九年级数学圆证明题集锦
九年级数学上册第二十四章圆典型例题(带答案)
九年级数学上册第二十四章圆典型例题单选题1、如图,在⊙O中,CD是直径,AB是弦,AB⊥CD于E,AB=8,OD=5,则CE的长为()A.4B.2C.√2D.1答案:B分析:连接OA,如图,先根据垂径定理得到AE=BE=4,再利用勾股定理计算出OE=3,然后计算OC﹣OE即可.解:连接OA,如图,∵AB⊥CD,∴AE=BE=1AB=4,2在Rt△OAE中,OE=√OA2−AE2=√52−42=3,∴CE=OC﹣OE=5﹣3=2.故选:B.小提示:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理,掌握垂径定理是解题的关键.2、已知⊙O的半径为3,OA=5,则点A和⊙O的位置关系是()A.点A在圆上B.点A在圆外C.点A在圆内D.不确定答案:B分析:根据点与圆的位置关系的判定方法进行判断,OA小于半径则在圆内,OA等于半径则在圆上,OA大于半径则在圆外.解:∵⊙O的半径为3,OA=5,即A与点O的距离大于圆的半径,所以点A与⊙O外.故选:B.小提示:本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.3、如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO的延长线交⊙O于点E.若AC=4√2,DE=4,则BC的长是()A.1B.√2C.2D.4答案:C分析:根据垂径定理求出OD的长,再根据中位线求出BC=2OD即可.设OD=x,则OE=OA=DE-OD=4-x.∵AB是⊙O的直径,OD垂直于弦AC于点,AC=4√2∴AD =DC =12AC =2√2 ∴OD 是△ABC 的中位线∴BC =2OD∵OA 2=OD 2+AD 2∴(4−x)2=x 2+(2√2)2,解得x =1∴BC =2OD =2x =2故选:C小提示:本题考查垂径定理、中位线的性质,根据垂径定理结合勾股定理求出OD 的长是解题的关键.4、如图,CD 是⊙O 的直径,弦AB ⊥CD 于点E ,则下列结论不一定成立的是( )A .AE =BEB .OE =DEC .AC⌢=BC ⌢D .AD ⌢=BD ⌢ 答案:B分析:根据垂径定理即可判断.解:∵CD 是⊙O 的直径,弦AB ⊥CD 于点E ,∴AE =EB ,AC⌢=BC ⌢, AD ⌢=BD ⌢. 故选:B .小提示:本题主要考查垂径定理,掌握垂径定理是解题的关键.5、斐波那契螺旋线也称“黄金螺旋线”,是根据斐波那契数列1,1,2,3,5,…画出来的螺旋曲线.如图,在每个边长为1的小正方形组成的网格中,阴影部分是依次在以1,1,2,3,5的一个四分之一圆做圆锥的侧面,则该圆锥的底面半径为( )A .54B .2C .52D .4答案:A分析:根据斐波那契数的规律,求出下一个圆弧的底面半径和弧长,结合圆锥的侧面积性质进行求解即可. 解:有根据斐波那契数的规律可知,从第三项起,每一个数都是前面两个数之和,即半径为5的扇形对应的弧长l =2π×5×14=52π设圆锥底面半径为r ,则2πr =52π ∴r =54故选:A .小提示:本题考查圆锥侧面积的计算,结合斐波那契数的规律,及扇形的弧长公式进行转化是解题关键.6、如图,正五边形ABCDE 和正三角形AMN 都是⊙O 的内接多边形,则∠BOM 的度数是( )A .36°B .45°C .48°D .60°答案:C分析:如图,连接AO .利用正多边形的性质求出∠AOM ,∠AOB ,可得结论.解:如图,连接AO.∵△AMN是等边三角形,∴∠ANM=60°,∴∠AOM=2∠ANM=120°,∵ABCDE是正五边形,=72°,∴∠AOB=360°5∴∠BOM=120°−72°=48°.故选:C.小提示:本题考查正多边形与圆,等边三角形的性质,圆周角定理等知识,解题的关键是熟练掌握正多边形的性质,属于中考常考题型.7、如图,斗笠是一种遮挡阳光和蔽雨的编结帽,它可近似看成一个圆锥,已知该斗笠的侧面积为550πcm2,AB是斗笠的母线,长为25cm,AO为斗笠的高,BC为斗笠末端各点所在圆的直径,则OC的值为()A.22B.23C.24D.25答案:A分析:根据圆锥的侧面积和母线可得底面圆的周长,进而可得底面圆的半径.解:∵侧面积为550π cm2,母线长为25cm,∴1×l×25=550π解得l=44π,2∵2πr=44π,∴OC=r=22,故选:A.小提示:本题考查圆锥的计算,根据侧面积和母线得到底面圆的半径是解题关键.8、如图,正五边形ABCDE内接于⊙O,则正五边形中心角∠COD的度数是()A.76°B.72°C.60°D.36°答案:B计算即可.分析:根据正多边形的中心角的计算公式:360°n解:∵五边形ABCDE是⊙O的内接正五边形,∴五边形ABCDE的中心角∠COD的度数为360°=72°,5故选:B.小提示:本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式:360°是解题的关键.n9、如图,公园内有一个半径为18米的圆形草坪,从A地走到B地有观赏路(劣弧AB)和便民路(线段AB).已知A、B是圆上的点,O为圆心,∠AOB=120°,小强从A走到B,走便民路比走观赏路少走()米.A .6π−6√3B .6π−9√3C .12π−9√3D .12π−18√3答案:D分析:作OC ⊥AB 于C ,如图,根据垂径定理得到AC =BC ,再利用等腰三角形的性质和三角形内角和计算出∠A ,从而得到OC 和AC ,可得AB ,然后利用弧长公式计算出AB⌢的长,最后求它们的差即可. 解:作OC ⊥AB 于C ,如图,则AC =BC ,∵OA =OB ,∴∠A =∠B =12(180°-∠AOB )=30°, 在Rt △AOC 中,OC =12OA =9, AC =√182−92=9√3,∴AB =2AC =18√3,又∵AB ⌢=120×π×18180=12π,∴走便民路比走观赏路少走12π−18√3米,故选D .小提示:本题考查了垂径定理:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.10、在锐角△ABC中,∠ACB=60°,∠BAC、∠ABC的角平分线AD、BE交于点M,则下列结论中错误的是()A.∠AMB=120°B.ME=MDC.AE+BD=AB D.点M关于AC的对称点一定在△ABC的外接圆上答案:D分析:利用三角形内角和定理以及角平分线的定义求出∠MAB+∠MBA=60°,推出∠AMB=120°,可判断A,证明C,E,M,D四点共圆,利用圆周角定理可判断B;在AB上取一点T,使得AT=AE,利用全等三角形的性质证明BD=BT,可判断C;无法判断∠M′与∠ABC互补,可判断D.解:如图,∵∠ACB=60°,∴∠CAB+∠CBA=120°,∵AD,BE分别是∠CAB,∠CBA的角平分线,∴∠MAB+∠MBA=1(∠CAB+∠CBA)=60°,2∴∠AMB=180°-(∠MAB+∠MBA)=120°,故A符合题意,∵∠EMD=∠AMB=120°,∴∠EMD+∠ECD=180°,∴C,E,M,D四点共圆,∵∠MCE=∠MCD,∴EM⌢=DM⌢,∴EM=DM,故B符合题意,∵四边形CEMD是⊙O的内接四边形,∴∠AME=∠ACB=60°=∠BMD,在AB上取一点T,使得AT=AE,在△AME和△AMT中,{AE=AT∠MAE=∠MATAM=AM,∴△AME≌△AMT(SAS),∴∠AME=∠AMT=60°,EM=MT,∴∠BMD=∠BMT=60°,MT=MD,在△BMD和△BMT中,{MD=MT∠BMD=∠BMTBM=BM,∴△BMD≌△BMT,∴BD=BT,∴AB=AT+TB=AE+BD,故C符合题意,∵M,M′关于AC对称,∴∠M′=∠AMC,∵∠AMC=180°−12(∠CAB+∠ACB)=180°−12(180°−∠ABC)=90°+12∠ABC,∴∠M′与∠ABC不一定互补,∴点M′不一定在△ABC的外接圆上,故D不符合题意,故选D.小提示:本题考查三角形的外接圆,四点共圆,圆周角定理,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.填空题11、如图,已知A为半径为3的⊙O上的一个定点,B为⊙O上的一个动点(点B与A不重合),连接AB,以AB为边作正三角形ABC.当点B运动时,点C也随之变化,则O、C两点之间的距离的最大值是______.答案:6分析:连接OB,OC,OA,在优弧AB上取点N,使得AN=AO.证明△BAO≌△CAN(SAS),推出OB=CN=3,推出OC≤ON+CN=6,可得结论.解:如图,连接OB,OC,OA,在优弧AB上取点N,使得AN=AO.∵OA=ON,OA=AN,∴AO=ON=AN,∴△OAN是等边三角形,∴∠OAN=60°,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BAC=∠OAN=60°,∴∠BAO=∠CAN,∴△BAO≌△CAN(SAS),∴OB=CN=3,∵OC≤ON+CN=6,∴OC的最大值为6,所以答案是:6.小提示:本题考查了等边三角形的性质,圆的相关性质,垂径定理,利用两地之间线段最短是本题的解题关键.12、一圆形玻璃镜面损坏了一部分,为得到同样大小的镜面,工人师傅用直角尺作如图所示的测量,测得AB=12cm,BC=5cm,则圆形镜面的半径为__________.cm答案:132分析:连接AC,根据∠ABC=90°得出AC是圆形镜面的直径,再根据勾股定理求出AC即可.解:连接AC,∵∠ABC=90°,且∠ABC是圆周角,∴AC是圆形镜面的直径,由勾股定理得:AC=√AB2+BC2=√122+52=13(cm),cm,所以圆形镜面的半径为132cm.所以答案是:132小提示:本题考查了圆周角定理,圆心角、弧、弦之间的关系和勾股定理等知识点,能根据圆周角定理得出AC 是圆形镜面的直径是解此题的关键.13、如图所示的网格中,每个小正方形的边长均为1,点A ,B ,D 均在小正方形的顶点上,且点B ,C 在AD⌢上,∠BAC =22.5°,则BC⌢的长为__________.答案:5π4 分析:先找到AD̂的圆心O ,得到∠BOC =45°,利用弧长公式即可求解. 解:连接AD ,作线段AB 、AD 的垂直平分线,交点即为AD̂的圆心O , 从图中可得:AD̂的半径为OB =5, 连接OC ,∵∠BAC =22.5°,∴∠BOC =2×22.5°=45°,BC ̂的长为45×π×5180=5π4. .所以答案是:5π4.小提示:本题考查了弧长公式,找到AD̂的圆心是解题的关键. 14、如图,正六边形ABCDEF 的边长为4,以A 为圆心,AC 的长为半径画弧,得EC⌢,连接AC 、AE ,用图中阴影部分作一个圆锥的侧面,则这个圆锥的底面半径为______.答案:2√33分析:由正六边形ABCDEF的边长为4,可得AB=BC=4,∠ABC=∠BAF=120°,进而求出∠BAC=30°,∠CAE=60°,过B作BH⊥AC于H,由等腰三角形的性质和含30°直角三角形的性质得到AH=CH=12AC,BH=2.在Rt△ABH中,由勾股定理求得AH=2√3,得到AC=4√3.根据扇形的面积公式可得到阴影部分的面积,即是圆锥的侧面积,最后根据圆锥的侧面积公式求解底面半径即可.解:∵正六边形ABCDEF的边长为4,∴AB=BC=4,∠ABC=∠BAF=(6−2)×180°6=120°,∵∠ABC+∠BAC+∠BCA=180°,∴∠BAC=12(180°−∠ABC)=30°,如图,过B作BH⊥AC于H,∴AH=CH=12AC,BH=12AB=12×4=2,在Rt△ABH中,AH=√AB2−BH2=√42−22=2√3,∴AC=2AH=4√3,同理可求∠EAF=30°,∴∠CAE=∠BAF−∠BAC−∠EAF=120°−30°−30°=60°,∴S扇形CAE =60π⋅(4√3)2360=8π,∴S圆锥侧=S扇形CAE=8π,∵S 圆锥侧=πrl =πr ⋅AC =4√3πr ,∴4√3πr =8π,∴r =2√33, 所以答案是:2√33.小提示:本题考查的是正六边形的性质、扇形面积的计算、等腰三角形的性质、勾股定理、圆锥的侧面积,掌握扇形面积公式和圆锥侧面积公式是解题的关键.15、刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积,如图,若用圆的内接正十二边形的面积S 1来近似估计⊙O 的面积S ,设⊙O 的半径为1,则S −S 1=__________.答案:π−3分析:如图,过点A 作AC ⊥OB ,垂足为C ,先求出圆的面积,再求出△ABC 面积,继而求得正十二边形的面积即可求得答案.如图,过点A 作AC ⊥OB ,垂足为C ,∵⊙O 的半径为1,∴⊙O 的面积S =π,OA=OB=1,∴圆的内接正十二边形的中心角为∠AOB=360°12=30°,∴AC=12OB=12,∴S △AOB =12OB•AC=14, ∴圆的内接正十二边形的面积S 1=12S △AOB =3,∴则S −S 1=π−3,故答案为π−3.小提示:本题考查了正多边形与圆,正确的求出正十二边形的面积是解题的关键.解答题16、如图,CD 与EF 是⊙O 的直径,连接CE 、CF ,延长CE 到A ,连接AD 并延长,交CF 的延长线于点B ,过点F 作⊙O 的切线交AB 于点G ,点D 是AB 的中点.(1)求证:EF ∥AB ;(2)若AC =3,CD =2.5,求FG 的长.答案:(1)见解析;(2)65分析:(1)连接DE ,根据CD 和EF 都是⊙O 的直径得到∠DEA =∠ECF =90°,根据直角三角形的性质得到CD =AD =BD ,利用等腰三角形三线合一的性质推出∠ADE =∠CDE ,进而得到∠ADE =∠OED ,即可得到EF ∥AB ;(2)根据直角三角形斜边上的中线求得AB=2CD=5,勾股定理求得BC=4,由(1)可得EF=12AB,根据切线的性质可得FG⊥AB,根据sinB=FGBF =ACAB,代入数值,即可得到FC.(1)证明:连接DE,∵CD和EF都是⊙O的直径,∴∠DEA=∠ECF=90°,∵D是AB的中点,∴CD=AD=BD,∴∠ADE=∠CDE,∵OD=OE,∴∠OED=∠CDE,∴∠ADE=∠OED,∴EF∥AB;(2)连接DF,∵CD是⊙O的直径,∴∠DFC=90°,∴∠DFC=∠FCE=∠CED=90°,∴四边形CEDF是矩形,∴FC=DE,DE∥BC,∴AEEC =ADDB=1,∴AE=CE,∴DE是△ABC的中位线,∴DE=12BC,∵AB=2CD=5,AC=3,∴BC=√AB2−AC2=√52−32=4,∴FC=2.∴BF=BC−FC=4−2=2∵FG是⊙O的切线,∴GF⊥EF∵EF∥AB∴FG⊥AB∴∠BGF=∠BCA=90°∴sinB=FGBF =ACAB∴FG2=35∴FG=65小提示:此题考查了圆周角定理,矩形的判定定理及性质定理,勾股定理,三角形中位线的性质,熟记圆周角定理是解题的关键.17、如图,D是△ABC的BC边上一点,连结AD,作△ABD的外接圆O,将△ADC沿直线AD折叠,点C的对应点E 落在⊙O 上.(1)若∠ABC =30°,如图1.①求∠ACB 的度数.②若AD =DE ,求∠EAB 的度数.(2)若AD⌢=BE ⌢,AC =4,CD =2,如图2.求BC 的长. 答案:(1)①30°,②60°;(2)BC =6分析:(1)①根据折叠的性质可得∠ACD =∠AED ,根据等弧所对的圆周角即可求解;②根据等边对等角可得∠DAE =∠DEA ,根据(1)的结论可得∠ACB =∠ABC ,进而根据折叠的性质求得∠CAE =60°,进而根据∠CAB −∠CAE 即可求得∠BAE ,(2)根据AD⌢+DE ⌢=BE ⌢+DE ⌢,可得AE ⌢=DB ⌢,AE =BE ,根据折叠的性质可得DB =AE =4,进而即可求解.(1)①∵AD⌢=AD ⌢,∠ABC =30°, ∴∠AED =∠ABD =30°,∵将△ADC 沿直线AD 折叠,点C 的对应点E 落在⊙O 上,∴∠ACB =∠AED =30° ;②∵ AD =DE ,∴∠DAE =∠DEA ,∵∠DEA =∠DBA ,∴∠DAE =30°,∵将△ADC 沿直线AD 折叠,点C 的对应点E 落在⊙O 上,∴∠DAE =∠DAC =30°,△ABC 中,∠ABC =∠ACB =30°,则∠CAB =180°−∠ABC −∠ACB =120°,∵∠CAE =∠CAD +∠EAD =60°,∴∠EAB =∠CAB −∠CAE =120°−60°=60°,∴∠EAB =60°,(2)∵ AD⌢=BE ⌢ ∴AD⌢+DE ⌢=BE ⌢+DE ⌢ ∴AE⌢=DB ⌢ ∴AE =BE∵折叠∴AC =AE∴DB =AE =4∵CD =2∴BC =CD +DB =4+2=6小提示:本题考查了折叠的性质,同弧或等弧所对的圆周角相等,弧与弦的关系,三角形内角和定理的应用,综合运用以上知识是解题的关键.18、如图,C ,D 是以AB 为直径的半圆上的两点,∠CAB =∠DBA ,连结BC ,CD .(1)求证:CD ∥AB .(2)若AB =4,∠ACD =30°,求阴影部分的面积.答案:(1)答案见解析(2)23π 分析:(1)根据同弧所对的圆周角相等得到∠ACD =∠DBA ,根据 ∠CAB =∠DBA 得到∠CAB =∠ACD ,进而得到结论;(2)连结OC ,OD ,证明所求的阴影部分面积与扇形COD 的面积相等,继而得到结论.(1)证明:∵AD ⌒=AD ⌒,∴∠ACD =∠DBA ,又∵∠CAB =∠DBA ,∴∠CAB =∠ACD ,∴CD ∥AB ;(2)解:如图,连结OC ,OD .∵∠ACD =30°,∴∠ACD =∠CAB =30°,∴∠AOD =∠COB =60°,∴∠COD =180°-∠AOD -∠COB =60°.∵CD ∥AB ,∴S △DOC =S △DBC ,∴S 阴影=S 弓形COD +S △DOC =S 弓形COD +S △DBC=S 扇形COD ,∵AB =4,∴OA =2,∴S 扇形COD=nπr 2360=60×π×22360=23π.∴S阴影=2π.3小提示:本题主要考查扇形的面积,同弧所对的圆周角相等,平行线的判定,掌握定理以及公式是解题的关键.。
初中数学圆的证明题专项练习大全(精华)
圆有关的证明题专项练习1、如图,△ABC 内接于⊙O,AD 是的边BC 上的高,AE 是⊙O 的直径,连BE. (1)求证:△ABE∽△ADC;(2)若AB=2BE=4DC=8,求△ADC 的面积.C2、如图,AE 是△ABC 外接圆⊙O 的直径,AD 是△ABC 的边BC 上的高,EF⊥BC,F 为垂足。
(1)求证:BF=CD(2)若CD=1,AD=3,BD=6,求⊙O 的直径。
5、如图,AB 是⊙O 的直径,D 是AB 上一点,C 是弧AD 的中点,AD、BC 交于点E,CF⊥AB 于F,CF 交AD 于G。
(1)求证:CG=EG=AG(2) 求证:AD=2CF(2)若AD= 4 3 ,AC=4,求⊙O 的半径6、如图,AB 为⊙O 的直径,弦CD⊥AB 于点H,E 为AB 延长线上一点,CE 交⊙O 于F。
(1)求证:BF 平分∠DFE;(2)若EF=DF=4,BE=5,CH=3,求⊙O 的半径7、如图,Rt△ABC 内接于⊙O,D 为弧AC 的中点,DH⊥AB 于点H,延长BC、HD 交于点E。
(1)求证:AC=2DH;(2)连接AE,若DH=2,BC=3,求tan∠AEB 的值8、在Rt△ABC 中,∠ACB=90º,D 是AB 边上一点,以 BD 为直径的⊙O 与边 AC 相切于点E,连结 DE 并延长,与 BC 的延长线交于点F.(1)求证:BD=BF;(2)若BC=6,AD=4,求SECF 。
9、如图,⊙O 中,直径DE⊥弦AB 于H 点,C 为圆上一动点,AC 与DE 相交于点 F。
(1)求证△AOG∽△FAO。
(2)若OA=4,OF=8,H 点为OD 的中点,求SCGF 。
10、如图,在⊙O 中,弦AB、CD 相交于AB 的中点E,连接AD 并延长至 F 点,使DF=AD,连接BC、BF。
(1)、求证:△CBE∽△AFB。
(2)、若∠C=30º,∠CEB=45º,CE= 3 1,求S ABF .11、如图,△ABC 内接于⊙O,AB 是直径,D 为弧 AC的中点,连接 BD,交 AC 于G,过 D 作DE⊥AB于E 点,交⊙O于H 点,交 AC 于F 点。
九年级中考数学《圆证明题》专题复习试卷及解析
九年级中考数学《圆证明题》专题复习试卷及分析九年级中考数学《圆证明题》专题复习试卷及分析1、如图,点 A,B 在⊙ O上,直线 AC是⊙ O的切线, OC⊥OB,连结 AB交 OC于点 D.求证: AC=CD.2、如图, AD是⊙ O的切线,切点为 A,AB是⊙ O的弦.过点 B 作 BC∥AD,交⊙ O于点 C,连结AC,过点 C作 CD∥AB,交 AD于点 D.连结 AO并延伸交 BC于点 M,交过点 C的直线于点P,且∠BCP=∠ ACD.(1)判断直线 PC与⊙ O的地点关系,并说明原因;(2)若 AB=9,BC=6.求 PC的长.3、如图,在△ ABC中,∠ ACB=90°,点 D 是 AB上一点,以 BD为直径的⊙ O和 AB相切于点 P.(1)求证: BP均分∠ ABC;(2)若 PC=1,AP=3,求 BC的长.14、已知:如图, AC是⊙ O的直径, BC是⊙ O的弦,点 P 是⊙ O外一点,∠ PBA=∠ C.(1)求证: PB是⊙ O的切线.(2)若 OP∥BC,且 OP=8,∠ C=60°,求⊙ O的半径.5、如图,在△ ABC中, AB=AC,以 AB为直径的⊙ O交 BC于点 M,MN⊥AC于点 N.求证: MN是⊙ O的切线.6、如图, AB是⊙ O的直径,点 C 在 AB的延伸线上, CD与⊙ O相切于点 D,CE⊥AD,交 AD的延伸线于点 E.(1)求证:∠ BDC=∠A;(2)若 CE=4,DE=2,求⊙ O的直径.7、已知: AB是⊙ O的直径, BD是⊙ O的弦,延伸 BD到点 C,使 AB=AC,连结 AC,过点 D 作DE⊥AC,垂足为 E.( 1)求证: DC=BD( 2)求证: DE为⊙ O的切线.8、如图, AB是⊙ O的直径, C为⊙ O上一点,经过点 C 的直线与 AB的延伸线交于点 D,连结AC,BC,∠BCD=∠CAB.E 是⊙ O上一点,弧 CB=弧 CE,连结 AE并延伸与 DC的延伸线交于点 F.( 1)求证: DC是⊙ O的切线;( 2)若⊙ O的半径为 3,sin D=,求线段AF的长.9、如图,已知 MN是⊙ O的直径,直线 PQ与⊙ O相切于 P 点, NP均分∠MNQ.( 1)求证: NQ⊥PQ;( 2)若⊙ O的半径 R=2,NP=,求NQ的长.10、已知: AB是⊙ O的直径, BD是⊙ O的弦,延伸 BD到点 C,使 AB=AC;连结 AC,过点 D作DE⊥AC,垂足为 E.(1)求证: DC=BD(2)求证: DE为⊙ O的切线11、如图,以 Rt△ABC的 AC边为直径作⊙ O交斜边 AB于点 E,连结 EO并延伸交 BC的延伸线于点 D,点 F 为 BC的中点,连结 EF和 AD.(1)求证: EF是⊙ O的切线;(2)若⊙ O的半径为 2,∠ EAC=60°,求 AD的长.12、如图, AB是⊙ O的直径,点 E 是上的一点,∠ DBC=∠ BED.⑴求证: BC是⊙ O的切线;⑵已知 AD=3, CD=2,求 BC的长.13、如图,已知 AB是⊙ O的直径,点 C、D在⊙ O上,点 E 在⊙ O外,∠ EAC=∠D=60°.(1)求∠ ABC的度数;(2)求证: AE是⊙ O的切线;(3)当 BC=4时,求劣弧 AC的长.14、已知△ ABC,以 AB为直径的⊙ O分别交 AC于 D, BC于 E,连结 ED,若 ED=EC.(1)求证: AB=AC;(2)若 AB=4,BC=2 ,求 CD的长.15、如图,以△ ABC的边 AB上一点 O为圆心的圆经过 B、C两点,且与边 AB订交于点 E,D是弧 BE的中点, CD交 AB于 F,AC=AF.( 1)求证: AC是⊙ O的切线;( 2)若 EF=5,DF= ,求⊙ O的半径.参照答案1、∵直线 AC与⊙ O相切,∴ OA⊥ AC,∴∠ OAC=90°,即∠ OAB+∠CAB=90°,∵OC⊥OB,∴∠BOC=90°,∴∠B+∠ODB=90°,而∠ODB=∠ADC,∴∠ADC+∠B=90°,∴OA=OB,∴∠ OAB=∠B,∴∠ ADC=∠CAB,∴ AC=CD.2、( 1)解: PC与圆 O相切,原因为:过C点作直径CE,连结EB,如图,∵CE为直径,∴∠ EBC=90°,即∠ E+∠BCE=90°,∵ AB∥DC,∴∠ ACD=∠BAC,∵∠ BAC=∠E,∠ BCP=∠ACD.∴∠ E=∠ BCP,∴∠ BCP+∠BCE=90°,即∠ PCE=90°,∴ CE⊥ PC,∴ PC与圆 O相切;( 2)解:∵ AD是⊙ O的切线,切点为 A,∴ OA⊥AD,∵BC∥AD,∴ AM⊥BC,∴ BM=CM= BC=3,∴ AC=AB=9,在 Rt△ AMC中,AM= =6,设⊙ O的半径为 r ,则 OC=r,OM=AM﹣r=6 ﹣r ,2 2 2 2 2 2在 Rt△ OCM中, OM+CM=OC,即 3 +(6 ﹣ r ) =r,解得 r= ,∴ CE=2r= ,OM=6 ﹣= ,∴ BE=2OM= ,∵∠ E=∠ MCP,∴ Rt △PCM∽Rt△ CEB,∴=,即=,∴ PC= 3、( 1)证明:连结 OP,∵OP=OB,∴∠ OPB=∠OBP,∴∠ PBC=∠ OBP,∴ BP均分∠ ABC(2)作 PH⊥AB于 H.