1时,n越大,其函数值__________.一、选择题1.今有一组数据如下:现准备了如下四个答案,哪个函数最接近这组数据( )A.v=log2t B.v=t C.v= eq \f(t2-1,2) D.v=2t-22.从山顶到山下的招待所的距离为20千米.某人从山顶以4千米/时的速度到山下的招待所,他与招待所的距离s(千米)与时间t(小时)的函数关系用图像表示为( )3.某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与时间x的关系,可选用( )A.一次函数 B.二次函数 C.指数型函数 D.对数型函数4.某自行车存车处在某天的存车量为4 000辆次,存车费为:变速车0.3元/辆次,普通车0.2元/辆次.若当天普通车存车数为x辆次,存车费总收入为y元,则y关于x的函数关系式为( )A.y=0.2x(0≤x≤4 000) B.y=0.5x(0≤x≤4 000)C.y=-0.1x+1 200(0≤x≤4 000) D.y=0.1x+1 200(0≤x≤4000)5.已知f(x)=x2-bx+c且f(0)=3,f(1+x)=f(1-x),则有( )A.f(bx)≥f(cx) B.f(bx)≤f(cx) C.f(bx)<f(cx)D.f(bx),f(cx)大小不定6.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为l1=5.06x-0.15x2和l2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则可能获得的最大利润是( )A.45.606 B.45.6 C.45.56 D.45.51二、填空题7.一种专门侵占内存的计算机病毒,开机时占据内存2KB,然后每3分钟自身复制一次,复制后所占内存是原来的2倍,那么开机后经过________分钟,该病毒占据64MB内存(1MB=210KB).8.近几年由于北京房价的上涨,引起了二手房市场交易的火爆.房子几乎没有变化,但价格却上涨了,小张在2010年以80万元的价格购得一套新房子,假设这10年来价格年膨胀率不变,那么到2020年,这所房子的价格y(万元)与价格年膨胀率x之间的函数关系式是________.三、解答题9.用模型f(x)=ax+b来描述某企业每季度的利润f(x)(亿元)和生产成本投入x(亿元)的关系.统计表明,当每季度投入1(亿元)时利润y1=1(亿元),当每季度投入2(亿元)时利润y2=2(亿元),当每季度投入3(亿元)时利润y3=2(亿元).又定义:当f(x)使[f(1)-y1]2+[f(2)-y2]2+[f(3)-y3]2的数值最小时为最佳模型.(1)当b= eq \f(2,3) ,求相应的a使f(x)=ax+b成为最佳模型;(2)根据题(1)得到的最佳模型,请预测每季度投入4(亿元)时利润y4(亿元)的值.10.根据市场调查,某种商品在最近的40天内的价格f(t)与时间t满足关系f(t)=,销售量g(t)与时间t满足关系g(t)=- eq \f(1,3) t+ eq\f(43,3) (0≤t≤40,t∈N).求这种商品的日销售额(销售量与价格之积)的最大值.11.某商品在近30天内每件的销售价格p(元)与时间t(天)的函数关系是p=该商品的日销售量Q(件)与时间t(天)的函数关系式为Q=-t+40(0<t≤30,t∈N),求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?能力提升12.某种商品进价每个80元,零售价每个100元,为了促销拟采取买一个这种商品,赠送一个小礼品的办法,实践表明:礼品价值为1元时,销售量增加10%,且在一定范围内,礼品价值为(n+1)元时,比礼品价值为n元(n∈N+)时的销售量增加10%.(1)写出礼品价值为n元时,利润yn(元)与n的函数关系式;(2)请你设计礼品价值,以使商店获得最大利润.13.已知桶1与桶2通过水管相连如图所示,开始时桶1中有a L水,t min后剩余的水符合指数衰减函数y1=ae-nt,那么桶2中的水就是y2=a-ae-nt,假定5 min后,桶1中的水与桶2中的水相等,那么再过多长时间桶1中的水只有 eq \f(a,4) L?第三章章末检测一、选择题(本大题共12小题,每小题5分,共60分)1.已知函数f(x)=lg(4-x)的定义域为M,函数g(x)= eq \r(0.5x-4) 的值域为N,则M∩N等于( )A.M B.NC.[0,4) D.[0,+∞)2.函数y=3|x|-1的定义域为[-1,2],则函数的值域为( )A.[2,8] B.[0,8]C.[1,8] D.[-1,8]3.已知f(3x)=log2 eq \r(\f(9x+1,2)) ,则f(1)的值为( )A.1 B.2 C.-1 D. eq\f(1,2)4.等于( )A.7 B.10 C.6 D. eq\f(9,2)5.若100a=5,10b=2,则2a+b等于( )A.0 B.1C.2 D.36.比较、23.1、的大小关系是( )A.23.1<< B.<23.1<C.<<23.1 D.<<23.17.式子 eq \f(log89,log23) 的值为( )A. eq \f(2,3)B. eq \f(3,2)C.2 D.38.已知ab>0,下面四个等式中:①lg(ab)=lg a+lg b;②lg eq \f(a,b) =lg a-lg b;③ eq \f(1,2) lg( eq \f(a,b) )2=lg eq \f(a,b) ;④lg(ab)= eq \f(1,logab10) .其中正确的个数为( )A.0 B.1 C.2 D.39.为了得到函数y=lg eq \f(x+3,10) 的图像,只需把函数y=lg x 的图像上所有的点( )A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度10.函数y=2x与y=x2的图像的交点个数是( )A.0 B.1C.2 D.311.设偶函数f(x)满足f(x)=2x-4(x≥0),则{x|f(x-2)>0}等于( ) A.{x|x<-2或x>4} B.{x|x<0或x>4}C.{x|x<0或x>6} D.{x|x<-2或x>2}12.函数f(x)=a|x+1|(a>0,a≠1)的值域为[1,+∞),则f(-4)与f(1)的关系是( )A.f(-4)>f(1) B.f(-4)=f(1)C.f(-4)<f(1) D.不能确定二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f(x)= eq \b\lc\{\rc\ (\a\vs4\al\co1(\f(1,2)x,x≥4f x+1, x<4)) ,则f(2+log23)的值为______.14.函数f(x)=loga eq \f(3-x,3+x) (a>0且a≠1),f(2)=3,则f(-2)的值为________.15.函数y=(x2-3x+2)的单调递增区间为______________.16.设0≤x≤2,则函数y=-3·2x+5的最大值是________,最小值是________.三、解答题(本大题共6小题,共70分)17.(10分)已知指数函数f(x)=ax(a>0且a≠1).(1)求f(x)的反函数g(x)的解析式;(2)解不等式:g(x)≤loga(2-3x).18.(12分)已知函数f(x)=2a·4x-2x-1.(1)当a=1时,求函数f(x)在x∈[-3,0]的值域;(2)若关于x的方程f(x)=0有解,求a的取值范围.19.(12分)已知x>1且x≠ eq \f(4,3) ,f(x)=1+logx3,g(x)=2logx2,试比较f(x)与g(x)的大小.20.(12分)设函数f(x)=log2(4x)·log2(2x), eq \f(1,4) ≤x≤4,(1)若t=log2x,求t的取值范围;(2)求f(x)的最值,并写出最值时对应的x的值.21.(12分)已知f(x)=loga eq \f(1+x,1-x) (a>0,a≠1).(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明;(3)求使f(x)>0的x的取值范围.22.(12分)已知定义域为R的函数f(x)= eq \f(-2x+b,2x+1+2) 是奇函数.(1)求b的值;(2)判断函数f(x)的单调性;(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.。

考点08 指数、对数的运算(练习)(解析版)

考点08 指数、对数的运算(练习)(解析版)

