测量薄膜厚度及其折射率的方法
椭圆偏振法测量薄膜厚度和折射率实验报告
![椭圆偏振法测量薄膜厚度和折射率实验报告](https://img.taocdn.com/s3/m/e901b918dc36a32d7375a417866fb84ae45cc3a6.png)
椭圆偏振法测量薄膜厚度和折射率实验报告实验名称:椭圆偏振法测量薄膜厚度和折射率实验目的:利用椭圆偏振法测量薄膜的厚度和折射率,掌握椭圆偏振法的基本原理和实验操作方法。
实验原理:椭圆偏振法是一种常用的测量薄膜光学性质的方法。
当偏振光通过具有一定折射率的薄膜时,会发生透射和反射,经过反射和透射之后的光束会发生干涉现象。
当入射光是偏振光时,通过表层膜的透射光经过增偏器后变为线偏振光,其振动方向决定于表层膜的光学性质以及入射角。
通过调节增偏器的方向和旋转其角度,使得通过增偏器的振动方向与振动椭圆的长轴平行,此时称之为白光不通过表层膜,反射线偏振光与透射线偏振光的相位差为0. 形成一个相干叠加的椭圆偏振光。
根据椭圆偏振光的特性,可以通过测量椭圆偏振光的特性参数(主轴角度、椭圆离心率等)来确定薄膜的厚度和折射率。
实验装置:椭圆偏振仪、光源、待测试薄膜样品。
实验步骤:1. 启动椭圆偏振仪,调整光源使其达到合适的亮度和稳定性。
2. 将待测薄膜样品放置在椭圆偏振仪的样品台上,并通过对焦镜调整样品的焦距。
3. 调整增偏器的方向,使通过增偏器的线偏振光振动方向与椭圆的长轴平行。
4. 调整旋转台上的角度,使反射线偏振光与透射线偏振光的相位差为0,此时形成相干的椭圆偏振光。
5. 在椭圆偏振仪上的读数器上记录椭圆偏振光的主轴角度、椭圆离心率等参数。
6. 重复上述操作,测量多组数据,以提高测量准确度。
7. 根据测量得到的参数计算薄膜的厚度和折射率。
实验结果:通过测量多组数据,记录椭圆偏振光的主轴角度和椭圆离心率等参数,得到一组薄膜的厚度和折射率。
注意保留合适的有效数字。
实验讨论:1. 实验中应确保光源的稳定性和一致性,以获得准确的测量结果。
2. 实验中可以通过调整增偏器和旋转台的角度,使椭圆偏振光的参数达到最佳值,以提高测量精度。
3. 实验中应注意测量时的环境条件,避免与外部环境光的干扰。
实验结论:通过椭圆偏振法测量薄膜的厚度和折射率,可以得到薄膜的光学性质参数。
椭偏光法测薄膜的折射率和厚度
![椭偏光法测薄膜的折射率和厚度](https://img.taocdn.com/s3/m/dfa92681fab069dc51220147.png)
实验五 椭偏光法测薄膜的折射率和厚度一、引言椭圆偏振测量术简称椭偏术。
它是利用光的偏振性质,将一椭圆偏振光射到被测样品表面,观测反射光偏振状态的变化来推知样品的光学常数。
就其理论范畴来讲,它与十涉法一样,都是利用光的波动性,以经典物理学为基础。
这种测量方法的原理早在上个世纪就提出来了,距今已有近百年的历史。
由于光波通过偏振器件及样品反射时,光波偏振状态变化得异常灵敏,使得椭偏术的理论精度之高是干涉法不能比拟的,又由于这种测理是非破坏性的,因此它的优越性是显而易见的。
长期以来,人们一直力图将这种测量方法付诸应用。
早在40年代就有人提出实验装置,但由于计算上的困难一直得不到发展。
电子计算机及激光技术的广泛应用,为椭偏术的实际应用及迅猛发展创造了条件。
今天椭偏术已成为测量技术的一个重要的分支。
椭偏术有很多优点,主要是测量灵敏、精度高,测量范围从1oA 到几个微米而且是非接触测量。
国外生产的高精度自动椭偏仪能测量正在生长的薄膜小于l o A 的厚度变化,可检测百分之儿的单分子层厚度,深入到原子数量级。
因此既可将其应用于精密分析测量,也可以用于表面研究,用于自动监控及分析液、固分界面的变化。
目前椭偏术已应用到电子工业,光学工业,金属材料工业,化学工业,表面科学和生物医学等领域。
在我们的实验中,使用消光椭偏仪测量薄膜的折射率和厚度。
除了能学习到其测量方法外,其巧妙的设计思想也将给我们极人的启发和收益。
二、椭偏术原理1.椭偏术基本方程椭圆偏振光入射到透明介质薄膜时,光在两个分界面(空气与薄膜,薄膜与衬底)来同反射和折射,如图5.1所示。
总反射光由多光束干涉而成,光在两个分界面的P 波和S 波的反射系数分别为1122p s p s r r r r 、、、图 5—1由菲涅尔公式有:121122112112211122322323223223322233cos cos cos cos cos cos cos cos cos cos cos cos cos cos cos cos p s p s n n r n n n n r n n n n r n n n n r n n ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ-⎧=⎪+⎪-⎪=⎪+⎪⎨-⎪=⎪+⎪-⎪=⎪+⎩以上各式中1n 为空气折射率,2n 为膜层的折射率,3n 为衬底折射率。