∵ PB均分∠ ABC,PC⊥BC, PH⊥AB,∴ PC=PH=1,在 Rt△ APH中, AH==2,∵∠ A=∠A,∠ AHP=∠ C=90°,∴△ APH∽△ ABC,∴=,∴=,∴ AB=3,∴ BH=AB﹣AH=,在 Rt△ PBC和 Rt△PBH中,,∴ Rt△PBC≌Rt△PBH,∴ BC=BH=.4、( 1)证明:连结 OB,∵ AC是⊙ O直径,∴∠ ABC=90°,∵OC=OB,∴∠ OBC=∠C,∵∠ PBA=∠C,∴∠ PBA=∠OBC,即∠ PBA+∠ OBA=∠ OBC+∠ ABO=∠ABC=90°,∴ OB⊥PB,∵ OB为半径,∴ PB是⊙ O的切线;(2)解:∵ OC=OB,∠ C=60°,∴△ OBC为等边三角形,∴ BC=OB,∵ OP∥BC,∴∠ CBO=∠ POB,∴∠ C=∠POB,在△ ABC和△ PBO中∵,∴△ ABC≌△ PBO(ASA),∴ AC=OP=8,即⊙ O的半径为4.5、证明:连结 OM,∵ AB=AC,∴∠ B=∠ C,∵ OB=OM,∴∠ B=∠OMB,∴∠ OMB=∠C,∴OM∥AC,∵ MN⊥AC,∴ OM⊥MN.∵点 M在⊙ O上,∴ MN是⊙ O的切线.6、( 1)证明:连结 OD,∵CD是⊙ O切线,∴∠ ODC=90°,即∠ ODB+∠ BDC=90°,∵AB为⊙ O的直径,∴∠ ADB=90°,即∠ ODB+∠ADO=90°,∴∠ BDC=∠ADO,∵OA=OD,∴∠ ADO=∠A,∴∠ BDC=∠A;(2)∵ CE⊥ AE,∴∠ E=∠ADB=90°,∴DB∥EC,∴∠ DCE=∠ BDC,∴∠ DCE=∠A,∵ CE=4, DE=2∴在 Rt △ACE中,可得 AE=8∴ AD=6在在 Rt △ADB中可得BD=3∴依据勾股定理可得7、证明:( 1)连结 AD,∵ AB是⊙ O的直径,∴∠ ADB=90°,又∵ AB=AC,∴ DC=BD;(2)连结半径 OD,∵ OA=OB, CD=BD,∴ OD∥AC,∴∠ ODE=∠CED,又∵ DE⊥ AC,∴∠ CED=90°,∴∠ ODE=90°,即 OD⊥DE.∴ DE是⊙ O的切线.8、( 1)证明:连结 OC,BC,∵ AB是⊙ O的直径,∴∠ ACB=90°,即∠ 1+∠3=90°.∵OA=OC,∴∠ 1=∠ 2.∵∠ DCB=∠BAC=∠1.∴∠ DCB+∠ 3=90°.∴ OC⊥ DF.∴ DF 是⊙ O的切线;( 2)解:在 Rt△ OCD中, OC=3,sin D=.∴ OD=5,AD=8.∵=,∴∠ 2=∠4.∴∠ 1=∠4.∴ OC∥AF.∴△ DOC∽△ DAF.∴.∴ AF=.9、( 1)证明:连结 OP,如图,∴直线PQ与⊙ O相切,∴ OP⊥PQ,∵OP=ON,∴∠ ONP=∠ OPN,∵ NP均分∠ MNQ,∴∠ ONP=∠ QNP,∴∠ OPN=∠QNP,∴OP∥ NQ,∴ NQ⊥PQ;( 2)解:连结 PM,如图,∵ MN是⊙ O的直径,∴∠ MPN=90°,∵NQ⊥PQ,∴∠ PQN=90°,而∠ MNP=∠ QNP,∴ Rt △NMP∽Rt△ NPQ,∴=,即=,∴ NQ=3.10、( 1)证明:( 1)连结 AD;∵ AB是⊙ O的直径,∴∠ ADB=90°.又∵ AB=AC∴ DC=BD(2)连结半径 OD;∵ OA=OB, CD=BD,∴ OD∥AC.∴∠ 0DE=∠CED.又∵ DE⊥ AC,∴∠ CED=90°.∴∠ ODE=90°,即 OD⊥DE.∴ DE是⊙ O的切线.11、( 1)证明:连结 CE,如下图:∵AC为⊙ O的直径,∴∠ AEC=90°.∴∠ BEC=90°.∵点F 为 BC的中点,∴ EF=BF=CF.∴∠ FEC=∠FCE.∵OE=OC,∴∠ OEC=∠OCE.∵∠ FCE+∠ OCE=∠ ACB=90°,∴∠ FEC+∠OEC=∠OEF=90°.∴ EF是⊙ O的切线.( 2)解:∵ OA=OE,∠EAC=60°,∴△ AOE是等边三角形.∴∠ AOE=60°.∴∠COD=∠AOE=60°.∵⊙ O的半径为 2,∴ OA=OC=2在 Rt △OCD中,∵∠ OCD=90°,∠ COD=60°,∴∠ ODC=30°.∴ OD=2OC=4,∴ CD=.在Rt△ ACD中,∵∠ ACD=90°,AC=4,CD=.∴AD==.12、1)AB是⊙ O的直径,得∠ ADB=90°,进而得出∠ BAD=∠DBC,即∠ ABC=90°,即可证明BC是⊙ O的切线;( 2)可证明△ ABC∽△ BDC,则=,即可得出BC=;13、解:( 1)∵∠ ABC与∠ D 都是弧 AC所对的圆周角,∴∠ ABC=∠D=60°;( 2)∵ AB是⊙ O的直径,∴∠ ACB=90°.∴∠ BAC=30°,∴∠ BAE=∠BAC+∠EAC=30°+60°=90°,即 BA⊥AE,∴ AE是⊙ O的切线;( 3)如图,连结 OC,∵∠ ABC=60°,∴∠ AOC=120°,∴劣弧 AC的长为.14、( 1)证明:∵ ED=EC,∴∠ EDC=∠ C,∵∠ EDC=∠B,∴∠ B=∠C,∴ AB=AC;(2)解:连结 AE,∵ AB为直径,∴ AE⊥BC,由( 1)知 AB=AC,∴ BE=CE= BC=,九年级中考数学《圆证明题》专题复习试卷及分析九年级中考数学《圆证明题》专题复习试卷及分析∵△ CDE∽△ CBA,∴,∴ CE?CB=CD?CA,AC=AB=4,∴?2 =4CD,∴ CD= .15、( 1)证明:连结 OD、 OC,如图,∵ D 是弧 BE的中点,∴ OD⊥BE,∴∠ D+∠3=90°,∵∠ 3=∠ 2,∴∠ D+∠2=90°,∵ AF=AC,OD=OC,∴∠ 1=∠2,∠ D=∠ 4,∴∠ 1+∠ 4=90°,∴ OC⊥AC,∴ AC是⊙ O的切线;( 2)解:设⊙ O的半径为 r ,则 OF=OE﹣ EF=r﹣5,22222 2在 Rt△ ODF中,∵ OD+OF=DF,∴ r +( r ﹣ 5) =(),整理得 r 2﹣5r ﹣ 6=0,解得 r 1 =6,r 2=﹣1,∴,⊙ O的半径为 6.10。
九年级上册圆的证明题及答案
DOBC A EPEECOB P D AOBACDBACDO1.如图,已知直线PA 交⊙O 于A 、B 两点,AE 是⊙O 的直径,C 为⊙O 上一点,且AC 平分∠PAE ,过点C 作CD ⊥PA 于D . (1) 求证:CD 是⊙O 的切线; (2) 若AD :DC =1:3,AB =8,求⊙O 的半径.(1)证明:连结OC .∵ OC =OA ,∴ ∠OAC = ∠OCA∵ AC 平分∠PAE ,∴ ∠DAC = ∠OAC ,∴ ∠DAC = ∠OCA , ∴ AD ∥OC .∵ CD ⊥PA ,∴ ∠ADC = ∠OCD =90°, 即 CD ⊥OC ,点C 在⊙O 上,∴ CD 是⊙O 的切线. (2)解:过O 作OE ⊥AB 于E .∴ ∠OEA =90°∵ AB =8, ∴ AE =4. 在Rt △AEO 中,∠AEO =90°,∴ AO 2=42+OE 2. ∵ ∠EDC = ∠OEA =∠DCO =90°,∴ 四边形DEOC 是矩形, ∴ OC =DE ,OE =CD .∵ AD:DC =1:3,∴ 设AD =x ,则DC =OE =3x ,OA =OC =DE =DA +AE =x +4, ∴ (x +4)2=42+(3x )2,解得 x 1=0(不合题意,舍去),x 2=1.则 OA =5.∴ ⊙O 的半径是5. 2.如图1和图2,MN 是⊙O 的直径,弦AB 、CD•相交于MN•上的一点P ,•∠APM=∠CPM . (1)由以上条件,你认为AB 和CD 大小关系是什么,请说明理由.(2)若交点P 在⊙O 的外部,上述结论是否成立若成立,加以证明;若不成立,请说明理由.BA CE DP ONM FB A CE DPNM F解:(1)AB=CD 理由:过O 作OE 、OF 分别垂直于AB 、CD ,垂足分别为E 、F∵∠APM=∠CPM ∴∠1=∠2 OE=OF 连结OD 、OB 且OB=OD ∴Rt △OFD ≌Rt △OEB ∴DF=BE 根据垂径定理可得:AB=CD(2)作OE ⊥AB ,OF ⊥CD ,垂足为E 、F ∵∠APM=∠CPN 且OP=OP ,∠PEO=∠PFO=90° ∴Rt △OPE ≌Rt △OPF ∴OE=OF 连接OA 、OB 、OC 、OD易证Rt △OBE ≌Rt △ODF ,Rt △OAE ≌Rt △OCF ∴∠1+∠2=∠3+∠4 ∴AB=CD3.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到C ,使AC=AB ,BD 与CD 的大小有什么关系为什么解:BD=CD 理由是:如图,连接AD ∵AB 是⊙O 的直径 ∴∠ADB=90°即AD ⊥BC 又∵AC=AB ∴BD=CD4. 如图,点O 是△ABC 的内切圆的圆心,若∠BAC=80°,则∠BOC=( ) A .130° B .100° C .50° D .65° 答案A5.如图,AB 为⊙O 的直径,C 是⊙O 上一点,D 在AB 的延长线上,且∠DCB=•∠A . (1)CD 与⊙O 相切吗如果相切,请你加以证明,如果不相切,请说明理由. (2)若CD 与⊙O 相切,且∠D=30°,BD=10,求⊙O 的半径.解:(1)CD 与⊙O 相切 ∵AB 是直径 ∴∠ACB=90°,即∠ACO+∠OCB=90°∵∠A=∠OCA 且∠DCB=∠A ∴∠OCA=∠DCB ∴∠OCD=90° 综上:CD 是⊙O 的切线.(2)在Rt △OCD 中,∠D=30° ∴∠COD=60° ∴∠A=30° ∴∠BCD=30° ∴BC=BD=10 ∴AB=20,∴r=10 答:(1)CD 是⊙O 的切线,(2)⊙O 的半径是10.6.如图,已知正六边形ABCDEF ,其外接圆的半径是a ,•求正六边形的周长和面积.解:如图所示,由于ABCDEF 是正六边形,所以它的中心角等于3606︒=60°,•△OBC 是等边三角形,从而正六边形的边长等于它的半径.因此,所求的正六边形的周长为6a 在Rt △OAM 中,OA=a ,AM=12AB=12a 利用勾股定理,可得边心距OM=221()2a a -=123a∴所求正六边形的面积=6×12×AB×OM=6×12×a×32a=323a 27.已知扇形的圆心角为120°,面积为300πcm 2. (1)求扇形的弧长;(2)若将此扇形卷成一个圆锥,则这个圆锥的轴截面面积为多少解:(1)如图所示: ∵300π=2120360R π ∴R=30∴弧长L=12030180π⨯⨯=20π(cm )(2)如图所示: ∵20π=20πr ∴r=10,R=30 AD=900100-=202 ∴S 轴截面=12×BC×AD =12×2×10×202=2002(cm 2) 因此,扇形的弧长是20πcm 卷成圆锥的轴截面是2002cm 2. 8.如图,AB 是⊙O 的直径,BC 是弦,OD ⊥BC 于E ,交⋂BC 于D . (1)请写出五个不同类型的正确结论; (2)若BC =8,ED =2,求⊙O 的半径. 解:(1)不同类型的正确结论有:①BE =CE ;②弧BD=弧CD ③∠BED =90°④∠BOD =∠A ;⑤AC ∥OD ,⑥AC ⊥BC ; ⑦OE 2+BE 2=OB 2;⑧S △ABC =BC ·OE ;⑨△BOD 是等腰三角形,⑩△BOE ∽△BAC ; (2)∵OD ⊥BC , ∴BE =CE =12BC =4.设⊙O 的半径为R ,则OE =OD -DE=R -2. 在Rt △OEB 中,由勾股定理得 OE 2+BE 2=OB 2,即(R -2)2+42=R 2.解得R =5. ∴ ⊙ O 的半径为59.已知:如图等边ABC △内接于⊙O ,点P 是劣弧PC 上的一点(端点除外),延长BP 至D ,使BD AP =,连FDECBAOM结CD .(1)若AP 过圆心O ,如图①,请你判断PDC △是什么三角形并说明理由. (2)若AP 不过圆心O ,如图②,PDC △又是什么三角形为什么 解:(1)PDC △为等边三角形. 理由:ABC ∵△为等边三角形AC BC =∴,又∵在⊙O 中PAC DBC ∠=∠又AP BD =∵ APC BDC ∴△≌△. PC DC =∴ 又AP ∵过圆心O ,AB AC =,60BAC ∠=°1302BAP PAC BAC ∠=∠=∠=∴° 30BAP BCP ∠=∠=∴°,30PBC PAC ∠=∠=°303060CPD PBC BCP ∠=∠+∠=+=∴°°° PDC ∴△为等边三角形.(2)PDC △仍为等边三角形理由:先证APC BDC △≌△(过程同上) PC DC =∴ 60BAP PAC ∠+∠=∵° 又BAP BCP ∠=∠∵,PAC PBC ∠=∠60CPD BCP PBC BAP PAC ∠=∠+∠=∠+∠=∴° 又PC DC =∵ PDC ∴△为等边三角形.10.(1)如图OA 、OB 是⊙O 的两条半径,且OA ⊥OB ,点C 是OB 延长线上任意一点:过点C 作CD 切⊙O 于点D ,连结AD 交DC 于点E .求证:CD=CE(2)若将图中的半径OB 所在直线向上平行移动交OA 于F ,交⊙O 于B ,其他条件不变,那么上述结论CD=CE 还成立吗为什么(3)若将图中的半径OB 所在直线向上平行移动到⊙O 外的CF ,点E 是DA 的延长线与CF 的交点,其他条件不变,那么上述结论CD=CE 还成立吗为什么解:(1)证明:连结OD 则OD ⊥CD ,∴∠CDE+∠ODA=90° 在Rt △AOE 中,∠AEO+∠A=90°在⊙O 中,OA=OD ∴∠A=∠ODA , ∴∠CDE=∠AEO 又∵∠AEO=∠CED ,∠CDE=∠CED ∴CD=CE (2)CE=CD 仍然成立. ∵原来的半径OB 所在直线向上平行移动∴CF ⊥AO 于F , 在Rt △AFE 中,∠A+∠AEF=90°. 连结OD ,有∠ODA+∠CDE=90°,且OA=OD .∠A=∠ODA ∴∠AEF=∠CDE 又∠AEF=∠CED ∴∠CED=∠CDE ∴CD=CE(3)CE=CD 仍然成立.∵原来的半径OB 所在直线向上平行移动.AO ⊥CF 延长OA 交CF 于G ,在Rt △AEG 中,∠AEG+∠GAE=90° 连结OD ,有∠CDA+∠ODA=90°,且OA=OD ∴∠ADO=∠OAD=∠GAE ∴∠CDE=∠CED ∴CD=CEAOCPB图①AOCPB图②11.AB 是⊙O 的直径,PA 切⊙O 于A ,OP 交⊙O 于C ,连BC .若30P ∠=o,求B ∠的度数.解: PA Q 切⊙O 于A AB ,是⊙O 的直径, ∴90PAO ∠=o.30P ∠=o Q ,∴60AOP ∠=o .∴1302B AOP ∠=∠=o12.如图,四边形ABCD 内接于⊙O ,BD 是⊙O 的直径,AE CD ⊥,垂足为E ,DA 平分BDE ∠. (1)求证:AE 是⊙O 的切线;(2)若301cm DBC DE ∠==o,,求BD 的长. (1)证明:连接OA ,DA Q 平分BDE ∠,BDA EDA ∴∠=∠.OA OD ODA OAD =∴∠=∠Q ,.OAD EDA ∴∠=∠.OA CE ∴∥. AE DE ⊥Q ,9090AED OAE DEA ∴∠=∠=∠=o o ,.AE OA ∴⊥.AE ∴是⊙O 的切线.(2)BD Q 是直径,90BCD BAD ∴∠=∠=o.3060DBC BDC ∠=∠=o o Q ,,120BDE ∴∠=o .DA Q 平分BDE ∠,60BDA EDA ∴∠=∠=o .30ABD EAD ∴∠=∠=o .在Rt AED △中,90302AED EAD AD DE ∠=∠=∴=oo,,. 在Rt ABD △中,903024BAD ABD BD AD DE ∠=∠=∴==oo,,. DE Q 的长是1cm ,BD ∴的长是4cm .13.如图,已知在⊙O 中,AB=34,AC 是⊙O 的直径,AC ⊥BD 于F ,∠A=30°.(1)求图中阴影部分的面积;(2)若用阴影扇形OBD 围成一个圆锥侧面,请求出这个圆锥的底面圆的半径. 解:连结AD .∵AC ⊥BD ,AC 是直径,∴AC 垂直平分BD 。
2023 年九年级数学中考专题训练——圆的计算和证明(附答案)
1.如图,在ABC中,AB AC=,以AB为直径作O,交BC于点D,交AC于点E,过点B作O 的切线交OD的延长线于点F.(1)求证:A BOF∠=∠;(2)若4AB=,1DF=,求AE的长.2.如图,AB是O的直径,点C在O上,ABC∠的平分线与AC相交于点D,与O过点A的切线相交于点E.(1)猜想EAD的形状,并证明你的猜想;(2)若8AB=,6AD=,求BD的长.3.如图所示,Rt△ABC中∠ACB=90°,斜边AB与⊙O相切于D,直线AC过点O并于⊙O相交于E、F两点,BC与DF交于点G,DH⊥AC于H.(1)求证:∠B=2∠F;(2)若HE=4,cos B=35,求DF的长.4.如图,O的直径23AB=点C为O上一点,CF为O的切线,OE AB⊥于点O,分别交AC,CF于D,E两点.(1)求证:ED EC=;(2)若30∠=︒,求图中两处(点C左侧与点C右侧)阴影部分的面积之和.A5.已知PA,PB分别与O相切于点A,B,C为O上一点,连接AC,BC.∠的大小;(1)如图①,若70∠=︒,求ACBAPB∠的大小.(2)如图②,AE为O的直径交BC于点D,若四边形PACB是平行四边形,求EAC6.如图,AB是O的直径,点C在AB的延长线上,BDC A⊥,交AD的延长线于∠=∠,CE AD点E.(1)求证:CD与O相切:(2)若4CE=,2DE=,求AD的长,7.如图,四边形ABCD为平行四边形,边AD是O的直径,O交AB于F点,DE为O的切线交BC于E,且BE BF=,BD和O交于G点.(1)求证:四边形ABCD为菱形.(2)若O半径52r=,5BG=BF长.8.如图,O为ABC的外接圆,AB为直径,ABC∠的角平分线BD交O于点D,过点D作O 的切线DE,交BC的延长线于点E.(1)求证:DE BC⊥;(2)若1CE=,3DE=O的半径.9.如图,AB是O的直径,CA与O相切于点A,且AB AC=.连接OC,过点A作AD OC⊥于点E,交O于点D,连接DB.(1)求证:ACE BAD△△≌;(2)连接BC交O于点F.若6AD=,求BF的长.10.在Rt ABC中,90C∠=︒,以AC为直径的O与AB相交点D、E是BC的中点.(1)判断ED与O的位置关系,并说明理由;(2)若O的半径为3,DEC A∠=∠,求DC的长.11.如图,在ABC中,以ABC的边AB为直径作O,交AC于点D,DE是O的切线,且DE BC⊥,垂足为点E.(1)求证AB BC=;(2)若3DE=,610AC=O的半径.12.如图,⊙O是△ABC的外接圆,O在AC上,过点C作⊙O的切线,与AB延长线交于点D,过点O作OE BC,交⊙O于点E,连接CE交AB于点F.(1)求证:CE平分∠ACB;(2)连接OD,若CF=CD=6,求OD的长.13.如图,△ABC中,AB=AC,以AB为直径⊙O的交BC于点D,过点D作⊙O的切线DE,交BA 延长线于点E,延长CA交⊙O于点F,交DE于点G,连接DF.(1)求证:点E为线段CF垂直平分线上一点;,BE=8,求AF的长.(2)若sin∠E=3514.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点D是AC的中点,连接OD,交AC于点E ,作BF ∥CD ,交DO 的延长线于点F .(1)求证:四边形BCDF 是平行四边形.(2)若AC =8,连接BD ,tan∠DBF =34,求直径AB 的长及四边形ABCD 的周长.15.如图,在△ABC 中,AB =AC ,以AB 为直径作⊙O ,交AC 于点F ,交BC 于点D ,过点D 作⊙O 的切线DE ,交AC 于点E .(1)求证:DE ⊥AC ;(2)若⊙O 的直径为5,25sin B =EF 的长. 16.如图,AB 是⊙O 的直径,点E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,作AF ⊥PC 于点F ,连接CB .(1)求证:△CBE ∽△CPB ;(2)当43AB =34CF CP =时,求扇形COB 的面积. 17.如图,AB 为O 的直径,ACB ∠的角平分线交O 于点D ,交AB 于点E ,CAB ∠的角平分线交CD 于点F .(1)求证:ADB 为等腰直角三角形;(2)求证:2DF DE DC =⋅.18.如图,AB 是圆O 的直径,C ,D 是圆上的点(在AB 同侧),过点D 的圆的切线交直线AB 于点E .(1)若2AB =,1BC =,求AC 的长;(2)若四边形ACDE 是平行四边形,证明:BD 平分ABC ∠.19.如图,AB 与O 相切于点B ,BC 为O 的弦,OC OA ⊥,OA 与BC 相交于点P .(1)求证:AP AB =; (2)若4OB =,3AB =,求线段BP 的长.20.如图,ABC ∆为O 的内接三角形,AD BC ⊥,垂足为D ,直径AE 平分BAD ∠,交BC 于点F ,连接BE .(1)求证:AEB AFD ∠=∠;(2)若10AB =,5BF =,求DF 的长;(3)若点G 为AB 的中点,连接DG ,若点O 在DG 上,求:BF FC 的值.参考答案:1.(1)见解析 (2)83AE =【分析】(1)首先根据等边对等角可证得C ODB ∠=∠,再根据平行线的判定与性质,即可证得结论;(2)首先根据圆周角定理及切线的性质,可证得AEB OBF ∠=∠,即可证得ABE OFB △∽△,再根据相似三角形的性质即可求得.(1)证明:AB AC =C ABC ∴∠=∠ OB OD =ODB OBD ∴∠=∠C ODB ∴∠=∠AC OD ∴∥A BOF ∴∠=∠(2)解:如图:连接BEAB 是O 的直径,AB =490AEB ∴∠=︒,122OB OD AB === BF 是O 的切线90OBF ∴∠=︒AEB OBF ∴∠=∠又A BOF ∠=∠ABE OFB ∴△∽△AE AB OB OF∴=又213OF OD DF =+=+=423AE ∴=,解得83AE = 【点评】本题考查了等腰三角形的性质,平行线的判定与性质,圆周角定理,切线的性质,相似三角形的判定与性质,作出辅助线,证得ABE OFB △∽△是解决本题的关键.2.(1)等腰三角形,证明见解析; (2)145.【分析】(1)利用角平分线和∠C =∠BAE =90°,得出∠E =∠4,从而得到AD =AE 可得三角形的形状;(2)先证明△BCD ∽△BAE ,利用相似比得到得出即34AE DC AB BC ==,若设CD =3x ,则BC =4x ,BD =5x ,再利用勾股定理得到(4x )2+(6+3x )2=82,然后解方程求出x 后计算5x 即可.(1)猜想:△EAD 是等腰三角形,证明:∵BE 平分∠ABC ,∴∠1=∠2,∵AB 为直径,∴∠C =90°,∴∠2+∠3=90°,∵AE 为切线,∴AE ⊥AB ,∴∠E +∠1=90°,∴∠E =∠3,而∠4=∠3,∴∠E =∠4,∴AE =AD ,∴△EAD 是等腰三角形;(2)∵∠2=∠1,∴Rt △BCD ∽Rt △BAE ,∴CD :AE =BC :AB , 即34AE DC AB BC ==, 设CD =3x ,BC =4x ,则BD =5x ,在Rt △ABC 中,AC =AD +CD =3x +6,∵(4x )2+(6+3x )2=82,解得x 1=1425,x 2=-1(舍去), ∴BD =5x =145. 【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径;也考查了利用勾股定理和相似比进行几何计算.3.(1)见解析; (2)85【分析】(1)连接OD ,由题意可得:90ODA =∠°,再根据∠ACB =90°,可得B AOD ∠=∠,由圆周角定理可得2AOD F ∠=∠,即可求解;(2)由(1)可得B AOD ∠=∠,则3cos 5OH AOD OD ∠==,设OD OE r ==,求得半径r ,由勾股定理求得DH ,再由勾股定理即可求得DF .(1)解:连接OD ,如下图:∵AB 与⊙O 相切于D ,∴OD AB ⊥,即90ODA =∠°,∴90A AOD ∠+∠=︒,又∵∠ACB =90°,∴A B ∠∠=︒+90,∴B AOD ∠=∠,由圆周角定理可得:2AOD F ∠=∠,∴2B F ∠=∠;(2)解:∵DH ⊥AC∴90DHO ∠=︒,由(1)得B AOD ∠=∠, ∴3cos cos 5OH B AOD OD =∠==, 设OD OE OF r ===,则4OH r =-, 则435r r -=,解得10r =, 则6OH =,16HF OH OF =+= 由勾股定理可得:228DH OD OH -=, 由勾股定理可得:2285DF DH HF +=【点评】此题考查了圆的综合应用,涉及了切线的性质定理,圆周角定理,三角形内角和的性质,解直角三角形,勾股定理,解题的关键是灵活运用相关性质进行求解.4.(1)见解析 3π-【分析】(1)连接OC ,则OC CF ⊥,故90ACE ACO ∠+∠=︒,又90ADO A ∠+∠=︒,且A ACO ∠=∠,可得ACE ADO EDC ∠=∠=∠,故ED EC =; (2)过点C 作CG AB ⊥于G ,结合三角函数的知识求得CG 与CE 的长,从而利用COE BOC COB COH S S S S S =+--△△阴影扇形扇形求得阴影部分的面积之和.