薄膜厚度和消光系数的透射光谱测量方法
薄膜厚度测量技术
返回
台阶仪
其测量原理是:当触针沿被测表面轻轻滑过时,由于表面有 微小的峰谷使触针在滑行的同时,还沿峰谷作上下运动。触针的 运动情况就反映了表面轮廓的情况。传感器输出的电信号经测量 电桥后,输出与触针偏离平衡位置的位移成正比的调幅信号。经 放大与相敏整流后,可将位移信号从调幅信号中解调出来,得到 放大了的与触针位移成正比的缓慢变化信号。再经噪音滤波器、 波度滤波器进一步滤去调制频率与外界干扰信号以及波度等因素 对粗糙度测量的影响。
台阶仪测量精度较高、量程大、测量结果稳定可靠、重复性好,
此外它还可以作为其它形貌测量技术的比对。但是也有其难以
克服的缺点:1、由于测头与测件相接触造成的测头变形和磨损, 使仪器在使用一段时间后测量精度下降; 2、测头为了保证耐磨 性和刚性而不能做得非常细小尖锐,如果测头头部曲率半径大 于被测表面上微观凹坑的半径必然造成该处测量数据的偏差; 3、
(m 1) d 2n1
返回
二、薄膜厚度的机械测量方法
1、表面粗糙度仪法
用直径很小的触针滑过被测薄膜的表面,同时记录下触针在垂直方向的移动 情况并画出薄膜表面轮廓的方法被称为粗糙度仪法。这种方法不仅可以被用来测 量表面粗糙度,也可以被用来测量薄膜台阶的高度。 优点:简单,测量直观; 缺点:(1)容易划伤较软的薄膜并引起测量误差; (2)对于表面粗糙的薄膜,并测量误差较大。
2、称重法 如果薄膜的面积A、密度ρ和质量m可以被精确测定的话,由公式
m d A
就可以计算出薄膜的厚度d。 缺点:它的精度依赖于薄膜的密振荡器法
将石英晶体沿其线膨胀系数最小的方向切割成片,并在两端面上沉积上金属 电极。由于石英晶体具有压电特性,因而在电路匹配的情况下,石英片上将产生 固有频率的电压振荡。将这样一只石英振荡器放在沉积室内的衬底附近,通过与 另一振荡电路频率的比较,可以很精确地测量出石英晶体振荡器固有频率的微小 变化。在薄膜沉积的过程中,沉积物质不断地沉积到晶片的一个端面上,监测振 荡频率随着沉积过程的变化,就可以知道相应物质的沉积质量或薄膜的沉积厚度。
3.3 薄膜光学参数测试
R+T=1
Schl. of Optoelectronic Inform. State Key Lab. of ETFID
“光电探测与传感集成技术”教育部国防重点实验室 “电子薄膜与集成器件”国家重点实验室.
对于“理想”光学薄膜
在光学厚度为λ/2的整数倍处,透射率T和反射率R 等于光洁基板的值; 在光学厚度为λ/4的奇数倍处,反射率R正好是极值, 如果薄膜折射率nf小于基板折射率ns,反射率R将是
Schl. of Optoelectronic Inform. State Key Lab. of ETFID
“光电探测与传感集成技术”教育部国防重点实验室 “电子薄膜与集成器件”国家重点实验室.
2)透射率轮廓法
该方法利用λ/2处和λ/4处透射率的值,来计算微弱吸收薄膜的 折射率和消光系数,有较强的实用性。
趋向于选择5至7个λ/4 膜厚作为用光度法测量光学常数时的薄膜样品
标准厚度。
Schl. of Optoelectronic Inform. State Key Lab. of ETFID
“光电探测与传感集成技术”教育部国防重点实验室 “电子薄膜与集成器件”国家重点实验室.
考虑玻璃基板背表面的影响:
吸收的影响在半波长的位置最为明显。
Schl. of Optoelectronic Inform. State Key Lab. of ETFID
“光电探测与传感集成技术”教育部国防重点实验室 “电子薄膜与集成器件”国家重点实验室.