椭圆偏振光法测量薄膜的厚度和折射率
![椭圆偏振光法测量薄膜的厚度和折射率](https://img.taocdn.com/s3/m/2ddc4e9d6bec0975f465e2a2.png)
椭圆偏振光法测量薄膜的厚度和折射率摘要:本实验中,我们用椭圆偏振光法测量了MgF 2,ZrO 2,TiO 2三种介质膜的厚度和折射率,取MgF 2作为代表,测量薄膜折射率和厚度沿径向分布的不均匀性,此外还测量了Au 和Cr 两种金属厚膜的折射率和消光系数。
掌握了椭圆偏振光法的基本原理和技术方法。
关键词:椭偏法,折射率,厚度,消光系数 引言:薄膜的厚度和折射率是薄膜光电子器件设计和制备中不可缺少的两个参数。
因此,精确而迅速地测定这两个参数非常重要。
椭圆偏振光法就是一个非常重要的方法。
将一束单色椭圆偏振光投射到薄膜表面,根据电动力学原理,反射光的椭偏状态与薄膜厚度和折射率有关,通过测出椭偏状态的变化,就可以推算出薄膜的厚度和折射率。
椭圆偏振光法是目前测量透明薄膜厚度和折射率时的常用方法,其测量精度高,特别是在测量超薄薄膜的厚度时其灵敏度很高,因此常用于研究薄膜生长的初始阶段,而且由于这种方法时非接触性的,测量过程中不破坏样品表面,因而可用于薄膜生长过程的实时监控。
本实验的目的是掌握椭偏法测量薄膜的厚度和折射率的原理和技术方法。
测量几种常用介质膜的折射率和厚度,以及金属厚膜的复折射率。
原理:1. 单层介质膜的厚度和折射率的测量原理(1)光波在两种介质分界面上的反射和折射,有菲涅耳公式:121122112112211122322323223223322233cos cos cos cos cos cos cos cos cos cos cos cos cos cos cos cos p s p s n n r n n n n r n n n n r n n n n r n n ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ-⎧=⎪+⎪-⎪=⎪+⎪⎨-⎪=⎪+⎪-⎪=⎪+⎩(tp-1); (2)单层膜的反射系数图1 光波在单层介质膜中传播以上各式中1n 为空气折射率,2n 为膜层的折射率,3n 为衬底折射率。
1ϕ为入射角,2ϕ,3ϕ分别为光波在薄膜和衬底的折射角。
用椭偏仪测薄膜厚度与折射率解析
![用椭偏仪测薄膜厚度与折射率解析](https://img.taocdn.com/s3/m/8e0a6e8b284ac850ad0242f2.png)
103实验十二 用椭偏仪测薄膜厚度与折射率随着半导体和大规模集成电路工艺的飞速发展,薄膜技术的应用也越加广泛。
因此,精确地测量薄膜厚度与其光学常数就是一种重要的物理测量技术。
目前测量薄膜厚度的方法很多。
如称重法、比色法、干涉法、椭圆偏振法等。
其中,椭圆偏振法成为主要的测试手段,广泛地应用在光学、材料、生物、医学等各个领域。
而测量薄膜材料的厚度、折射率和消光系数是椭圆偏振法最基本,也是非常重要的应用之一。
实验原理由于薄膜的光学参量强烈地依赖于制备方法的工艺条件,并表现出明显的离散性,因此,如何准确、快速测量给定样品的光学参量一直是薄膜研究中一个重要的问题。
椭圆偏振法由于无须测定光强的绝对值,因而具有较高的精度和灵敏度,而且测试方便,对样品无损伤,所以在光学薄膜和薄膜材料研究中受到极大的关注。
椭圆偏振法是利用椭圆偏振光入射到样品表面,观察反射光的偏振状态(振幅和位相)的变化,进而得出样品表面膜的厚度及折射率。
氦氖激光器发出激光束波长为632.8nm 的单色自然光,经平行光管变成单色平行光束,再经起偏器P 变成线偏振光,其振动方向由起偏器方位角决定,转动起偏器,可以改变线偏振光的振动方向,线偏振光经1/4波片后,由于双折射现象,寻常光和非寻常光产生π/2的位相差,两者的振动方向相互垂直,变为椭圆偏振光,其长、短轴沿着1/4波片的快、慢轴。
椭圆的形状由起偏器的方位角来决定。
椭圆偏振光以一定的角度入射到样品的表面,反射后偏振状态发生改变,一般仍为椭圆偏振光,但椭圆的方位和形状改变了。
从物理光学原理可以知道,这种改变与样品表面膜层厚度及其光学常数有关。
因而可以根据反射光的特性来确定膜层的厚度和折射率。
图1为基本原理光路。
图2为入射光由环境媒质入射到单层薄膜上,并在环境媒质——薄膜——衬底的两个界面上发生多次折射和反射。
此时,折射角满足菲涅尔折射定律332211sin sin sin ϕϕϕN N N ==(1)104 其中N 1,N 2和N 3分别是环境媒质、= n – i k );ϕ1为入射角、 ϕ2 和ϕ3分别为薄膜和衬底的折射角。
椭偏光法测量薄膜的厚度和折射率
![椭偏光法测量薄膜的厚度和折射率](https://img.taocdn.com/s3/m/dfa0dbce3086bceb19e8b8f67c1cfad6195fe92f.png)