(1)证明:连接OC ,CF 是O 的切线,∴OC CF ⊥,∴90ACO ACE ∠+∠=︒,OE AB ⊥,∴90ADO A ∠+∠=︒,OA OC =,∴A ACO ∠=∠,∴ACE ADO ∠=∠, 又ADO CDE ∠=∠,∴ACE CDE ∠=∠,∴ED EC =.(2)解:过点C 作CG AB ⊥于G ,30A ACO ∠=∠=︒,∴260BOC A ∠=∠=︒, ∴33sin 6032CG OC =︒==, 9030COE BOC ∠=︒-∠=︒,90OCE ∠=︒,∴3tan 3031CE OC =︒==. 1133122COE S OC CE =⨯⨯==△, 260(3)3602COB S ππ=⨯⨯=扇形, 230(3)3604COH S ππ=⨯⨯=扇形, 113333222BOC S OB CG =⨯⨯==△ ∴333324COE BOC COB COH S S S S S πππ-=+--=-=△△阴影扇形扇形 【点评】本题属于圆的综合题,涉及到了圆的切线的性质,扇形面积的计算方法,以及三角函数相关知识,解题的关键是学会常用辅助线的作法.5.(1)55°(2)30°【分析】(1)连接OA 、OB ,根据切线的性质可得∠OAP =∠OBP =90°,再根据四边形内角和等于360度求出AOB ∠,再由圆周角定理即可求出结果;(2)连接AB ,EC ,由切线长定理以及平行四边形的性质可证明四边形PACB 是菱形,进而证明△ABC 是等边三角形,进一步可得结论.(1)如图①,连接OA 、OB ,∵P A ,PB 是⊙O 的切线,∴∠OAP =∠OBP =90°,∵∠APB =70°,∴∠AOB =360°-90°-90°-70°=110°∴∠ACB =12∠AOB =11102⨯︒=55°; (2)如图②,连接AB ,EC ,∴,BAE BCE ∠=∠∵PA ,PB 分别与O 相切于点A ,B ,∴,PA PB =∵四边形PACB 是平行四边形,∴四边形PACB 是菱形,∴,AC BC =∵PA 是O 的切线,且AE 是O 的直径,∴,AE PA ⊥∵四边形APBC 是平行四边形,∴PA //BC∴,AE BC ⊥即∠90,ADB ︒=∴∠90,BAD ABD ︒+∠=∵AE 是O 的直径,∴∠90,ACE ︒=即∠90,ACD BCE ︒+∠=∵∠,BAD BCE =∠∴∠,ABD ACB =∠∴,AB AC =∴,AB AC BC ==即△ABC 是等边三角形,∴∠60,ABC BAC ACB ︒=∠=∠=∵,AE BC ⊥ ∴116030.22EAC BAC ︒︒∠=∠=⨯= 【点评】本题考查的是切线的性质、圆周角定理、等腰三角形的判定与性质,平行四边形的性质,菱形的判定与性质等知识,掌握圆的切线垂直于经过切点的半径是解题的关键.6.(1)见解析(2)6【分析】(1) 连接OD ,然后根据圆的性质和已知可以得到90ODC ∠=︒,即可证得CD 与O 相切;(2)由已知可以得到AEC CED ∽,再根据三角形相似的性质和已知条件即可求出AD 的值.(1)证明:连接OD ,∵AB 为O 的直径,∴90ADB ∠=︒,即90ODB ADO ∠+∠=︒,∵OA OD =,∴ADO A ∠=∠,又∵BDC A ∠=∠;∴90ODB BDC ∠+∠=︒,即90ODC ∠=︒∴CD 是O 切线.(2)∵CE AE ⊥,∴90∠=∠=︒E ADB ,∴DB //EC ,∴DCE BDC ∠=∠,∵BDC A ∠=∠,∴A DCE ∠=∠,∵E E ∠=∠,∴AEC CED ∽, ∴CE AE DE CE=, ∴2CE DE AE =⋅,∴162(2)AD =+,∴6AD =.【点评】本题考查圆的综合应用,熟练掌握圆切线的判定方法、三角形相似的判定和性质是解题关键.7.(1)证明过程见解析(2)2【分析】(1)连接DF ,通过证明Rt △DFB ≌Rt △DEB (HL )得到DF =DE ,证明△ADF ≌△CDE (ASA )得到AF =CE ,即可证明四边形ABCD 是菱形;(2)连接AG,根据等腰三角形三线合一的性质得到DG=GB,设BF=x,则AF=5-x,利用勾股定理可得2222-=-,列出方程求解即可得到BF的长.AD AF DB BF(1)证明:连接DF,如图所示∵DE是切线,AD是直径∴∠ADE=90°,∠DF A=90°∵四边形ABCD是平行四边形∴∠DEB=90°,∠CDF=90°∴∠DFB=∠DEB=90°又∵BF=BE,DB=DB∴Rt△DFB≌Rt△DEB(HL)∴DF=DE∵四边形ABCD是平行四边形∴∠A=∠C又∵∠AFD=∠DEC∴△ADF≌△CDE(AAS)∴AF=CE∴AB=CB∴四边形ABCD是菱形(2)解:连接AG,如图所示∵AD是直径∴∠AGD=90°,即AG⊥BD∵四边形ABCD是菱形∴AB=AD∴DG=GB5∴DB5设BF=x,则AF=5-x∵2222AD AF DB BF -=-∴()(2222555x x --=-,解得x =2∴BF 的长为2【点评】本题考查了菱形的判定、平行四边形的性质、直径所对圆周角是直角、全等三角形的判定与性质、勾股定理等知识,正确作出辅助线,掌握这些知识点是解答本题的关键.8.(1)见解析(2)2【分析】(1)根据切线性质得90ODE ∠=︒,再根据圆及角平分线的性质,证得//OD BC ,最后根据平行线的性质,证得结论.(2)连接OD 交AC 于点F ,证明四边形CEDF 是矩形,再设O 的半径r ,在Rt AOF 中运用勾股定理,建立关于r 的方程,求解即可.(1)证明:如图,连接OD ,DE 与O 相切于点D ,DE OD ∴⊥,90ODE ∴∠=︒,OD OB =,ODB OBD ∴∠=∠, BD 平分ABC ∠,OBD DBC , ODB DBC ,//OD BC ∴,18090E ODE ∴∠=︒-∠=︒,DE BC ∴⊥.(2)解:如图,连接OD 交AC 于点F ,AB 是O 的直径,90ACB ∴∠=︒,18090ECF ACB ∴∠=︒-∠=︒,90ECF E EDF ∴∠=∠=∠=︒,∴四边形CEDF 是矩形.90AFO CFD ∴∠=∠=︒,1DF CE ==,FO AC ∴⊥,3AF CF DE ∴===设O 的半径为r ,则OA OD r ==,222OA OF AF =+,1OF r =-,()22213r r ∴=-+, 解得2r =,O ∴的半径为2.【点评】本题考查了与圆有关的综合问题,灵活运用切线性质,勾股定理进行推理求值是解题的关键.9.(1)证明见解析 310【分析】(1)根据切线的性质可得90BAD CAE ∠+∠=︒,根据圆周角定理的推论可得90BAD ABD ∠+∠=︒,即得出CAE ABD ∠=∠.结合题意即可利用“AAS ”证明ACE BAD △△≌;(2)连接AF .由垂径定理可得132AE ED AD ===.再根据全等三角形的性质可得6CE AD ==,3AE ED BD ===,利用勾股定理可求出35AC AB ==.再根据圆周角定理的推论结合等腰三角形“三线合一”的性质即可求出13102BF BC ==.(1)证明:∵CA 与O 相切于点A ,∴90BAC ∠=︒,∴90BAD CAE ∠+∠=︒.∵AB 为直径,∴90BDA ∠=︒,∴90BAD ABD ∠+∠=︒,∴CAE ABD ∠=∠.∵AD OC ⊥,∴90AEC ADB ∠=∠=︒.又∵AB AC =,∴()ACE BAD AAS ≌△△;(2)如图,连接AF .∵AD OC ⊥, ∴132AE ED AD ===. ∵ACE BAD △△≌,∴6CE AD ==,3AE ED BD ===∴在Rt AEC 中,22223635AC AE CE AB ++=, ∴2310BC ==∵AB 为直径,∴90AFB ∠=︒.∵AB =AC , ∴13102BF BC ==. 【点评】本题为圆的综合题.考查切线的性质,圆周角定理,三角形全等的判定和性质,等腰直角三角形的性质以及勾股定理.掌握与圆相关的知识点是解题关键.10.(1)相切;理由见解析(2)2π【分析】(1)连接OD,CD,再根据直径所对的圆周角是直角及直角三角形斜边上的中线性质证明OD⊥DE即可;(2)根据DEC A∠=∠证明三角形DEC是等边三角形,即可得到DC的圆心角是120°,再根据弧长公式计算即可.(1)ED与⊙O相切.理由:连接OD,CD.∵AC是直径,∴∠ADC=90°,在Rt△BDC中,E为BC的中点,∴DE=EC,∴∠3=∠2,又∵OD=OC,∴∠1=∠4,∵∠1+∠2=90°,∴∠ODE=∠3+∠4=90°,∴ED与⊙O相切;(2)∵∠A+∠1=90°,∠1+∠2=90°,∴∠A=∠2,∵∠DEC=∠A,∴∠2=∠3=∠DEC=60°,∴∠A=60°,∴∠DOC=2∠A=120°,∴弧DC的长=12032 180ππ⨯=.【点评】本题考查圆的性质及弧长公式,熟记直径所对的圆周角是直角、切线的证明、弧长公式是解题的关键.11.(1)见解析;(2)5【分析】(1)连接OD、BD,根据切线的性质得到OD⊥DE,推出OD∥BC,证得∠ODB=∠CBD,由此推出∠OBD=∠CBD,根据AB为O的直径,得到∠ADB=∠CDB=90°,证得△ABD≌△CBD(ASA),即可得到AB=BC;(2)根据AB=BC,BD⊥AC,求出AD=CD=13102AC=CE=9,证得△CDE∽△CBD,求出CB,即可得到O的半径.(1)证明:连接OD、BD,∵DE是O的切线,∴OD⊥DE,∵DE BC⊥,∴OD∥BC,∴∠ODB=∠CBD,∵OD=OB,∴∠ODB=∠OBD,∴∠OBD=∠CBD,∵AB为O的直径,∴∠ADB=∠CDB=90°,∵BD=BD,∴△ABD≌△CBD(ASA),∴AB=BC;(2)∵AB=BC,BD⊥AC,∴AD=CD=1310 2AC=∵DE=3,∴()222293103 CE CD DE=--,∵∠C=∠C,∠CED=∠CDB=90°,∴△CDE∽△CBD,∴2CD CE CB=⋅,∴(22109310CDCBCE===,∴AB=CB=10,∴O的半径为5.【点评】此题考查了切线的性质定理,圆周角定理,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,熟记各知识点并综合应用是解题的关键.12.(1)见解析(2)37【分析】(1)根据OC=OE,可得∠OCE=∠E,再由OE BC,可得∠E=∠BCE,从而得到∠OCE=∠BCE,即可求证;(2)根据CD=CF,可得∠BCD=∠BCE=∠OCE,再由CD是⊙O的切线,可得∠BCD=30°,再证得∠A=∠BCD=30°,根据直角三角形的性质,即可求解.【解析】(1)证明:∵OC=OE,∴∠OCE=∠E,∵OE BC,∴∠E=∠BCE,∴∠OCE=∠BCE,∴CE平分∠ACB;(2)解:如图,∵CD=CF,∴∠BCD=∠BCE,∵CE平分∠ACB,∴∠BCD=∠BCE=∠OCE,∵CD是⊙O的切线,∴∠ACD=90°,即∠BCD+∠ACB=90°,∴∠BCD=30°,∵AC是⊙O的直径,∴∠ABC=90°,∴∠A+∠ACB=90°,∴∠A=∠BCD=30°,∵CD=6,∴AD=2CD=12,∴2263AC AD CD-=∴33OC=∴2237OD OC CD=+=【点评】本题主要考查了切线的性质,圆周角定理,直角三角形的性质,勾股定理,熟练掌握切线的性质,圆周角定理,直角三角形的性质,勾股定理是解题的关键.13.(1)见解析(2)AF=185.【分析】(1)根据圆周角定理可得AD⊥BC,再由等腰三角形的性质可得BD=CD,进而得出OD是三角形的中位线,由切线的性质可得OD∥FC,证出三角形DFC是等腰三角形即可;(2)在Rt△ODE中,根据锐角三角函数可求出半径OD,进而得出直径AB,在Rt△ABF 中,由锐角三角函数可求出AF.(1)证明:如图,连接OC,AD,∵AB=AC,∴∠ABC=∠ACB,又∵∠ABC=∠F,∴∠F=∠ACB,∴DF=DC,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,又∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∵DE是⊙O的切线,∴OD⊥DE,∴FC⊥DE,∵DF=DC,∴DE是FC的垂直平分线,即点E为线段CF垂直平分线上一点;(2)解:连接BF,在Rt△ODE中,设OD=x,则OE=BE-OB=8-x,∵sin∠E=35=ODOE,∴8xx=35,解得x=3,经检验x=3是原方程的根,∴AB=2OD=6,∵AB是⊙O的直径,∴∠AFB=90°,∴DG∥BF,∴∠E=∠ABF,在Rt△ABF中,AB=6,sin∠ABF=sin∠E=35,∴AF =AB •sin ∠ABF =6×35=185. 【点评】本题考查切线的性质,圆周角定理,等腰三角形的判断和性质,直角三角形的边角关系,掌握切线的性质,圆周角定理,等腰三角形的判断和性质,直角三角形的边角关系是正确解答的前提.14.(1)见解析(2)AB =10,周长16+45【分析】(1)根据AB 是⊙O 的直径,得∠C =90°,根据点D 是AC 的中点,得CA ⊥DF ,即有∠AEO =90°,则有BC DF ∥,即可得证;(2)先利用平行及圆周角定理证得∠DBF =∠BAC ,则根据正切值和勾股定理即可求出CB 、AB ,在Rt △AEO 中,利用勾股定理得OE =3,在Rt △AED 中,利用勾股定理,得AD 5则四边形的周长可得.(1)证明:∵AB 是⊙O 的直径,∴∠C =90°,∵点D 是AC 的中点,∴DO 垂直平分AC ,且AD =DC ,∴CA ⊥DF ,AE =EC ,∴∠AEO =90°,∴BC DF ∥,∵BF CD ∥,∴四边形BCDE 是平行四边形;(2)∵BC DF ∥,∴∠DBF =∠CDB ,又∵根据圆周角定理有∠CDB =∠BAC ,∴∠DBF =∠BAC ,即tan ∠BAC =34, ∵AC =8,∴CB =6,则在Rt △ACB 中,利用勾股定理可得AB =10,即AO =5=OD ,∵AE =EC =12AC ,∴AE=EC=4,在Rt△AEO中,利用勾股定理得OE=3,∴DE=OD-OE=5-3=2,在Rt△AED中,利用勾股定理,得AD5CD5∴四边形ABCD的周长=AB+BC+CD+AD5545【点评】本题考查了平行四边的判定与性质、同弧所对的圆周角相等、同弧所对的弦相等、勾股定理以及解直角三角形的知识,利用正切值以及同弧所对的圆周角相等是解答本题的关键.15.(1)见解析(2)1【分析】(1)连接OD,由AB=AC,OB=OD,则∠B=∠ODB=∠C,则OD∥AC,由DE为切线,即可得到结论成立;(2)如图所示,连接BF,AD,先解直角三角形ACD求出AD的长,从而求出CD的长,然后分别解直角三角形BCF,直角三角形DCE,求出BF,DE,进而求出CF,CE,即可得到EF.(1)解:连接OD,如图:∵AB=AC,∴∠B=∠C,∵OB=OD,∴∠B=∠ODB,∴∠B=∠ODB=∠C,∴OD∥AC,∵DE是切线,∴OD⊥DE,∴AC⊥DE;(2)解:如图所示,连接BF,AD,∵AB是圆O的直径,∴∠AFB=∠ADB=90°,∴∠BFC=90°,∵DE⊥AC,∴∠DEC=90°∵AB=AC,∴BC=2CD,∠ABD=∠C,∴25 sin sinADABD CAC∠===∴2525 AD AC==∴225CD AC AD-∴5BC=∴sin2DE CD C=⋅=,sin=4BF BC C=⋅,∴221CE CD DE=-=,222CF BC BF=-=,∴EF=CF-CE=1.【点评】本题主要考查的是切线的性质、等腰三角形的性质、平行线的性质与判定,解直角三角形、勾股定理,解题的关键是熟练掌握所学的性质定理,正确的求出边的长度..16.(1)见解析(2)2π【分析】(1)先证明∠CEB=∠CBP=90°,再由∠D+∠P=90°,∠CAB+∠CBE=90°,∠CAB=∠D,推出∠CBE=∠P,即可证明结论;(2)设CF=3k,CP=4k,先证明∠F AC=∠CAB,得到CE=CF=3k,再由相似三角形的性质得到BC2=CE•CP;从而求出sin∠CBE323k∠CBE=60°,即可证明△OBC是等边三角形,得到∠COB=60°,据此求解即可.(1)解:∵CE⊥OB,CD为圆O的直径,∴∠CEB=∠DBC=90°,∴∠CEB=∠CBP=90°,∵PF是切线,∴∠DCP=90°,∴∠D+∠P=90°,∵AB是直径,∴∠ACB=90°∴∠CAB+∠CBE=90°,∵∠CAB=∠D,∴∠CBE=∠P,∴△CBE∽△CPB;(2)解:∵34 CFCP=,∴设CF=3k,CP=4k,∵PF是切线,∴OC⊥PF,∵AF⊥PF,∴AF∥OC.∴∠F AC=∠ACO,∵OA=OC,∴∠OAC=∠ACO,∴∠F AC=∠CAB,∴CE=CF=3k,∵△CBE∽△CPB,∴CB CE CP CB=,∴BC2=CE•CP;∴BC =23k∴sin ∠CBE 323k= ∴∠CBE =60°,∵OB =OC ,∴△OBC 是等边三角形,∴∠COB =60°, ∵43AB =∴扇形COB 的面积260232360ππ⨯=() 【点评】本题主要考查了圆切线的性质,相似三角形的性质与判定,圆周角定理,角平分线的性质,解直角三角形,扇形面积,等边三角形的性质与判定等等,熟练掌握圆的相关知识是解题的关键.17.(1)证明见解析(2)证明见解析【分析】(1)根据AB 为O 的直径,可得90ADB ACB ∠=∠=︒,由ACB ∠的角平分线交O 于点D ,可得45ACD BCD ∠=∠=︒,AD BD =,AD BD =,进而结论得证;(2)由CAB ∠的角平分线交CD 于点F ,得到CAF BAF ∠=∠,结合(1)可得ACD BAD ∠=∠,再由∠=∠+∠DFA CAF ACD ,∠=∠+∠DAF BAF BAD ,得到DFA DAF ∠=∠,从而说明DA DF =,最后再证明ADE CDA △∽△,利用相似三角形的性质即可得证.(1)证明:∵AB 为O 的直径,∴90ADB ACB ∠=∠=︒,∵ACB ∠的角平分线交O 于点D ,∴45ACD BCD ∠=∠=︒,∴AD BD =,∴AD BD =,∴ADB 为等腰直角三角形;(2)证明:∵CAB ∠的角平分线交CD 于点F ,∴CAF BAF ∠=∠,由(1)可知:45ACD ∠=︒,AD BD =,90ADB ∠=︒∴45BAD ABD ∠=∠=︒,∴ACD BAD ∠=∠,∵∠=∠+∠DFA CAF ACD ,∠=∠+∠DAF BAF BAD ,∴DFA DAF ∠=∠,∴DA DF =,在ADE 和CDA 中DAE DCA ADE CDA ∠=∠⎧⎨∠=∠⎩, ∴ADE CDA △∽△, ∴AD DE CD AD=, ∴2AD DE DC =⋅,∴2DF DE DC =⋅.【点评】本题考查的是圆和三角形的综合题,考查了直径所对的圆周角为90°,角平分线,圆周角,等腰三角形的判定,相似三角形的判定与性质等知识.对知识的熟练掌握与灵活运用是解题的关键.18.(1)3AC =(2)见解析【分析】(1)根据直径所对的圆周角是直角可得90ACB ∠=︒,再根据勾股定理进行计算即可;(2)连结BD ,连结OD 与AC 交于F 点.根据切线的性质及平行四边形的性质可证明四边形OBCD 是菱形,即可得到结论.(1)∵AB 是圆O 的直径,∴90ACB ∠=︒∴2223AC AB BC =-=,∴3AC =.(2)连结BD ,连结OD 与AC 交于F 点.∵ED 与圆O 相切于D 点,∴OD ED ⊥,∵四边形ACDE 是平行四边形,∴ED AC ∥, CD EA ∥,∴OD AC ⊥,90OFA ACB ∠=︒=∠,∴OD BC ∥,∵CD EB ∥,OD OB =,∴四边形OBCD 是菱形,∴BD 平分ABC ∠.【点评】本题考查了圆周角定理、切线的性质、勾股定理、平行四边形的性质及菱形的判定和性质,熟练掌握知识点是解题的根据.19.(1)见解析 65【分析】(1)根据等角的余角相等,ABP CPO ∠=∠,进而证得APB ABP ∠=∠,最后结论得证;(2)作OH BC ⊥于H ,在Rt POC △中,求出OP ,PC ,OH ,CH 即可解决问题.(1)证明:∵OC OB =,∴OCB OBC ∠=∠,∵AB 是O 的切线,∴OB AB ⊥,∴90OBA ∠=︒,∴90ABP OBC ∠+∠=︒,∵OC AO ⊥,∴=90AOC ∠︒,∴90OCB CPO ∠+∠=︒,∴ABP CPO ∠=∠,∵APB CPO ∠=∠,∴APB ABP ∠=∠,∴AP AB =.(2)解:作OH BC ⊥于H ,在Rt OAB 中,∵4OB =,3AB =, ∴22345OA +,∵3AP AB ==,∴2PO =.在Rt POC △中,∵4OC OB == ∴2225PC OC OP =+=1122POC S PC OH OC OP ==△, ∴455OC OP OH PC == ∴2285CH OC OH =- ∵OH BC ⊥,∴CH BH =,∴1652BC CH = ∴165655PB BC PC =-=-=. 【点评】本题考查切线的性质、解直角三角形、勾股定理、等腰三角形的判定和性质、垂径定理等知识,学会添加适当的辅助线,构造直角三角形解决问题是解本题的关键.20.(1)见解析(2)3DF =22【分析】(1)由题意得BAE DAE ∠=∠,且90ABE ︒∠=,即90BAE AEB ︒∠+∠=,根据AD BC ⊥得90DAE AFD ︒∠+∠=,即可得;(2)根据AEB AFD ∠=∠,AFD BFE ∠=∠得BEF BFE ∠=∠,即BE BF =,根据BAE DAF ∠=∠,90ABE ADF ︒∠=∠=得ΔΔABE ADF ∽,根据10AB =,5BF =得12BE AB =,设DF x =,则2AD x =,在Rt ABD ∆中,根据勾股定理, 即()()2221052x x =++,即可得;(3)根据点G 为AB 中点,点O 在DG 上得OG 是ABE ∆的中位线,即OG BE ∥,12OG BE =,根据90ABE ︒∠=得OD DF =,AEB ∠和ACB ∠是AB 所对的圆周角得AEB ACB ∠=∠,即ACB AFC ∠=∠,即有AC AF =,设BF a =,DF b =, 有11222BE OD a b DG BD BF DF a b ++===++,即可得. (1)解:∵直径AE 平分BAD ∠,∴BAE DAE ∠=∠,且90ABE ︒∠=,∴90BAE AEB ︒∠+∠=,∵AD BC ⊥,∴90DAE AFD ︒∠+∠=,∴AEB AFD ∠=∠.(2)解:∵AEB AFD ∠=∠,AFD BFE ∠=∠,∴BEF BFE ∠=∠,∴BE BF =,∵BAE DAF ∠=∠,90ABE ADF ︒∠=∠=,∴ΔΔABE ADF ∽,∵10AB =,5BF =, ∴51102BE BF DF AB AB AD ====, 设DF x =,则2AD x =,在Rt ABD ∆中,根据勾股定理,222AB BD AD =+,即()()2221052x x =++,解得:13x =,25x =-,舍去负值,得到3DF =.(3)解:如图所示,∵点G 为AB 中点,点O 在DG 上,∴OG 是ABE ∆的中位线,∴OG BE ∥,12OG BE =, ∵90ABE ︒∠=,∴DG AB ⊥,ABD ∆是等腰直角三角形,AOG AEB AFD ∠=∠=∠,∴OD DF =,∵AEB ∠和ACB ∠是AB 所对的圆周角,∴AEB ACB ∠=∠,∴ACB AFC ∠=∠,即有AC AF =,∵AD CF ⊥,∴DF CD =.设BF a =,DF b =, 有11222BE OD a b DG BD BF DF a b ++===++, 解得2a b =, ∴::222BF FC a b ==.【点评】本题考查了圆与三角形,解题的关键是掌握垂径定理,相似三角形的判断与性质,中位线,勾股定理.。
人教版九年级上册数学第二十四章圆的切线的证明题
圆中的切线证明与计算题1、如图,AB=AC ,D 为BC 中点,⊙D 与AB 切于E 点.求证:AC 与⊙D 相切.2.如图,AB 为⊙O 的直径,BC 切⊙O 于B ,AC 交⊙O 于P ,CE=BE ,E 在BC 上. 求证:PE 是⊙O 的切线.3.如图,是⊙O 的直径,是弦,∠DAB=22.5°,延长到点,使得∠ACD=45°。