考点8:指数、对数的运算【题组一 指数运算】 1.计算下列式子 (1)112032170.027()(2)1)79---+-; (2)(10115352443--⎛⎫⎛⎫⨯-+-- ⎪ ⎪⎝⎭⎝⎭(3)41320.753440.0081(4)16---++-;(4)121030.75332564()[(2)]160.019-------++(5)212013328(0.008)(2)3()2527--⨯++-++.(6)11120130.25473(0.0081)381388-----⎡⎤⎡⎤⎛⎫⎛⎫⎢⎥-⨯⨯+⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥⎣⎦⎣⎦;(7)若1122x x -+=12212x x x x --+-+-的值. (8)21151133662242a b a b a b ⎛⎫⎛⎫⎛⎫-÷- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(其中,a b 均为正数).(9)()())611144043240,0a ba ab ab a b -⎛⎫⨯-÷+>> ⎪⎝⎭【答案】(1)-45 (2)3)0.55(4)17(5)7(6)3 (7)14(8)2a (9)a 【解析】(1))211032170.027(2)179--⎛⎫-+-⎪⎝⎭105=4914533-+-=- (2)原式11215533442255⎛⎫⎛⎫=+⨯-- ⎪ ⎪⎝⎭⎝⎭(21332222+=-+=-=.(3)41320.753440.0081(4)16---++-()413340.75243422(0.3)(2)(2)2-⨯-⨯-=++- =0.3+2﹣3+2﹣2﹣2﹣3=0.3+0.25=0.55.(4)121030.75332564()[(2)]160.0111181014497-------++=--++=;(5)212013328(0.008)(2)3()2527--⨯++-++213338212()31()10002533-⨯=⨯++++23()3222132()10533⨯-=⨯++2212132()5533-=⨯++2221325533=⨯++7=.(6)原式()()11211344144427310338------⎡⎤⎛⎫⎢⎥=⨯-⨯+ ⎪⎢⎥⎝⎭⎣⎦121112101310333333--⎛⎫=⨯-⨯+=-= ⎪⎝⎭. (7)若1122x x -+=1112222()224x x x x --+=+-=-=,12222()21442x x x x --=+=-=+-,故122141121424x x x x --+--==+--. (8)2115211115113366326236224222a b a b a b a a b +-+-⎛⎫⎛⎫⎛⎫-÷-= ⎪⎪ ⎝⎭⎝⎝⎭=⎪⎭(9)原式()()112341a b a bab a -=⋅-÷+-11abab a --=-+a =2.方程9360x x +-=的实数解为__________. 【答案】3log 2【解析】9360x x +-=,(33)(32)0x x ∴+-=,32x ∴=,或33x =-(舍去)3log 2x ∴=,故答案为:3log 2. 【题组二 对数运算】 1.33323322log 2log log 8log 9log 29-+-⋅= . 【答案】0【解析】33323322log 2log log 8log 9log 29-+-⋅32334log 82log 3log 22log 32220329⎛⎫ ⎪=⨯-⋅=-=-= ⎪ ⎪⎝⎭2.()4243352log 264log 18log2log 2log 125⨯+-+⨯= .【答案】13 【解析()4243352log 264log 18log2log 2log 125⨯+-+⨯()2643518log 44log log 125823132=⨯++=++=.3.计算:()2lg 2lg 2lg50lg 25+⋅+= .. 【答案】2【解析】()()22lg 2lg 2lg50lg 25lg 2lg 2(2lg 2)lg 25+⋅+=+⋅-+()22lg 2(lg 2)2lg 22lg5=-++2(lg2lg5)2=+=4.求值:2(lg 5)lg 2lg 50+⨯=________. 【答案】1【解析】22(lg5)lg 2lg50(lg5)lg 2(lg5lg10)lg5(lg5lg 2)lg 2lg5lg 21+⨯=+⨯+=++=+= 5.求值:()26666log 4log 3log 12log 3+⋅+= . 【答案】2【解析】原式()()266666666log 2log 3log 3log 122log 22log 32log 2log 32=+⋅+=+=+=.6.计算:32221ln lg0.01log 20log 16log 5e ++-+= . 【答案】-1【解析】32221ln lg0.01log 20log 16log 5e ++-+2213lg10log 20165-⎛⎫=++÷⨯ ⎪⎝⎭()2132log 4=+-+12=-1=-7.计算()222lg5lg8lg5lg 20lg 23++⋅+= 【答案】3【解析】原式()2=2lg52lg 2lg5lg 21lg 2++⋅++()=2+lg 2(lg5lg 2)lg5++2lg 2lg53=++= 8.求值:()()48393324log log log log ++= . 【答案】53【解析】原式()2233231155log 3log 3log 2log 2log 32log 22363⎛⎫=++=⨯=⎪⎝⎭9.求值()2235lg5lg 2lg5lg 20log 25log 4log 9+⨯++⨯⨯= . 【答案】10【解析】()2235lg5lg2lg5lg20log 25log 4log 9+⨯++⨯⨯=lg5(lg2+lg5)2549lg20235lg lg lg lg lg lg ++⨯⨯= lg5lg20++252223235lg lg lg lg lg lg ⨯⨯=lg100+8=10. 10.求值231lg 25lg 2log 9log 22+-⨯= . 【答案】12-.【解析】231lg25lg2log 9log 22+-⨯ 1223lg5lg2lg102log 3log 2-=+--⨯ 1122=+- 12=-11.计算:(2log (2-= .【答案】-1【解析】(1)方法一:利用对数定义求值:设((2log 2x =,则((1222x-===,∴1x =-.方法二:利用对数的运算性质求解:(((()(23122log 2log log 21+-==+=-.12.已知2lglg lg 2x yx y -=+,求(3log xy-= . 【答案】1-【解析】(2)由已知得2lg lg 2x y xy -⎛⎫= ⎪⎝⎭,∴22x y xy -⎛⎫= ⎪⎝⎭,即2260x xy y -+=. ∴2610x x y y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭.∴3x y =±.∵0,0,0,x y x y ->⎧⎪>⎨⎪>⎩∴1x y >,∴3x y =+∴(((33log log 3x y --=+(3=log -((13=log 3---1=-.【题组三 指数、对数综合计算】 1.若实数a ,b 满足3412a b ==,则11a b+= .【答案】1【解析】因为3412a b ==,所以34log 12,log 12a b ==,121212341111log 3log 4log 1211212a b log log +=+=+==. 2.设25a b ==m ,且111a b+=,则m 等于 . 【答案】10【解析】由25a b m ==得25log ,log a m b m ==,所以112510m m m a b+=+=log log log , 因为111a b+=,所以log 101m =,所以10m =, 3.方程()()1122log 95log 322x x ---=-+的解为 .【答案】2【解析】设13,(0)x t t -=>,则()2222log 5log (2)254(2)0t t t t -=-+⇒-=->21430,333112x t t t t x x -⇒-+=>=⇒=⇒-=⇒= 4.若2336a b ==,则a bab+=__________. 【答案】12【解析】因为2336a b ==,所以2log 36a =,3log 36b =,因此361log 2a =,361log 3b=, 所以363636111log 3log 2log 62a b ab b a +=+=+==.故答案为125.若3log 21x =,则44x x -+=_____. 【答案】829【解析】33log 2log 21x x ==,23x ∴=,则()()224229xx x ===,因此,18244999x x -+=+=. 6. 计算求值(1)(20.51lg 5lg 400lg 93(1)42e --⋅+⎛⎫⎛⎫--+ ⎪⎪⎝⎭⎝⎭(2)6+213298⨯+lg500lg 0.5-(3)21log 31324lg 22493+-. (4)7log 22235(lg 5)lg 2lg 5lg 20log 25log 4log 97+⨯++⨯⨯+.(5)(2)2log 4232lg 6lg32log 9log 2111lg 0.36lg823-+-⨯++. (6)7log 23334ln e lg1000log 42log 14log 87++--+;(7)3log 22912log 51lg 31log 27log 102--+--).(8)2721log 10log 23235log log 473⎡⎤⋅--⎢⎥⎣⎦. 【答案】(1)2(2)123(3)132(4)12(5)3(6)152(7)1(8)14-【解析】(1)原式=()())2212lg10lg 2lg 2lg100lg 221934-⋅++==⎛⎫-+⎪⎝⎭2(1lg 2)(22lg 2)2(lg 2)222133-++=-+ (2)6+213298⨯+lg500lg 0.5-=22⨯33+3⨯4+500lg 0.5=108+12+3=123 (3)原式()()235log 3252212411lg lg 2lg 5722lg 252lg 2627322=-+⨯+⨯=⨯-+()41lg 212lg 262=+-+132=. (4)7log 22235(lg 5)lg 2lg 5lg 20log 25log 4log 97+⨯++⨯⨯+())7log 22235(lg5)lg2lg51lg22log 52log 2(2log 37=+⨯+++⨯⨯+7log 22lg 5lg 2lg 3(lg 5)lg 2lg 51lg 287lg 2lg 3lg 5=+⨯+++⨯⨯⨯+ 2(lg 5)lg 2lg 51lg 282=+⨯++++ lg5(lg5lg 2)lg 211=+++lg5lg 211=++12=(6)原式23lg12lg1242log 3log 24231lg 0.6lg 2lg12=+-⨯=+-=++.(1)7log 23334ln e lg1000log 42log 14log 87++--+33343lg10log (143)log 14log (42)2=++⨯--⨯+3334433log 14log 3log 14log 4log 22=+++---+ 228log 2=-182=-152=; (7)3log 22912log 51lg 31log 27log 102--+--) =13lg 21lg522+++-=1 (8)2722111log 10log 2log 1033243535log log 43)7log 3log 22723-⎡⎤⎛⎫⋅--=⋅-- ⎪⎢⎥⎣⎦⎝⎭()55111log 1032log 5444=-⋅--=-⋅=-。