其中:这时需测四个量,即分别测入射光中的两分量振幅比和相位差及反射光中的两分量振幅比和相位差,如设法使入射光为等幅椭偏光,/ = 1,则tg ψ=|/|;对于相位角ip E is E rp E rs E ,有:∆因为入射光-连续可调,调整仪器,使反射光成为线偏光,即-=0或π,则ip βis βrp βrs βΔ=-(-)或Δ=π-(-),可见Δ只与反射光的p 波和s 波的相位差有关,可从ip βis βip βis β起偏器的方位角算出。
对于特定的膜,Δ是定值,只要改变入射光两分量的相位差(-ip β),肯定会找到特定值使反射光成线偏光,-=0或π。
is βrp βrs β2.椭偏法测量和的实验光路∆ψ1)等幅椭圆偏振光的获得,如图1-2。
2)平面偏振光通过四分之一波片,使得具有±π/4相位差。
3)使入射光的振动平面和四分之一波片的主截面成45°。
图 1-2反射光的检测将四分之一波片置于其快轴方向f 与x 方向的夹角α为π/4的方位,E0为通过起偏器后的电矢量,P 为E0与x 方向间的夹角。
,通过四分之一波片后,E0沿快轴的分量与沿慢轴的分量比较,相位上超前π/2。
在x 轴、y 轴上的分量为:由于x 轴在入射面内,而y 轴与入射面垂直,故就是,就是。
x E ip E y E is E图 1-3由此可见,当α=π/4时,入射光的两分量的振幅均为E0 / √2,它们之间的相位差为2P-π/2,改变P 的数值可得到相位差连续可变的等幅椭圆偏振光。
这一结果写成:实验仪器:本实验使用多功能激光椭圆偏振仪,由JJY型1'分光计和激光椭圆偏振装置两部分组成,仪器安装调试后如图19.6所示,其各部件功能如下:光源:包括激光管和激光电源。
激光管装在激光器座上,可以作水平、高低方位角调节和上下升降调节,发射632.8nm的单色光1.He-Ne激光管2.小孔光闸3.平行光管4.起偏器5.1/4 波片6.被测样品7.载物台8.光孔盘9.检偏器10.塑远镜筒11.白屏镜小孔光闸:保证激光器发出的激光束垂直照射在起偏器中心。
椭偏仪测量薄膜厚度和折射率实验报告
![椭偏仪测量薄膜厚度和折射率实验报告](https://img.taocdn.com/s3/m/8f6779a280c758f5f61fb7360b4c2e3f572725ab.png)
椭偏仪测量薄膜厚度和折射率实验报告实验目的:1.学习使用椭偏仪测量薄膜的厚度和折射率。
2.了解光线在薄膜中的传播和干涉现象。
实验仪器和材料:1.椭偏仪2.微米螺旋3.干净的玻璃片4.一块薄膜样品5.直尺6.实验台7.光源实验原理:椭偏仪是一种用于测量透明物体表面薄膜的厚度和折射率的仪器。
当光线从真空进入具有一定折射率的介质中时,会发生折射和反射。
当光线垂直入射到薄膜表面时,经过多次反射和折射后会形成干涉现象。
通过观察测量光的振幅和相位差的变化,可以推导出薄膜的厚度和折射率。
实验步骤:1.将实验台安装好,并确保椭偏仪的光源正常工作。
2.用直尺测量玻璃片和薄膜样品的尺寸,并记录下来。
3.将玻璃片放在实验台上,并将椭偏仪对准玻璃片。
4.调节椭偏仪的干涉仪臂使得产生清晰的干涉条纹。
5.使用微米螺旋逐渐调整反射镜的角度,直到条纹的清晰度达到最佳状态。
6.记录下此时的微米螺旋读数,并用直尺测量薄膜样品的厚度,得到薄膜的实际厚度。
7.调节椭偏仪的角度,使得干涉条纹平行于椭偏仪的刻度线。
8.记录下此时的椭偏仪读数,并计算出薄膜的厚度。
9.重复以上步骤2-8三次,并求取平均值。
10.使用已知的材料的折射率标定椭偏仪,并根据标定值计算出薄膜样品的折射率。
实验结果:根据实验步骤中记录的数据,计算出薄膜样品的平均厚度和折射率。
实验讨论:2.在实验中,可以尝试调节椭偏仪的角度和干涉条纹的清晰度,以获得更准确的测量结果。
3.实验中使用的薄膜样品的厚度和折射率可以进一步研究其与其他因素的关系,如温度、湿度等。
实验结论:通过使用椭偏仪测量薄膜的厚度和折射率,可以得到薄膜样品的相关参数。
实验结果表明,椭偏仪是一种能够精确测量薄膜和折射率的有效工具。
通过该实验,我们可以深入理解光的干涉现象和薄膜的光学性质。
薄膜厚度及其折射率的测量
![薄膜厚度及其折射率的测量](https://img.taocdn.com/s3/m/f8cbf07b7375a417876f8f56.png)
V-棱镜中所装为复合材料的溶液,由于其折射率nso不同
于V-棱镜的折射率np,折射光将以角度θ偏离入射光方向。θ可
由角度计测量得到,给定波长下的nso值可由Snell’s law 确定,
❖
薄膜技术是当前材料科技的研究热点,特别是纳米级
薄膜技术的迅速发展,精确测量薄膜厚度及其折射率等光学参
数受到人们的高度重视。由于薄膜和基底材料的性质和形态不
同,如何选择符合测量要求的测量方法和仪器,是一个值得认
真考虑的问题。每一种测量方法和仪器都有各自的使用要求、
测量范围、精确度、特点及局限性。在此主要介绍测量薄膜厚
薄膜厚度和折射率的。根据光干涉条纹方程,
对于不透明膜:
对于透明膜:
在(4)和(5)式中,q为条纹错位条纹数,c为条纹错位量,
e为条纹间隔。因此,若测得q,c,e就可求出薄膜厚度d 或折射
率nf。
精品课件
7
干涉法主要分双光束干涉和多光束干涉,后者又有多
光束等厚干涉和等色序干涉。双光束干涉仪主‘要由迈克尔逊
高些。
棱镜耦合法存在测量薄膜厚度的下限。测量光需在
膜层内形成两个或两个以上波导模,膜厚一般应大于300-
480nm(如硅基底);若膜折射率已知,需形成一个波导模,
膜厚应大于100~200nm;测量范围依赖于待测薄膜和基底的
性质,与所选用的棱镜折射率有关。但测量的薄膜厚度没有
周期性,是真实厚度。膜厚测量范围在0.3~15 um,折射率
式两种结构,如图4(a)和4(b)所示。等色序干涉仪也有类似两
种结构形式。
干涉法不但可以测量透明薄膜、弱吸收薄膜和非透明
薄膜,而且适用于双折射薄膜。一般来说,不能同时确定薄膜
3.1 椭偏光法测量薄膜的厚度和折射率
![3.1 椭偏光法测量薄膜的厚度和折射率](https://img.taocdn.com/s3/m/70db31fe0c22590103029d1c.png)
实验3.1 椭偏光法测量薄膜的厚度和折射率一、引言椭圆偏振测量法,简称椭偏光法,是测量研究介质表面界面或薄膜光学特性的一种重要光学方法。
它是将一束偏振光非垂直地投射到被测样品表面,由观察反射光或透射光的偏振状态的变化来推知样品的光学特性,例如薄膜的厚度,材料的复折射率等。
这种测量方法的优点是测量精度非常高,而且对样品是非破坏性的,它可以测量出薄膜厚度约0.1 nm的变化。
因此。
可以用于表面界面的研究,也可用于准单原子层开始的薄膜生长过程的实时自动监测。
椭偏光法的应用范围广泛,自然界中普遍存在着各种各样的界面和薄膜,人工制备薄膜的种类也越来越多,因此椭偏光法应用于物理、化学、表面科学、材料科学、生物科学以及有关光学、微电子、机械、冶金和生物医学等领域中。
在材料科学中椭偏测量常用来测量各种功能介质薄膜、硅上超薄氧化层以及超薄异质层生长的实时监控、溅射刻蚀过程的实时监控等。
自1945年罗中(A. Rothen)描述了用以测量薄膜表面光学性质的椭偏仪以来,随着科学技术的迅速发展,椭偏光法发展很快,椭偏仪的制造水平也不断提高,特别是使用计算机处理复杂繁冗的椭偏测量数据后使测量快捷简便了许多。
二、实验目的1. 了解椭偏光测量原理和实验方法。
2. 熟悉椭偏仪器的结构和调试方法。
3. 测量介质薄膜样品的厚度和折射率,以及硅的消光系数和复折射率。
三、实验原理本实验介绍反射型椭偏光测量方法。
其基本原理是用一束椭偏光照射到薄膜样品上,光在介质膜的交界面发生多次的反射和折射,反射光的振幅和位相将发生变化,这些变化与薄膜的厚度和光学参数(折射率、消光系数等)有关,因此,只要测出反射偏振状态的变化,就可以推出膜厚和折射率等。
1. 椭圆偏振方程图1所示为均匀、各向同性的薄膜系统,它有两个平行的界面。
介质1通常是折射率为n 1的空气,介质2是一层厚度为d 的复折射率为n 2的薄膜,均匀地附在复折射率为n 3的衬底材料上。
φ1为光的入射角,φ2和φ3分别为薄膜中和衬底中的折射角。
【管理资料】椭偏法测量薄膜的厚度和折射率---闫汇编
![【管理资料】椭偏法测量薄膜的厚度和折射率---闫汇编](https://img.taocdn.com/s3/m/3d50ea3c0029bd64793e2c25.png)
(i p i)s(0,)
实验上如何实现?
消光 检偏器
1/4波片
φ1
起偏器
线偏 • 振光 自然光
光电倍增管
氦氖激光器
等幅椭偏光的获得
将E0在波片的快轴f 和慢轴 l上分解为:
快轴
S方向
S
Ef1 E0coP s(4)
Es1
sinP(
) 4
f
Ef1
E0代表经方位角为p的起偏器 出射的线偏振光的振幅
通过1/4波片后,Ef将比Es超前π/2
根据电磁场的麦克斯韦方程和边界条件及菲 涅尔反射系数公式,课本P128:
Rp
r1p r2pei2 1r1pr2pei2
Rs
r1s r2sei2 1r1sr2sei2
(1)
式中,r1p、r2p为界面1、2处反射光p分量的振 幅反射系数,r1s、r2s为界面1、2处s分量的振 幅反射系数 ,2δ系指薄膜表面的相继两束反 射光因光程差而引起的位相差,它满足:
Er Erp
检偏器透光轴的取向
tan tan A,
( rp
rs
)
(2P
2
),
(rp rs ) 0或
五、实验内容与步骤
1. 首先开启主机电源,点亮氦氖激光器(预热30分钟 后再测量为宜)。
2.放入待测样品,选定入射角φ(70°),调节起偏 机构悬臂和检偏机构悬臂,使经样品表面反射后的 激光束刚好通过检偏器入光口显示窗。
消光 检偏器
1/4波片
φ1
起偏器
线偏 • 振光 自然光
பைடு நூலகம்
光电倍增管
氦氖激光器
现以普通玻璃表面镀以透明单层介质膜为例 作一说明。
椭偏光法测量薄膜的厚度和折射率