(1)求证:是⊙O 的切线;(2)若,求的长.4.如图,⊙O 的直径AB=4,∠ABC=30°,BC 交⊙O 于D ,D 是BC 的中点. (1)求BC 的长;(2)过点D 作DE ⊥AC ,垂足为E ,求证:直线DE 是⊙O 的切线.AB AD AB C CD 22AB BC OABPE C5.如图,已知A 是⊙O 上一点,半径OC 的延长线与过点A 的直线交于B 点,OC=BC,AC=OB 21. (1)求证:AB 是⊙O 的切线;(2)若∠ACD=450,OC=2,求弦CD 的长.6.如图,在Rt △ABC 中,∠B=90°,∠BAC 的平分线交BC 于点D ,E 为AB 上的一点,DE=DC ,以D 为圆心,DB 长为半径作⊙D ,AB=5,EB=3. (1)求证:AC 是⊙D 的切线; (2)求线段AC 的长.7.如图,在两个同心圆⊙O 中,大圆的弦AB 切小圆于点C. (1)求证:AC=BC;(4分)(2)若AB=8,求两圆之间圆环的面积(结果保留Π).(4分)8.如图,在⊙O中,弦BC⊥半径OA于点D,点F是CD上一点,AF交⊙O于点E,点P为BC延长线上一点,PF=PE.(1)求证:PE是⊙O的切线;(3分)(2)若AD=2,BC=8,DF=1,求PE的长.(5分)9.如图,在Rt△ABC中,∠ABC=90°,∠BAC的平分线交BC于D,以D为圆心,DB长为半径作⊙D,求证:AC与⊙D相切.10.如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于D,与边AC交于E,过D作DF AC于F.(1)求证:DF为⊙O的切线;(2)若DE AB=5,求AE的长.11.如图,在△ABC中,AB=AC,以边AB为直径作⊙O,交BC于D,过D作DE⊥AE. (1)求证:DE是⊙O的切线;(2)连接OC,若∠CAB=120︒,求DEOC的值.12.如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M,与AB、AD分别相交于点E、F.求证:CD与⊙O相切.13.如图,AB为⊙O的直径,C为⊙O上一点,D是BC的中点,DE⊥AB于E,I是△ABD的内心,DI的延长线交⊙O于N.(1)求证:DE是⊙O的切线;(2)若DE=4,CE=2,求⊙O的半径和IN的长.14.如图,在△ABC中,AB=AC,I是△ABC的内心,⊙O交AB于E,BE为⊙O的直径. (1)求证:AI与⊙O相切;(2)若BC=6,AB=5,求⊙O的半径.=,点M为BC上一点,且CM=AC.15.如图,AB是⊙O的直径,AC CE(1)求证:M为△ABE的内心;(2)若⊙O的半径为5,AE=8,求△BEM的面积.16.如图,AB=AC,点O在AB上,⊙O过点B,分别交BC于D、AB于E,DF⊥AC. (1)求证:DF为⊙O的切线;(2)若AC切⊙O于G,⊙O的半径为3,CF=1,求AC.。
初三圆的证明题
1、已知圆O的半径为5cm,点P到圆心O的距离为3cm,则点P与圆O的位置关系是A. 点P在圆O内B. 点P在圆O上C. 点P在圆O外D. 无法确定(答案)A2、圆O中,弦AB与弦CD相交于点E,若∠AEC = 60°,且AE = CE,则∠ADC等于A. 30°B. 60°C. 90°D. 120°(答案)B3、在圆O中,直径AB垂直于弦CD于点E,若AB = 10,CD = 6,则OE的长度为A. 8B. 5C. 4D. 3(答案)C4、圆O的内接四边形ABCD中,∠A : ∠B : ∠C = 2 : 3 : 4,则∠D的度数为A. 60°B. 90°C. 120°D. 150°(答案)B5、已知圆O的两条弦AB和CD相交于点P,若AP = PB,且∠APD = 60°,则∠CPD的度数为A. 30°B. 60°C. 90°D. 120°(答案)D6、圆O的半径为r,点A、B、C在圆上,且AB = BC,若∠AOB = 120°,则△ABC的面积为A. (√3/4)r2B. (√3/2)r2C. (3/4)r2D. r2(答案)A7、圆O的切线l与半径OA垂直于点A,点B在切线l上,且OB = 2OA,则∠OBA的度数为A. 30°B. 45°C. 60°D. 90°(答案)C8、在圆O中,弦AB与弦AC的夹角为60°,若AB = AC,且圆的半径为R,则△ABC的面积为A. (√3/2)R2B. (√3/4)R2C. (1/2)R2D. (1/4)R2(答案)B。
初中数学圆证明题
圆的证明1.如图,AB是⊙O的弦(非直径),C、D是AB上两点,并且OC=OD,求证:AC=BD.2.已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,与AC•交于点E,求证:△DEC为等腰三角形.3.如图,AB是⊙O的直径,弦AC与AB成30°角,CD与⊙O切于C,交AB•的延长线于D,求证:AC=CD.4.如图20-12,BC为⊙O的直径,AD⊥BC,垂足为D,弧AB AF,BF和AD交于E,求证:AE=BE.5.如图,AB是⊙O的直径,以OA为直径的⊙O1与⊙O2的弦相交于D,DE⊥OC,垂足为E.(1)求证:AD=DC.(2)求证:DE是⊙O1的切线.6.如图,已知直线MN与以AB为直径的半圆相切于点C,∠A=28°.求∠ACM的度数.7.如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙O的半径为3.若点O沿CA移动,当OC等于多少时,⊙O与AB相切?9、如图,已知矩形ABCD ,以A 为圆心,AD 为半径的圆交AC 、AB 于M 、E ,CE•的延长线交⊙A 于F ,CM=2,AB=4.(1)求⊙A 的半径;(2)求CE 的长和△AFC 的面积.10、已知AB 是⊙0的直径,CD 切⊙0于C ,AE CD ⊥,BC 延长线与AE 的延长线交于F 、AF BF =,求A ∠的度数。
(10分)11、如图所示,AB=AC ,AB 为⊙O 的直径,AC 、BC 分别交⊙O 于E 、D ,连结ED 、BE 。
(1)试判断DE 与BD 是否相等,并说明理由;(2)如果BC=6,AB=5,求BE 的长。
(12分)12、如图,在△ABC 中,AB =AC ,D 是BC 中点,AE 平分∠BAD 交BC 于点E ,点O 是AB 上一点,⊙O 过A 、E 两点,交AD 于点G ,交AB 于点F .(1)求证:BC 与⊙O 相切; (2)当∠BAC =120°时,求∠EFG 的度数.13、如图,⊙O 是△ABC 的外接圆,且AB =AC ,点D 在弧BC 上运动(不与B 、C 重合),过点D 作DE ∥BC ,DE 交AB 的延长线于点E ,连结AD 、BD . (1)求证:∠ADB =∠E .(2)当点D 运动到什么位置时,DE 是⊙O 的切线?请说明理由. (3)当AB =5,BC =6时,求⊙O 的半径.14、如图5.1-16,⊙O 的直径AB=4,C 为圆周上一点,AC=2,过点C 作⊙O 的切线l ,过点B 作l 的垂线BD ,垂足为D ,BD 与⊙O 交于点E. (1)求∠AEC 的度数;(2)求证:四边形OBEC 是菱形.(12分)MCBA E F OAB C DEA CD E G O F15、如图,AB为⊙O的直径,PQ切⊙O于T,AC⊥PQ于C,交⊙O于D。
圆的有关计算与证明(共50题)(解析版)-2023年中考数学真题分项汇编(全国通用)
圆的有关计算与证明(50题)一、单选题1.(2023·新疆·统考中考真题)如图,在⊙O 中,若∠ACB =30°,OA =6,则扇形OAB (阴影部分)的面积是()A.12πB.6πC.4πD.2π【答案】B【分析】根据圆周角定理求得∠AOB =60°,然后根据扇形面积公式进行计算即可求解.【详解】解:∵AB=AB,∠ACB =30°,∴∠AOB =60°,∴S =60360π×62=6π.故选:B .【点睛】本题考查了圆周角定理,扇形面积公式,熟练掌握扇形面积公式以及圆周角定理是解题的关键.2.(2023·江苏连云港·统考中考真题)如图,矩形ABCD 内接于⊙O ,分别以AB 、BC 、CD 、AD 为直径向外作半圆.若AB =4,BC =5,则阴影部分的面积是()A.414π-20 B.412π-20 C.20πD.20【答案】D【分析】根据阴影部分面积为2个直径分别为AB ,BC 的半圆的面积加上矩形的面积减去直径为矩形对角线长的圆的面积即可求解.【详解】解:如图所示,连接AC ,∵矩形ABCD 内接于⊙O ,AB =4,BC =5∴AC 2=AB 2+BC 2∴阴影部分的面积是S 矩形ABCD +π×AB 2 2+π×BC22-πAC22S 矩形ABCD +π×14AB 2+BC 2-AC 2=S 矩形ABCD=4×5=20,故选:D .【点睛】本题考查了勾股定理,矩形的性质,熟练掌握勾股定理是解题的关键.3.(2023·湖北荆州·统考中考真题)如图,一条公路的转弯处是一段圆弧(AC),点O 是这段弧所在圆的圆心,B 为AC上一点,OB ⊥AC 于D .若AC =3003m ,BD =150m ,则AC 的长为()A.300πmB.200πmC.150πmD.1003πm【答案】B【分析】根据垂径定理求出AD 长度,再根据勾股定理求出半径长度,最后利用弧长公式即可求出答案.【详解】解:∵OB ⊥AC ,点O 是这段弧所在圆的圆心,∴AD =CD ,,∵OD =OD ,OA =OC ,∴△ADO ≌△CDO ,∴∠AOD =∠COD .∵AC =3003m ,AD =CD ,∴AD =CD =1503m .设OA =OC =OB =x ,则DO =x -150,在Rt △ADO 中,x 2=x -150 2+1503 2,∴x =300m ,∴sin ∠AOD =AD AO=1503300=32.∴∠AOD =60°,∴∠AOC =120°,∴AC =n πR 180=120×π×300180=200πm .故选:B .【点睛】本题考查了圆的垂径定理,弧长公式,解题的关键在于通过勾股定理求出半径长度,从而求出所求弧长所对应的圆心角度数.4.(2023·山东滨州·统考中考真题)如图,某玩具品牌的标志由半径为1cm 的三个等圆构成,且三个等圆⊙O 1,⊙O 2,⊙O 3相互经过彼此的圆心,则图中三个阴影部分的面积之和为()A.14πcm 2 B.13πcm 2 C.12πcm 2 D.πcm 2【答案】C 【分析】根据圆的对称性可知:图中三个阴影部分的面积相等,只要计算出一个阴影部分的面积即可,如图,连接AO 1,AO 2,O 1O 2,阴影AO 1O 2的面积=扇形AO 1O 2的面积,据此即可解答.【详解】解:根据圆的对称性可知:图中三个阴影部分的面积相等;如图,连接AO 1,AO 2,O 1O 2,则AO 1=AO 2=O 1O 2,△AO 1O 2是等边三角形,∴∠AO 1O 2=60°,弓形AO 1,AO 2,O 1O 2的面积相等,∴阴影AO 1O 2的面积=扇形AO 1O 2的面积=60π×12360=16πcm 2,∴图中三个阴影部分的面积之和=3×16π=12πcm 2;故选:C .【点睛】本题考查了不规则图形面积的计算,正确添加辅助线、掌握求解的方法是解题关键.5.(2023·四川达州·统考中考真题)如图,四边形ABCD 是边长为12的正方形,曲线DA 1B 1C 1D 1A 2⋯是由多段90°的圆心角的圆心为C ,半径为CB 1;C 1D 1 的圆心为D ,半径为DC 1⋯,DA 1 、A 1B 1 、B 1C 1、C 1D 1⋯的圆心依次为A 、B 、C 、D 循环,则A 2023B 2023�的长是()A.4045π2B.2023πC.2023π4D.2022π【答案】A【分析】曲线DA 1B 1C 1D 1A 2⋯是由一段段90度的弧组成的,半径每次比前一段弧半径+12,得到AD n -1=AA n =4×12(n -1)+12,BA n =BB n =4×12(n -1)+1,得出半径,再计算弧长即可.【详解】解:由图可知,曲线DA 1B 1C 1D 1A 2⋯是由一段段90度的弧组成的,半径每次比前一段弧半径+12,∴AD =AA 1=12,BA 1=BB 1=1,CB 1=CC 1=32,DC 1=DD 1=2,AD 1=AA 2=2+12,BA 2=BB 2=2+1,CB 2=CC 2=2+32,DC 2=DD 2=2+2,⋯⋯,AD n -1=AA n =4×12(n -1)+12,BA n =BB n =4×12(n -1)+1,故A 2023B 2023 的半径为BA 2023=BB 2023=4×12×2023-1 +1=4045,∴A 2023B 2023 的弧长=90180×4045π=40452π.故选:A .【点睛】此题主要考查了弧长的计算,弧长的计算公式:l =n πr180,找到每段弧的半径变化规律是解题关键.6.(2023·四川广安·统考中考真题)如图,在等腰直角△ABC 中,∠ACB =90°,AC =BC =22,以点A 为圆心,AC 为半径画弧,交AB 于点E ,以点B 为圆心,BC 为半径画弧,交AB 于点F ,则图中阴影部分的面积是()A.π-2B.2π-2C.2π-4D.4π-4【答案】C【分析】先利用扇形的面积公式求出扇形ACE 和扇形BCF 的面积,再减去△ABC 的面积即可得.【详解】解:∵△ABC 是等腰直角三角形,∴∠A =∠B =45°,∵AC =BC =22,∴图中阴影部分的面积是S 扇形ACE +S 扇形BCF -S Rt △ABC =45π×22 2360+45π×22 2360-12×22 ×22=2π-4,故选:C .【点睛】本题考查了扇形的面积,熟练掌握扇形的面积公式是解题关键.7.(2023·江苏苏州·统考中考真题)如图,AB 是半圆O 的直径,点C ,D 在半圆上,CD=DB,连接OC ,CA ,OD ,过点B 作EB ⊥AB ,交OD 的延长线于点E .设△OAC 的面积为S 1,△OBE 的面积为S 2,若S 1S 2=23,则tan ∠ACO 的值为()A.2B.223C.75D.32【答案】A【分析】如图,过C 作CH ⊥AO 于H ,证明∠COD =∠BOE =∠CAO ,由S 1S 2=23,即12OA ∙CH 12OB ∙BE =23,可得CH BE =23,证明tan ∠A =tan ∠BOE ,可得CH BE =AH OB =23,设AH =2m ,则BO =3m =AO =CO ,可得OH =3m -2m =m ,CH =9m 2-m 2=22m ,再利用正切的定义可得答案.【详解】解:如图,过C 作CH ⊥AO 于H ,∵CD=BD,∴∠COD =∠BOE =∠CAO ,∵S 1S 2=23,即12OA ∙CH 12OB ∙BE =23,∴CH BE=23,∵∠A =∠BOE ,∴tan ∠A =tan ∠BOE ,∴CH AH=BE OB ,即CH BE =AH OB =23,设AH =2m ,则BO =3m =AO =CO ,∴OH =3m -2m =m ,∴CH =9m 2-m 2=22m ,∴tan ∠A =CH AH=22m2m =2,∵OA =OC ,∴∠A =∠ACO ,∴tan ∠ACO =2;故选:A .【点睛】本题考查的是圆周角定理的应用,勾股定理的应用,锐角三角函数的应用,作出合适的辅助线构建直角三角形是解本题的关键.二、填空题8.(2023·重庆·统考中考真题)如图,在矩形ABCD 中,AB =2,BC =4,E 为BC 的中点,连接AE ,DE ,以E 为圆心,EB 长为半径画弧,分别与AE ,DE 交于点M ,N ,则图中阴影部分的面积为.(结果保留π)【答案】4-π【分析】利用矩形的性质求得AB =CD =2,BE =CE =2,进而可得∠BAE =∠AEB =∠DEC =∠CDE =45°,然后根据S 阴影=2S △ABE -S 扇形BEM 解答即可.【详解】解:∵四边形ABCD 是矩形,AB =2,BC =4,E 为BC 的中点,∴AB =CD =2,BE =CE =12BC =2,∠ABC =∠DCB =90°,∴∠BAE =∠AEB =∠DEC =∠CDE =45°,∴S 阴影=2S △ABE -S 扇形BEM =2×12×2×2-45π×22360 =2×2-12π=4-π;故答案为:4-π.【点睛】本题考查了矩形的性质和不规则面积的计算,熟练掌握矩形的性质、明确阴影面积为两个全等的等腰直角三角形的面积减去两个圆心角为45°的扇形面积是解题关键.9.(2023·黑龙江绥化·统考中考真题)如图,⊙O 的半径为2cm ,AB 为⊙O 的弦,点C 为AB上的一点,将AB沿弦AB 翻折,使点C 与圆心O 重合,则阴影部分的面积为.(结果保留π与根号)【答案】23π-3cm 2【分析】根据折叠的性质得出△AOC 是等边三角形,则∠AOC =60°,OD =CD =1,根据阴影部分面积=S 扇形AOC -S △AOC 即可求解.【详解】解:如图所示,连接OA ,OC ,设AB ,CO 交于点D∵将AB沿弦AB 翻折,使点C 与圆心O 重合,∴AC =AO ,OC ⊥AB 又OA =OC ∴OA =OC =AC ,∴△AOC 是等边三角形,∴∠AOC =60°,OD =CD =1,∴AD =AO 2-CD 2=3,∴阴影部分面积=S 扇形AOC -S △AOC =60360π×22-12×2×3=23π-3cm 2 故答案为:23π-3cm 2.10.(2023·重庆·统考中考真题)如图,⊙O 是矩形ABCD 的外接圆,若AB =4,AD =3,则图中阴影部分的面积为.(结果保留π)【答案】254π-12【分析】根据直径所对的圆周角是直角及勾股定理得到BD =5,再根据圆的面积及矩形的性质即可解答.【详解】解:连接BD ,∵四边形ABCD 是矩形,∴BD 是⊙O 的直径,∵AB =4,AD =3,∴BD =AB 2+AD 2=5,∴⊙O 的半径为52,∴⊙O 的面积为254π,矩形的面积为3×4=12,∴阴影部分的面积为254π-12;故答案为:254π-12.【点睛】本题考查了矩形的性质,圆的面积,矩形的面积,勾股定理,掌握矩形的性质是解题的关键.11.(2023·江苏扬州·统考中考真题)用半径为24cm ,面积为120πcm 2的扇形纸片,围成一个圆锥的侧面,则这个圆锥的底面圆的半径为cm .【答案】5【分析】应为圆锥侧面母线的长就是侧面展开扇形的半径,利用圆锥侧面面积公式:S =π⋅r ⋅l ,就可以求出圆锥的底面圆的半径.【详解】解:设圆锥底面圆的半径为r ,l =24,由扇形的面积:S =π⋅r ⋅l =120π,得:r =5故答案为:5.【点睛】本题考查了圆锥侧面面积的相关计算,熟练掌握圆锥侧面面积的计算公式是解题的关键,注意用扇形围成的圆锥,扇形的半径就是圆锥的母线.12.(2023·浙江温州·统考中考真题)若扇形的圆心角为40°,半径为18,则它的弧长为.【答案】4π【分析】根据弧长公式l =n πr180即可求解.【详解】解:扇形的圆心角为40°,半径为18,∴它的弧长为40180×18π=4π,故答案为:4π.【点睛】本题考查了求弧长,熟练掌握弧长公式是解题的关键.13.(2023·浙江宁波·统考中考真题)如图,圆锥形烟囱帽的底面半径为30cm,母线长为50cm,则烟囱帽的侧面积为cm2.(结果保留π)【答案】1500π【分析】根据圆锥侧面展开图是一个扇形,由扇形面积公式S=12lr代值求解即可得到答案.【详解】解:∵圆锥形烟囱帽的底面半径为30cm,母线长为50cm,∴烟囱帽的侧面积S=12lr=12×2π×30×50=1500π(cm2),故答案为:1500π.【点睛】本题考查圆锥侧面展开图及扇形面积公式S=12lr,熟记扇形面积公式是解决问题的关键.14.(2023·天津·统考中考真题)如图,在每个小正方形的边长为1的网格中,等边三角形ABC内接于圆,且顶点A,B均在格点上.(1)线段AB的长为;(2)若点D在圆上,AB与CD相交于点P.请用无刻度的直尺,在如图所示的网格中,画出点Q,使△CPQ为等边三角形,并简要说明点Q的位置是如何找到的(不要求证明).【答案】(1)29(2)画图见解析;如图,取AC,AB与网格线的交点E,F,连接EF并延长与网格线相交于点G;连接DB与网格线相交于点H,连接HF并延长与网格线相交于点I,连接AI并延长与圆相交于点K,连接CK并延长与GB的延长线相交于点Q,则点Q即为所求【分析】(1)在网格中用勾股定理求解即可;(2)取AC,AB与网格线的交点E,F,连接EF并延长与网格线相交于点M,连接MB;连接DB与网格线相交于点G,连接GF并延长与网格线相交于点H,连接AH并延长与圆相交于点I,连接CI并延长与MB的延长线相交于点Q,则点Q即为所求,连接PQ,AD,BK,过点E作ET⊥网格线,过点G作GS ⊥网格线,由图可得Rt △AJF ≌Rt △BLF AAS ,根据全等三角形的性质可得Rt △IMF ≌Rt △HNF ASA 和△AIF ≌△BHF SAS ,根据同弧所对圆周角相等可得AD=BK,进而得到∠1=∠2和∠PCQ =60°,再通过证明△CAP ≌△CBQ ASA 即可得到结论.【详解】(1)解:AB =22+52=29;故答案为:29.(2)解:如图,取AC ,AB 与网格线的交点E ,F ,连接EF 并延长与网格线相交于点G ;连接DB 与网格线相交于点H ,连接HF 并延长与网格线相交于点I ,连接AI 并延长与圆相交于点K ,连接CK 并延长与GB 的延长线相交于点Q ,则点Q 即为所求;连接PQ ,AD ,BK ,过点E 作ET ⊥网格线,过点G 作GS ⊥网格线,由图可得:∵∠AJF =∠BLF ,∠AFJ =∠BFL ,AJ =BL ,∴Rt △AJF ≌Rt △BLF AAS ,∴FJ =FL ,AF =BF ,∵MJ =NL ,∴FJ -MJ =FL -NL ,即FM =FN ,∵∠IMF =∠HNF ,∠IFM =∠HFN ,∴Rt △IMF ≌Rt △HNF ASA ,∴FI =FH ,∵∠AFI =∠BFH ,AF =BF ,∴△AIF ≌△BHF SAS ,∴∠FAI =∠FBH ,∴AD=BK,∴∠1=∠2,∵△ABC 是等边三角形,∴∠ACB =60°,即∠1+∠PCB =60°,∴∠2+∠PCB =60°,即∠PCQ =60°,∵ET =GS ,∠ETF =∠GSF ,∠EFT =∠GFS ,∴Rt △ETF ≌Rt △GSF AAS ,∴EF =GF ,∵AF =BF ,∠AFE =∠BFG ,∴△AFE ≌△BFG SAS ,∴∠EAF =∠GBF ,∴∠GBF =∠EAF =∠CBA =60°,∴∠CBQ =180°-∠CBA -∠GBF =60°,∴∠CBQ =∠CAB ,∵CA =CB ,∴△CAP ≌△CBQ ASA ,∴CQ =CP ,∵∠PCQ =60°,∴△PCQ 是等边三角形,此时点Q 即为所求;故答案为:如图,取AC ,AB 与网格线的交点E ,F ,连接EF 并延长与网格线相交于点G ;连接DB 与网格线相交于点H ,连接HF 并延长与网格线相交于点I ,连接AI 并延长与圆相交于点K ,连接CK 并延长与GB 的延长线相交于点Q ,则点Q 即为所求.【点睛】本题考查作图-复杂作图,勾股定理、等边三角形的判定、全等三角形的判定与性质等知识,解题关键是理解题意,灵活运用所学知识是关键.15.(2023·江苏苏州·统考中考真题)如图,在▱ABCD 中,AB =3+1,BC =2,AH ⊥CD ,垂足为H ,AH =3.以点A 为圆心,AH 长为半径画弧,与AB ,AC ,AD 分别交于点E ,F ,G .若用扇形AEF 围成一个圆锥的侧面,记这个圆锥底面圆的半径为r 1;用扇形AHG 围成另一个圆锥的侧面,记这个圆锥底面圆的半径为r 2,则r 1-r 2=.(结果保留根号)【答案】324【分析】由▱ABCD ,AB =3+1,BC =2,AH ⊥CD ,AH =3,AD =BC =2,DH =22-3 2=1,cos DAH =AH AD=32,AB =CD =3+1,AB ∥CD ,求解∠DAH =30°,CH =3=AH ,证明∠ACH =∠CAH =45°,可得∠BAC =45°,再分别计算圆锥的底面半径即可.【详解】解:∵在▱ABCD 中,AB =3+1,BC =2,AH ⊥CD ,AH =3,∴AD =BC =2,DH =22-3 2=1,∵cos ∠DAH =AHAD=32,AB =CD =3+1,∴∠DAH =30°,CH =3=AH ,∴∠ACH =∠CAH =45°,∵AB ∥CD ,∴∠BAC =45°,∴45π×3180=2πr 1,30π×3180=2πr 2,解得:r 1=38,r 2=312,∴r 1-r 2=3324-2324=324;故答案为:324【点睛】本题考查的是平行四边形的性质,勾股定理的应用,锐角三角函数的应用,扇形的弧长的计算,圆锥的底面半径的计算,熟记圆锥的侧面展开图的扇形弧长等于底面圆的周长是解本题的关键.16.(2023·四川自贡·统考中考真题)如图,小珍同学用半径为8cm ,圆心角为100°的扇形纸片,制作一个底面半径为2cm 的圆锥侧面,则圆锥上粘贴部分的面积是cm 2.【答案】169π【分析】由题意知,底面半径为2cm 的圆锥的底面周长为4πcm ,扇形弧长为100π×8180=409πcm ,则扇形中未组成圆锥底面的弧长l =409π-4π=49πcm ,根据圆锥上粘贴部分的面积为扇形中未组成圆锥的弧长部分所对应的扇形面积可得圆锥上粘贴部分的面积为12lr =12×49π×8,计算求解即可.【详解】解:由题意知,底面半径为2cm 的圆锥的底面周长为4πcm ,扇形弧长为100π×8180=409πcm ,∴扇形中未组成圆锥底面的弧长l =409π-4π=49πcm ,∵圆锥上粘贴部分的面积为扇形中未组成圆锥的弧长部分所对应的扇形面积,∴圆锥上粘贴部分的面积为12lr =12×49π×8=169πcm 2,故答案为:169π.【点睛】本题考查了扇形的弧长、面积公式.解题的关键在于熟练掌握S 扇形=12lr ,l 扇形=n πr180,其中n 为扇形的圆心角,r 为扇形的半径.三、解答题17.(2023·四川南充·统考中考真题)如图,AB 与⊙O 相切于点A ,半径OC ∥AB ,BC 与⊙O 相交于点D ,连接AD .(1)求证:∠OCA =∠ADC ;(2)若AD =2,tan B =13,求OC 的长.【答案】(1)见解析(2)5【分析】(1)连接OA ,根据切线的性质得出∠OAB =90°,再由平行线的性质得出∠AOC =90°,利用圆周角定理及等腰直角三角形的性质即可证明;(2)过点A 作AH ⊥BC ,过点C 作CF ⊥BA 的延长线于点F ,根据勾股定理及等腰直角三角形的性质得出AH =DH =2,再由正切函数确定BH =32,AB =25,再由正方形的判定和性质及相似三角形的判定和性质求解即可.