1)Hall 方法
该模型主要是针对弱吸收透明薄膜。从Tλ/2计算薄膜的消光系数, 从Tλ/4处计算薄膜的折射率。
数。
光学薄膜透、反射率的常用测量方法
185~3330
分辨率
0.08nm
0.1nm
0.1nm
0.1nm
透射精度
0.00008
0.0003
0.001
0.0003
反射测试
可以
可以
可以
偏振测试
可以
可以
可以
第十三页,共30页。
光谱分析测试系统-反射率的测量
• 反射率的测量不如透射率测量普及;
• 透明带内:R=1-T;
• 吸收带内:R=1-T-A;
入射光位置偏移带来测量的问题
• 加光路补偿镜
第二十五页,共30页。
入射光位置偏移带来测量的问题
• 探测器用积分球
第二十六页,共30页。
测自然光的倾斜入射透过率,由于入
射光偏振态的问题带来测量问题
• 加消偏器
• 加起偏器 T=(Tp+Ts)/2
• 没有消偏器和起偏器时
将入射面旋转90度测量二次T=(T1+T2)/2
第十八页,共30页。
光谱分析测试系统-多次反射法测量反射率
• 单次反射时参考样品反射率影响测试精度;
• V-W型测试:参考样品先放于位置a 处,测试信号I1;测试样品
放于b处,测试信号I2,则R=(I1I2)1/2
第十九页,共30页。
I1 I 0 R kf
k1
I2 I0R R
k
f
样品的反射率为:
• 860nm时,扫描光线会出现突跳现象,这是由于
光斑位置的变化和偏振效应造成的。
• 非常规光谱特性的测量,需要自己设计测量附
件进行测量。
第二十三页,共30页。
具体测量中的一些问题
• 入射光位置偏移带来测量的问题
薄膜厚度和消光系数的透射光谱测量方法
262薄膜厚度和消光系数的透射光谱测量方法项目完成单位:国家建筑材料测试中心 项目完成人:刘元新鲍亚楠 孙宏娟 王廷籍摘 要 本文提出薄膜厚度和消光系数的标准曲线测量法,论述了方法的测量原理和测量程序。
该法的膜厚的测量范围为~80nm 到2000nm ;膜厚的测量误差大约为±13nm 。
关键词 薄膜、厚度、消光自洁净玻璃的自洁净性能、低幅射玻璃的低幅射性能都与其膜层的厚度、折射率和消光系数有着密切的关系[1]。
近代微电子学装置,如成像传感器、太阳能电池、薄膜器件等都需要这些参数[2] 。
这些参数的数据是薄膜材料、薄膜器件设计的必不可少的基础性数据。
通常都是单独测量这些参数,薄膜厚度用原子力显微镜、石英震荡器、台阶仪、椭偏仪、干涉法来测量。
薄膜折射率的测量就比较麻烦,因为它是波长的函数,它可以用基于干涉、反射原理的方法测量。
从薄膜的吸收谱就可测量其消光系数。
显然,取得这些数据是很麻烦、很费时、成本也很高,特别是对于纳米级薄膜。
2000年,美国Princeton 等大学提出[2] ,从物理角度建立透射光谱模型,调整模型中的未知的参数,即薄膜厚度、折射率、消光系数,使透射光谱的理论曲线同实验曲线重合,这就同时取得薄膜的厚度、折射率、消光系数等数据。
他们用这种方法同时测量了“玻璃-薄膜” 系统的薄膜的厚度、折射率、消光系数等数据。
显然,这是取得这些数据的简便、快速、低成本的方法,是这领域的一个发展趋势。
镀膜玻璃的透射光谱既包含玻璃参数的信息,也包含薄膜参数的信息,如果能从中解析出薄膜参数的信息,也就得到了薄膜参数的测量值,这就是透过光谱法测量薄膜参数的基本思路。