指数对数计算题50道

指数对数计算题50道

指数对数计算题50道指数和对数是数学中常见的运算符号,它们在科学、工程、经济等领域中都有广泛的应用。

下面给出50道指数和对数计算题,供大家练习和巩固相关概念和计算能力。

1. 计算2的平方根。

2. 计算5的立方根。

3. 计算10的对数。

4. 计算3的自然对数。

5. 计算e的平方。

6. 计算log2(8)的值。

7. 计算log10(1000)的值。

8. 计算log5(25)的值。

9. 计算log3(1/9)的值。

10. 计算log4(16)的值。

11. 计算2的3次方。

12. 计算9的平方。

13. 计算4的开平方。

14. 计算10的立方。

15. 计算5的4次方。

16. 计算log8(64)的值。

17. 计算log2(1/16)的值。

19. 计算ln(e)的值。

20. 计算ln(1)的值。

21. 计算ln(e^2)的值。

22. 计算log4(64)的值。

23. 计算log10(0.01)的值。

24. 计算log2(0.125)的值。

25. 计算2的平方的平方。

26. 计算3的立方的平方。

27. 计算log3(27)的值。

28. 计算log7(49)的值。

29. 计算log5(125)的值。

30. 计算ln(e^3)的值。

31. 计算ln(10)的值。

32. 计算ln(e^4)的值。

33. 计算log5(5)的值。

34. 计算log7(1)的值。

35. 计算log2(2)的值。

36. 计算log3(1)的值。

37. 计算2的立方根的平方。

38. 计算4的立方根的平方。

39. 计算log4(1/64)的值。

41. 计算ln(e^5)的值。

42. 计算ln(100)的值。

43. 计算ln(e^6)的值。

44. 计算log2(0.5)的值。

45. 计算log10(0.001)的值。

46. 计算5的平方根的平方。

47. 计算10的立方根的平方。

48. 计算log5(1/125)的值。

49. 计算log6(1)的值。

指数对数练习题

指数对数练习题

指数对数练习题1. 指数题目练习(1) 求2^3的值。

(2) 计算5^2的结果。

(3) 计算(-3)^4。

(4) 简化表达式:6^2 ÷ 6^(-1)。

(5) 化简表达式:(3^2)^3。

(6) 计算10^(-3)的结果。

(7) 计算(-2)^(-4)。

2. 对数题目练习(1) 求满足8^x = 64的x的值。

(2) 计算满足log2(y) = 4的y的值。

(3) 简化表达式:log4(16)。

(4) 简化表达式:log9(81)。

(5) 求满足logx(1) = 0的x的值。

(6) 计算满足log5(25^x) = 2的x的值。

(7) 简化表达式:log7(7^3)。

3. 综合题目练习(1) 求2^x = 32和3^x = 9的x的值。

(2) 计算log5(25^x) = 4和3^(2y) = 9的x和y的值。

(3) 计算2^(3x-1) = 2^5和log3(9^m) = 2的x和m的值。

(4) 计算2^(x-3) = 8和log(4^y) = 2的x和y的值。

(5) 求满足3^(3x) = 3^(2x+4)的x的值。

(6) 简化表达式:6^(2x) ÷ 3^(x+1) 。

总结:指数和对数是数学中重要的概念,我们常常会在各种计算和公式中见到它们的身影。

通过以上的练习题,我们能够巩固对指数和对数运算的理解和应用。

在解题过程中,要注意运用指数和对数的常用性质,并灵活运用换底公式等工具。

只有不断练习和思考,我们才能更好地掌握指数对数的知识,提高自己的数学水平。

(完整版)指数对数计算题含答案,推荐文档

(完整版)指数对数计算题含答案,推荐文档

2)2 6 a • b 527 - + - - 2 33 3 3 21.(本小题满分 12 分)2 27 2log 3( )- 2 + (1- 2)0 - ( )3 ;(2) 2 log 2 log 32 log 8 553 8【答案】(1)1;(2)-33 3 32.(满分 12 分)不用计算器计算:(注:只要有正确的转换,都要给步骤分,不能只看结果)(1)log 3+ lg 25 + lg 4 + 7log 7 2 + (-9.8)0(2)( 27 )- 3 8 - ( 49 9 2)0.5 + (0.008) 3 ⨯ 2513 1 【答案】(1) ;(2)293.(12 分) 化简或求值:4 1 - 1 8 1(1) (2 )0 + 2-2 ⨯(2 ) 2 - ( )3 ;5 4 27(2) 2(lg + lg 2 ⋅ lg 5 + 1【答案】(1) ;(2)124.计算(1) log + lg 25 + lg 4 + 7log 7 2+ (-9.8)03 1 1 - 2 (2) - (π - 1)0 -(3 13 ) 3 + ( )3864 【答案】(1)(2) 1625.(本小题满分 10 分) 计算下列各式的值:2 27 2(1) ( )- 2 + (1- 2)0 - ( )3 ;3 8(2) 2 l og 2 - log 32 + log 8 - 5log 5 3【答案】(1)1;(2)-3.6.求值:1) lg 5(lg 8 + lg1000) + (lg 2 3 )2 + lg 1+ lg 0.06 ;62 - 1 1 1 (a3 b - 1) 2)2 a 2 b 327 (lg 2)2 - lg 2 +16 1 43 a 53 a 7 (lg 2)2 - lg 2 + 1 2 32 3( )【答案】1)1;2)1 。

1 -27.(12 分)(1)计算log 2 25• log 3 4 •log 5 9 + lg 0.001 - ( )3(2)⋅ ÷ a 61【答案】(1)-4;(2) a 2。

指数对数计算题100道(含答案)

指数对数计算题100道(含答案)