![椭偏光法测量薄膜的厚度和折射率](https://img.taocdn.com/s3/m/f2315ad3d15abe23482f4db9.png)
椭偏光法测量薄膜的厚度和折射率实验报告信息科学与技术学院电子科学与技术2010117142寇璐椭偏光法测量薄膜的厚度和折射率实验目的:1.了解椭偏光法测量薄膜厚度的基本原理。
2.学会使用椭偏仪并用以测量出介质薄膜的厚度及折射率。
实验原理:椭偏法测量的基本思路是,起偏器产生的线偏振光经取向一定的1/4波片后成为特殊的椭圆偏振光,把它投射到待测样品表面时,只要起偏器取适当的透光方向,被待测样品表面反射出来的将是线偏振光.根据偏振光在反射前后的偏振状态变化,包括振幅和相位的变化,便可以确定样品表面的许多光学特性。
如上图所示,由激光器发出一定波长(λ=6328Å)的激光束,经过起偏器后变为线偏振光,并确定其偏振方向。
再经过1/4波长片,由于双折射现象,使其分解成互相垂直的P波和S波,成为椭圆偏振光,椭圆的形状由起偏器的方位角决定。
椭圆偏振光以一定角度入射到样品上,样品表面和多层介质(包括衬底-介质膜-空气)的来回反射与折射,总的反射光束一般仍为椭圆偏振光,但椭圆的形状和方位改变了。
一般用Φ和Δ来描述反射时偏振状态的变化。
本实验就是通过观察各种不同的消光状态,测得相应的检偏角A和起偏角P最后在P·A~n·d数表中查得透明薄膜厚度d和折射率n。
实验步骤:1、打开激光电源,待激光管发光稳定后,把待测样品置于载物台中央。
旋转载物台使之达到预定的入射角700。
仔细调节样品位置,使得反光镜能在白屏目镜中形成亮斑。
2、将1/4波片快轴置于+45O,进行下面的步骤:(1)在0~900 范围内调节检偏器的方位角,使得目镜中光斑最暗,此时在0~1800 范围内小心调节起偏器的方位,并且可以继续调起偏器直至白屏目镜中光斑完全消失,记下此时起偏器和检偏器方位角。
P1 (1):_250_ A1 (1) _580_(2)保持检偏器读数A1 (1) 基本不变,调节起偏器使得其读数约为P1 (1)+1800 ,微调二者直至光斑再次消失,读数记为:P1 (2):_1950_ A1 (2) _590_(3)调节检偏器使其方向读数约为1800 + A1 (1) ,将起偏器调至约为P1 处,微调二者直至光斑再次消失,读数记为:P1 (3):_140_ A1 (3) _2390_(4)保持检偏器读数A1 (3) 基本不变,将起偏器调至约为P1 (2)处,微调二者,记下光斑完全消失时的读数:P1 (4):_1900_ A1 (4) _2330_(5)在900 范围内调节检偏器,使目镜光斑最暗,此时调节起偏器方位角,并通过微调二者,记下光斑完全消失时的读数:P2 (1):_950_ A2(1) _1250_(6)按照步骤(2)、(3)、(4)的方法记下下列读数:P2 (2):_2750_ A12(2) _1270_P2 (3):_960_ A12(3) _3060_P2 (4):_2780_ A12(4) _2990_3、将1/4波片快轴置于-45O,重复步骤2,记录消光状态下的读数。
南京大学-椭偏光法测量薄膜的厚度和折射率
![南京大学-椭偏光法测量薄膜的厚度和折射率](https://img.taocdn.com/s3/m/2881a2f36294dd88d0d26b6f.png)
椭偏光法测量薄膜的厚度和折射率(南京大学物理学院江苏南京 210000)摘要:椭圆偏振测量法,即椭偏光法,是将一束偏振光非垂直地投射到被测样品表面,观察反射光或透射光的偏振状态变化来推知样品的光学特性,如薄膜的厚度,材料的负折射率等。
本实验用椭偏仪,根据椭偏光法测量薄膜样品的厚度和折射率。
关键词:椭偏光法;椭偏仪;椭圆偏振方程;椭偏参数一、实验目的1. 了解椭偏光发测量原理和实验方法。
2. 熟悉椭偏仪器的结构和调试方法。
3. 测量介质薄膜样品的厚度和折射率,以及硅的消光系数和负折射率。
二、实验原理1.椭圆偏振方程在一光学材料上镀各向同性的单层介质膜后,光线的反射和折射在一般情况下会同时存在的。
通常,设介质层为n1、n2、n3,φ1为入射角,那么在1、2介质交界面和2、3介质交界面会产生反射光和折射光的多光束干涉,如图1图1 薄膜系统的光路示意图这里我们用2δ表示相邻两分波的相位差,其中δ=2πdn2cosφ2/λ,用r1p、r1s表示光线的p 分量、s分量在界面1、2间的反射系数,用r2p 、r2s表示光线的p分、s分量在界面2、3间的反射系数。
由多光束干涉的复振幅计算可知:其中Eip和Eis分别代表入射光波电矢量的p分量和s分量,Erp和Ers分别代表反射光波电矢量的p分量和s分量。
现将上述Eip、Eis、Erp、Ers四个量写成一个量G,即:我们定义G为反射系数比,它应为一个复数,可用tgψ和Δ表示它的模和幅角。