本文基于这个基本思路提出测量薄膜参数的另一方法,姑且称为标准曲线法,方法的原理是基于这样的实验现象,即薄膜的吸收越强,镀膜玻璃的透过率越低;在薄膜吸收的光谱区内,薄膜越厚,镀膜玻璃的透过率也越低;这就是说,镀膜玻璃在指定波长λ处的透过率T 是薄膜厚度t 和薄膜消光系数κ的函数,),,(λκt T T =但镀膜玻璃透过率和薄膜参数有什么函数关系?这就是本文要研究的问题。
用薄膜测厚仪测量薄膜厚度及折射率
用薄膜测厚仪测量薄膜厚度及折射率【实验目的】1、了解测量薄膜厚度及折射率的方法,熟悉测厚仪工作的基本原理。
2、通过本实验了解薄膜表面反射光和薄膜与基底界面的反射光相干形成反射谱原理。
3、借助光学常数,对薄膜材料的光学性能进行分析。
【实验原理】SGC-10薄膜测厚仪,适用于介质,半导体,薄金属,薄膜滤波器和液晶等薄膜和涂层的厚度测量。
该薄膜测厚仪采用new-span公司先进的薄膜测厚技术,基于白光干涉的原理来测定薄膜的厚度和光学常数(折射率n,消光系数k)。
它通过分析薄膜表面的反射光和薄膜与基底界面的反射光相干形成的反射谱,用相应的软件来拟合运算,得到单层或多层膜系各层的厚度d,折射率n,消光系数k。
【实验仪器及材料】测厚仪、已制备好薄膜数片、参考反射板(硅片)【实验过程及步骤】运行程序,如果出现下面错误提示窗口,请确认USB线已连接好仪器与计算机。
关闭程序,连接好USB线,并重新启动程序。
第一次按“Measure”键时,如果出现下面的错误窗口,则是因为没有把软件安装在默认目录下。
这时,请按下“Continue”按钮(也许需要连按5次),再切换到“Measurement Setting”面板,选择薄膜层数4,再从材料数据库中选择基底和四层薄膜的材料(随便选取),然后按“Save Setting”,以后就不会再出现错误窗口了。
各部分功能1 注册界面(Registration)第一次运行程序会出现下面的注册界面。
其中的“Serial #”会从仪器自动读出,如果运行后还是空白的,请确认你的USB线是否连接好了。
如果仍旧是空白的,请参考安装说明重新安装软件。
“License #”需要你手动输入,其由你的供货商提供。
输入注册码后请用鼠标左键点击界面上的“Enter”按钮完成注册,而不是按键盘上的“Enter”键。
2 测量设置界面(Measurement Setting)各部分功能描述3 测量界面(Measurement)各部分功能描述数据格式(以硅为例)三列数,第一列是波长(单位是纳米),第二列是折射率n,第三列是消光系数k,中间用“Tab”键分开。
3.3薄膜光学参数测试详解
“光电探测与传感集成技术”教育部国防重点实验室 “电子薄膜与集成器件”国家重点实验室.
薄膜光学参数的测量
从透射、反射光谱确定薄膜的光学常数
其它的薄膜光学常数测试方法 薄膜波导法 光学薄膜厚度的测试
其中:多项式的系数是6个拟合的参量。
Schl. of Optoelectronic Inform. State Key Lab. of ETFID
“光电探测与传感集成技术”教育部国防重点实验室 “电子薄膜与集成器件”国家重点实验室.
2)Sellmeier方程
适用于透明材料和红外半导体材料,是Cauchy方程 的综合,原始的Sellmeier方程仅仅用于完全透明的材料 (k=0),但是有时也能用于吸收区域:
数。
Schl. of Optoelectronic Inform. State Key Lab. of ETFID
“光电探测与传感集成技术”教育部国防重点实验室 “电子薄膜与集成器件”国家重点实验室.