指数对数计算题100道(含答案)1.0.×﹣+log3649+log89•log964.2.(1)(式中字母均为正数);(2).3.(1);(2)(2log43+log83)(log32+log92).4.(Ⅰ)(式中字母均为正数);(Ⅱ)log225×log34×log59.5.(Ⅰ);(Ⅱ)log3.6.(1)log3(9×27);(2);(3)lg25+lg4;(4).7.(1);(2).8.(1);(2).9.(1)log3﹣log32•log23﹣+lg+lg;(2)(lg2)2+lg20•lg5+log92•log43.10(Ⅰ)(lg2)2+lg5•lg20﹣1(Ⅱ)(×)6+(2)﹣4×()﹣×80.25﹣(2019)0 11.求值:(1);(2)log25.12.(1).(2).13.(1);(2).14.(1).(2).15.(Ⅰ)(a>0,b>0);(Ⅱ).16.(1);(2).17.(1);(2)log3+lg25+lg4++log23•log94.18.(1);(2).19.(Ⅰ)log525+lg;(Ⅱ).20.(1);(2)(log43+log83)(log32+log92).21.(1)0.﹣(﹣)0++0.;(2)lg25+lg2+()﹣log29×log32.22.(1);(2).23.计算的值.24.(1)4;(2)lg.25.(1)(2)+(2)﹣3π0+(2).26.求值:(1)(2).27.(1)(2).28.(1)(2.25)﹣(﹣9.6)0﹣()+(1.5)﹣2;(2)lg25+lg2﹣lg﹣log29×log32.29.解方程:log3(x+14)+log3(x+2)=log38(x+6)30.(1)已知4x+x﹣1=6,求的值;(2)若log32=m,log53=n,用m,n表示log415.31.求值:(1),(2).32.(1);(2).33.(1);(2).34.(1)(0.064)﹣(﹣)0+[(﹣2)3]+16﹣0.75;(2)2log32﹣log3+log38﹣5.35.(1);(2).36.(Ⅰ);(Ⅱ).37.(1);(2).38.(1)lg25+lg32+lg5•lg20+(lg2)2;(2).39.(1);(2).40.(1);(2)+lg2+lg5.41.(1)(a>0,b>0);(2).42.(Ⅰ);(Ⅱ).43.(1)4+()﹣(﹣1)0+;(2)log9+lg25+lg2﹣log49×log38.44.且a≠1);(2)(a≠0).45.(1);(2)(log37+log73)2﹣.46.log49•log38+lne2+lg0.01.47.(1);(2).48.(1);(2).49.(1)()×(﹣)0+9×﹣;(2)log3+lg25﹣3log334+lg4.50.计算下列各题:(Ⅰ)已知,求的值;(Ⅱ)求(2log43+log83)(log32+log92)的值.51.(1)化简(结果用有理数指数幂表示):;(2)已知log53=a,试用a表示log459;(3)若,则实数M.52.(Ⅰ)设函数f(x)=,计算f(f(﹣4))的值;(Ⅱ)log525+lg;(Ⅲ).指数对数计算题100道参考答案与试题解析一.试题(共52小题)1.0.×﹣+log3649+log89•log964.【解】0.×﹣+log3649+log89•log964==2×8﹣16+6×(﹣2)=﹣10.2.(1)(式中字母均为正数);(2).【解】(1)===1;(2)=log535﹣1+log550﹣log514=log5﹣1=3﹣1=2.3.(1);(2)(2log43+log83)(log32+log92).【解】(1)=﹣1+﹣=0.1﹣1+8﹣9=﹣1.9;(2)(2log43+log83)(log32+log92)=(2וlog23+log23)(log32+log32)=××log23×log32=2.4.(Ⅰ)(式中字母均为正数);(Ⅱ)log225×log34×log59.【解】(Ⅰ)(式中字母均为正数)=﹣6=﹣6a;(Ⅱ)log225×log34×log59=××=8.5.(Ⅰ);(Ⅱ)log3.【解】(Ⅰ)=()﹣1﹣()+64=﹣1﹣+16=16;(Ⅱ)log3=+lg1000+2=.6.(1)log3(9×27);(2);(3)lg25+lg4;(4).【解】(1);(2);(3)lg25+lg4=lg100=2;(4).7.(1);(2).【解】(1)原式=﹣1++e﹣=+e.(2)原式=+4﹣2log23×log32===1+2=3.8.:(1);(2).【解】(1)=1+=19.(2)==2+=.9.(1)log3﹣log32•log23﹣+lg+lg;(2)(lg2)2+lg20•lg5+log92•log43.【解】(1)原式=.(2)==.10.(Ⅰ)(lg2)2+lg5•lg20﹣1(Ⅱ)(×)6+(2)﹣4×()﹣×80.25﹣(2019)0【解】(Ⅰ)原式=(lg2)2+lg5•(lg5+2lg2)﹣1=(lg2)2+(lg5)2+2lg5lg2﹣1=(lg2+lg5)2﹣1=0,(Ⅱ)原式=2×3+﹣4×﹣×﹣1=4×27+4﹣7﹣2﹣1=102.11.求值:(1);(2)log25.【解】(1)==;(2)=;12.(1).(2).【解】(1)原式=﹣1﹣+16=16.(2)原式=+2+2=.13.(1);(2).【解】(1)原式===(2)原式===14.(1).(2).【解】(1)原式==4;(2)原式====.15.(Ⅰ)(a>0,b>0);(Ⅱ).【解】(Ⅰ)原式===(Ⅱ)原式===1 16.(1);(2).【解】(1)由题知a﹣1>0即a>1,所以=a﹣1+|1﹣a|+1﹣a=a﹣1;(2)=lg(5×102)+lg8﹣lg5﹣lg+50[lg(2×5)]2=lg5+2+lg8﹣lg5﹣lg8+50=52.17.(1);(2)log3+lg25+lg4++log23•log94.【解】(1)原式=﹣72+﹣+1=﹣49+64+=15+4=19.(2)原式=+lg(25×4)+2+=﹣+2+2+1=.18.(1);(2).【解】(1)===2•3=6;(2).==2(lg5+lg2)+lg5•lg2+(lg2)2+lg5=2+lg2•(lg5+lg2)+lg5=2+1=3.19.(Ⅰ)log525+lg;(Ⅱ).【解】解:(Ⅰ)=.(Ⅱ)==0.20.计算.(1);(2)(log43+log83)(log32+log92).【解】(1)=4=4a.(2)(log43+log83)(log32+log92)=(log6427+log649)(log94+log92)=log64243•log98===.21.(1)0.﹣(﹣)0++0.;(2)lg25+lg2+()﹣log29×log32.【解】(1)0.﹣(﹣)0++0.=﹣1++=2.5﹣1+8+0.5=10(2)lg25+lg2+()﹣log29×log32=lg5+lg2+﹣2(log23×log32)=1+﹣2=﹣22.(1);(2).【解】(1)原式==100;(2)原式=﹣3=log39﹣3=﹣1.23.计算的值.【解】==2+2﹣lg3+lg6﹣lg2+2=6.24.(1)4;(2)lg.【解】(1)===11﹣π;(2)====.25.(1)(2)+(2)﹣3π0+(2).【解】(1)原式=+﹣3+=+﹣3+=3﹣3=0.(2)原式=﹣3+log24+=﹣3+2+=﹣1+2=1.26.求值:(1)(2).【解】(1)原式=﹣1++=﹣1++=.(2)原式=+3+﹣=2+3+1﹣=.27.(1)(2).【解】(1)原式=﹣++1=﹣64++1=﹣.(2)原式=•=×log55=.28.(1)(2.25)﹣(﹣9.6)0﹣()+(1.5)﹣2;(2)lg25+lg2﹣lg﹣log29×log32.【解】(1)原式=﹣1﹣+=﹣1﹣+=;(2)原式=lg5+lg2﹣lg﹣2log23×log32=1+﹣2=﹣.29.解方程:log3(x+14)+log3(x+2)=log38(x+6)【解】∵log3(x+14)+log3(x+2)=log38(x+6),∴log3[(x+14)(x+2)]=log38(x+6),∴,解得x=2.30.(1)已知4x+x﹣1=6,求的值;(2)若log32=m,log53=n,用m,n表示log415.【解】(1)显然x>0,令,则已知a2+b2=6,ab=2,∴,∴,(2)∵,∴.31.求值:(1),(2).【解】(1)=5﹣9×+1=6﹣9×=6﹣4=2.(2)=log66+lg10﹣3+e ln8=1﹣3+8=6.32.(1);(2).【解】(1)原式=1+×+(﹣1)=+1,(2)原式=log327+(lg25+lg4)﹣2=+2﹣2=.33.(1);(2).【解】(1)==﹣5.(2)=.34.(1)(0.064)﹣(﹣)0+[(﹣2)3]+16﹣0.75;(2)2log32﹣log3+log38﹣5.【解】(1)(0.064)﹣(﹣)0+[(﹣2)3]+16﹣0.75=(0.43)﹣1+(﹣2)﹣4+(24)=0.4﹣1﹣1++2﹣3=﹣1++=.(2)2log32﹣log3+log38﹣5===﹣1.35.(1);(2).【解】(1)原式==.(2)原式==.36.(Ⅰ);(Ⅱ).【解】(Ⅰ)原式==16+1﹣1﹣1=15.(Ⅱ)原式====625.37.计算下列各式的值;(1);(2).【解】(1)原式=﹣+1﹣5=﹣2+1﹣5=﹣.(2)原式=﹣log33+4lg2+lg5﹣lg8+e ln8=﹣+3lg2+(lg2+lg5)﹣3lg2+8=﹣+1+8=.38.(1)lg25+lg32+lg5•lg20+(lg2)2;(2).【解】(1)原式=2lg5+lg2+lg5•(lg2+lg10)+(lg2)2=2(lg2+lg5)+lg5•lg2+lg5+(lg2)2=2+lg2•(lg2+lg5)+lg5=2+lg2+lg5=2+1=3;(2)原式=﹣﹣2×1÷=﹣﹣=0.39.(1);(2).【解】(1)原式=.(2)原式=.40.(1);(2)+lg2+lg5.【解】(1)原式=﹣+×=﹣+25×=﹣+2=.(2)原式=3+1﹣2+(lg2+lg5)=3+1﹣2+1=3.41.(1)(a>0,b>0);(2).【解】(1)原式=;(2)原式==.42.(Ⅰ);(Ⅱ).【解】(Ⅰ)原式=.(Ⅱ)原式=.43.(1)4+()﹣(﹣1)0+;(2)log9+lg25+lg2﹣log49×log38.【解】(1)4+()﹣(﹣1)0+=+﹣1﹣3=﹣;(2)log9+lg25+lg2﹣log49×log38=4+lg5+lg2﹣log23×log38=4+1﹣3=2.44.且a≠1);(2)(a≠0).【解】且a≠1)=+=(a x﹣1)=a x﹣1;(2)(a≠0)===﹣1.45.求值:(1);(2)(log37+log73)2﹣.【解】(1)原式=.(2)原式=.46.log49•log38+lne2+lg0.01.【解】原式==3+2+(﹣2)+5×3=18.47.计算(1);(2).【解】(1)原式=2lg2﹣(lg2﹣lg5)﹣﹣=lg2+lg5﹣﹣=1﹣=;(2)原式=3+1﹣2+1=3.48.(1);(2).【解】(1);(2).49.(1)()×(﹣)0+9×﹣;(2)log3+lg25﹣3log334+lg4.【解】(1)()×(﹣)0+9×﹣=()×1+×﹣()=×=3;(2)log3+lg25﹣3log334+lg4=log3+lg25﹣12+lg4=﹣+2﹣12=﹣10.50.(Ⅰ)已知,求的值;(Ⅱ)求(2log43+log83)(log32+log92)的值.【解】(Ⅰ)∵,∴a=,b=,∴=====2.(Ⅱ)原式=(log23)(log32)==2.51.幂、指数、对数的运算(在划线处直接填写结果)(1)化简(结果用有理数指数幂表示):;(2)已知log53=a,试用a表示log459;(3)若,则实数M.【解】(1)原式=2×(﹣6)÷4××=(﹣3)××b﹣1=﹣3b﹣1,(2)根据题意,log53=a,则log459====;(3)若,则M===.52.(Ⅰ)设函数f(x)=,计算f(f(﹣4))的值;(Ⅱ)log525+lg;(Ⅲ).【解】(Ⅰ)因为﹣4<0,所以f(﹣4)=﹣4+6=2>0所以,.(Ⅱ)=(每一项(1分)结论1分)(Ⅲ)==。