上述公式的过程量转换可由菲涅耳公式和折射公式给出:G是变量n1、n2、n3、d、λ、φ1的函数(φ2 、φ3可用φ1表示) ,即ψ=tg-1f,Δ=arg| f |,称ψ和Δ为椭偏参数,上述复数方程表示两个等式方程:[tgψe iΔ]的实数部分=的实数部分[tgψe iΔ]的虚数部分=的虚数部分若能从实验测出ψ和Δ的话,原则上可以解出n2和d (n1、n3、λ、φ1已知),根据公式(4)~(9),推导出ψ和Δ与r1p、r1s、r2p、r2s、和δ的关系:由上式经计算机运算,可制作数表或计算程序。
测量薄膜厚度的方法
![测量薄膜厚度的方法](https://img.taocdn.com/s3/m/2434a72a0a4e767f5acfa1c7aa00b52acfc79ce7.png)
测量薄膜厚度的方法测量薄膜厚度是一项重要的技术任务,它在很多领域都有广泛的应用,如材料科学、纳米科技、光学等。
本文将介绍几种常见的测量薄膜厚度的方法。
一、光学干涉法光学干涉法是一种基于干涉现象的测量方法。
当光线从空气射入不同折射率的介质中时,会发生反射和透射。
薄膜的厚度决定了光线的相位差,通过测量干涉条纹的变化,可以计算出薄膜的厚度。
这种方法适用于透明薄膜的测量,如薄膜涂层厚度的测量。
二、原子力显微镜(AFM)原子力显微镜是一种利用探针与样品表面之间的相互作用力来进行测量的仪器。
通过探针在样品表面扫描,可以获取样品表面的拓扑图像,并结合探针与样品之间的力信号,可以计算出薄膜的厚度。
AFM具有高分辨率和高灵敏度的优点,适用于测量纳米薄膜的厚度。
三、X射线衍射法X射线衍射法是一种基于X射线与物质相互作用的测量方法。
X射线经过物质时会发生衍射,不同厚度的薄膜会产生不同的衍射图样。
通过测量衍射图样的特征参数,可以计算出薄膜的厚度。
这种方法适用于非透明薄膜的测量,如金属薄膜的厚度测量。
四、椭偏仪法椭偏仪法是一种基于光的偏振现象的测量方法。
当偏振光通过薄膜时,会发生偏振状态的改变,通过测量偏振光的参数变化,可以计算出薄膜的厚度。
这种方法适用于透明薄膜的测量,如液晶显示器中薄膜的厚度测量。
五、电子显微镜法电子显微镜法是一种利用电子束与物质相互作用的测量方法。
电子束经过薄膜时会发生散射,通过测量散射电子的特征参数,可以计算出薄膜的厚度。
电子显微镜法具有高分辨率和高灵敏度的特点,适用于测量纳米薄膜的厚度。
测量薄膜厚度的方法有很多种,每种方法都有其适用的范围和特点。
在实际应用中,可以根据具体情况选择合适的方法进行测量。
同时,随着科技的不断发展,还会有更多新的测量方法出现,为薄膜厚度的测量提供更多选择和便利。
(整理)椭偏仪测量薄膜厚度和折射率
![(整理)椭偏仪测量薄膜厚度和折射率](https://img.taocdn.com/s3/m/7d2726c74693daef5ef73dc7.png)
实验背景介绍椭圆偏振测量(椭偏术)是研究两媒质界面或薄膜中发生的现象及其特性的一种光学方法,其原理是利用偏振光束在界面或薄膜上的反射或透射时出现的偏振变换。
椭圆偏振测量的应用范围很广,如半导体、光学掩膜、圆晶、金属、介电薄膜、玻璃(或镀膜)、激光反射镜、大面积光学膜、有机薄膜等,也可用于介电、非晶半导体、聚合物薄膜、用于薄膜生长过程的实时监测等测量。
结合计算机后,具有可手动改变入射角度、实时测量、快速数据获取等优点。
实验原理在一光学材料上镀各向同性的单层介质膜后,光线的反射和折射在一般情况下会同时存在的。
通常,设介质层为n1、n2、n3,φ1为入射角,那么在1、2介质交界面和2、3介质交界面会产生反射光和折射光的多光束干涉,如图(1-1)图(1-1)这里我们用2δ表示相邻两分波的相位差,其中δ=2πd n2cosφ2/λ ,用r1p、r1s 表示光线的p分量、s分量在界面1、2间的反射系数,用r2p、r2s表示光线的p分、s分量在界面2、3间的反射系数。
由多光束干涉的复振幅计算可知:其中E ip和E is分别代表入射光波电矢量的p分量和s分量,E rp和E rs分别代表反射光波电矢量的p分量和s分量。
现将上述E ip、E is、E rp、E rs四个量写成一个量G,即:我们定义G为反射系数比,它应为一个复数,可用tgψ和Δ表示它的模和幅角。
上述公式的过程量转换可由菲涅耳公式和折射公式给出:G是变量n1、n2、n3、d、λ、φ1的函数(φ2、φ3可用φ1表示) ,即ψ=tg-1f,Δ=arg| f |,称ψ和Δ为椭偏参数,上述复数方程表示两个等式方程:[tgψe iΔ]的实数部分=的实数部分[tgψe iΔ]的虚数部分=的虚数部分若能从实验测出ψ和Δ的话,原则上可以解出n2和d (n1、n3、λ、φ1已知),根据公式(4)~(9),推导出ψ和Δ与r1p、r1s、r2p、r2s、和δ的关系:由上式经计算机运算,可制作数表或计算程序。
椭偏光法测量薄膜的折射率和厚度
![椭偏光法测量薄膜的折射率和厚度](https://img.taocdn.com/s3/m/cc7e16c16429647d27284b73f242336c1eb93090.png)