4)Forouhi-Bloomer色散关系
一般只用于模拟材料的间带光谱区域的色散,也能被用于次能带隙区域 以及常规的透明区域,且能处理一些带有弱吸收的薄膜的折射率色散。
此外,还可以利用下列公式从单面透射率极值Tm(即薄 膜透射率Tf对应于λ/4 奇数倍的极值)中直接求解折射率:
考虑薄膜材料的色散对反射率和透射率曲线的影响:
当薄膜有色散时,在光学厚度为λ/4 奇数倍的波长处
不再是极值;但是,光学厚度为λ/2 倍数的波长处仍然是 极值,而与没有色散时关系一样。 一般薄膜材料的折射率均有些色散,及存在色散关系。
反射干涉光谱法测量固体薄膜的光学常数和厚度
反射干涉光谱法测量固体薄膜的光学常数和厚度
反射干涉光谱法(Reflectance Interference Spectroscopy)是一种常用的方法,用于测量固体薄膜的光学常数(折射率和消光系数)以及厚度。
该方法基于薄膜表面反射的干涉现象,通过测量反射光的强度和波长来推断薄膜的光学特性。
下面是使用反射干涉光谱法测量固体薄膜的光学常数和厚度的一般步骤:
1. 准备样品:制备具有所需薄膜的样品,并确保样品表面光洁、无杂质。
2. 设定测量系统:搭建适当的测量系统,通常包括光源、光谱仪和探测器。
光源可以是白光或单色光源,而光谱仪用于分析反射光的波长。
探测器用于测量反射光的强度。
3. 调整测量角度:通过调整入射光的角度,使得反射光在薄膜表面发生干涉。
一般情况下,采用垂直入射或斜入射的角度。
4. 进行测量:记录反射光谱,即测量不同波长下的反射光强度。
可以通过旋转样品或改变入射角度来扫描不同的波长。
5. 数据分析:根据测量得到的反射光谱,使用合适的模型或算法来拟合数据并提取薄膜的光学常数和厚度。
常用的模型包括逆向薄膜设计、多层堆积模型等。
6. 结果解释:根据数据分析的结果,获得薄膜的折射率、消光系数和厚度等光学参数。
这些参数可以提供关于薄膜材料的光学性质和厚度信息。
需要注意的是,反射干涉光谱法在实际应用中可能还受到其他因素的影响,如表面粗糙度、样品的吸收等。
因此,在进行测量和数据分析时,需要综合考虑这些因素,并选择合适的模型和方法来准确地测量光学常数和厚度。
专业的光学仪器和专家的指导可以在实际操作中提供更准确和可靠的结果。
光学薄膜透反射率的常用测量方法
光学薄膜透反射率的常用测量方法
1.透射法
透射法是一种常见的测量光学薄膜透反射率的方法。
它利用透射光的强度对薄膜进行测量。
首先,将薄膜样品放置于光源前方,透过光源照射到样品上,然后测量透射光的强度。
通过与样品前后的基板透射光强度进行比较,就可以得到薄膜透射率的信息。
2.反射法
反射法是另一种常用的测量光学薄膜透反射率的方法。
它利用薄膜反射光的强度进行测量。
首先,将薄膜样品放置在光源前方,让光照射到样品上,然后测量反射光的强度。
通过与空气或基板的反射光进行比较,就可以得到薄膜透射率的信息。
3.光谱透射法
光谱透射法是测量光学薄膜透反射率的一种精确方法。
它利用的是薄膜样品的透射光谱特征。
首先,将薄膜样品置于光源前方,然后使用光谱仪测量透射光的光谱特征。
通过分析透射光的波长和强度信息,就可以得到薄膜的透反射特性。
4.激光参比法
激光参比法是测量光学薄膜透反射率的一种高精度测量方法。
它利用激光器作为参比光源。
首先,将激光光束通过参比光路照射到参比探测器上,同时将激光光束通过薄膜样品照射到样品探测器上。
通过比较参比探测器和样品探测器接收到的光信号,就可以得到薄膜的透反射率。
除了以上四种常用的测量方法外,还存在其他一些用于测量光学薄膜透反射率的方法,例如自脉冲法、透微量测量法等。
每种方法都有其适用的场合和特点,根据具体的需求选择合适的测量方法是至关重要的。
总的来说,测量光学薄膜透反射率的常用方法有透射法、反射法、光谱透射法、激光参比法等。
薄膜透光率测试
薄膜透光率测试薄膜透光率是指薄膜材料对光的透射程度,是评价薄膜材料光学性能的重要指标之一。