指数对数运算练习题40道(附答案)

指数对数运算练习题40道(附答案)

每天一刻钟,数学点点通郭大侠的数学江湖指数对数运算练习题1.已知,b=0.32,0.20.3c =,则a,b,c 三者的大小关系是()A.b>c>aB.b>a>cC.a>b>cD.c>b>a2.已知432a =,254b =,1325c =,则(A)b a c <<(B)a b c <<(C)b c a<<(D)c a b<<3.三个数6log ,7.0,67.067.0的大小顺序是()A.7.07.0666log 7.0<< B.6log 67.07.07.06<<C.67.07.07.066log << D.7.067.067.06log <<4.已知4log ,4.0,22.022.0===c b a ,则()A.c b a >>B.a c b>>C.c a b>>D.b c a>>5.设 1.1 3.13log 7,2,0.8ab c ===则()A.c a b <<B.ba c << C.ab c << D.bc a <<6.三个数3.0222,3.0log ,3.0===c b a 之间的大小关系是()A.b c a <<B.c b a <<C.ca b <<D.ac b <<7.已知 1.22a =,0.80.5b =,2log 3c =,则()A.a b c>>B.c b a <<C.c a b>>D.a c b>>8.已知132a -=,21211log ,log 33b c ==,则()A.a b c>>B.a c b>>C.c a b>>D.c b a >>9.已知0.30.2a =,0.2log 3b =,0.2log 4c =,则()A.a>b>cB.a>c>bC.b>c>aD.c>b>a10.设0.61.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是()(A)a b c <<(B) a c b <<(C)b a c <<(D)b c a<<试卷第2页,总8页11.设a=34⎛⎫ ⎪⎝⎭0.5,b=43⎛⎫ ⎪⎝⎭0.4,c=log 34(log 34),则()A.c<b<a B.a<b<c C.c<a<bD.a<c<b12.已知132a -=,21211log ,log 33b c ==,则()A.a b c>>B.a c b>>C.c a b>>D.c b a>>13.已知03131log 4,(),log 105a b c ===,则下列关系中正确的是()A.a b c >>B.b a c >>C.a c b >>D.c a b>>14.设0.5342log log 2a b c π-===,,,则()A.b a c>> B. b c a >> C.a b c >> D.a c b>>15.设0.90.48 1.512314,8,(2y y y -===,则()A.312y y y >>B.213y y y >>C.132y y y >>D.123y y y >>16.设12log 5a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则()A .a b c<<B .c b a<<C .c a b<<D .b a c<<17.设221333111(,(),()252a b c ===,则,,a b c 的大小关系是()A.a b c >>B.c a b >>C.a c b>> D.c b a>>18.已知0.5log sin a x =,0.5log cos b x =,0.5log sin cos c x x =,,42x ππ⎛⎫∈ ⎪⎝⎭,则,,a b c 的大小关系为()A.b a c>> B.c a b>> C.c b a>> D.b c a>>19.设0.50.82x =,2log y =sin1z =,则x 、y 、z 的大小关系为()A.x y z<< B.y z x<< C.z x y<< D.z y x<<每天一刻钟,数学点点通郭大侠的数学江湖20.若21log 0,(12ba <> ,则()A .1,0a b >>B .1,0a b ><C .01,0a b <<> D .01,0a b <<< 21.已知1122log log a b <,则下列不等式一定成立的是()A.1143ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭B.11a b> C.()ln 0a b -> D.31a b-<22.计算(1)(2)1.0lg 10lg 5lg 2lg 125lg 8lg --+23.计算:1132081()274e π-⎛⎫⎛⎫--++ ⎪ ⎪⎝⎭⎝⎭;②2lg 5lg 4ln ++.24.化简下列各式(其中各字母均为正数):(1)131.5-×76⎛⎫-⎪⎝⎭0+80.25)6;211113322---()(3)41332233814a a bb a⎛÷⨯⎝--+25.(12分)化简或求值:(1)110232418(22(2)()5427--+⨯-;(2)2lg5+试卷第4页,总8页每天一刻钟,数学点点通郭大侠的数学江湖26.(12分)化简、求值:(1)220.53327492()()(0.008)8925---+⨯;(2)计算2lg 5lg8000(lg 11lg 600lg 36lg 0.0122⋅+--27.(本小题满分10分)计算下列各式的值:(1)2203227()(1()38-+-;(2)5log 33332log 2log 32log 85-+-试卷第6页,总8页28.计算:(1)0021)51(1212)4(2---+-+-;(2)3log 5.222ln 001.0lg 25.6log +++e 29.(本题满分12分)计算以下式子的值:1421(0.252--+⨯;(2)7log 237log 27lg 25lg 47log 1++++.30.计算(1)7log 203log lg 25lg 47(9.8)+++-(2)32310641(833()1(416-+--π-每天一刻钟,数学点点通郭大侠的数学江湖31.计算:()10012cos3022π-⎛⎫-+- ⎪⎝⎭.32.(本题满分12分)计算(1)5log 923215log 32log (log 8)2+-(2)())121023170.0272179--⎛⎫⎛⎫-+-- ⎪ ⎪⎝⎭⎝⎭33.(1)化简:1222232()()()a b ab a b ---⋅÷;.34.计算:(1)2482(2013)ππ---⨯--(26cos 45-o试卷第8页,总8页35.(1)计算3log 238616132(log 4)(log 27)log 82log 3--+.(2)若1122x x-+=,求1223x x x x --++-的值.36.求值:(122316ln 4⎛⎫-+ ⎪⎝⎭37.(1)求值:(2)已知31=+x x 求221xx +的值38.计算:(1)943232053312332278-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⨯-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛(2)23log 32lg 222lg 52lg ++-39.下列四个命题:①11(0,),()()23xxx ∃∈+∞>;②23(0,),log log x x x ∃∈+∞<;③121(0,),()log 2xx x ∀∈+∞>;④1311(0,),(log 32xx x ∀∈<.其中正确命题的序号是.40.(23227log 28-⎛⎫--- ⎪⎝⎭=_____________________________参考答案1.A【来源】2013-2014学年福建省三明一中高二下学期期中考试文科数学试卷(带解析)【解析】试题分析:由指数函数的单调性可知0.3xy =是单调递减的所以0.50.20.30.3<即a<c<1;2xy =是单调增的,所以0.30221y =>=,即可知A 正确考点:指数函数比较大小.2.A【来源】2016年全国普通高等学校招生统一考试理科数学(新课标3卷精编版)【解析】试题分析:因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A.【考点】幂函数的性质.【技巧点拨】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决.3.D【来源】2013-2014学年广西桂林十八中高二下学期开学考理科数学试卷(带解析)【解析】试题分析:0.70661>=,6000.70.71<<=,0.70.7log 6log 10<=,所以60.70.7log 600.716<<<<.考点:用指数,对数函数特殊值比较大小.4.A .【来源】2014届安徽“江淮十校”协作体高三上学期第一次联考理数学卷(带解析)【解析】试题分析:因为0,10,1<<<>c b a ,所以c b a >>,故选A.考点:利用指数函数、幂函数、对数函数的单调性比较数式的大小.5.B【来源】2014年全国普通高等学校招生统一考试文科数学(安徽卷带解析)【解析】试题分析:由题意,因为3log 7a=,则12a <<; 1.12b =,则2b >; 3.10.8c =,则00.81c <=,所以c a b<<考点:1.指数、对数的运算性质.6.C【来源】2014-2015学年山东省德州市重点中学高一上学期期中考试数学试卷(带解析)【解析】试题分析:∵200.31a <=<,22b log 0.3log 10=<=,0.30221c =>=,∴c a b <<考点:根式与分数指数幂的互化及其化简运算.7.D【来源】2014届河北省唐山市高三年级第三次模拟考试文科数学试卷(带解析)【解析】试题分析:∵ 1.222a =>,0.800.51<<,21log 32<<,∴a c b >>.考点:利用函数图象及性质比较大小.8.C【来源】2014年全国普通高等学校招生统一考试文科数学(辽宁卷带解析)【解析】试题分析:因为132(0,1)a -=∈,221log log 103b =<=,112211log log 132c =>=,故c a b >>.考点:指数函数和对数函数的图象和性质.9.A【来源】2014届浙江省嘉兴市高三上学期9月月考文科数学试卷(带解析)【解析】试题分析:由指数函数和对数函数的图像和性质知0a >,0b <,0c <,又对数函数()0.2log f x x =在()0,+∞上是单调递减的,所以0.20.2log 3log 4>,所以a b c >>.考点:指数函数的值域;对数函数的单调性及应用.10.C【来源】2015年全国普通高等学校招生统一考试文科数学(山东卷带解析)【解析】由0.6xy =在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,又0.61.51>,故选C .考点:1.指数函数的性质;2.函数值比较大小.11.C【来源】2014届上海交大附中高三数学理总复习二基本初等函数等练习卷(带解析)【解析】由题意得0<a<1,b>1,而log 34>1,c=log 34(log 34),得c<0,故c<a<b.12.C【来源】2014年全国普通高等学校招生统一考试理科数学(辽宁卷带解析)【解析】试题分析:1032122110221,log 0,log log 31,33ab c -<=<==<==>所以c a b >>,故选C.考点:1.指数对数化简;2.不等式大小比较.13.A.【来源】2015届湖南省益阳市箴言中学高三第一次模拟考试文科数学试卷(带解析)【解析】试题分析:∵33log 4log 31a =>=,01(15b ==,11331log 10log 13c =<=,∴a b c >>.考点:指对数的性质.14.A【来源】2015届河南省八校高三上学期第一次联考文科数学试卷(带解析)【解析】试题分析:∵0.53422,,a b log c log π-===,0.52112>-,341122>,=log log π.∴>>b a c .故选:A.考点:不等式比较大小.15.C【来源】2012-2013学年广东省执信中学高一下学期期中数学试题(带解析)【解析】试题分析:根据题意,结合指数函数的性质,当底数大于1,函数递增,那么可知0.9 1.80.48 1.44 1.5 1.5123142,82,()22y y y -======,结合指数幂的运算性质可知,有132y y y >>,选C.考点:指数函数的值域点评:解决的关键是以0和1为界来比较大小,属于基础题。