【详解】(1)证明:连接OA ,如图所示:∵AB 与⊙O 相切于点A ,∴∠OAB =90°,∵OC ∥AB ,∴∠AOC =90°,∴∠ADC =45°,∵OC =OA ,∴∠OCA =45°,∴∠OCA =∠ADC ;(2)过点A 作AH ⊥BC ,过点C 作CF ⊥BA 交BA 的延长线于点F ,如图所示:由(1)得∠OCA =∠ADC =45°,∴ΔAHD 为等腰直角三角形,∵AD =2,∴AH =DH =2,∵tan B =13,∴BH =32,AB =AH 2+BH 2=25,由(1)得∠AOC =∠OAF =90°,∵CF ⊥BA ,∴四边形OCFA 为矩形,∵OA =OC ,∴四边形OCFA 为正方形,∴CF =FA =OC =r ,∵∠B =∠B ,∠AHB =∠CFB =90°,∴△ABH ∽△CBF ,∴BH BF =AH CF 即3225+r=2r ,解得:r =5,∴OC =5.【点睛】题目主要考查圆周角定理,解直角三角形及正方形与相似三角形的判定和性质,理解题意,作出辅助线,综合运用这些知识点是解题关键.18.(2023·四川成都·统考中考真题)如图,以△ABC 的边AC 为直径作⊙O ,交BC 边于点D ,过点C 作CE ∥AB 交⊙O 于点E ,连接AD ,DE ,∠B =∠ADE .(1)求证:AC=BC;(2)若tan B=2,CD=3,求AB和DE的长.【答案】(1)见解析(2)AB=25,DE=25【分析】(1)根据CE∥AB,得到∠ACE=∠BAC,再根据同弧所对的圆周角相等,得到∠ACE=∠ADE=∠B,可证明△ABC是等腰三角形,即可解答;(2)根据直径所对的圆周角为直角,得到tan B=2=ADBD,设BD=x,根据勾股定理列方程,解得x 的值,即可求出AB;解法一:过点E作DC的垂线段,交DC的延长线于点F,证明∠B=∠ECF,求出EF,DF的长,根据勾股定理即可解出DE的长;解法二:连接AE,得到角相等,进而证得△ABC∽△ADE,根据对应边成比例即可解出DE的长.【详解】(1)证明:∵CE∥AB,∴∠BAC=∠ACE,∴∠BAC=∠ACE=∠ADE,∵∠B=∠ADE,∴∠B=∠BAC,∴AC=BC;(2)解:设BD=x,∵AC是⊙O的直径,∴∠ADC=∠ADB=90°,∵tan B=2,=2,即AD=2x,∴ADBD根据(1)中的结论,可得AC=BC=BD+DC=x+3,根据勾股定理,可得AD2+DC2=AC2,即2x2,2+32=x+3解得x1=2,x2=0(舍去),∴BD=2,AD=4,根据勾股定理,可得AB=AD2+BD2=25;解法一:如图,过点E作DC的垂线段,交DC的延长线于点F,∵CE∥AB,∴∠ECF=∠B,∵EF⊥CF,∴tan∠ECF=tan∠B=2,即EF=2,CF∵∠B+∠BAD=90°,∠ADE+∠EDF=90°,∠B=∠ADE,∴∠BAD=∠EDF,∴∠DEF =90°-∠EDF =90°-∠BAD =∠B ,∴DF EF=2,设CF =a ,则DF =DC +CF =a +3,∴EF =2a ,可得方程a +32a=2,解得a =1,∴EF =2,DF =4,根据勾股定理,可得DE =DF 2+EF 2=25.解法二:如图,连接AE ,∵∠B =∠ADE ,∠ACB =∠AED ,∴△ABC ∽△ADE ,∴AB AD=BC DE ,又∵BC =5,AD =4,AB =25,∴254=5DE ,∴DE =25.【点睛】本题考查了圆周角定理,等腰三角形的判定和性质,相似三角形的判定及性质,平行线的性质,勾股定理,正切,利用等量代换证明相关角相等是解题的关键.19.(2023·内蒙古·统考中考真题)如图,AB 是⊙O 的直径,AC 是弦,D 是AC上一点,P 是AB 延长线上一点,连接AD ,DC ,CP .(1)求证:∠ADC -∠BAC =90°;(请用两种证法解答)(2)若∠ACP =∠ADC ,⊙O 的半径为3,CP =4,求AP 的长.【答案】(1)证明见解析(2)8【分析】(1)证法一:连接BD ,得到∠ADB =90°,因为∠BAC =∠BDC ,所以∠ADC -∠BAC =90°;证法二:连接BC ,可得∠ADC +∠ABC =180°,则∠ABC =180°-∠ADC ,根据∠ACB =90°,可得∠BAC +∠ABC =90°,即可得到结果;(2)连接OC ,根据角度间的关系可以证得△OCP 为直角三角形,根据勾股定理可得边OP 的长,进而求得结果.【详解】(1)证法一:如图,连接BD ,∵BC=BC,∴∠BDC=∠BAC,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ADC=∠ADB+∠BDC∵∠BAC=∠BDC,∴∠ADC=90°+∠BAC,∴∠ADC-∠BAC=90°,证法二:如图,连接BC,∵四边形ABCD是⊙O的内接四边形,∴∠ADC+∠ABC=180°,∴∠ABC=180°-∠ADC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°,∴∠BAC+180°-∠ADC=90°,∴∠ADC-∠BAC=90°,(2)解:如图,连接OC,∵∠ACP=∠ADC,∠ADC-∠BAC=90°,∴∠ACP-∠BAC=90°,∵OA=OC,∴∠BAC=∠ACO,∴∠ACP-∠ACO=90°,∴∠OCP=90°.∵⊙O的半径为3,∴AO=OC=3,在Rt△OCP中,OP2=OC2+CP2,∵CP=4,∴OP2=32+42=25,∴OP=5,∴AP=AO+OP=8,【点睛】本题考查了圆周角定理,直径所对的圆周角为直角,勾股定理,找到角度之间的关系是解题的关键.20.(2023·辽宁大连·统考中考真题)如图1,在⊙O中,AB为⊙O的直径,点C为⊙O上一点,AD为∠CAB的平分线交⊙O于点D,连接OD交BC于点E.(1)求∠BED 的度数;(2)如图2,过点A 作⊙O 的切线交BC 延长线于点F ,过点D 作DG ∥AF 交AB 于点G .若AD =235,DE =4,求DG 的长.【答案】(1)90°(2)210【分析】(1)根据圆周角定理证明两直线平行,再利用平行线的性质证明角度相等即可;(2)由勾股定理找到边的关系,求出线段长,再利用等面积法求解即可.【详解】(1)∵AB 是⊙O 的直径,∴∠ACB =90°,∵AD 平分∠CAB ,∴∠BAD =12∠BAC ,即∠BAC =2∠BAD ,∵OA =OD ,∴∠BAD =∠ODA ,∴∠BOD =∠BAD +∠ODA =2∠BAD ,∴∠BOD =∠BAC ,∴OD ∥AC ,∴∠OEB =∠ACB =90°,∴∠BED =90°,(2)如图,连接BD ,设OA =OB =OD =r ,则OE =r -4,AC =2OE =2r -8,AB =2r ,∵AB 是⊙O 的直径,∴∠ADB =90°,在Rt △ADB 中,有勾股定理得:BD 2=AB 2-AD 2由(1)得:∠BED =90°,∴∠BED =∠BEO =90°,由勾股定理得:BE 2=OB 2-OE 2,BE 2=BD 2-DE 2,∴BD 2=AB 2-AD 2=BE 2+DE 2=OB 2-OE 2+DE 2,∴2r 2-235 2=r 2-r -4 2+42,整理得:r 2-2r -35=0,解得:r =7或r =-5(舍去),∴AB =2r =14,∴BD =AB 2-AD 2=142-235 2=214,∵AF是⊙O的切线,∴AF⊥AB,∵DG∥AF,∴DG⊥AB,∴S△ABD=12AD·BD=12AB·DG,∴DG=AD·BDAB =235×21414=210.【点睛】此题考查了圆周角定理和勾股定理,三角形中位线定理,切线的性质,解一元二次方程,熟练掌握圆周角定理和勾股定理是解题的关键.21.(2023·浙江杭州·统考中考真题)在边长为1的正方形ABCD中,点E在边AD上(不与点A,D重合),射线BE与射线CD交于点F.(1)若ED=13,求DF的长.(2)求证:AE⋅CF=1.(3)以点B为圆心,BC长为半径画弧,交线段BE于点G.若EG=ED,求ED的长.【答案】(1)1 2(2)见解析(3)14【分析】(1)证明△AEB∽△DEF,利用相似三角形的对应边成比例求解;(2)证明△AEB∽△CBF,利用相似三角形的对应边成比例证明;(3)设EG=ED=x,则AE=1-x,BE=1+x,在Rt△ABE中,利用勾股定理求解.【详解】(1)解:由题知,AB=BC=CD=DA=1,若ED=13,则AE=AD-ED=23.∵四边形ABCD是正方形,∴∠A=∠FDE=90°,又∵∠AEB=∠FED,∴△AEB∽△DEF,∴AB DF =AE ED,即1DF=2313,∴DF=12.(2)证明:∵四边形ABCD是正方形,∴∠A=∠C=90°,AB∥CD,∴∠ABE=∠F,∴△ABE∽△CFB,∴AB CF =AE BC,∴AE⋅CF=AB⋅BC=1×1=1.(3)解:设EG=ED=x,则AE=AD-AE=1-x,BE=BG+GE=BC+GE=1+x.在Rt△ABE中,AB2+AE2=BE2,即12+(1-x)2=(1+x)2,解得x=1 4.∴ED=14.【点睛】本题考查了相似三角形的性质与判定,勾股定理的应用,正方形的性质等,熟练掌握相关性质定理是解题的关键.22.(2023·河北·统考中考真题)装有水的水槽放置在水平台面上,其横截面是以AB为直径的半圆O,AB=50cm,如图1和图2所示,MN为水面截线,GH为台面截线,MN∥GH.计算:在图1中,已知MN=48cm,作OC⊥MN于点C.(1)求OC的长.操作:将图1中的水面沿GH向右作无滑动的滚动,使水流出一部分,当∠ANM=30°时停止滚动,如图2.其中,半圆的中点为Q,GH与半圆的切点为E,连接OE交MN于点D.探究:在图2中(2)操作后水面高度下降了多少?(3)连接OQ 并延长交GH 于点F ,求线段EF 与EQ的长度,并比较大小.【答案】(1)7cm (2)112cm(3)EF =2533cm ,EQ =25π6cm ,EF >EQ .【分析】(1)连接OM ,利用垂径定理计算即可;(2)由切线的性质证明OE ⊥GH 进而得到OE ⊥MN ,利用锐角三角函数求OD ,再与(1)中OC 相减即可;(3)由半圆的中点为Q 得到∠QOB =90°,得到∠QOE =30°分别求出线段EF 与EQ的长度,再相减比较即可.【详解】解:(1)连接OM ,∵O 为圆心,OC ⊥MN 于点C ,MN =48cm ,∴MC =12MN =24cm ,∵AB =50cm ,∴OM =12AB =25cm ,∴在Rt △OMC 中,OC =OM 2-MC 2=252-242=7cm .(2)∵GH 与半圆的切点为E ,∴OE ⊥GH ∵MN ∥GH∴OE ⊥MN 于点D ,∵∠ANM =30°,ON =25cm ,∴OD =12ON =252cm ,∴操作后水面高度下降高度为:252-7=112cm .(3)∵OE ⊥MN 于点D ,∠ANM =30°∴∠DOB =60°,∵半圆的中点为Q ,∴AQ=QB,∴∠QOB =90°,∴∠QOE =30°,∴EF =tan ∠QOE ⋅OE =2533cm ,EQ =30×π×25180=25π6cm ,∵2533-25π6=503-25π6=2523-π 6>0,∴EF >EQ.【点睛】本题考查了垂径定理、圆的切线的性质、求弧长和解直角三角形的知识,解答过程中根据相关性质构造直角三角形是解题关键.23.(2023·湖北武汉·统考中考真题)如图,OA ,OB ,OC 都是⊙O 的半径,∠ACB =2∠BAC .(1)求证:∠AOB =2∠BOC ;(2)若AB =4,BC =5,求⊙O 的半径.【答案】(1)见解析(2)52【分析】(1)由圆周角定理得出,∠ACB =12∠AOB ,∠BAC =12∠BOC ,再根据∠ACB =2∠BAC ,即可得出结论;(2)过点O 作半径OD ⊥AB 于点E ,根据垂径定理得出∠DOB =12∠AOB ,AE =BE ,证明∠DOB =∠BOC ,得出BD =BC ,在Rt △BDE 中根据勾股定理得出DE =BD 2-BE 2=1,在Rt △BOE 中,根据勾股定理得出OB 2=(OB -1)2+22,求出OB 即可.【详解】(1)证明:∵AB=AB,∴∠ACB =12∠AOB ,∵BC =BC ,∴∠BAC =12∠BOC ,∵∠ACB =2∠BAC ,∴∠AOB =2∠BOC .(2)解:过点O 作半径OD ⊥AB 于点E ,则∠DOB =12∠AOB ,AE =BE ,∵∠AOB =2∠BOC ,∴∠DOB =∠BOC ,∴BD =BC ,∵AB =4,BC =5,∴BE =2,DB =5,在Rt △BDE 中,∵∠DEB =90°∴DE =BD 2-BE 2=1,在Rt △BOE 中,∵∠OEB =90°,∴OB 2=(OB -1)2+22,∴OB =52,即⊙O 的半径是52.【点睛】本题主要考查了勾股定理,垂径定理,圆周角定理,解题的关键是作出辅助线,熟练掌握圆周角定理.24.(2023·湖南·统考中考真题)如图所示,四边形ABCD 是半径为R 的⊙O 的内接四边形,AB 是⊙O 的直径,∠ABD =45°,直线l 与三条线段CD 、CA 、DA 的延长线分别交于点E 、F 、G .且满足∠CFE =45°.(1)求证:直线l ⊥直线CE ;(2)若AB =DG ;①求证:△ABC ≌△GDE ;②若R =1,CE =32,求四边形ABCD 的周长.【答案】(1)见解析(2)①见解析,②72+2【分析】(1)在⊙O 中,根据同弧所对的圆周角相等可得∠ACD =∠ABD =45°,结合已知在△CFE 中根据三角形内角和定理可求得∠FEC =90°;(2)①根据圆内接四边形的性质和邻补角可得∠ABC =∠GDE ,由直径所对的圆周角是直角和(1)可得∠ACB =∠GED ,结合已知即可证得△ABC ≌△GDE AAS ;②在⊙O 中由R =1,可得AB =2,结合题意易证DA =DB ,在Rt △ABC 中由勾股定理可求得DA =2,由①可知易得BC +CD =DE +CD =CE ,最后代入计算即可求得周长.【详解】(1)证明:在⊙O 中,∵AD =AD,∴∠ACD =∠ABD =45°,即∠FCE =45°,在△CFE 中,∵∠CFE =45°,∴∠FEC =180°-∠FCD +∠CFE =90°,即直线l ⊥直线CE ;(2)①四边形ABCD 是半径为R 的⊙O 的内接四边形,∴∠ADC +∠ABC =180°,∵∠ADC +∠GDE =180°,∴∠ABC =∠GDE ,∵AB 是⊙O 的直径,∴∠ACB =90°,由(1)可知∠GED =90°,∴∠ACB=∠GED,在△ABC与△GDE中,∠ABC=∠GDE ∠ACB=∠GED AB=DG,∴△ABC≌△GDE AAS,②在⊙O中,R=1,∴AB=2R=2,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=45°,∴∠BAD=90°-∠ABD=45°,∴DA=DB,在Rt△ABC中,∴DA2+DB2=AB2,即2DA2=22,解得:DA=2,由①可知△ABC≌△GDE,∴BC=DE,∴BC+CD=DE+CD=CE=32,∴四边形ABCD的周长为:DA+AB+BC+CD=DA+AB+CE=2+2+32=72+2.【点睛】本题考查了同弧所对的圆周角相等、三角形内角和定理、垂直的定义、圆内接四边形的性质、邻补角互补、直径所对的圆周角是直角、全等三角形的判定和性质、勾股定理解直角三角形以及周长的计算;解题的关键是灵活运用以上知识,综合求解.25.(2023·天津·统考中考真题)在⊙O中,半径OC垂直于弦AB,垂足为D,∠AOC=60°,E为弦AB所对的优弧上一点.(1)如图①,求∠AOB和∠CEB的大小;(2)如图②,CE与AB相交于点F,EF=EB,过点E作⊙O的切线,与CO的延长线相交于点G,若OA=3,求EG的长.【答案】(1)∠AOB=120°,∠CEB=30°(2)3【分析】(1)根据半径OC 垂直于弦AB ,可以得到AC =BC,从而得到∠AOC =∠BOC ,结合已知条件∠AOC =60°即可得到∠AOB =2∠AOC =120°,根据∠CEB =12∠AOC 即可求出∠CEB =30°;(2)根据∠CEB =30°,结合EF =EB ,推算出∠EBF =∠EFB =75°,进一步推算出∠GOE =∠AOE-∠AOG =30°,在Rt △OEG 中,tan ∠GOE =EG OE,OE =OA =3,再根据EG =3×tan30°即可得到答案.【详解】(1)解:在⊙O 中,半径OC 垂直于弦AB ,∴AC =BC ,得∠AOC =∠BOC .∵∠AOC =60°,∴∠AOB =2∠AOC =120°.∵∠CEB =12∠BOC =12∠AOC ,∴∠CEB =30°.(2)解:如图,连接OE .同(1)得∠CEB =30°.∵在△BEF 中,EF =EB ,∴∠EBF =∠EFB =75°.∴∠AOE =2∠EBA =150°.又∠AOG =180°-∠AOC =120°,∴∠GOE =∠AOE -∠AOG =30°.∵GE 与⊙O 相切于点E ,∴OE ⊥GE ,即∠OEG =90°.在Rt △OEG 中,tan ∠GOE =EG OE,OE =OA =3,∴EG =3×tan30°=3.【点睛】本题考查圆周角定理、切线的性质和直角三角函数,解题的关键是灵活运用相关知识.26.(2023·江苏苏州·统考中考真题)如图,△ABC 是⊙O 的内接三角形,AB 是⊙O 的直径,AC =5,BC =25,点F 在AB 上,连接CF 并延长,交⊙O 于点D ,连接BD ,作BE ⊥CD ,垂足为E .(1)求证:△DBE ∽△ABC ;(2)若AF =2,求ED 的长.【答案】(1)证明见解析(2)355【分析】(1)分别证明∠ACB=90°=∠BED,∠CAB=∠CDB,从而可得结论;(2)求解AB=AC2+BC2=5,tan∠ABC=ACBC =12,可得BF=3,证明tan∠ABC=tan∠DBE=DE BE =12,设DE=x,则BE=2x,BD=5x,证明△ACF∽△DBF,可得ACBD=AFDF=CFBF,可得DF=2x,EF=x=DE,BD=BF=3,从而可得答案.【详解】(1)证明:∵AB是⊙O的直径,BE⊥CD,∴∠ACB=90°=∠BED,∵∠CAB=∠CDB,∴△DBE∽△ABC.(2)∵AC=5,BC=25,∠ACB=90°,∴AB=AC2+BC2=5,tan∠ABC=ACBC =12,∵AF=2,∴BF=3,∵△DBE∽△ABC,∴∠ABC=∠DBE,∴tan∠ABC=tan∠DBE=DEBE =12,设DE=x,则BE=2x,BD=5x,∵∠AFC=∠BFD,∠CAB=∠CDB,∴△ACF∽△DBF,∴AC BD =AFDF=CFBF,∴55x =2DF,则DF=2x,∴EF=x=DE,∴BD=BF=3,∴DE=355.【点睛】本题考查的是圆周角定理的应用,相似三角形的判定与性质,锐角三角函数的应用,熟记圆的基本性质与重要定理是解本题的关键.27.(2023·四川达州·统考中考真题)如图,△ABC、△ABD内接于⊙O,AB=BC,P是OB延长线上的一点,∠PAB=∠ACB,AC、BD相交于点E.(1)求证:AP 是⊙O 的切线;(2)若BE =2,DE =4,∠P =30°,求AP 的长.【答案】(1)见解析(2)6【分析】(1)由AB =BC ,OB 为半径,可知OB ⊥AC ,∠CAB =∠ACB ,则∠CAB +∠ABO =90°,∠ACB +∠ABO =90°,∠PAB +∠ABO =90°,如图1,连接OA ,由OA =OB ,可得∠OAB =∠ABO ,则∠PAB +∠OAB =90°,即∠OAP =90°,进而结论得证;(2)如图2,记OB 与AC 交点为M ,连接OD ,过O 作ON ⊥DB 于N ,证明△ABO 是等边三角形,则AB =OB =OA ,∠ABM =60°,设⊙O 半径为r ,则BM =AB ⋅cos ∠ABM =12r ,由OB =OD ,ON ⊥DB ,可得BN =12BD =3,证明△BME ∽△BNO ,则BM BN =BE BO ,即12r 3=2r ,解得r =23或r =-23(舍去),根据AP =OA tan ∠P,计算求解即可.【详解】(1)解:如图,连接OA ,OC ,∵AB =BC ,∴AB �=BC �,∴∠AOB =∠COB ,∴OB ⊥AC ,由等边对等角可得∠CAB =∠ACB ,∴∠CAB +∠ABO =90°,∴∠ACB +∠ABO =90°,∵∠PAB =∠ACB ,∴∠PAB +∠ABO =90°,∵OA =OB ,∴∠OAB =∠ABO ,∴∠PAB +∠OAB =90°,即∠OAP =90°,又∵OA 是半径,∴AP 是⊙O 的切线;(2)解:如图2,记OB 与AC 交点为M ,连接OD ,过O 作ON ⊥DB 于N ,∵∠P =30°,∴∠AOP =60°,∴△ABO 是等边三角形,∴AB =OB =OA ,∠ABM =60°,设⊙O 半径为r ,∵AM ⊥BM ,∴BM =AB ⋅cos ∠ABM =12r ,∵OB =OD ,∴△BOD 是等腰三角形,又∵ON ⊥DB ,∴BN =12BD =BE +DE 2=3,∵∠BME =∠BNO =90°,∠EBM =∠OBN ,∴△BME ∽△BNO ,∴BM BN =BE BO ,即12r 3=2r ,解得r =23或r =-23(舍去),∴AP =OA tan ∠P =r 33=6,∴AP 的长为6.【点睛】本题考查了垂径定理,等腰三角形的判定与性质,切线的判定,等边三角形的判定与性质,相似三角形的判定与性质,余弦、正切等知识.解题的关键在于对知识的熟练掌握与灵活运用.28.(2023·湖南·统考中考真题)如图,AB 是⊙O 的直径,AC 是一条弦,D 是AC的中点,DE ⊥AB 于点E ,交AC 于点F ,交⊙O 于点H ,DB 交AC 于点G .(1)求证:AF =DF .(2)若AF =52,sin ∠ABD =55,求⊙O 的半径.【答案】(1)见解析(2)5【分析】(1)根据D 是AC 的中点,DE ⊥AB 于点E ,得到CD =DA =AH ,得到∠ADH =∠DAC 即可得证.(2)根据sin ∠ABD =55=AD AB,设AD =5x ,AB =5x ,运用勾股定理,得到BD =5x 2-5x 2=25x ,结合sin ∠ABD =55=DE BD ,得到DE =2x ,运用勾股定理,得到BE =25x 2-2x 2=4x ,从而得到AE =x ,EF =ED -DF =DE -AF =2x -52,在Rt △AEF 中,利用勾股定理计算x 即可.【详解】(1)∵D 是AC 的中点,∴CD =DA ,∵DE ⊥AB ,AB 是⊙O 的直径,∴DA =AH ,∴CD =DA =AH,∴∠ADH =∠DAC ,∴AF =DF .(2)∵DE ⊥AB ,AB 是⊙O 的直径,。
九年级数学圆证明题集锦
九年级数学关于圆的证明集锦⊙O⊥∠△一、BC为⊙O的直径,A是弦BD延长线上一点,切线DE平分AC于E,求证:(1)AC是⊙O的切线,(2)若AD:BD=3:2,AC=15,求⊙O的直径。
二、点I是△ABC的内心,AI的延长线交边BC于点D,交△ABC外接圆⊙O于点E,连接BE、CE,(1)若AB=2CE,AD=6,求:CD的长;(2)求证C、I两点在以E为圆心,EB为半径的圆上。
三、AB为⊙O直径,BC切⊙O于B,CO交⊙O于D,AD的延长线交BC于E,若∠C=25°,求∠A的度数?四、如图,BC、AD是⊙O的两条弦,且AD=BC,求证:AB=CD五、在Rt△ABC中,∠ACB=90°,以AB、BC、CA为直径分别作半圆,围城的两月牙形(阴影)S1、S2,设△ABC面积为S,求证:S=S1+S2六、已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E,连AC、OC、BC,求证:(1)∠ACO=∠BCD;(2)若EB=8,CD=24,求⊙O的直径。
七、如图,已知⊙O的半径为8cm,点A为半径OB的延长线上一点,射线AC切⊙O于点C,弧AB的长为2πcm,求线段AB的长度。
八、PA、PB是⊙O的切线,AB为切点,AC是⊙O的直径,∠P=50°,求:∠BAC的度数。
九、C是⊙O的直径AB的延长线上一点,D是⊙O上的一点,且AD=CD,∠C=30°,求证:DC是⊙O的切线。
十、已知,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D作DE⊥AC于点E,交BC的延长线于点F,求证:(1)AD=BD;(2)DF是⊙O的切线。
十一、如图24—A—11,AB为半圆直径,O 为圆心,C为半圆上一点,E是弧AC的中点,OE交弦AC 于点D。
若AC=8cm,DE=2cm,求OD的长。
图24—A—11。
2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)