薄膜透光率测试的目的是通过实验手段来测量薄膜材料的透光率,以便评估其在光学领域的应用潜力。
薄膜透光率测试通常使用光谱仪进行,光谱仪是一种用于分析光的波长和强度的仪器。
在测试过程中,首先需要将薄膜样品固定在光谱仪的样品台上,然后通过调节光源和检测器,使光线通过薄膜样品。
光谱仪会记录下透过薄膜的光的强度和波长分布,从而得到薄膜的透光率。
薄膜透光率测试的结果可以通过光谱曲线来表示。
光谱曲线是以波长为横坐标,光强度为纵坐标的曲线图。
通过分析光谱曲线的形状和峰值,可以得到薄膜的透光率以及其他光学性能参数。
透光率越高,表示薄膜对光的传输越好,具有更高的透明度和光学效果。
薄膜透光率测试在光学材料研究和应用中具有广泛的应用。
在光学涂层领域,薄膜透光率测试可以用于评估涂层的光学性能,以确保其具有所需的透明度和反射特性。
在光学器件制造中,薄膜透光率测试可以用于筛选和选择合适的薄膜材料,以满足特定的光学要求。
此外,薄膜透光率测试还可以用于研究光与材料的相互作用,深入了解材料的光学特性。
薄膜透光率测试需要考虑一些因素来确保测试结果的准确性。
首先,样品的制备要求高,要保证样品表面的光洁度和均匀性,以免影响光的透射。
其次,测试环境要控制好,避免干扰因素对测试结果的影响。
最后,测试时要选择适当的光源和检测器,以及合适的测试波长范围,以确保测量结果的可靠性。
薄膜透光率测试是评估薄膜材料光学性能的重要手段。
通过光谱仪的测量,可以得到薄膜的透光率和其他光学参数,为薄膜材料的研究和应用提供有力支持。
在未来的研究中,我们可以进一步探索薄膜透光率测试的方法和技术,以提高测试的准确性和效率,推动光学材料的发展和应用。
测量薄膜厚度的方法
测量薄膜厚度的方法测量薄膜厚度是一项重要的技术任务,它在很多领域都有广泛的应用,如材料科学、纳米科技、光学等。
本文将介绍几种常见的测量薄膜厚度的方法。
一、光学干涉法光学干涉法是一种基于干涉现象的测量方法。
当光线从空气射入不同折射率的介质中时,会发生反射和透射。
薄膜的厚度决定了光线的相位差,通过测量干涉条纹的变化,可以计算出薄膜的厚度。
这种方法适用于透明薄膜的测量,如薄膜涂层厚度的测量。
二、原子力显微镜(AFM)原子力显微镜是一种利用探针与样品表面之间的相互作用力来进行测量的仪器。
通过探针在样品表面扫描,可以获取样品表面的拓扑图像,并结合探针与样品之间的力信号,可以计算出薄膜的厚度。
AFM具有高分辨率和高灵敏度的优点,适用于测量纳米薄膜的厚度。
三、X射线衍射法X射线衍射法是一种基于X射线与物质相互作用的测量方法。
X射线经过物质时会发生衍射,不同厚度的薄膜会产生不同的衍射图样。
通过测量衍射图样的特征参数,可以计算出薄膜的厚度。
这种方法适用于非透明薄膜的测量,如金属薄膜的厚度测量。
四、椭偏仪法椭偏仪法是一种基于光的偏振现象的测量方法。
当偏振光通过薄膜时,会发生偏振状态的改变,通过测量偏振光的参数变化,可以计算出薄膜的厚度。
这种方法适用于透明薄膜的测量,如液晶显示器中薄膜的厚度测量。
五、电子显微镜法电子显微镜法是一种利用电子束与物质相互作用的测量方法。
电子束经过薄膜时会发生散射,通过测量散射电子的特征参数,可以计算出薄膜的厚度。
电子显微镜法具有高分辨率和高灵敏度的特点,适用于测量纳米薄膜的厚度。
测量薄膜厚度的方法有很多种,每种方法都有其适用的范围和特点。
在实际应用中,可以根据具体情况选择合适的方法进行测量。
同时,随着科技的不断发展,还会有更多新的测量方法出现,为薄膜厚度的测量提供更多选择和便利。
15光学薄膜透、反射率的常用测量方法
单色仪型分光光度计有单光路与双光路两类
• 原理
首先不放样品,测出100%透射的光谱信号; 放入样品测试光谱信号; 两个信号进行比较得到透射率;
特点
需要2次测量,测量速度慢; 对光源的稳定性以及系统的稳定性要求极高;
双光路测试
单 色 光 样 品 池 参 比 池 探 测 器
• 参考光和主光束:分别被探测器接收; • 透射率:两信号相除; • 测试前要进行系统光谱校正;