• 引言 • 椭偏光法的基本原理 • 椭偏光法测量薄膜的折射率 • 椭偏光法测量薄膜的厚度 • 实验结果与分析 • 结论与展望
01
引言
椭偏光法的简介
椭偏光法是一种光学测量技术,通过 测量光在薄膜表面反射后的偏振状态 变化,可以推导出薄膜的折射率、消 光系数和厚度等物理参数。
06
结论与展望
椭偏光法测量薄膜ห้องสมุดไป่ตู้优缺点
精度高
椭偏光法能够以高精度测量薄膜的折射 率和厚度,误差范围通常在纳米级别。
VS
非侵入性
椭偏光法不需要直接接触样品,不会对薄 膜造成损伤或污染。
椭偏光法测量薄膜的优缺点
• 适用范围广:椭偏光法适用于各种类型的薄膜材料,包括 光学薄膜、金属薄膜、半导体薄膜等。
电场矢量在垂直于传播方向的平面上 振动,其振幅和方向随时间变化,形 成椭圆轨迹。
椭偏光在传播过程中,其偏振状态会 受到周围介质的影响,如折射、反射 和散射等。
椭偏光的形成
当自然光通过特定波片时,波片内的 晶体对光波产生双折射效应,导致光 波的偏振状态发生变化,形成椭偏光。
薄膜对椭偏光的影响
01
反射和透射
如入射角、波长等实验参数的选择也会影响测量结果。
厚度测量的精度与误差分析
01
02
03
04
1. 选择稳定的光源和性 能良好的光学元件。
2. 对薄膜表面进行抛光 或清洁,减小表面粗糙 度。
3. 优化实验参数,如选 择合适的入射角和波长。
4. 进行多次测量并取平 均值,以减小随机误差 的影响。
05
实验结果与分析
当椭偏光照射到薄膜表面时,部分光波被反射,部分光波穿透薄膜并继
实验椭圆偏振法测量薄膜厚度和折射率
![实验椭圆偏振法测量薄膜厚度和折射率](https://img.taocdn.com/s3/m/114997b28662caaedd3383c4bb4cf7ec4afeb6a4.png)
实验椭圆偏振法测量薄膜厚度和折射率椭圆偏振法是一种常用的非破坏性薄膜厚度和折射率测量方法,它可以通过对样品反射和透射光的偏振状态进行测量,来获得样品的光学特性参数。
下面我们将介绍实验椭圆偏振法的测量步骤和注意事项。
1. 实验原理当一束偏振光碰到被测薄膜表面时,反射的光和透射的光都会发生偏振,其偏振状态可以通过椭圆偏振仪来测量。
通过测量样品反射和透射光的偏振椭圆参数,可以计算出薄膜厚度和折射率等光学参数。
2. 实验步骤(1) 样品制备准备一片光学平整的样品,涂上一层薄膜。
需要保证样品表面光洁度良好,无明显缺陷和表面过度粗糙。
(2) 调整椭圆偏振仪首先需要进行仪器校准,保证椭圆偏振仪能够正常工作。
然后,将样品放置在椭圆偏振仪的样品台上,调整偏振仪的角度、波长等参数,使样品的反射和透射光能够被完全接收和测量。
(3) 测量反射光打开椭圆偏振仪的偏振片,使入射光为线偏振光,然后测量样品反射光的偏振椭圆参数。
一般需要测量三个不同角度和波长条件下的参数,以保证数据的准确性。
(5) 数据处理通过测量数据,可以得到样品的反射和透射光的偏振椭圆参数。
根据计算公式,可以计算出样品的折射率和厚度等光学参数。
需要注意的是,测量过程中需保持仪器稳定,以免数据误差。
3. 注意事项(1) 样品表面应该光洁度良好,无缺陷和过度粗糙。
(2) 测量前需要进行椭圆偏振仪的校准,保证仪器能够正常工作。
(4) 测量过程中需要保持仪器稳定,以免数据误差。
(5) 需要注意心理学处理的方法和如何保留数据以及整合数据,以便之后的进一步研究和分析。
总结:实验椭圆偏振法是一种非常实用的分析方法,能够快速准确地测量薄膜的厚度和折射率等光学参数。
在实验过程中需要注意样品表面光洁度、仪器稳定等因素,以保证数据的准确性。
此外,数据分析也是实验的重要部分,需要采用合适的处理方法和工具,以得出正确的结论和结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/1/20
8
(四)V-棱镜法
V-棱镜法是近年来测量薄膜折射率的又一种简便易行的方法,
角、系统的调整状态,光学元件质量、环境噪声、样品表面状态、
实际待测薄膜与数学模型的差异等都会影响测量的准确度。特别
是薄数当膜斜薄厚率膜度 较较 大折小 区射和 域率薄 时与膜 ,基厚用底度椭折及偏射折仪率射同相时率接测范近得围(如薄位玻膜于璃的(n基f厚,底度d表)和~面折(Sψ射i,O2率△薄与)膜函实),
折射率,θ,ε,Np分别为耦合角、棱镜角和棱镜折射率。若测得
两个以上模式的耦合角,便可求出d 和nf。棱镜-薄膜-衬底就组成
一个单侧漏波导,
亦称为准波导,
准波导法名称
由此而来。
2020/1/20
5
棱镜耦合测量仪的光路如图2所示。棱镜耦合法的测量 精度与转盘的转角分辨率、所用棱镜折射率、薄膜的厚度和 折射率范围及基底的性质等因素有关,折射率和厚度测量精 度分别可达到±10-3和(±0.5% +5 nm ),实际精度还会高 些。