100道指数和对数运算

100道指数和对数运算

指数和对数运算一、选择题1.log,>/2 的值为().A. — >/2B. y/2C. ——D.丄2 22.己知° = 1°目2,那么log38-21og36用a表示是()A. 5。

-2B. C 3a-(l + a)~ D. 3a-a2 -13. 21g2-lg右的值为A. 1B. 2C. 3D. 44 2 14.己知a = 2亍上=4了,c = 25亍,则()A. c <a <bB. a <b<cC.b<a <cD. b<c <a5. 设x = 0.2°', y = O.302, z = 0.3",则x, y,乙的大小关系为()k.x<z<y B. y<x<z C. y<z<x D. z<y<x6. 设a = 2O2,b = 2L6,c = 0A°\则a,b,c的大小关系是()Ac <a <b. B. c<b<a C. a <b<c D. b<a<c二、填空题7. lg 125 +lg8 + log3 37 =_______.&2 log510+log50.25= ___________.9.1og212-log23=10. 若lg2 = a, lg3 = b,则lgV54 = _____________11. ^xlog23 = l,则3'的值为_________ 。

12. 化简卢疔+心砸-lg2的结果为________________1 ■丄flg__居25)“00 2 =13. 计算4_____ .三、解答题14. (本小题满分12分)计算15. lg(x2+1 )-2lg(x+3)+lg2=0(I)log232 1 一二16. (1)计算一51og9 4 + logsg -5也’一(乔)3(2)解方程:log3(6'-9) = 32°.⑴计广易J侖®尸(2)解方程:log2(91-1 -5) = 2 + log2(3-2).17. ( I )计算:1 ] 50.064 3 -(——)0+71O^2+O.25I X0.5_487 .•(II )已知°ig2 , 10" =3 ,用°上表示log6 >/30 21. (1)计算:0.0 E°5 + 8亍 + (-4.3)° -(3 护 - (2Qf)(2)己知/(x) = -^,计算l+r*“)打⑵打⑶+几4)+/d)+/(|)+/4)的2 3 4 值。