干涉型光谱分析系统
• 红外:2.5~25um; • 应用迈克尔逊干涉仪对不同波长的光信号进行频率调制, 在频率域内记录干涉强度随光程改变的完全干涉图信号, 并对此干涉信号进行傅立叶逆变换,得到被测光光谱; • 特点:信噪比高,重复性好,分辨率高,扫描速度快
光谱分析测试系统-透射率的测量
光谱仪测试一般步骤
T I / I (I xTs I yTp ) / I
图(b)放置:
T (I xTP I yTs ) / I
Ix I y T T (TP Ts ) TP Ts I 对自然光透射率 1 1 T (TP Ts ) (T T ) 2 2
光谱分析仪器比较
性能 Lamda 900PE
175~3330 0.08nm 0.00008
Cary 5000
岛津UV 365
190~2500 0.1nm 0.001
Hitachi 4100
光谱 分辨率 透射精度
175~3330 0.1nm 0.0003
185~3330 0.1nm 0.0003
反射测试
• 按测试原理不同划分为:单色仪分光光度计和干涉型光谱测试系统;
单色仪型分光光度计原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
薄膜厚度和消光系数的透射光谱测量方法项目完成单位:国家建筑材料测试中心 项目完成人:刘元新鲍亚楠 孙宏娟 王廷籍摘 要 本文提出薄膜厚度和消光系数的标准曲线测量法,论述了方法的测量原理和测量程序。
该法的膜厚的测量范围为~80nm 到2000nm ;膜厚的测量误差大约为13nm 。
关键词 薄膜、厚度、消光自洁净玻璃的自洁净性能、低幅射玻璃的低幅射性能都与其膜层的厚度、折射率和消光系数有着密切的关系[1]。
近代微电子学装置,如成像传感器、太阳能电池、薄膜器件等都需要这些参数[2] 。
这些参数的数据是薄膜材料、薄膜器件设计的必不可少的基础性数据。
通常都是单独测量这些参数,薄膜厚度用原子力显微镜、石英震荡器、台阶仪、椭偏仪、干涉法来测量。
薄膜折射率的测量就比较麻烦,因为它是波长的函数,它可以用基于干涉、反射原理的方法测量。
从薄膜的吸收谱就可测量其消光系数。
显然,取得这些数据是很麻烦、很费时、成本也很高,特别是对于纳米级薄膜。
2000年,美国Princeton 等大学提出[2] ,从物理角度建立透射光谱模型,调整模型中的未知的参数,即薄膜厚度、折射率、消光系数,使透射光谱的理论曲线同实验曲线重合,这就同时取得薄膜的厚度、折射率、消光系数等数据。
他们用这种方法同时测量了“玻璃-薄膜” 系统的薄膜的厚度、折射率、消光系数等数据。
显然,这是取得这些数据的简便、快速、低成本的方法,是这领域的一个发展趋势。
镀膜玻璃的透射光谱既包含玻璃参数的信息,也包含薄膜参数的信息,如果能从中解析出薄膜参数的信息,也就得到了薄膜参数的测量值,这就是透过光谱法测量薄膜参数的基本思路。
本文基于这个基本思路提出测量薄膜参数的另一方法,姑且称为标准曲线法,方法的原理是基于这样的实验现象,即薄膜的吸收越强,镀膜玻璃的透过率越低;在薄膜吸收的光谱区内,薄膜越厚,镀膜玻璃的透过率也越低;这就是说,镀膜玻璃在指定波长处的透过率T 是薄膜厚度t 和薄膜消光系数的函数,),,(λκt T T =但镀膜玻璃透过率和薄膜参数有什么函数关系?这就是本文要研究的问题。
知道这函数关系之后,如何利用这函数关系测量薄膜参数?这也是本文要研究的问题。
1. “薄膜-玻璃” 系统这就是单面镀膜玻璃,这个系统有空气-薄膜、薄膜-玻璃、玻璃-空气等3个界面,空气、薄膜、玻璃、空气等4个区域(图1)。
强度为0I 的光正入射到放置在空气中的镀膜玻璃片的镀膜面上,它首先在空气-薄膜界面上发生反射而折射进入薄膜,反射光强度为R 1I 1,折射光强度为:)1(1120R I I -=这里的R 1为空气-薄膜界面的反射率:22221)1()1(κκ+++-=n n R (1)其中n 、分别是薄膜的折射率和消光系数。