2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)类型一基本性质有关的1.(2022·湖南省郴州市)如图,在△ABC中,AB=AC.以AB为直径的⊙O与线段BC交于点D,过点D作DE⊥AC,垂足为E,ED的延长线与AB的延长线交于点P.(1)求证:直线PE是⊙O的切线;(2)若⊙O的半径为6,∠P=30°,求CE的长.【答案】(1)连接OD,根据AB=AC,OB=OD,得∠ACB=∠ODB,从而OD//AC,由DE⊥AC,即可得PE⊥OD,故PE是⊙O的切线;(2)连接AD,连接OD,由DE⊥AC,∠P=30°,得∠PAE=60°,又AB=AC,可得△ABC 是等边三角形,即可得BC=AB=12,∠C=60°,而AB是⊙O的直径,得∠ADB=90°,可得BD=CD=12BC=6,在Rt△CDE中,即得CE的长是3.本题考查圆的综合应用,涉及圆的切线,等腰三角形性质及应用,含特殊角的直角三角形三边关系等,解题的关键是判定△ABC是等边三角形.2.(2022·辽宁省盘锦市)如图,△ABC内接于⊙O,∠ABC=45°,连接AO并延长交⊙O于点D,连接BD,过点C作CE//AD与BA的延长线交于点E.(1)求证:CE与⊙O相切;(2)若AD=4,∠D=60°,求线段AB,BC的长.【答案】(1)连接OC,根据圆周角定理得∠AOC=90°,再根据AD//EC,可得∠OCE=90°,从而证明结论;(2)过点A作AF⊥EC交EC于F,由AD是圆O的直径,得∠ABD=90°,又AD=4,60°,即得AB=3BD=23,根据∠ABC=45°,知△ABF是等腰直角三角形,AF=BF=2AB= 6,又△AOC是等腰直角三角形,OA=OC=2,得AC=22,故CF=AC2−AF2=2,从而BC=BF+CF=6+2.本题主要考查了圆周角定理,切线的判定与性质,含30°角的直角三角形的性质等知识,作辅助线构造特殊的直角三角形是解题的关键.3.(2021·山东临沂市·中考真题)如图,已知在⊙O中,==,OC与AD相交于点AB BC CDE.求证:(1)AD∥BC(2)四边形BCDE为菱形.【答案】(1)见解析;(2)见解析【分析】(1)连接BD ,根据圆周角定理可得∠ADB=∠CBD ,根据平行线的判定可得结论;(2)证明△DEF ≌△BCF ,得到DE=BC ,证明四边形BCDE 为平行四边形,再根据 BCCD =得到BC=CD ,从而证明菱形.【详解】解:(1)连接BD ,∵ AB BCCD ==,∴∠ADB=∠CBD ,∴AD ∥BC ;(2)连接CD ,∵AD ∥BC ,∴∠EDF=∠CBF ,∵ BCCD =,∴BC=CD ,∴BF=DF ,又∠DFE=∠BFC ,∴△DEF ≌△BCF (ASA ),∴DE=BC ,∴四边形BCDE 是平行四边形,又BC=CD ,∴四边形BCDE 是菱形.【点睛】本题考查了垂径定理,圆周角定理,弧、弦、圆心角的关系,全等三角形的判定和性质,菱形的判定,解题的关键是合理运用垂径定理得到BF=DF .4.(2021·四川南充市·中考真题)如图,A ,B 是O 上两点,且AB OA =,连接OB 并延长到点C ,使BC OB =,连接AC .(1)求证:AC 是O 的切线.(2)点D ,E 分别是AC ,OA 的中点,DE 所在直线交O 于点F ,G ,4OA =,求GF 的长.【答案】(1)见解析;(2)【分析】(1)先证得△AOB 为等边三角形,从而得出∠OAB=60°,利用三角形外角的性质得出∠C=∠CAB=30°,由此可得∠OAC=90°即可得出结论;(2)过O 作OM ⊥DF 于M ,DN ⊥OC 于N ,利用勾股定理得出AC=30°的直角三角形的性质得出DN ,再根据垂径定理和勾股定理即可求出GF 的长.【详解】(1)证明:∵AB=OA ,OA=OB∴AB=OA=OB∴△AOB 为等边三角形∴∠OAB=60°,∠OBA=60°∵BC=OB∴BC=AB∴∠C=∠CAB又∵∠OBA=60°=∠C+∠CAB∴∠C=∠CAB=30°∴∠OAC=∠OAB+∠CAB=90°∴AC 是⊙O 的切线;(2)∵OA=4∴OB=AB=BC=4∴OC=8∴AC=∵D 、E 分别为AC 、OA 的中点,∴OE//BC ,DC=过O 作OM ⊥DF 于M ,DN ⊥OC 于N则四边形OMDN 为矩形∴DN=OM在Rt △CDN 中,∠C=30°,∴DN=12DC=∴OM=3连接OG ,∵OM ⊥GF∴GF=2MG=222OG OM -=()22243-=213【点睛】本题考查了切线的判定、垂径定理、等边三角形的性质和判定,熟练掌握相关的知识是解题的关键.5.(2021·安徽中考真题)如图,圆O 中两条互相垂直的弦AB ,CD 交于点E .(1)M 是CD 的中点,OM =3,CD =12,求圆O 的半径长;(2)点F 在CD 上,且CE =EF ,求证:AF BD ⊥.【答案】(1)35;(2)见解析.【分析】(1)根据M 是CD 的中点,OM 与圆O 直径共线可得OM CD ⊥,OM 平分CD ,则有6MC =,利用勾股定理可求得半径的长;(2)连接AC ,延长AF 交BD 于G ,根据CE EF =,AE FC ⊥,可得AF AC =,12∠=∠,利用圆周角定理可得2D ∠=∠,可得1D ∠=∠,利用直角三角形的两锐角互余,可证得90AGB ∠=︒,即有AF BD ⊥.【详解】(1)解:连接OC ,∵M 是CD 的中点,OM 与圆O 直径共线∴OM CD ⊥,OM 平分CD ,90OMC ∴∠=︒12CD = 6MC ∴=.在Rt OMC △中.OC ===∴圆O 的半径为(2)证明:连接AC ,延长AF 交BD 于G .CE EF = ,AE FC⊥AF AC∴=又CE EF= 12∠∠∴= BCBC = 2D∴∠=∠1D∴∠=∠中在Rt BED∠+∠=︒90D B∴∠+∠=︒B190AGB∴∠=︒90∴⊥AF BD【点睛】本题考查了垂径定理,圆周角定理,直角三角形的两锐角互余,勾股定理等知识点,熟练应用相关知识点是解题的关键.∠是 AD所对的圆周角,6.(2021·浙江中考真题)如图,已知AB是⊙O的直径,ACD∠=︒.30ACD∠的度数;(1)求DABAB=,求DF的(2)过点D作DE AB⊥,垂足为E,DE的延长线交⊙O于点F.若4长.【答案】(1)60︒;(2)23【分析】(1)连结BD ,根据圆周角性质,得B ACD ∠=∠;根据直径所对圆周角为直角、直角三角形两锐角互余的性质计算,即可得到答案;(2)根据含30°角的直角三角形性质,得12AD AB =;根据垂径定理、特殊角度三角函数的性质计算,即可得到答案.【详解】(1)连结BD ,30ACD ∠=︒30B ACD \Ð=Ð=°AB Q 是O 的直径,90ADB ∴∠=︒,9060DAB B ∴∠=︒-∠=︒(2)90ADB ∠=︒ ,30B ∠=︒,4AB =∴122AD AB ==60DAB ∠=︒ ,DE AB ⊥,且AB 是直径sin 60EF DE AD︒∴===2DF DE =∴=.【点睛】本题考查了圆、含30°角的直角三角形、三角函数的知识;解题的关键是熟练掌握圆周角、垂径定理、含30°角的直角三角形、三角函数、直角三角形两锐角互余的性质,从而完成求解.7.(2021·湖南中考真题)如图,ABC 是O 的内接三角形,AC 是O 的直径,点D 是 BC的中点,//DE BC 交AC 的延长线于点E .(1)求证:直线DE 与O 相切;(2)若O 的直径是10,45A ∠=︒,求CE 的长.【答案】(1)见解析;(2)5CE =.【分析】(1)连接OD ,由点D 是 BC的中点得OD ⊥BC ,由DE//BC 得OD ⊥DE ,由OD 是半径可得DE 是切线;(2)证明△ODE 是等腰直角三角形,可求出OE 的长,从而可求得结论.【详解】解:(1)连接OD 交BC 于点F ,如图,∵点D 是 BC的中点,∴OD ⊥BC ,∵DE//BC∴OD ⊥DE∵OD 是O 的半径∴直线DE 与O 相切;(2)∵AC 是O 的直径,且AB=10,∴∠ABC=90°,152OC OA AB ===∵OD ⊥BC∴∠OFC=90°∴OD//AB 45BAC ∠=︒∴45DOE ∠=︒∵90ODE ∠=︒∴45OED ∠=∴5DE OD OC ===由勾股定理得,OE =∴5CE OE OC =-=.【点睛】此题主要考查了切线的判定与性质的综合运用,熟练掌握切线的判定与性质是解答此题的关键.8.(2021·湖南张家界市·中考真题)如图,在Rt AOB 中,90∠=︒ABO ,30OAB ∠=︒,以点O 为圆心,OB 为半径的圆交BO 的延长线于点C ,过点C 作OA 的平行线,交O 于点D ,连接AD .(1)求证:AD 为O 的切线;(2)若2OB =,求弧CD 的长.【答案】(1)见解析;(2)23π【分析】(1)连接OB ,先根据直角三角形的性质得到∠AOB=60°,再运用平行线的性质结合已知条件可得60AOD ∠=︒,再证明AOB AOD △≌△可得90ADO ABO ∠=∠=︒即可;(2)先求出∠COD ,然后再运用弧长公式计算即可.【详解】(1)证明:连接OD∵30OAB ∠=︒,90B ∠=︒∴60AOB ∠=︒又∵//CD AO∴60C AOB ∠=∠=︒∴2120BOD C ∠=∠=︒∴60AOD ∠=︒又∵,OB OD AO AO==∴()AOB AOD SAS ≌∴90ADO ABO ∠=∠=︒又∵点D 在O 上∴AD 是O 的切线;(2)∵120BOD ∠=︒∴60COD ∠=︒∴602223603l ππ=⨯⨯=.【点睛】本题主要考查了圆的切线的证明、弧长公式等知识点,掌握圆的切线的证明方法成为解答本题的关键.9.(2020•齐齐哈尔)如图,AB 为⊙O 的直径,C 、D 为⊙O 上的两个点,AC=CD =DB ,连接AD ,过点D 作DE ⊥AC 交AC 的延长线于点E .(1)求证:DE 是⊙O 的切线.(2)若直径AB =6,求AD 的长.【分析】(1)连接OD ,根据已知条件得到∠BOD =13×180°=60°,根据等腰三角形的性质得到∠ADO=∠DAB=30°,得到∠EDA=60°,求得OD⊥DE,于是得到结论;(2)连接BD,根据圆周角定理得到∠ADB=90°,解直角三角形即可得到结论.【解析】(1)证明:连接OD,=CD =DB ,∵AC∴∠BOD=13×180°=60°,=DB ,∵CD∴∠EAD=∠DAB=12∠BOD=30°,∵OA=OD,∴∠ADO=∠DAB=30°,∵DE⊥AC,∴∠E=90°,∴∠EAD+∠EDA=90°,∴∠EDA=60°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DAB=30°,AB=6,∴BD=12AB=3,∴AD=62−32=33.10.(2020•深圳)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.【分析】(1)证明:连接AC、OC,如图,根据切线的性质得到OC⊥CD,则可判断OC∥AD,所以∠OCB=∠E,然后证明∠B=∠E,从而得到结论;(2)利用圆周角定理得到∠ACB=90°,则利用勾股定理可计算出AC=8,再根据等腰三角形的性质得到CE=BC=6,然后利用面积法求出CD的长.【解析】(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∴CD⊥AD,∴OC∥AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC=102−62=8,∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵12CD•AE=12AC•CE,∴CD=6×810=245.11.(2020•陕西)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长.【分析】(1)连接OC,由切线的性质可得∠OCE=90°,由圆周角定理可得∠AOC=90°,可得结论;(2)过点A作AF⊥EC交EC于F,由锐角三角函数可求AD=83,可证四边形OAFC是正方形,可得CF=AF=43,由锐角三角函数可求EF=12,即可求解.【解析】证明:(1)连接OC,∵CE与⊙O相切于点C,∴∠OCE=90°,∵∠ABC=45°,∴∠AOC=90°,∵∠AOC+∠OCE=180°,∴∴AD∥EC(2)如图,过点A作AF⊥EC交EC于F,∵∠BAC=75°,∠ABC=45°,∴∠ACB=60°,∴∠D=∠ACB=60°,∴sin∠ADB=AB AD==83,∴AD=∴OA=OC=43,∵AF⊥EC,∠OCE=90°,∠AOC=90°,∴四边形OAFC是矩形,又∵OA=OC,∴四边形OAFC是正方形,∴CF=AF=43,∵∠BAD=90°﹣∠D=30°,∴∠EAF=180°﹣90°﹣30°=60°,∵tan∠EAF=EF AF=3,∴EF=3AF=12,∴CE=CF+EF=12+43.类型二与三角形全等、相似有关的12.(2022·辽宁省营口市)如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.(1)求证:∠D=∠EBC;(2)若CD=2BC,AE=3,求⊙O的半径.【答案】(1)根据切线的性质可得∠DAO=90°,从而可得∠D+∠ABD=90°,根据直径所对的圆周角是直角可得∠BEC=90°,从而可得∠ACB+∠EBC=90°,然后利用等腰三角形的性质可得∠ACB=∠ABC,从而利用等角的余角相等即可解答;(2)根据已知可得BD=3BC,然后利用(1)的结论可得△DAB∽△BEC,从而利用相似三角形的性质可得AB=3EC,然后根据AB=AC,进行计算即可解答.本题考查了圆周角定理,等腰三角形的性质,切线的性质,相似三角形的判定与性质,熟练掌握切线的性质,以及相似三角形的判定与性质是解题的关键.13.(2022·北部湾)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.(1)求证:DE是⊙O的切线(2)若AE DE=23,AF=10,求⊙O的半径.【答案】(1)证明:连接OD;∵OD=OC,∴∠C=∠ODC,∵AB=AC,∴∠B=∠C,∴∠B=∠ODC,∴OD∥AB,∴∠ODE=∠DEB;∵DE⊥AB,∴∠DEB=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线(2)解:连接CF,由(1)知OD⊥DE,∵DE⊥AB,∴OD∥AB,∵OA=OC,∴BD=CD,即OD是△ABC的中位线,∵AC是⊙O的直径,∴∠CFA=90°,∵DE⊥AB,∴∠BED=90°,∴∠CFA=∠BED=90°,∴DE∥CF,∴BE=EF,即DE是△FBC的中位线,∴CF=2DE,∵AE DE=23,∴设AE=2x,DE=3k,CF=6k,∵AF=10,∴BE=EF=AE+AF=2k+10,∴AC=BA=EF+AE=4k+10,在Rt△ACF中,由勾股定理,得AC2=AF2+CF2,即(4k+10)2=102+(6k)2,解得:k=4,∴AC=4k+10=4×4+10=26,∴OA=13,即⊙O的半径为13.【知识点】平行线的判定与性质;等腰三角形的性质;圆周角定理;切线的判定;三角形的中位线定理【解析】【分析】(1)连接OD ,根据等腰三角形的性质可得∠C=∠ODC ,∠B=∠C ,则∠B=∠ODC ,推出OD ∥AB ,由平行线的性质可得∠ODE=∠DEB=90°,即DE ⊥OD ,据此证明;(2)连接CF ,由(1)知OD ⊥DE ,则OD ∥AB ,易得OD 是△ABC 的中位线,根据圆周角定理可得∠CFA=90°,根据垂直的概念可得∠BED=90°,则DE ∥CF ,推出DE 是△FBC的中位线,得CF=2DE ,设AE=2x ,DE=3k ,CF=6k ,则BE=EF=2k+10,AC=BA=4k+10,根据勾股定理可得k 的值,然后求出AC 、OA ,据此可得半径.14.(2021·江苏无锡市·中考真题)如图,四边形ABCD 内接于O ,AC 是O 的直径,AC 与BD 交于点E ,PB 切O 于点B .(1)求证:PBA OBC ∠=∠;(2)若20PBA Ð=°,40ACD ∠=︒,求证:OAB CDE V V ∽.【答案】(1)见详解;(2)见详解【分析】(1)由圆周角定理的推论,可知∠ABC=90°,由切线的性质可知∠OBP=90°,进而即可得到结论;(2)先推出20OCB OBC ∠=∠=︒,从而得∠AOB=40°,继而得∠OAB=70°,再推出∠CDE=70°,进而即可得到结论.【详解】证明:(1)∵AC 是O 的直径,∴∠ABC=90°,∵PB 切O 于点B ,∴∠OBP=90°,∴90PBA ABO OBC ABO ∠+∠=∠+∠=︒,∴PBA OBC ∠=∠;(2)∵20PBA Ð=°,PBA OBC ∠=∠,∴20OBC ∠=︒,∵OB=OC ,∴20OCB OBC ∠=∠=︒,∴∠AOB=20°+20°=40°,∵OB=OA ,∴∠OAB=∠OBA=(180°-40°)÷2=70°,∴∠ADB=12∠AOB=20°,∵AC 是O 的直径,∴∠ADC=90°,∴∠CDE=90°-20°=70°,∴∠CDE=∠OAB ,∵40ACD ∠=︒,∴40ACD AOB ∠=∠=︒,∴OAB CDE V V ∽.【点睛】本题主要考查圆的性质以及相似三角形的判定定理,掌握圆周角定理的推论,相似三角形的判定定理,切线的性质定理,是解题的关键.15.(2020•衢州)如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,AB =10,AC =6,连结OC ,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.【分析】(1)利用垂径定理以及圆周角定理解决问题即可.(2)证明△AEC∽△BCA,推出CE AC=AC AB,求出EC即可解决问题.【解析】(1)证明:∵AE=DE,OC是半径,=CD ,∴AC∴∠CAD=∠CBA.(2)解:∵AB是直径,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴CE AC=AC AB,∴CE6=610,∴CE=3.6,∵OC=12AB=5,∴OE=OC﹣EC=5﹣3.6=1.4.16.(2020•铜仁市)如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D 是直径AB延长线上一点,且∠BCE=∠BCD.(1)求证:CD是⊙O的切线;(2)若AD=8,BE CE=12,求CD的长.【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据余角的性质得到∠A=∠ECB,求得∠A=∠BCD,根据等腰三角形的性质得到∠A=∠ACO,等量代换得到∠ACO=∠BCD,求得∠DCO=90°,于是得到结论;(2)设BC=k,AC=2k,根据相似三角形的性质即可得到结论.【解析】(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB+∠ABC=∠ABC+∠CAB=90°,∴∠A=∠ECB,∵∠BCE=∠BCD,∴∠A=∠BCD,∵OC=OA,∴∠A=∠ACO,∴∠ACO=∠BCD,∴∠ACO+∠BCO=∠BCO+∠BCD=90°,∴∠DCO=90°,∴CD是⊙O的切线;(2)解:∵∠A=∠BCE,∴tanA=BC AC=tan∠BCE=BE CE=12,设BC=k,AC=2k,∵∠D=∠D,∠A=∠BCD,∴△ACD∽△CBD,∴BC AC=CD AD=12,∵AD=8,∴CD=4.17.(2020•衡阳)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点A和点D的圆,圆心O在线段AB上,⊙O交AB于点E,交AC于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若AD=8,AE=10,求BD的长.【分析】(1)连接OD,根据平行线判定推出OD∥AC,推出OD⊥BC,根据切线的判定推出即可;(2)连接DE,根据圆周角定理得到∠ADE=90°,根据相似三角形的性质得到AC=325,根据勾股定理得到CD=AD2−AC2==根据相似三角形的性质即可得到结论.【解析】(1)BC与⊙O相切,理由:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∵OD为半径,∴BC是⊙O切线;(2)连接DE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠C=90°,∴∠ADE=∠C,∵∠EAD=∠DAC,∴△ADE∽△ACD,∴AE AD=AD AC,108=8AC,∴AC=325,∴CD=AD2−AC2==245,∵OD⊥BC,AC⊥BC,∴△OBD∽△ABC,∴OD AC=BD BC,∴5325=BD BD+245,∴BD=1207.18.(2020•遵义)如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交BC 于点D,过点D作DE∥BC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长度.【分析】(1)连接OD,由等腰三角形的性质及角平分线的性质得出∠ADO=∠DAE,从而OD∥AE,由DE∥BC得∠E=90°,由两直线平行,同旁内角互补得出∠ODE=90°,由切线的判定定理得出答案;(2)先由直径所对的圆周角是直角得出∠ADB=90°,再由OF=1,BF=2得出OB的值,进而得出AF和BA的值,然后证明△DBF∽△ABD,由相似三角形的性质得比例式,从而求得BD2的值,求算术平方根即可得出BD的值.【解析】(1)连接OD,如图:∵OA=OD,∴∠OAD=∠ADO,∵AD平分∠CAB,∴∠DAE=∠OAD,∴∠ADO=∠DAE,∴OD∥AE,∵DE∥BC,∴∠E=90°,∴∠ODE=180°﹣∠E=90°,∴DE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ADB=90°,∵OF=1,BF=2,∴OB=3,∴AF=4,BA=6.∵DF⊥AB,∴∠DFB=90°,∴∠ADB=∠DFB,又∵∠DBF=∠ABD,∴△DBF∽△ABD,∴BD BA=BF BD,∴BD2=BF•BA=2×6=12.∴BD=23.19.(2019•陕西)如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO 并延长,与⊙O交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD.(1)求证:DC∥AP;(2)求AC的长.【分析】(1)根据切线的性质得到∠OAP=90°,根据圆周角定理得到∠BCD=90°,根据平行线的性质和判定定理即可得到结论;(2)根据勾股定理和相似三角形的判定和性质定理即可得到结论.【解析】(1)证明:∵AP是⊙O的切线,∴∠OAP=90°,∵BD是⊙O的直径,∴∠BCD=90°,∵OA∥CB,∴∠AOP=∠DBC,∴∠BDC=∠APO,∴DC∥AP;(2)解:∵AO∥BC,OD=OB,∴延长AO交DC于点E,则AE⊥DC,OE=12BC,CE=12CD,在Rt△AOP中,OP=62+82=10,由(1)知,△AOP∽△CBD,∴DB OP=BC OA=DC AP,即1210=BC6=DC8,∴BC=365,DC=485,∴OE=185,CE=245,在Rt△AEC中,AC=AE2+CE2==20(2021·云南中考真题)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥.(1)求证:DC 是O 的切线:(2)若2,33OA BE OD ==,求DA 的长.【答案】(1)见解析;(2)910【分析】(1)连接OC ,根据圆周角定理得到∠ACB=90°,根据等量代换得到∠DCO=90°,即可证明DC 是圆O 的切线;(2)根据已知得到OA=2DA ,证明△DCO ∽△DEB ,得到DO CO DB EB =,可得DA=310EB ,即可求出DA 的长.【详解】解:(1)如图,连接OC ,由题意可知:∠ACB 是直径AB 所对的圆周角,∴∠ACB=90°,∵OC ,OB 是圆O 的半径,∴OC=OB ,∴∠OCB=∠ABC ,又∵∠DCA=∠ABC ,∴∠DCA=∠OCB ,∴∠DCO=∠DCA+∠ACO=∠OCB+∠ACO=∠ACB=90°,∴OC ⊥DC ,又∵OC 是圆O 的半径,∴DC 是圆O 的切线;(2)∵23OA OD =,∴23OA OA DA =+,化简得OA=2DA ,由(1)知,∠DCO=90°,∵BE ⊥DC ,即∠DEB=90°,∴∠DCO=∠DEB ,∴OC ∥BE ,∴△DCO ∽△DEB ,∴DO CO DB EB =,即33255DA OA DA DA DA OA OB DA EB+===++,∴DA=310EB ,∵BE=3,∴DA=310EB=3931010⨯=,经检验:DA=910是分式方程的解,∴DA=910.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,切线的判定,正确的作出辅助线,证明切线,得到相似三角形是解题的关键.21.(2021·江苏扬州市·中考真题)如图,四边形ABCD 中,//AD BC ,90BAD ∠=︒,CB CD =,连接BD ,以点B 为圆心,BA 长为半径作B ,交BD 于点E .(1)试判断CD 与B 的位置关系,并说明理由;(2)若AB =,60BCD ∠=︒,求图中阴影部分的面积.【答案】(1)相切,理由见解析;(2)π-【分析】(1)过点B 作BF ⊥CD ,证明△ABD ≌△FBD ,得到BF=BA ,即可证明CD 与圆B 相切;(2)先证明△BCD 是等边三角形,根据三线合一得到∠ABD=30°,求出AD ,再利用S △ABD -S 扇形ABE 求出阴影部分面积.