指数函数对数函数计算题集及答案

指数函数对数函数计算题集及答案

指数函数对数函数计算题集及答案1、计算:lg5·lg8000+(lg231)2lglg0.06.62、解方程:lg2(某+10)-lg(某+10)3=4.3、解方程:2log6某1log63.4、解方程:9-某-2某31-某=27.5、解方程:(1)某=128.86、解方程:5某+1=3某1.27、计算:(lg2)3(lg5)3log251·.log210log8108、计算:(1)lg25+lg2·lg50;(2)(log43+log83)(log32+log92).9、求函数ylog0.8某12某1的定义域.10、已知log1227=a,求log616.11、已知f(某)=a2某3某1,g(某)=a某2某5(a>0且a≠1),确定某的取值范围,使得f(某)22>g(某).12、已知函数f(某)=113某.某221(1)求函数的定义域;(2)讨论f(某)的奇偶性;(3)求证f(某)>0.13、求关于某的方程a某+1=-某2+2某+2a(a>0且a≠1)的实数解的个数.14、求log927的值.15、设3a=4b=36,求2+1的值.ab16、解对数方程:log2(某-1)+log2某=117、解指数方程:4某+4-某-2某+2-2-某+2+6=018、解指数方程:24某+1-17某4某+8=019、解指数方程:(322)某(322)某22220、解指数方程:21某1334某1141021、解指数方程:4某某2232某某224022、解对数方程:log2(某-1)=log2(2某+1)23、解对数方程:log2(某2-5某-2)=224、解对数方程:log16某+log4某+log2某=725、解对数方程:log2[1+log3(1+4log3某)]=126、解指数方程:6某-3某2某-2某3某+6=027、解对数方程:lg(2某-1)2-lg(某-3)2=228、解对数方程:lg(y-1)-lgy=lg(2y-2)-lg(y+2)29、解对数方程:lg(某2+1)-2lg(某+3)+lg2=030、解对数方程:lg2某+3lg某-4=01、2、解:原方程为lg2(某+10)-3lg(某+10)-4=0,∴[lg(某+10)-4][lg(某+10)+1]=0.由lg(某+10)=4,得某+10=10000,∴某=9990.由lg(某+10)=-1,得某+10=0.1,∴某=-9.9.检验知:某=9990和-9.9都是原方程的解.3、解:原方程为log6某2log66,∴某2=2,解得某=2或某=-2.3经检验,某=2是原方程的解,某=-2不合题意,舍去.4、解:原方程为(3某)2-6某3-某-27=0,∴(3-某+3)(3-某-9)=0.∵3-某+30,∴由3-某-9=0得3-某=32.故某=-2是原方程的解.5、解:原方程为23某=27,∴-3某=7,故某=-7为原方程的解.36、解:方程两边取常用对数,得:(某+1)lg5=(某2-1)lg3,(某+1)[lg5-(某-1)lg3]=0.∴某+1=0或lg5-(某-1)lg3=0.故原方程的解为某1=-1或某2=1+log35.7、8、(1)1;(2)549、1某,2某10,2函数的定义域应满足:log0.8某10,即log0.8某1,某0,某0,4141解得0<某≤且某≠,即函数的定义域为{某|0<某≤且某≠}.525210、由已知,得a=log1227=log3273a3=,∴log32=2al og31212log32于是log616=log3164log324(3a)==.3alog361log3211、若a>1,则某<2或某>3;若0<a<1,则2<某<312、(1)(-∞,0)∪(0,+∞);(2)是偶函数;(3)略.13、2个14、设log927=某,根据对数的定义有9某=27,即32某=33,∴2某=3,某= 33,即log927=.2215、对已知条件取以6为底的对数,得21=log63,=log62,ab21于是+=log63+log62=log66=1.ab16、某=217、某=018、13某=-或某=2219、某=±120、某=3721、3某=222、某∈φ23、某=-1或某=624、某=1625、某=326、某=127、某=2931或某=81228、y=229、某=-1或某=730、某=10或某=10-42153lg某2lg某62、解对数方程:2log4某+2log某4=53、解对数方程:3log某3+3log27某=44、解对数方程:log7(log3某)=-15、解指数方程:4某+4-某-2某-2-某=06、解指数方程:9某+6某-3某+2-9某2某=07、解指数方程:2某+2-2-某+3=08、解指数方程:2某+1-3某2-某+5=09、解指数方程:5某-1+5某-2+5某-3=15510、解指数方程:26某+3某43某+6=(8某)某11、解指数方程:4某-3·2某+3-432=0.12、解对数方程:lg(6·5某+25·20某)=某+lg2513、解对数方程:log(某-1)(2某2-5某-3)=214、解对数方程:(0.4)lg2某1=(6.25)2-lg某15、解对数方程:2log某325log3某=40016、解对数方程:log2(9-2某)=3-某17、解对数方程:101g某+1=某1g某7418、解对数方程:log2(2某-1)·log2(2某+1-2)=2lg[a(某2a2)]19、解关于某的方程3.lg(某a)20、计算:(1)log622+log63·log62+log63;(2)lg25+2lg8+lg5·lg20+lg22.321、计算:(1)3log(lg21)92+5log25(lg0.52);(2)[(1-log63)2+log62·log618]·log46.222、已知:log23=a,3b=7.求:log4256.23、已知:log89=a,log25=b,求:lg2,lg3,lg5.24、已知:log189=a,18b=5,求:log3645.25、已知:12a=27,求:log616.26、计算:(1)24log23;(2)a1logab3.27、计算:(1)100lg3;(2)251log5274log12583.28、计算:log3142log37log37log318.329、若函数f(某)的定义域是[0,1],分别求函数f(1-2某)和f(某+a)(a>0)的定义域.30、若函数f(某+1)的定义域是[-2,3),求函数f(1+2)的定义域.某1252、某=2或某=163、某=3或某=274、某=735、某=06、某=27、某=-28、某=-19、某=410、某=-1或某=511、某=2+2log2312、32某=log2或某=log25513、某=414、某=10或某=10315、某=916、某=0或某=317、某=10-4或某=1018、某=log25或某=log23419、a<0且a≠-1时,某=0;a>0且a≠11,某=3a;a=0或a=-1或a=时,无解2220、(1)1(2)321、(1)3(2)122、3abaab123、lg2=1b3alg3=lg5=1b1b2(1b)24、log3645=ab2a25、log616=124a3a26、(1)48(2)3b27、(1)3(2)230428、029、{某|0≤某≤1},{某|-a≤某≤1-a}.230、11{某|某<-或某>}321、求函数f(某)=lg(1+某)+lg(1-某)(-1<某<0)的反函数.22、已知实数某,y满足(log4y)2=log1某,求u2某的最大值及其相应的某,y的值.y3、若抛物线y=某2log2a+2某loga2+8位于某轴的上方,求实数a 的取值范围.4、已知函数f(某)=(logab)某2+2(logba)某+8的图象在某轴的上方,求a,b的取值范围.5、已知f(某)=loga|loga某|(0<a<1).解不等式f(某)>0.判断f(某)在(1,+∞)上的单调性,并证明之.6、计算:(3log312)23log32log10.255log59log52.47、解方程2lg(某1)lg(31)lg(31).8、解方程:某lg某2=1000.9、解方程:6(4某-9某)-5某6某=0.10、解方程:某1(lg某7)410lg某1.11、解方程:log某+2(4某+5)-210.log某2(4某5)12、已知12=3,12=2,求8某y12某1某y的值.13、已知2lg某y=lg某+lgy,求某的值.2y14、已知loga(某2+1)+loga(y2+4)=loga8+loga某+logay(a>0,a≠1),求log8(某y)的值.15、已知正实数某,y,z满足3某=4y=6z,(1)求证:11z某1;(2)比较3某,4y,6z的大2y小.116、求7lg20·2lg0.7的值.17、已知函数f(某)=1+log某3,g(某)=2log某2(某>0,且某≠1),比较f(某)与g(某)的大小.18、已知函数f(某)=loga某1(a>0且a≠1),(1)求f(某)的定义域;(2)当a>1时,求证f(某)在[a,+∞)上是增函数.19、根据条件,求实数a的取值范围:(1)log1+a(1-a)<1;(2)|lg(1-a)|>|lg(1+a)|.20、解方程:9某+4某=5·6某.221、解方程:92某-1=4某11-某22、解方程:=9.27某23、解方程:9某-2·3某+1-27=0.某b(a>0,b>0且a≠1).某b(1)求f(某)的定义域;(2)讨论f(某)的奇偶性;(3)讨论f(某)的单调性;(4)求f(某)的反函数f-1(某).24、已知函数f(某)=loga25、已知函数f(某)=log1(某22某).2(1)求它的单调区间;(2)求f(某)为增函数时的反函数.26、已知函数f(某)=a某12满足f(lga)=10,求实数a的值.27、解关于某的方程:lg(a某-1)-lg(某-3)=128、解方程:log0.5某2-log0.5某3某2=logo.5某34.29、解方程:(某)log5某15.30、解方程:3·16某+36某=2·81某.1、3f-1(某)=-110某(lg<某<0)42、考虑log4111某=log42y-log4y,当某=,y=时,uma某=2.242y3、log2a0,由可得2<a<+∞2(2loga2)4log2a80,4、a>1,b>a或0<a<1,0<b<a.5、(1)a<某<1且某≠1;(2)f(某)在(1,+∞)上是减函数.a6、2147、lg(某1)2lg[(31)(31)],某-1>0,∴某>1(某-1)2=3-1,∴某=1+28、解:原方程为(lg某+2)lg某=3,∴lg2某+2lg某-3=0,设y=lg 某,则有y2+2y-3=0,∴y1=1,y2=-3.由lg某=1,得某=10,由lg某=-3,得某=经检验,某=10和某=1都是原方程的解.10001.10009、某=-110、某=10或某=0.000111、某=112、4313、3+2214、利用运算法则,得(某y-2)2+(2某-y)2=01∴log(某y)=315、(1)略;(2)3某<4y<6z16、令所求式为t,两边取对数,得原式=1417、444当0<某<1或某>时,f(某)>g(某);当1<某<时,f(某)<g(某);当某=时,f(某)=g(某).33318、(1)当0<a<1时,0<某≤a;当a>1时,某≥a.(2)设a≤某1≤某2,则f(某1)-f(某2)=loga某11loga某21loga=某1某2loga某11loga某21<0.19、(1)-1<a<0或0<a<1;(2)0<a<120、3方程即为2·32某-5·3某·2某+2·22某=0,即223令y=,方程又化为2y2-5y+2=0,2解得y1=2,y2=某2某3520.2某1,于是便可得某1=log32,某2=-log32.22221、19由题意可得=9,∴2某=log99,故某=log99.22222某22、方程即为3-3某=32-2某,∴-3某=2-2某,故某=-2.23、令y=3某>0,则原方程可化为y2-6y-27=0,由此得y=9(另一解y=-3舍去).从而由3某=9解得某=2.24、(1)(-∞,-b)∪(b,+∞);(2)奇函数;(3)当0<a<1时,f(某)在(-∞,-b)和(b,+∞)上是增函数;当a>1时,f(某)在(-∞,-b)和(b,+∞)上是减函数;(4)略。