进入薄膜的光,通过厚度为t 、吸收系数为的薄膜时将被吸收,因此光通过薄膜后的强度则从I 20减少为:)ex p(202t I I α-=)ex p()1(112t R I I α--=通过薄膜后的光将遇到薄膜-玻璃介面,在此被反射之后而折射进入玻璃片,反射光强度为R 2I 2,折射光强度则为:)1(2230R I I -=)ex p()1)(1(21130t R R I I α---=其中:R 2为薄膜-玻璃界面的反射率;22222)()()()(G G G G n n n n R κκκκ+++-+-= (2)G n 、G κ分别为玻璃的折射率和消光系数。
进入玻璃的光波,通过厚度为t G 、吸收系数为G的玻璃时将被吸收,因此通过玻璃片的光的强度将从I 30降低为:)ex p(303G G t I I α-=)ex p()1)(1(2113G G t t R R I I αα----=通过玻璃片的光将在玻璃-空气介面发生反射和折射进入空气,反射光强度为R 3I 3,折射光强度则为:)1(3340R I I -=I 40 I 3I 30I 2 I 204321I 1R 1I 1R 2I 2 R 3I 3图 1 “薄膜-玻璃” 系统的正入射光的透射和反射)exp()1)(1)(1(321140G G t t R R R I I αα--⨯---=其中:R 为玻璃-空气界面的反射系数:22223)1()1()1()1(+++-+-=G G G G n n R κκ (3)因此,单面镀膜玻璃的透过率等于:140/I I T =)exp()1)(1)(1(321G G t t R R R T αα--⨯---= (4)这就是所要寻找的单面镀膜玻璃的透过率和薄膜参数的函数关系,从这关系看出,在薄膜有吸收的波长区域,即0的波长区域,薄膜厚度的增加将降低镀膜玻璃的透过率,并且“薄膜-玻璃” 系统的透过率随薄膜厚度、薄膜吸收的增加而降低,这符合我们的日常经验。
为了用这函数关系来测量薄膜参数,需要把此关系做数学处理,即取对数,11log b t T +=γ(5) e log 1αγ-=(6)et R R R b G G log )]1)(1)(1log[(3211α----=公式(5) 指明:单面镀膜玻璃的透过率的对数和薄膜厚度存在直线关系,而此直线的斜率正比于薄膜的吸收系数,因此,可以用已知薄膜厚度的单面镀膜玻璃来绘制透过率对数和薄膜厚度的关系曲线,这就是标准曲线,然后测量未知薄膜参数的镀膜玻璃的透过率,再从这标准曲线上查找其对应的薄膜厚度。
薄膜的吸收系数和消光系数可从标准曲线的斜率得到,具体的作法见后面。
2. “薄膜-玻璃-薄膜”系统Sol-gel 浸渍法制作的双面镀膜玻璃就属于这系统,这系统有4个界面5个区域,光线在这4个界面上发生反射、折射,而在这5个区域内则发生吸收,通过这系统的光强则依赖于这些反射、折射和吸收,类似地计算出这系统的透过率,具体的参考我们的以前的工作[3] ,)2ex p()1()1(2221G G t t R R T αα----= (7)由此可以得到这系统的标准曲线方程:b t T +=γlog(8) e log 2αγ-=(9)et R R b G G log )]1)(1log[(221α---=3. 实验3.1. 实验样品为了验证以上的计算结果,我们用Sol-gel 浸渍法在2mm 玻璃片的两面制作了厚度不同的导电聚苯胺高分子聚合物薄膜,即两面镀膜玻璃。
图2是这些薄膜厚度不同的两面镀膜玻璃的透过率光谱。
从图2可以看出导电聚苯胺高分子聚合物在可见近红外区存在吸收,即0,因此其透过率随薄膜厚度的增加而减小,这符合公式(7) 。
3.2. 标准曲线标准曲线测量法的精度依赖于其斜率;斜率越大,标准曲线法的测量精度越高;公式(8)指明,薄膜的吸收系数越大,标准曲线的斜率也越大,测量精度也越高;而薄膜的吸收随着照射光波长的增加而增加(图2)。