【详解】解:(1)过点B 作BF ⊥CD ,∵AD ∥BC ,∴∠ADB=∠CBD ,∵CB=CD ,∴∠CBD=∠CDB ,∴∠ADB=∠CDB ,又BD=BD ,∠BAD=∠BFD=90°,∴△ABD ≌△FBD (AAS ),∴BF=BA ,则点F 在圆B 上,∴CD 与圆B 相切;(2)∵∠BCD=60°,CB=CD ,∴△BCD 是等边三角形,∴∠CBD=60°∵BF ⊥CD ,∴∠ABD=∠DBF=∠CBF=30°,∴∠ABF=60°,∵AB=BF=,∴AD=DF=tan30AB ⋅︒=2,∴阴影部分的面积=S △ABD -S 扇形ABE=(230122360π⨯⨯⨯-=π-.【点睛】本题考查了切线的判定,全等三角形的判定和性质,等边三角形的判定和性质,扇形面积,三角函数的定义,题目的综合性较强,难度不小,解题的关键是正确做出辅助线.22.(2020•上海)如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长线交边AC 于点D.(1)求证:∠BAC=2∠ABD;(2)当△BCD是等腰三角形时,求∠BCD的大小;(3)当AD=2,CD=3时,求边BC的长.【分析】(1)连接OA.利用垂径定理以及等腰三角形的性质解决问题即可.(2)分三种情形:①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD.②若CD=CB,则∠CBD=∠CDB=3∠ABD.③若DB=DC,则D与A重合,这种情形不存在.分别利用三角形内角和定理构建方程求解即可.(3)如图3中,作AE∥BC交BD的延长线于E.则AE BC=AD DC=23,推出AO OH=AE BH=43,设OB=OA=4a,OH=3a,根据BH2=AB2﹣AH2=OB2﹣OH2,构建方程求出a即可解决问题.【解析】(1)证明:连接OA.A∵AB=AC,=AC ,∴AB∴OA⊥BC,∴∠BAO=∠CAO,∵OA=OB,∴∠ABD=∠BAO,∴∠BAC=2∠BAD.(2)解:如图2中,延长AO交BC于H.①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD,∵AB=AC,∴∠ABC=∠C,∴∠DBC=2∠ABD,∵∠DBC+∠C+∠BDC=180°,∴8∠ABD=180°,∴∠C=3∠ABD=67.5°.②若CD=CB,则∠CBD=∠CDB=3∠ABD,∴∠C =4∠ABD ,∵∠DBC+∠C+∠CDB =180°,∴10∠ABD =180°,∴∠BCD =4∠ABD =72°.③若DB =DC ,则D 与A 重合,这种情形不存在.综上所述,∠C 的值为67.5°或72°.(3)如图3中,作AE ∥BC 交BD 的延长线于E .则AE BC =AD DC =23,∴AO OH =AE BH =43,设OB =OA =4a ,OH =3a ,∵BH 2=AB 2﹣AH 2=OB 2﹣OH 2,∴25﹣49a 2=16a 2﹣9a 2,∴a 2=2556,∴BH =∴BC =2BH =23.(2021·云南中考真题)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥.(1)求证:DC是O的切线:(2)若2,33OA BEOD==,求DA的长.【答案】(1)见解析;(2)9 10【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据等量代换得到∠DCO=90°,即可证明DC是圆O的切线;(2)根据已知得到OA=2DA,证明△DCO∽△DEB,得到DO CODB EB=,可得DA=310EB,即可求出DA的长.【详解】解:(1)如图,连接OC,由题意可知:∠ACB是直径AB所对的圆周角,∴∠ACB=90°,∵OC,OB是圆O的半径,∴OC=OB,∴∠OCB=∠ABC,又∵∠DCA=∠ABC,∴∠DCA=∠OCB,∴∠DCO=∠DCA+∠ACO=∠OCB+∠ACO=∠ACB=90°,∴OC⊥DC,又∵OC 是圆O 的半径,∴DC 是圆O 的切线;(2)∵23OA OD =,∴23OA OA DA =+,化简得OA=2DA ,由(1)知,∠DCO=90°,∵BE ⊥DC ,即∠DEB=90°,∴∠DCO=∠DEB ,∴OC ∥BE ,∴△DCO ∽△DEB ,∴DO CO DB EB =,即33255DA OA DA DA DA OA OB DA EB +===++,∴DA=310EB ,∵BE=3,∴DA=310EB=3931010⨯=,经检验:DA=910是分式方程的解,∴DA=910.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,切线的判定,正确的作出辅助线,证明切线,得到相似三角形是解题的关键.类型三与锐角三角函数有关24.(2022·辽宁省铁岭市)如图,△ABC内接于⊙O,AC是⊙O的直径,过OA上的点P作PD⊥AC,交CB的延长线于点D,交AB于点E,点F为DE的中点,连接BF.(1)求证:BF与⊙O相切;(2)若AP=OP,cosA=45,AP=4,求BF的长.【答案】(1)连接OB,根据直径所对的圆周角是直角可得∠ABC=90°,从而可得∠ABD=90°,进而利用直角三角形三角形斜边上的中线可得BF=EF=12AD,然后利用等腰三角形的性质可得∠FEB=∠FBE,从而可得∠FBE=∠AEP,最后根据垂直定义可得∠EPA=90°,从而可得∠A+∠AEP=90°,再利用等腰三角形的性质可得∠A=∠OBA,从而可得∠OBA+∠FBE= 90°,进而可得∠OBF=90°,即可解答;(2)在Rt△AEP中,利用锐角三角函数的定义求出AE的长,从而利用勾股定理求出PE的长,然后利用同角的余角相等可得∠AEP=∠C,从而可证△APE∽△DPC,进而利用相似三角形的性质可求出DP的长,最后求出DE的长,即可解答.本题考查了解直角三角形,切线的判定与性质,圆周角定理,三角形的外接圆与外心,直线与圆的位置关系,熟练掌握解直角三角形,以及切线的判定与性质是解题的关键.25.(2022·四川省广安市)如图,AB为⊙O的直径,D、E是⊙O上的两点,延长AB至点C,连接CD ,∠BDC =∠BAD .(1)求证:CD 是⊙O 的切线.(2)若tan∠BED =23,AC =9,求⊙O 的半径.【答案】(1)连接OD ,由圆周角定理得出∠ADB =90°,证出OD ⊥CD ,由切线的判定可得出结论;(2)证明△BDC∽△DAC ,由相似三角形的性质得出CD AC =BC CD =BD DA =23,由比例线段求出CD 和BC 的长,可求出AB 的长,则可得出答案.本题考查了切线的判定,相似三角形的判定与性质,锐角三角函数的定义,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.26.(2021·山东菏泽市·中考真题)如图,在O 中,AB 是直径,弦CD AB ⊥,垂足为H ,E 为 BC上一点,F 为弦DC 延长线上一点,连接FE 并延长交直径AB 的延长线于点G ,连接AE 交CD 于点P ,若FE FP =.(1)求证:FE 是O 的切线;(2)若O 的半径为8,3sin 5F =,求BG 的长.【答案】(1)见解析;(2)=2BG 【分析】(1)连接OE ,证明OE ⊥EF 即可;(2)由3sin 5F =证得4sin 5G =,运用正弦的概念可得结论.【详解】解:(1)证明:连接OE ,如图,∵OA=OE∴∠OAE=∠OEA .∵EF=PF ,∴∠EPF=∠PEF∵∠APH=∠EPF ,∴∠APH=∠EPF ,∴∠AEF=∠APH .∵CD ⊥AB ,∴∠AHC=90°.∴∠OAE+∠APH=90°.∴∠OEA+∠AEF=90°∴∠OEF=90°∴OE ⊥EF .∵OE 是O 的半径∴EF 是圆的切线,(2)∵CD ⊥AB∴FHG ∆是直角三角形∵3sin 5F =∴35GH FG =设3GH x =,则5FG x=由勾股定理得,4FH x=由(1)得,OEG ∆是直角三角形∴4sin 5OE FH x G OG FG x===∴45OE OG =,即45OE OE BG =+∵8OE =∴8485BG =+解得,2BG =【点睛】此题主要考查了圆的切线的判定,勾股定理和解直角三角形等知识,熟练掌握切线的判定是解答此题的关键.27.(2022·黔东南)(1)请在图中作出△ABC 的外接圆⊙O (尺规作图,保留作图痕迹,不写作法);的中点,过点B的(2)如图,⊙O是△ABC的外接圆,AE是⊙O的直径,点B是CE切线与AC的延长线交于点D.①求证:BD⊥AD;②若AC=6,tan∠ABC=34,求⊙O的半径.【答案】(1)解:如下图所示(2)解:①如下图所示,连接OC、OB∵BD是⊙O的切线∴OB⊥BD对应的圆周角,∠COE是CE 对应的圆心角∵∠CAE是CE∴∠COE=2∠CAE的中点∵点B是CE∴∠COE=2∠BOE∴∠CAE=∠BOE∴∠CAE=∠BOE∴AD//OB∴BD⊥AD②如下图所示,连接CE对应的圆周角∵∠ABC与∠AEC是AC∴∠ABC=∠AEC∵AE是⊙O的直径∴∠ACE=90°∴tan∠AEC=AC CE=34∴CE=8∵AE2=CE2+AC2∴AE=10∴⊙O的半径为5.【知识点】圆周角定理;三角形的外接圆与外心;切线的性质;解直角三角形;作图-线段垂直平分线【解析】【解答】(1)∵△ABC的外接圆⊙O的圆心为任意两边的垂直平分线的交点,半径为交点到任意顶点的距离,∴做AB、AC的垂直平分线交于点O,以OB为半径,以O为圆心做圆即可得到△ABC 的外接圆;【分析】(1)利用尺规作图分别作出AC,AB的垂直平分线,两垂直平分线交于点O,然后以点O为圆心,OB的长为半径画圆即可.(2)①连接OC,OB,利用切线的性质可证得OB⊥BD,利用圆周角定理可证得∠COE=2∠CAE,由点B是弧CE的中点,可推出∠CAE=∠BOE,利用平行线的判定定理可证得AD∥OB,由此可证得结论;②连接CE,利用同弧所对的圆周角相等,可证得∠ABC=∠AEC,利用直径所对的圆周角是直角,可推出∠ACE=90°;再利用解直角三角形求出CE的长,利用勾股定理求出AE的长.28.(2022·鄂州)如图,△ABC内接于⊙O,P是⊙O的直径AB延长线上一点,∠PCB=∠OAC,过点O作BC的平行线交PC的延长线于点D.(1)试判断PC与⊙O的位置关系,并说明理由;(2)若PC=4,tanA=12,求△OCD的面积.【答案】(1)解:PC与⊙O相切,理由如下:∵AB是圆O的直径,∴∠ACB=90°,∴∠OCB+∠OCA=90°,∵OA=OC,∴∠OCA=∠OAC,∵∠PCB=∠OAC,∴∠PCB=∠OCA,∴∠PCB+∠OCB=∠OCA+∠OCB=90°,即∠PCO=90°,∴PC与⊙O相切(2)解:∵∠ACB=90°,tanA=12,∴BC AC=12,∵∠PCB=∠OAC,∠P=∠P,∴△PBC∽△PCA,∴PC PA=PB PC=BC CA=12,∴PA=8,PB=2,∴AB=6,∴OC=OB=3,∴OP=5,∵BC∥OD,∴△PBC∽△POD,∴PB OP=PC PD,即25=4PD,∴PD=10,∴CD=6,∴S△OCD=12OC⋅CD=9【知识点】等腰三角形的性质;圆周角定理;切线的判定;相似三角形的判定与性质;锐角三角函数的定义【解析】【分析】(1)由圆周角定理得∠ACB=90°,根据等腰三角形的性质可得∠OCA=∠OAC,结合∠PCB=∠OAC得PCB=∠OCA,结合∠OCB+∠OCA=90°可得∠PCO=90°,据此证明;(2)根据三角函数的概念可得BC AC=12,易证△PBC∽△PCA,根据相似三角形的性质可得PA、PB,然后求出AB、OP,证明△PBC∽△POD,根据相似三角形的性质可得PD,由PD-PC=CD可得CD,然后根据三角形的面积公式进行计算.29.(2022·毕节)如图,在△ABC中,∠ACB=90∘,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连接DE并延长交BC的延长线于点F.(1)求证:BF=BD;(2)若CF=1,tan∠EDB=2,求⊙O直径.【答案】(1)证明:连接OE,如下图所示:∵AC为圆O的切线,∴∠AEO=90°,∵AC⊥BC,∴∠ACB=90°,∴OE∥BC,∴∠F=∠DEO,又∵OD=OE,∴∠ODE=∠DEO,∴∠F=∠ODE,∴BD=BF.(2)解:连接BE,如下图所示:由(1)中证明过程可知:∠EDB=∠F,。
人教版九年级上册数学期末圆的证明题压轴训练(含答案)
设 ,
∴ ,
在 中, ,
∴ ,
解得 ,
∴ 的半径的长度为2.5.
12.
解:(1)证明:如图1,连接CD和BE,
∵BC是⊙O的直径,
∴∠BDC=∠CEB=90°,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠BCD=∠CBE,
∴ ,
∴BD=CE.
(2)解:如图2,连接OD、OE,
19.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,O为AB上一点,以O为圆心,OB为半径的圆与AC相切于点E,交AB于点D,连接BE、OE,连接DE并延长交BC的延长线于点H.
(1)求∠ABE的度数;
(2)求证:OA=BH;
(3)已知⊙O的半径为2,请直接写出阴影部分的面积.
20.如图,⊙O是直角三角形ABC的外接圆,直径AC=4,过C点作⊙O的切线,与AB延长线交于点D,M为CD的中点,连接BM,OM,且BC与OM相交于点N.
∵E为BC的中点,
∴DE= BC=BE=CE,
∴∠B=∠EDB,
∵OD=OA=OC,
∴∠A=∠ODA,
∴∠CED=∠B+∠EDB=2∠B,∠COD=∠A+∠ODA=2∠A,
∵∠ACB=90°,
∴∠B+∠A=90°,
∴∠CED+∠COD=2∠B+2∠A=2(∠B+∠A)=2×90°=180°,
∴∠ODE=360°﹣90°﹣180°=90°,
∴∠OHA=90°,
∵OA=6,
∴OH= OA=3,
∴AH= =3 ,
∴AH的长为3 .
11.
解:(1) 与 相切,理由如下:
中考数学总复习《圆的切线证明》专题训练(附带答案)
中考数学总复习《圆的切线证明》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________⊥于点D,E是AC上一点,以BE为直径的O交1.如图,在ABC中,AB=AC,AD BC∠=︒.BC于点F,连接DE,DO,且90DOB(1)求证:AC是O的切线;(2)若1DF=,DC=3,求BE的长.、2.如图,在O中,BC为非直径弦,点D是BC的中点,CD是ABC的角平分线.∠=∠;(1)求证:ACD ABC(2)求证:AC是O的切线;(3)若1BD=,3BC=时,求弦BD与BD围城的弓形面积.是O的切线;=,且AC BD已知等腰ABC,AB=AC为直径作O交BC于点延长线于点F.是O的切线;CD=2,求O的半径.与O相离,,交O于点A是O上一点,连于点C,且PB(1)求证:PB是O的切线;(2)若25AC=,OP=5,求O的半径.6.如图,点O是ABC的边AC上一点,以点O为圆心,OA为半径作O,与BC相切于点E,连接OB,OE,O交OB于点D,连接AD并延长交CB的延长线于点F,且AOD EOD.∠=∠(1)求证:AB是O的切线;BC=,AC=8,求O的半径.(2)若107.如图,AB 是O 的直径,AC 是O 的弦.(1)尺规作图:过点C 作O 的切线,交AB 的延长线于点D (保留作图痕迹,不写作法);(2)若2BD OB ==,求AC 的长.8.如图,ABCD 的顶点,,A B C 在O 上,AC 为对角线,DC 的延长线交O 于点E ,连接,,OC OE AE .(1)求证:AE BC =;(2)若AD 是O 的切线6,40OC D =∠=︒,求CE 的长.9.如图,Rt ABC △中90C ∠=︒,点E 为AB 上一点,以AE 为直径的O 上一点D 在BC 上,且AD 平分BAC ∠.(1)证明:BC 是O 的切线;(2)若42BD BE ==,,求AB 的长.10.如图,已知O 的弦AB 等于半径,连接OA 、OB ,并延长OB 到点C ,使得BC OB =,连接AC ,过点A 作AE OB ⊥于点E ,延长AE 交O 于点D .(1)求证:AC 是O 的切线;(2)若6BC =,求AD 的长.11.如图,线段AB 经过O 的圆心.O 交O 于A ,C 两点,AD 为O 的弦,连接BD ,30A ABD ∠=∠=︒连接DO 并延长交O 于点E ,连接BE 交O 于点F .(1)求证:BD 是O 的切线;(2)若1BC =,求BF 的长.12.如图,AB 为O 的直径,C 为O 上一点,CD BD ABC CBD ⊥∠=∠.(1)求证:CD 为O 的切线.(2)当1,4BD AB ==时,求CD 的长.13.如图 已知AB 是O 的直径 BC AB ⊥于B E 是OA 上的一点ED BC ∥交O 于D OC AD ∥ 连接AC 交ED 于F .(1)求证:CD 是O 的切线;(2)若8AB = 1AE = 求ED EF 的长.14.如图 AB 是O 的直径 AC BC ,是弦 点D 在AB 的延长线上 且DCB DAC ∠=∠ O 的切线AE 与DC 的延长线交于点E .(1)求证:CD 是O 的切线;(2)若O 的半径为2 30D ∠=︒ 求AE 的长.15.如图 已知AB 是O 的直径 点P 在BA 的延长线上 弦BC 平分PBD ∠且BD PD ⊥于点D .(1)求证:PD 是O 的切线.(2)若8cm 6cm AB BD , 求弧AC 的长.为O的直径在O上连接的延长线交于E.是O的切线;∠tan BDF为O的直径的平分线交O于点E BC的延长线于点(1)求证:DE 为O 切线;(2)若10AB = 6BC = 求DE 的长.18.如图 O 是ABC 的外接圆 点D 在BC 延长线上 且满足CAD B ∠=∠.(1)求证:AD 是O 的切线;(2)若AC 是BAD ∠的平分线 3sin 5B =4BC = 求O 的半径.参考答案:1.【分析】此题重点考查圆周角定理 切线的判定定理 勾股定理 三角形的中位线定理 等腰三角形的“三线合一” 线段的垂直平分线的性质等知识 正确地作出辅助线是解题的关键.是O的切线;+=314是O的直径90︒则22BE=+4(22)⊥AD BC是O的半径是O的切线.)连接EFDC=DF33+=+BD DF∠OE DOBDE=.3是O的直径90︒.中EF=中BE=(3)23312π- 【分析】此题考查了解直角三角形 切线的判定以及扇形的面积.注意掌握辅助线的作法 .(1)点D 是BC 的中点 可以得到BD CD = 即可得到DBC DCB ∠∠= 再根据角平分线的定义得到ACD BCD ∠∠= 进而得到结论;(2)连接OC OD OB 则可得到OD BC ⊥ 然后根据等边对等角可以得到90OCD ACD ∠∠+=︒ 即可得到结论(3)先求出60ODB ∠=︒ 继而利用OBD OBD S S S=-阴影部分扇形求得答案.【详解】(1)解:如图 ∵点D 是BC 的中点∵BD CD =∵DBC DCB ∠∠=又∵CD 是ABC 的角平分线∵ACD BCD ∠∠=∵ACD ABC ∠∠=;(2)证明:如图 连接OC OD OB∵点D 是BC 的中点∵OD BC ⊥∵90ODC BCD ∠∠+=︒∵OD OC =∵ODC OCD ∠∠=又∵ACD BCD ∠∠=∵90OCD ACD ∠∠+=︒即OC AC ⊥∵OC 是O 的半径∵AC 是O 的切线;Rt BDE 中 ODB ∠=60ODB =︒OB OD =∵OBD 是等边三角形BOD ∠=OBD S S==阴影部分.(1)见解析(2)23进而得出BFG 是等边三角形 是O 的切线;)解:如图所示∵OD AC ⊥∵AD CD =∵BD AC =∵BD AC =∵AD BC =∵AD CD BC ==;∵AB 为半圆O 的直径∵90CAB CBA ∠+∠=︒∵30DAC CAB ABD ∠=∠=∠=︒∵60GBF G ∠=∠=︒ 12GB AG =∵BFG 是等边三角形 223AB AG BG BG =-=∵3233BF BG AB ===. 【点睛】本题考查了切线的判定 弧与弦的关系 直径所对的圆周角是直角 勾股定理 等边三角形的性质与判定 垂径定理 熟练掌握以上知识是解题的关键.4.(1)证明(2)233【分析】本题主要考查切线的性质和判定及特殊角的三角函数的应用 掌握切线问题中的辅助线的作法是解题的关键.(1)连接OD 证明ODB C ∠=∠ 推出AC OD ∥ 即可证明结论成立;(2)连接AD 在Rt CED 中 求得利用三角形函数的定义求得30C ∠=︒ 60AOD ∠=︒ 在Rt ADB 中 利用勾股定理列式计算求得圆的半径即可.【详解】(1)证明:连接OD又OB OD=B ODB∴∠=∠ODB∴∠=∠AC OD∥DF AC⊥OD DF∴⊥DF∴是O的切线;(2)连接AD设O半径为Rt CED中3,CE CD=22ED CD∴=-又cosCE CCD ∠=30C∴∠=︒30B∴∠=︒60AOD=∠AB是O的直径.90ADB∴∠=︒12AD AB r ∴== ∵AB AC =∵2CD BD ==又222AD BD AB +=2222(2)r r ∴+=233r ∴=(负值已舍). 5.(1)证明见解析(2)3【分析】本题考查的是勾股定理的应用 等腰三角形的性质 切线的判定 熟练的证明圆的切线是解本题的关键;(1)连接OB 证明PCB PBC ∠=∠ OAB OBA ∠=∠ 再证明90PBC OBA ∠+∠=︒即可;(2)设O 的半径为r 表示()()22222255PC AC AP r =-=-- 222225PB OP OB r =-=- 再利用PB PC =建立方程求解即可.【详解】(1)解:连接OB∵PB PC = OA OB =∵PCB PBC ∠=∠ OAB OBA ∠=∠∵OP l ⊥ OAB PAC ∠=∠∵90BCP CAP BCP OAB ∠+∠=︒=∠+∠∵90PBC OBA ∠+∠=︒∵90OBP ∠=︒∵OB PB ⊥是O 的切线;)设O 的半径为l 2AC =2AC AP =-PB BP 2OP OB =-∵O 的半径为【点睛】.(1)见解析(2)3【分析】本题主要考查切线的判定和性质证AOB EOB ≌ 得出的半径为r 则OE OA =根据AOB EOB ≌得求得4CE = 在Rt OCE 中运用勾股定理列式求出r 的值即可. )证明:在AOB 和EOB 中∵()SAS AOB EOB ≌OAF OEF ∠=∠BC 与O 相切OE BC ⊥90OAB OEB ∠=∠=︒AF是O 的半径是O 的切线;(2)解:在Rt CAB △中 90108CAB BC AC ∠=︒==,,∵22221086AB BC AC =-=-=设圆O 的半径为r 则,OE OA r ==∵8OC r =-∵,AOB EOB ≌∵6BE AB ==∵10,BC =∵1064,CE BC BE =-=-=在Rt OCE 中 222OE CE OC +=∵()22248r r +=-解得3r =.∵O 的半径为3.7.(1)作图见解析(2)4π3【分析】本题考查了作图 复杂作图 切线的性质 等边三角形的判定与性质 弧长的计算 熟练掌握切线的性质 弧长公式是解答本题的关键.(1)根据题意 连接OC 作OC CD ⊥ 交AB 的延长线于点D 由此得到答案. (2)根据题意 得到OBC △是等边三角形 求出120AOC ∠=︒ 再利用弧长公式 得到答案.【详解】(1)解:如图所示 CD 即为所求.(2)如图所示 连接BCBD)证明:在ABCD中AE AD ∴=∵AE BC =.(2)解:连接OA 过点O 作OF CE ⊥于点F 如图所示:AD 是O 的切线OA AD ∴⊥OA BC ∴⊥AB AC ∴=40AEC B D ︒∠=∠=∠=40ACB B ∴∠=∠=︒在ABCD 中 AD BC ∥40DAC ACB ∴∠=∠=︒又180100DAE D AEC ∠=︒-∠-∠=︒60CAE DAE CAD ∴∠=∠-∠=︒2120COE CAE ∴∠=∠=︒OC OE =30OCE ∴∠=︒OF CE ⊥22cos3063CE CF OC ∴==⋅︒=.【点睛】本题主要考查了切线的性质 解直角三角形 圆周角定理 平行四边形的性质垂径定理 等腰三角形的判定 解题的关键是作出辅助线 熟练掌握相关的判定和性质.9.(1)证明详见解析;(2)8.【分析】本题考查了切线的判定 勾股定理等知识 熟练掌握切线的判定定理 勾股定理是解题的关键.(1)连接OD 根据平行线判定推出OD AC ∥ 推出OD BC ⊥ 根据切线的判定推出即可;(2)根据勾股定理求出3OD OA OE === 再根据线段的和差求解即可.【详解】(1)证明:连接OD∵OA OD =∵OAD ODA ∠=∠∵AD 平分BAC ∠∵BAD CAD ∠=∠∵ODA CAD ∠=∠∵OD AC ∥∵180C ODC ∠+∠=︒∵90C ∠=︒∵90ODC ∠=︒∵OD BC ⊥∵OD 为半径∵BC 是O 的切线;(2)解:设OD OE r ==在Rt ODB △中 42BD BE ==,∵2OB r =+由勾股定理 得:()22242r r +=+ 解得:3r =∵3OD OA OE ===∵628AB =+=.10.(1)证明见解析;(2)63.【分析】(1)先证明OAB 是等边三角形 再由性质得出60AOB OAB OBA ∠=∠=∠=︒ 再由BC AB =和角度和差即可求解;(2)先根据等边三角形性质求出132OE OA == 再根据勾股定理求得33AE = 最后由垂径定理即可求解;此题考查了等边三角形的判定与性质 勾股定理和垂径定理 解题的关键是熟练掌握以上知识点的应用.