为了提高条纹错位量的判读精度,多光束干涉仪采用了一 个F-P干涉器装置与显微系统结合,形成多光束等厚干涉条纹, 其测量精度达到λ/100~λ/1000。分为反射式和透射式两种 结构,如图4(a)和4(b)所示。等色序干涉仪也有类似两种结构 形式。
干涉法不但可以测量透明薄膜、弱吸收薄膜和非透明薄膜, 而且适用于双折射薄膜。一般来说,不能同时确定薄膜的厚度 和折射率,只能用其它方法测得其中一个量,用干涉法求另一 个量。有人对干涉法进行改进【3】 ,使其能同时测定厚度和折射 率,但不容易实现。另外,确定干涉条纹的错位条纹数q比较 困难,对低反射率的薄膜所形成的干涉条对比度低,会带来测 量误差,而且薄膜要有台阶,测量过程调节复杂,容易磨损薄 膜表面等,这些都对测量带来不便。
3
椭偏法具有很高的测量灵敏度和精度。ψ和△的重复性精度
已分别达到±0.01°和±0.02°,厚度和折射率的重复性精度可
分别达到0.1nm和10-4,且入射角可在30°~90°内连续调节,以
适应不同样品;测量时间达到ms量级,已用于薄膜生长过程的厚
度和折射率监控。但是,由于影响测量准确度因素很多,如入射
际情况有较大的偏差。因此,即使对于同一种样品、不同厚度和
折射率范围,不同的入射角和波长都存在不同的测量精确度。
则待d测0椭=膜2圆厚84偏超nm振过)法一,存个在在周一一期个个,膜膜膜厚厚厚周周有期期多内d个,0(不椭如确偏70定法°值测入。量射虽膜角然厚,可有S采确iO用值2 膜多。,入若 射角或多波长法确定周期数,但实现起来比较困难。实际上可采 用其它方法,如干涉法、光度法或台阶仪等配合完成周期数的确 定。
2020/1/20
4
(二) 棱镜耦合法(准波导法)
棱镜耦合法是通过在薄膜样品表面放置一块耦合棱镜,将入 射光导入被测薄膜,检测和分析不同入射角的反射光,确定波导 膜耦合角,从而求得薄膜厚度和折射率的一种接触测量方法。波 导模式特征方程为
在(2)和(3)式中,k为波数,m为膜数,Nm为m阶导模的有效
根据椭偏方程:
若ns ,na,θ和λ已知,只要测得样品的ψ和△,就可求得薄
膜厚度d和折射率nf 。测量样品ψ和△的方法主要有消光法和光度
法。光路的形式有反射式和透射式,入射面在垂直面和水平面内
两种结构。图1(a)是反射式消光法的一种典型结构;图1(b)是反
射式光度法的一种典型结构。
2020/1/20
围、精确度、特点及局限性。在此主要介绍测量薄膜厚度和折
射率常用的几种方法,并分析它们的特点及存在问题,指出选 择测量方法和仪器应注意的问题【2】。
2020/1/20
2
二、几种测量薄膜厚度及其折射率的方法
(一)椭圆偏振法(椭偏法)
椭圆偏振法是利用一束入射光照射样品表面,通过检测和分 析入射光和反射光偏振状态,从而获得薄膜厚度及其折射率的非 接触测量方法。
此正逐渐成为制造电光调解器和电光开关的重要材料【1】 。
❖ 薄膜技术是当前材料科技的研究热点,特别是纳米级薄膜 技术的迅速发展,精确测量薄膜厚度及其折射率等光学参数受到 人们的高度重视。由于薄膜和基底材料的性质和形态不同,如
何选择符合测量要求的测量方法和仪器,是一个值得认真考虑
的问题。每一种测量方法和仪器都有各自的使用要求、测量范
待测薄膜表面应平整和干净,测量时间约20秒以上,不 适合于实时测量。棱镜耦合法不但可以测量块状样品和单层 膜样品,而且可以测量双层膜和双折射膜的厚度和折射率。 在有机材料、聚合物和光学波导器件等领域中有广泛应用。
2020/1/20
6
(三)干涉法
干涉法是利用相干光干涉形成等厚干涉条纹的原理来确定薄 膜厚度和折射率的。根据光干涉条纹方程,
棱镜耦合法存在测量薄膜厚度的下限。测量光需在膜层 内形成两个或两个以上波导模,膜厚一般应大于300480nm(如硅基底);若膜折射率已知,需形成一个波导模, 膜厚应大于100~200nm;测量范围依赖于待测薄膜和基底 的性质,与所选用的棱镜折射率有关。但测量的薄膜厚度没 有周期性,是真实厚度。膜厚测量范围在0.3~15 um,折 射率测量范围小于2.6,某些情况可达2.8。
对于不透明膜: 对于透明膜:
在(4)和(5)式中,q为条纹错位条纹数,c为条纹错位量,e为 条纹间隔。因此,若测得q,c,e就可求出薄膜厚度d 或折射率nf。
2020/1/20
7
干涉法主要分双光束干涉和多光束干涉,后者又有多光束 等厚干涉和等色序干涉。双光束干涉仪主‘要由迈克尔逊干涉 和显微系统组成,其干涉条纹按正弦规律变化,测量精度不高, 仅为λ/10~λ/ 20,典型产品有上海光学仪器厂的6JA型干涉显 微镜,其光路如图3所示。
薄膜厚度及其折射率的测量 方法
黄丽琳
2010级物理学(1)班
ቤተ መጻሕፍቲ ባይዱ
2020/1/20
1
一、引言
❖
近年来,非线性光学聚合物薄膜及器件的研究已成为非线
性光学材料领域的研究热点。非线性光学聚合物薄膜具有多种
优点,如快速响应、大的电光系数、高的激光损伤阈值、小的
介电常数、简单的结构、低损耗和微电子处理的兼容性等,因