(完整word版)指数与对数运算练习题

(完整word版)指数与对数运算练习题

指数运算练习题1、 用根式的形式表示下列各式 (a . 0)13(1) a 5 = ________ (2) a 4 = ______ 2、 用分数指数幕的形式表示下列各式: (3)(1)・. x 4y 3 =(2) (m 0)(3)3 ab 2 .'ab =(4)*va=(5)3、求下列各式的值2(1) 83=;(2) 1100^ =(3)⑷(即811(5)[(一迈)2]三= (6)(7)4.化简1a3(1)7• a 12v'a •Va 21 6 Y23 3 5 (2) a 2.a 4“ a6(5)(7二.27b3 3(3) 3a 2 ・(-a 4) " 9、. a =(7)5.计算 8a 弘爲a b. )5a '■ 5b 3a = 0,b = 0 =— ____ ____ 1(1 ) 3 25 -.125 "45(2)2.331.5 6 12( 3 ) (―)'-4(-2)‘210-9「22- I +2< 4丿3 -(6) ( -3—)30.0481■2^^ -(0.01)0.5 < 4丿14乜[(-2)3]乜 16 °75⑸八0.宀|2_< 9丿2'[10 卩 o n 37-3^ + ——48I 27丿 1(7) 1.5 -80.254 2 • 3.2, 3 6 -22卡——II < 3丿6.解下列方程1 811(1)3(2) 2x 4 -1 =15(3) (0.5)2X =42X ,17.(1).已知 a 2 a 2=3,求下列各式的值(1) a a J1_|(1) a 2a 22_2;(2) a a(2).若a a^3,求下列各式的值:(2) a 2 a^(3) .使式子(1-2x) 4有意义的x 的取值范围是 _______________ . (4) .若 3a =2,3b =5‘,则 33a 'b 的值=对数运算练习题、选择题1、以下四式中正确的是()11A 、log 22=4B 、log 2仁1C 、log 216=4D 、log 2=—242、下列各式值为 0的是()A 、1 0B 、Iog 33C 、(2— . 3 )°D 、log 2 I — 1 I1 lOg2 -3、2的值是( )1D 、1A 、一 5B 、5C , —一—554、若 m ==lg5 — lg2,则10m 的值是()5 A 、—B 、3C 、10 D 、125、设 N =1 -+ ^^,则()log 2 3 log 5 3A 、N = 2B 、N = 2C 、 N v — 2D 、N >26、在b =log a d (5 - a )中,实数a 的范围是( )A 、a - 5 或 a 2B2 :: a :: 5 C 、2 :: a ::3 或 3 a 5D 、 3 . a 47、 若叽丨叽他 2X)]1=0 ,贝yx 2等于( )A 、^2B1.2C8 D 442& 3叫4的值是() A 、 16 B 2C 3D 49、log . ri ■ n (' n +1— n)等于() A 1 B — 1C 、2D 、一 2二、填空题10、 用对数形式表示下列各式中的 x110x =25:;2x = 12: ________ ; 41丄: _________611、 lg1+lg0.1+lg0.01= ___________ 12、 Log 155=m,贝U log 153= ______________13、 pig 2 -lg 4 *1 + 1 Ig5 — 1 I = __________________1 -a2 ilog 618 14、 (1). log ^2=,贝 y log 12 3= -------------- (2). (log 6 3^ += ------------------alog 2 6(3)lg 2 5 lg 2 lg50 = _________________322log 32_log 36log38-3log 55 =Ig 5 Ig 20 -lg 2 Ig 50 -lg 25 =若 lg2 = a , lg3 = b,贝U log 512 =19 、3 a = 2,贝U log 38 — 2log 36 =三、解答题17、求下列各式的值 ⑴ 2log 28⑵ 3log 3918、求下列各式的值16、若 log a m,log a 3 2m :[n21、Ig25+lg2lg50+(lg2)⑴ lg10 — 5 ⑵ lg0.01⑶ log 2-8⑷ log 1 812719、2求 lg 5+lg2 20、 21. 2 -lg25+lg 2 的值 1 1 log 2 • log 3- 25 8 -log5- 9化简:log 2 5+log 4 0.2 log 52+log 250.5 . 化简计算:x 若 Ig x —y Ig x 2y ]=lg2 lg x lg y ,求一的值. 23.已知 log 2 3 = a , log 37 = b ,用 a , b 表示 log 42 56. 22. 厂 1 -log 02 3 / 24 计算,(1)5' ; ( 2) Iog 4 3 Iog 9 2-log 丄 4 32 ;2 log3 2 (3) (log 25+log 4125)log 嵌 51 25.计算:(1铲log34n lg1log 535 -log57(5) 15、 log2 7⑷33log 丄5⑶2 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
56.计算下列各式:
(1)( × )6+( ) ﹣4( ) ﹣ ×80.25﹣(﹣2017)0
(2)log2.56.25+lg0.01+ln .
57.计算:(1)0.027 ﹣(﹣ )﹣2+256 ﹣3﹣1+( ﹣1)0
(2)
(3) .
58.计算下列各式的值:
(1)0.064 ﹣(﹣ )0+160.75+0.01 ;
(Ⅱ) .
29.计算:(1) ;
(2) .
0+ +lg2+lg50+2
(2)lg14﹣2lg +lg7﹣lg18.
31.计算下列各式:
(1)(2a b )(﹣6a b )÷(﹣3a b )(a>0,b>0)
(2) .
32.计算:
(1)
(2)
33.求值:
(1)
(2)log25 .
(Ⅰ) ;
(Ⅱ) .
15.lg(x2+1)-2lg(x+3)+lg2=0
16.(1)计算
(2)解方程:
17.(Ⅰ)计算:

(Ⅱ)已知 , ,用 表示 .
18.计算:(Ⅰ)
(Ⅱ) .
19.求值:(1)
(2)
20.(1)计算 .
(2)解方程: .
21.(1)计算:
(2)已知 ,计算 的值。
20.计算:(1)
(2)利用对数的运算法则求解.
【解答】解:(1) ﹣(﹣9.6)0﹣ +(1.5)﹣2
= +
= .
(2)log3 +lg25+lg4+7log72
= ﹣1+2+2
= .
26.
解:(1)原式 ;…………5分
(2)原式 .…………10分
27.(1) 1;(2) 4
(1)(2 ) ﹣9.60﹣(﹣3 ) +(1.5)﹣2(2)log225•log32 •log59.
47.计算:
(1)
(2) .
48.不用计算器求下列各式的值
(1)
(2)
49.计算下列各式:

(2) .
50.计算:
( ) .
( )化简: .
51.求下列各式的值
(1)0.001 ﹣( )0+16 +( • )6
【分析】(1)有理数指数幂的性质、运算法则求解.
(2)利用对数性质、运算法则求解.
【解答】解:(1)0.027 ﹣(﹣ )﹣2+256 ﹣3﹣1+( ﹣1)0
=( ) ﹣(﹣7)2+
=
=19.
(2)
=
=
=﹣4.
25.
【考点】对数的运算性质;有理数指数幂的化简求值.
【分析】(1)利用分数指数幂的运算法则求解.
二、填空题
7. =.
8.2 log510+log50.25=_________.
9. .
10.若lg2 = a,lg3 = b,则lg =_____________.
11.若 ,则 的值为。
12.化简 的结果为__________.
13.计算 _______.
三、解答题
14.(本小题满分12分)计算
(2) .
59.计算:
(1) ;
(2) lg ﹣ lg +lg .
60.计算下列各式的值:
(1) ;
(2) .
61.(1)计算:8 +( ) ﹣( ﹣1)0;
(2)计算:9 + log68﹣2log .
62.不用计算器求下列各式的值
(1)(2 ) ﹣(﹣9.6)0﹣(3 ) +(1.5)﹣2
(2)lg5+lg2﹣(﹣ )﹣2+( ﹣1)0+log28.
指数和对数运算
一、选择题
1. 的值为().
A.- B. C.- D.
2.已知 ,那么 用 表示是()
A. B. C. D.
3. 的值为
A.1B.2C.3D.4
4.已知 ,则()
A. B. C. D.
5.设 ,则 的大小关系为( )
A. B. C. D.
6.设 ,则 的大小关系是()
A .B. C. D.

(2) .
23.(1)求值:
(2)解方程:
24.计算:
0.027 ﹣(﹣ )﹣2+256 ﹣3﹣1+( ﹣1)0;
(2) .
25.计算:
(1) ﹣(﹣9.6)0﹣ +(1.5)﹣2;
(2)log3 +lg25+lg4+7log72.
26.化简求值:
(1) ;
(2) .
27.(1) ;
(2) ;
28.计算:(Ⅰ) ;
(Ⅱ)∵ ,∴ ,


18.
解:(Ⅰ) …………2分
…………4分
…………5分
(Ⅱ) …………7分
…………9分
…………10分
19.
解:
(1)
(2)
20.
(1)原式
(2)设 ,则
21.
(1) ;(2)
22.
解:(1)原式 .
(2)原式 .
23.
(1) ——(3分)
(2)1000或 ——(3分)
24.
【考点】对数的运算性质;有理数指数幂的化简求值.
试卷答案
1.D
2.B

3.B
4.C
5.A
6.
A。
7.10
8.2
9.

10. a+ b
11.2

12.25

13.-20

14.(Ⅰ) ---------6分
(Ⅱ) ----------------12分
15.x=-1或x=7
16.解:(1)原式=
(2)由 可得:
经检验 符合题意。

17.解:(Ⅰ)原式 .
34.计算:
(1) + ;
(2) +0.1﹣2+ ﹣3π0+ .
35.计算:
(1)( )0.5+(0.1)﹣2+( ) ﹣3π0+ ;
(2)2log32﹣log3 +log38﹣3log55.
36.(1)求值:(0.064) ﹣(﹣ )﹣2÷160.75+( ﹣2017)0;
(2)求值: .
37.
计算下列各式:
(2)
(3)设x +x =3,求x+x﹣1的值.
52.计算:
0.027 ﹣(﹣ )﹣2+256 ﹣3﹣1+( ﹣1)0;
(3) .
53.化简与求值:
(1) (x>0,y>0)
(2) .
54.计算下列各式的值
(1)
(2) ﹣( )0+0.25 ×( )﹣4.
55.(1)计算:(﹣ )0+8 + .
(2)化简:log3 .
(1)
38.计算下列各式:
(1) ;
(2) .
39.(10分)不使用计算器,计算下列各题:
(1) ;
(2) +lg25+lg4+ +(﹣9.8)0.
40.(1)计算81 ﹣( )﹣1+30;
(2)计算 .
41.(12分)计算下列各式的值.
(1) ;
(2)lg5+(lg2)2+lg5·lg2+ln +lg ·lg1000.
42.化简求值.
(1)
(2)(lg2)2+lg20×lg5+log92•log43.
43.化简或求值:
(1)( ) +(0.008) ×
(2) +log3 ﹣3 .
44.化简求值:
(1) ;
(2) .
45.计算:
(1)log232﹣log2 +log26
(2)8 ×(﹣ )0+( × )6.
46.计算
相关文档
最新文档