从图2可以看出,薄膜在波长~2m 附近的吸收又大又平稳,因此我们选择波长~2m 附近的系统透过率T 作为薄膜厚度的表征参数。
薄膜厚度t 用台阶仪测量,然后绘制系统透过率对数和薄膜厚度的关系曲线,即:标准曲线logT-t(图3) 。
从图3看出:标准曲线接近于一直线,这符合公式(7) 的预测。
3.3 消光系数测量测量标准曲线斜率,利用公式(8) 即可以计算出薄膜的吸收系数,elog 2γα-=知道了薄膜的吸收系数和照射光波长,即可利用以下公式计算薄膜的消光系数[3] ,παλκ4=(10)或者用以下公式直接从标准曲线的斜率计算出薄膜的消光系数:elog 8πγλκ-= (11)500100015002000250020406080100t = 1760 nmt = 1670 nmt = 1100 nmt = 1000 nmt = 0T %λ / nmFig.2. Transmission spectrums of the glass plate with a several coating thickness图2 薄膜厚度不同的镀膜玻璃的透射光谱0.00.51.01.52.02.5-1.6-1.4-1.2-1.0-0.8-0.6-0.4-0.20.0logT = -0.738t - 0.02l o g Tt, μmFig.3. logT near 2000 nm as a function of coating thickness图3 波长2000 nm 附近的透过率对数和薄膜厚度的依赖关系对于本文所用的导电聚苯胺高分子聚合物薄膜,它在波长 2 m 附近的标准曲线(图3)的斜率近似等于:117380738.0---=-≈cm m μγ因此,导电聚苯胺高分子聚合物薄膜在波长~2m 附近的吸收系数和消光系数大约为:18497-≈cm α 135.0≈κ 3.4 薄膜厚度测量用图3的标准曲线测量4个两面镀膜玻璃的膜层厚度,其测量结果列于表1。
表1的第2列是这些玻璃样品的透过率T ,这些透过率的对数在标准曲线上对应的薄膜厚度t 列于表1的第3列,这就是这些玻璃样品薄膜厚度的标准曲线法的测量值。
表1的最后1列是这些玻璃样品的薄膜厚度的台阶仪测量结果。
从表1可以看出,这两种方法的测量结果是吻合的,它们之间的差别不超过10%。
从标准曲线可以看出这个方法测量薄膜厚度的范围大约在80nm 和2000nm 之间。
从标准曲线方程(7) 可以估计标准曲线法测量薄膜厚度的误差:t TTγδδ= TTt δγδ1=由此可见,标准曲线法的测量薄膜厚度的误差依赖于标准曲线的斜率和透过率的相对测量误差,从表1看出,透过率的有效数是3位,因此本文透过率的相对测量误差不大于1%,而斜率大约为0.738m -1,因此薄膜厚度的测量误差大约为nmm mt 130135.001.0738.011≈≈⨯≈-μμδ 3.5标准曲线法从以上看出标准曲线法的测量程序:(1) 用台阶仪选择薄膜厚度t 不同的3个或多个镀膜样品;(2) 测量其透射光谱;(3) 在没有玻璃吸收的光谱区域内,选择需要波长处的透过率T ;(4) 绘制透过率对数log T 和薄膜厚度t 曲线,即标准曲线log T -t ;(5) 测量标准曲线斜率;(6) 利用公式(8)和公式(10)计算薄膜的吸收系数和消光系数表1 标准曲线法和台阶仪测量的薄膜厚度的比较Table 1. Comparison between the coating thickness measured by standard curve method and profilometer Samples Standard Methodt /nm by step-ins. Tt /nm No.1 0.763 130 115 No.2 0.616 260 270 No.3 0.197 930 910 No.4 0.084614501400;(7) 测量待测样品的透过率T,在标准曲线上求得样品透过率对数logT所对应的薄膜厚度t,这就是待测样品的薄膜厚度。