【详解】(1)证明:∵AB OA OB ==∵OAB 是等边三角形∵60AOB OAB OBA ∠=∠=∠=︒∵BC OB =∵BC AB =∵1302BAC BCA OBA ∠=∠=∠=︒ ∵90OAC OAB BAC ∠=∠+∠=︒又∵OA 为O 的半径∵AC 是O 的切线;(2)解:∵6BC =∵6AB OA OB ===∵AD OB ⊥于点E∵30OAE ∠=︒∵132OE OA == ∵2233AE OA OE =-=∵AE OB ⊥∵263AD AE ==.11.(1)见解析∠=)证明:BAD60︒6090︒-︒=OD是O的半径∴直线BD是O的切线;==(2)解:设OD OC△中sin30在Rt BDO解得:1r==+OB OCDE是O的直径∴∠=︒DFE90∠=∠即DFB BDE∠=∠DBF DBE∴△∵BDEBFD△BF BD∴=BD BE337BF ∴= 解得:377BF =. 【点睛】本题考查了切线的判定和性质 相似三角形的性质和判定 圆周角定理 勾股定理等知识点 作出辅助线构造出相似三角形是解题关键.12.(1)见详解(2)3【分析】(1)连接OC 由∠=∠OCB ABC ABC CBD ∠=∠ 得OCB CBD ∠=∠ 则OC BD ∥ 所以18090OCD D ∠=︒-∠=︒ 即可证明CD 为O 的切线;(2)由AB 为的直径 得90ACB ∠=︒ 则ACB D ∠=∠ 而ABC CBD ∠=∠ 所以C ABC BD ∽△△ 则AB CB CB BD = 可求得CB BD AB =⋅ 由勾股定理得22CD CB BD =-.【详解】(1)证明:连接OC 则OC OB =OCB ABC ∴∠=∠ABC CBD ∠=∠OCB CBD ∴∠=∠OC BD ∴∥CD BD ⊥90D ∴∠=︒18090OCD D ∴∠=︒-∠=︒OC 是O 的半径 且CD OC ⊥CD ∴为O 的切线.(2)解:AB 为的直径ABC∠=ABC CBD ∴∽∴AB CBCB BD=1,4BD AB==1 CB BD AB∴=⋅=22CD CB BD∴=-=CD∴的长是【点睛】此题重点考查等腰三角形的性质AD OC∥ADO∴∠OA OD=ADO DAO ∴∠=∠DOC BOC ∴∠=∠OD OB OC OC ==,ODC OBC ∴≌△△∴OBC ODC ∠=∠BC AB ⊥∴90OBC ODC ∠=∠=︒OD 为经过圆心的半径∴CD 是O 的切线;(2)如图所示:作DM BC ⊥交BC 于点M8AB = 1AE =1432OA OB OD AB OE OA AE ∴=====-=, 227DE BM OD OE ==-=令=7CM x CB CD x ==+, 7BE DM ==∴在222Rt DMC CM DM CD +=△,222(7)7x x ∴+=+解得:37x =47BC ∴=DE BC ∥ADE ABC ∴△△∽是O的切线.2)在Rt△是O的切线得出Rt EAD中【详解】(1)证明:连接.是O的直径+∠OCA OCBDCB OCB+∠OCD=︒.90是半径经过O的半径外端∵CD 是O 的切线.(2)解:在Rt OCD △中∵90OCD ∠=︒ 30D ∠=︒ 2OC =∵4OD =.∵6AD AO OD =+=.∵AE 是O 的切线 切点为A∵OA AE ⊥.在Rt EAD 中∵90EAD ∠=︒ 30D ∠=︒ 6AD =∵3tan 306233AE AD =⋅︒=⨯=. 15.(1)见解析(2)4π3【分析】本题考查圆与三角形的综合问题 掌握与圆有关的性质 正确作出辅助线是关键.(1)连接OC 根据条件证明OC BD ∥ 即可证明;(2)根据PCO PDB ∽可得PA 利用余弦值可求出COP ∠ 通过弧长公式求解即可.【详解】(1)证明:连接OC 如图∵OC OB =∵OCB OBC ∠=∠∵弦BC 平分PBD ∠∵DBC OBC ∠=∠∵OCB DBC ∠=∠.∵OC BD ∥∵BD PD ⊥∵OC PD ⊥.为O 的半径是O 的切线;)解:连接OC∵PCO PDB ∽OC PO BD PB= 8cm AB = BD =14cm 2OC AB ==4468PA PA +=+ Rt OCP 中cos COP ∠=60COP =︒AC 的长=(1)证明见解析; 是O 的切线;证明FBD FDA ∽ 得到1tan tan 4BD A BDF AD ∠=∠== 进而得到164DF = 即可求解; 本题考查了切线的判定 相似三角形的判定与性质 等腰三角形的性质 余角性质 根据题意 正确作出辅助线是解题的关键.【详解】(1)证明:连结OD∵CO AB ⊥∵90E C ∠+∠=︒∵FE FD = OD OC =∵E FDE ∠=∠ ∠=∠C ODC∵90FDE ODC ∠+∠=︒∵90ODF ∠=︒∵OD DF ⊥∵FD 是O 的切线;(2)解:连结AD ,OD BD 如图∵AB 为O 的直径∵90ADB ∠=︒∵90∠+∠=︒A ABD∵OB OD =∵OBD ODB ∠=∠∵90A ODB ∠+∠=︒∵FBD FDA ∽DF BD AF AD= 在Rt △ABD 中 tan ∠164DF = 3DF =的平分线交O 于点E∵ED OE ⊥∵DE 为O 切线.(2)过点O 作OM BC ⊥于点M 10AB = 6BC =则132MC MB BC ===,152OB OE AB === 四边形OEDM 时矩形∵DE OM =根据勾股定理 得224DE OM OB BM ==-=.18.(1)见解析(2)103【分析】(1)连接OA OC 与AB 相交于点E 如图 由OA OC = 可得OAC OCA ∠=∠ 根据圆周角定理可得12B AOC ∠=∠ 由已知CAD B ∠=∠ 可得2AOC CAD ∠=∠ 根据三角形内角和定理可得180OCA CAO AOC ∠+∠+∠=︒ 等量代换可得90CAO CAD ∠+∠=︒ 即可得出答案;(2)根据角平分线的定义可得BAC DAC ∠=∠ 由已知可得BAC B =∠∠ 根据垂径定理可得 OC AB ⊥ BE AE = 在Rt BEC △中 根据正弦定理可得3sin 45CE CE B BC === 即可算出CE 的长度 根据勾股定理可算出22BE BC CE =-的长度 设O 的半径为r 则125OE OC CE r =-=- 在Rt AOE △中 222OA OE AE =+ 代入计算即可得出答案. 【详解】(1)证明:连接OA OC 与AB 相交于点E 如图OA OC =OAC ∴∠AC AC =∴12B ∠=CAD ∠=AOC ∴∠=OCA ∠+2CAO ∴∠+CAO ∴∠+OAD ∴∠OA 是O 的半径AD ∴是O 的切线;(2)解:AC 是∠BAC DAC ∴∠=∠CAD B ∠=∠BAC B ∴∠=∠OC AB ∴⊥ BE =在Rt BEC △中4BC =sin CE B BC ∴=125CE ∴=BE BC ∴=设O 的半径为r ,则125OE OC CE r =-=-在Rt AOE △中222OA OE AE =+ 222121655r r ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭ 解得:103r =. 【点睛】本题主要考查了切线的性质与判定,垂径定理,勾股定理及解直角三角形, 熟练掌握切线的性质与判定,垂径定理及解直角三角形的方法进行求解是解决本题的关键.。
往年中考关于圆的证明汇总(有答案)
23 图
24 图
24、如图,⊙M 与 x 轴相切于点 C,与 y 轴的一个交点为 A。
(1)求证:AC 平分∠OAM;(2)如果⊙M 的半径等于 4,∠ACO=300,求 AM 所在直线的解析式.
25、如图,在直角三角形 ABC 中,∠ABC=90°.
1、如图,在⊙O 中,AB,CD 是直径,BE 是切线,B 为切点,连接 AD,BC,BD.
(1)求证:△ABD≌△CDB;
(2)若∠DBE=37°,求∠ADC 的度数.
1图
2图
2、如图,△ABC 中,∠ACB=90°,D 是边 AB 上的一点,E 是 BC 上的一点,以 EC 为直径的⊙O 经过点 D,OA⊥CD 于点
连接 AF. (1)证明:∠F=∠CAD;(2)试判断直线 AF 与⊙O 的位置关系,并给出证明.
11 图
12 图
12、如图,AB 是半圆 O 的直径,点 C 是⊙O 上一点(不与 A,B 重合) ,连接 AC,BC,过点 O 作 OD∥AC 交 BC 于点 D,
在 OD 的延长线上取一点 E,连接 EB,使∠OEB=∠ABC.
那么图中两个扇形(即阴影部分)的面积之和
两等圆⊙A,⊙B外切, 为.
35 图
36 图
36、如图所示,AB 是⊙O 的直径,AE 是弦,C 是劣弧 AE 的中点,过 C 作 CD⊥AB 于点 D,CD 交 AE 于点 F,过 C 作 CG
∥AE 交 BA 的延长线于点 G.
(1)求证:CG 是⊙O 的切线. (2)求证:AF=CF. (3)若∠EAB=30°,CF=2,求 GA 的长.
33 图
中考数学复习《圆的证明与计算》经典题型及测试题(含答案)
中考数学复习《圆的证明与计算》经典题型及测试题(含答案)阅读与理解圆的相关知识的考查是中考数学中的一个重要内容,圆作为一个载体,常与三角形、四边形结合,考查切线的性质及判定、相似三角形的性质与判定、解直角三角形、求阴影面积等.解题时要先分析题干中的条件,然后从图象中挖掘隐含条件,最后再解题.类型一切线的判定判定一条直线是圆的切线,首先看圆的半径是否过直线与圆的交点,有半径则证垂直;没有半径,则连接圆心与切点,构造半径证垂直.例1 (2016·黄石)如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.(1)若BC=3,AB=5,求AC的值;(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.【分析】(1)首先根据直径所对的圆周角为直角得到直角三角形,然后利用勾股定理求得AC的长即可;(2)连接OC,证OC⊥CD即可;利用角平分线的性质和等边对等角,可证得⊥OCA=⊥CAD,即可得到OC⊥AD,由于AD⊥CD,那么OC⊥CD,由此得证.【自主解答】(1)解:⊥AB是⊥O直径,C在⊥O上,⊥⊥ACB=90°,又⊥BC=3,AB=5,⊥由勾股定理得AC=4;(2)证明:⊥AC是⊥DAB的角平分线,⊥⊥DAC=⊥BAC,又⊥AD⊥DC,⊥⊥ADC=⊥ACB=90°,⊥⊥ADC⊥⊥ACB,⊥⊥DCA=⊥CBA,又⊥OA=OC,⊥⊥OAC=⊥OCA,⊥⊥OAC+⊥OBC=90°,⊥⊥OCA+⊥ACD=⊥OCD=90°,⊥DC是⊥O的切线.变式训练1.(2017·白银) 如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB==,∴B(,2).(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.类型二切线的性质已知某条直线是圆的切线,当圆心与切点有线段连接时,直接利用切线的性质:圆的切线垂直于过切点的半径;当圆心与切点没有线段相连时,则作辅助线连接圆心与切点,再利用切线的性质解题.例2 (2016·资阳) 如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连接BD.(1)求证:∠A=∠BDC;(2)若CM平分∠ACD,且分别交AD,BD于点M,N,当DM=1时,求MN的长.【分析】(1)连接OD,由切线的性质可得∠CDB+∠ODB=90°,由AB是直径,可得∠ADB=90°,进而可得∠A+∠ABD=90°,进而求得∠A=∠BDC;(2)由角平分线及三角形外角性质可得∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,再根据勾股定理求得MN的长.【自主解答】(1)如图,连接OD,∵CD是⊙O的切线,∴∠ODC=90°,∴∠BDC+∠ODB=90°.∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.∵OB=OD,∴∠OBD=∠ODB,∴∠A+∠ODB=90°,∴∠A=∠BDC.(2)∵CM平分∠ACD,∴∠DCM=∠ACM.∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM.即∠DMN=∠DNM.∵∠ADB=90°,DM=1,∴DN=DM=1,∴MN=变式训练2.(2017·长沙)如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,=(1)求证:OA=OB;(2)已知AB=4,OA=4,求阴影部分的面积.解:(1)连接OC,∵AB与⊙O相切于点C∴∠ACO=90°,由于=,∴∠AOC=∠BOC,∴∠A=∠B∴OA=OB,(2)由(1)可知:△OAB是等腰三角形,∴BC=AB=2,∴sin∠COB==,∴∠COB=60°,∴∠B=30°,∴OC=OB=2,∴扇形OCE的面积为:=,△OCB的面积为:×2×2=2=2﹣π∴S阴影类型三圆与相似的综合圆与相似的综合主要体现在圆与相似三角形的综合,一般结合切线的判定与性质综合考查,求线段长或半径.一般的解题思路是利用切线的性质构造角相等,进而构造相似三角形,利用相似三角形对应边成比例求出所求线段或半径.例3 (2017·兰州) 如图,△ABC内接于⊙O,BC是⊙O的直径,弦AF交BC于点E,延长BC到点D,连接OA,AD,使得∠FAC=∠AOD,∠D=∠BAF.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为5,CE=2,求EF的长.【分析】(1)由BC是⊙O的直径,得到∠BAF+∠FAC=90°,等量代换得到∠D+∠AOD=90°,于是得到结论;(2)连接BF,根据相似三角形的判定和性质即可得到结论.【自主解答】解:(1)∵BC是⊙O的直径,∴∠BAF+∠FAC=90°,∵∠D=∠BAF,∠AOD=∠FAC,∴∠D+∠AOD=90°,∴∠OAD=90°,∴AD是⊙O的切线;(2)连接BF,∴∠FAC=∠AOD,∴△ACE∽△OCA,∴,∴,∴AC=AE=,∵∠CAE=∠CBF,∴△ACE∽△BFE,∴,∴=,∴EF=.变式训练3.(2016·丹东)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求AD的长.(1)证明:如图,连接OD,∵CD是⊙O的切线,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB为⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°. ∴∠BDC=∠ADO.∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A.(2)解:∵CE⊥AE,∴∠E=90°,∴DB∥EC,∴∠DCE=∠BDC.∵∠BDC=∠A,∴∠A=∠DCE.∵∠E=∠E,∴△AEC∽△CED,∴∴CE2=DE·AE,即16=2(2+AD),∴AD=6.。
2023九年级数学下册中考专题训练——圆的切线的证明【含答案】
2023九年级数学下册中考专题训练——圆的切线的证明A AM⊙O B⊙O BD⊥AM D BD1. 如图,点是直线与的交点,点在上,垂足为,与⊙O C OC∠AOB∠B=60∘交于点,平分,.AM⊙O(1) 求证:是的切线;DC=2π(2) 若,求图中阴影部分的面积(结果保留和根号).AB⊙O AC BD⊙O OE∥AC BC E B 2. 如图,已知是的直径,,是的弦,交于,过点⊙O OE D DC BA F作的切线交的延长线于点,连接并延长交的延长线于点.DC⊙O(1) 求证:是的切线;∠ABC=30∘AB=8CF(2) 若,,求线段的长.△ABC∠B=∠C=30∘O BC O OB3. 如图,中,,点是边上一点,以点为圆心、为半径的圆A BC D经过点,与交于点.AC⊙O(1) 试说明与相切;AC=23(2) 若,求图中阴影部分的面积.ABC⊙O B C D⊙O E BC OE 4. 如图,割线与相交于,两点,为上一点,为弧的中点,BC F DE AC G∠ADG=∠AGD交于,交于,.AD⊙D(1) 求证明:是的切线;∠A=60∘⊙O4ED(2) 若,的半径为,求的长.5. 如图,, 分别是半 的直径和弦, 于点 ,过点 作半 的切线 AB AC ⊙O OD ⊥AC D A ⊙O , 与 的延长线交于点 .连接 并延长与 的延长线交于点 .AP AP OD P PC AB F(1) 求证: 是半 的切线;PC ⊙O (2) 若 ,,求线段 的长.∠CAB =30∘AB =10BF 6. 如图, 是 的直径, 是 上一点, 是 的中点, 为 延长线上一点,AB ⊙O C ⊙O D AC E OD 且 , 与 交于点 ,与 交于点 .∠CAE =2∠C AC BD H OE F(1) 求证: 是 的切线.AE ⊙O (2) 若 ,,求直径 的长.DH =9tanC =34AB 7. 如图, 是 的直径, 是 的弦,, 与 的延长线交于点 ,点 AB ⊙O AC ⊙O OD ⊥AB OD AC D 在 上,且 .E OD CE =DE(1) 求证:直线 是 的切线.CE ⊙O (2) 若 ,,.OA =23AC =3CD =8. 如图, 是的直径,弦 于点 ,点 在直径 的延长线上,AB ⊙O CD ⊥AB E G DF .∠D =∠G =30∘(1) 求证: 是 的切线.CG ⊙OCD=6GF(2) 若,求的长.AB⊙O AC D BC D EF AC9. 如图,是的直径,是弦,是的中点,过点作垂直于直线,垂E AB F足为,交的延长线于点.EF⊙O(1) 求证:是的切线.B OF⊙O3(2) 若点是的中点,的半径为,求阴影部分面积.PB⊙O B PO⊙O E F B PO BA 10. 如图,切于点,直线交于点,,过点作的垂线,垂D⊙O A AO⊙O C BC AF足为点,交于点,延长交于点,连接,.PA⊙O(1) 求证:直线为的切线;BC=6AD:FD=1:2⊙O(2) 若,,求的半径的长.AC⊙O B⊙O∠ACB=30∘CB D11. 如图,为的直径,为上一点,,延长至点,使得CB=BD D DE⊥AC E CA BE,过点作,垂足在的延长线上,连接.BE⊙O(1) 求证:是的切线;BE=3(2) 当时,求图中阴影部分的面积.AB⊙O AP⊙O A BP⊙O C12. 已知是的直径,是的切线,是切点,与交于点.∠P=35∘∠ABP(1) 如图①,若,求的度数;D AP CD⊙O(2) 如图②,若为的中点,求证:直线是的切线.Rt△ABC∠C=90∘D AB AD⊙O BC13. 如图,在中,,点在上,以为直径的与相交于点E AE∠BAC,且平分.BC⊙O(1) 求证:是的切线;∠EAB=30∘OD=3(2) 若,,求图中阴影部分的面积.⊙O PA PC PH∠APB⊙O H H 14. 如图,在中,是直径,是弦,平分且与交于点,过作HB⊥PC PC B交的延长线于点.HB⊙O(1) 求证:是的切线;HB=6BC=4⊙O(2) 若,,求的直径.AB⊙O BD⊙O BD C AB=AC AC15. 已知:是的直径,是的弦,延长到点,使,连接,过D DE⊥AC E点作,垂足为.DC=BD(1) 求证:;DE⊙O(2) 求证:为的切线.AB⊙O C⊙O D AB∠BCD=∠A16. 如图,是的直径,是上一点,在的延长线上,且.CD⊙O(1) 求证:是的切线;⊙O3CD=4BD(2) 若的半径为,,求的长.△ABC AC⊙O△ABC∠ABC⊙O17. 如图,以的边为直径的恰为的外接圆,的平分线交D D DE∥AC BC E于点,过点作交的延长线于点.DE⊙O(1) 求证:是的切线.AB=45BC=25DE(2) 若,,求的长.AB O AD∠DBC=∠A18. 如图,是半圆的直径,为弦,.BC O(1) 求证:是半圆的切线;OC∥AD OC BD E BD=6CE=4AD(2) 若,交于,,,求的长.△ABC AO⊥BC O⊙O AC D BE⊥AB 19. 如图,是等边三角形,,垂足为点,与相切于点,交AC E⊙O G F的延长线于点,与相交于,两点.AB⊙O(1) 求证:与相切;ABC8BF(2) 若等边三角形的边长是,求线段的长.AC⊙O BC⊙O P⊙O PB AB 20. 如图,是的直径,是的弦,点是外一点,连接,,∠PBA=∠C.PB⊙O(1) 求证:是的切线;OP OP∥BC OP=8⊙O22BC(2) 连接,若,且,的半径为,求的长.答案1. 【答案】(1) ,,∵∠B=60∘OB=OC是等边三角形,∴△BOC,∴∠1=∠2=60∘平分,∵OC∠AOB,∴∠1=∠3,∴∠2=∠3,∴OA∥BD,∴∠BDM=90∘,∴∠OAM=90∘是的切线.∴AM⊙O(2) ,,∵∠3=60∘OA=OC是等边三角形,∴△AOC,∴∠OAC=60∘,∵∠OAM=90∘,∴∠CAD=30∘,∵CD=2,∴AC=2CD=4,∴AD=23∴S阴影=S梯形OADC−S扇形OAC =12(4+2)×23−60⋅π×16360=63−8π3.2. 【答案】(1) 连接,OC,∵OE∥AC,∴∠1=∠ACB是的直径,∵AB⊙O,∴∠1=∠ACB=90∘,由垂径定理得垂直平分,∴OD⊥BC OD BC,∴DB=DC,∴∠DBE=∠DCE又,∵OC=OB,∴∠OBE=∠OCE即,∠DBO=∠OCD为的切线,是半径,∵DB⊙O OB,∴∠DBO=90∘,∴∠OCD =∠DBO =90∘即 ,OC ⊥DC 是 的半径,∵OC ⊙O 是 的切线.∴DC ⊙O (2) 在 中,,Rt △ABC ∠ABC =30∘ ,又 ,∴∠3=60∘OA =OC 是等边三角形,∴△AOC∴∠COF =60∘在 中,,Rt △COF tan∠COF =CF OC .∴CF =433. 【答案】(1) 连接 .OA ,∵OA =OB .∴∠OAB =∠B ,∵∠B =30∘ .∴∠OAB =30∘ 中:,△ABC ∠B =∠C =30∘ .∴∠BAC =180∘−∠B−∠C =120∘ .∴∠OAC =∠BAC−∠OAB =120∘−30∘=90∘ ,∴OA ⊥AC 是 的切线,即 与 相切.∴AC ⊙O AC ⊙O (2) 连接 .AD ,∵∠C =30∘∠OAC =90∘ .∴OC =2OA 设 的长度为 ,则 .OA x OC =2x 在 中,,.△OAC ∠OAC =90∘AC =23根据勾股定理可得:,x 2+(23)2=(2x )2解得:,(不合题意,舍去).x 1=2x 2=−2 ,∴S △OAC =12×2×23=23,S 扇形OAD =60360×π×22=23π .∴S 阴影=23−23π答:图中阴影部分的面积为 .23−23π4. 【答案】(1) 连接 .OD 为 的中点,∵E BC ,∴OE ⊥BC ,∵OD =OE ,∴∠ODE =∠OED ,∴∠AGD +∠OED =∠EGF +∠OED =90∘ ,∵∠AGD =∠ADG ,即 ,∴∠ADG +∠ODE =90∘OD ⊥AD 是 的切线.∴AD ⊙O (2) 作 于 .OH ⊥ED H ,∴DE =2DH ,∵∠ADG =∠AGD ,∴AG =AD ,∵∠A =60∘ ,∴∠ADG =60∘,∴∠ODE =30∘ ,∵OD =4 ,∴DH =32OD =23 .∴DE =2DH =435. 【答案】(1) 连接 ,OC , 经过圆心 ,∵OD ⊥AC OD O ,∴AD =CD ,∴PA =PC 在 和 中,△OAP △OCP {OA =OC,PA =PC,OP =OP,,∴△OAP ≌△OCP (SSS ) ,∴∠OCP =∠OAP 是 的切线,∵PA ⊙O .∴∠OAP =90∘,即 ,∴∠OCP =90∘OC ⊥PC 是 的切线.∴PC ⊙O (2) 是直径,∵AB ,∴∠ACB =90∘,∵∠CAB =30∘,∴∠COF =60∘ 是 的切线,,∵PC ⊙O AB =10 ,,∴OC ⊥PF OC =OB =12AB =5 ,∴OF =OC cos∠COF =10 .∴BF =OF−OB =56. 【答案】(1) 是 的中点,∵D AC ,∴OE ⊥AC ,∴∠AFE =90∘ ,∴∠E +∠EAF =90∘ ,,∵∠AOE =2∠C ∠CAE =2∠C ,∴CAE =∠AOE ,∴∠E +∠AOE =90∘ ,∴∠EAO =90∘ 是 的切线.∴AE ⊙O (2) ,∵∠C =∠B ,∵OD =OB ,∴∠B =∠ODB ,∴ODB =∠C ,∴tanC =tan∠ODB =HF DF =34 设 ,,∴HF =3x DF =4x ,∴DH =5x =9,∴x =95 ,,∴DE =365HF =275 ,,∵∠C =∠FDH ∠DFH =∠CFD ,∴△DFH ∼△CFD ,∴DF CF =FH DF,∴CF =365×365275=485 ,∴AF =CF =485设 ,OA =OD =x,∴OF =x−365 ,∵AF 2+OF 2=OA 2 ,∴(485)2+(x−365)2=x 2解得:,x =10 ,∴OA =10 直径 为 .∴AB 207. 【答案】(1) 连接 ,OC ,∵OD ⊥AB ,∴∠AOD =90∘ ,∴∠D +∠A =90∘ ,∵OA =OC ,∴∠A =∠ACO ,∵CE =DE ,∴∠ECD =∠D ,∵∠ACO +∠DCE =90∘ ,∴∠OCE =90∘ ,∴OC ⊥CE 直线 是 的切线.∴CE ⊙O (2)5【解析】(2) 连接 ,BC 是 的直径,∵AB ⊙O ,∴∠ACB =90∘ ,∴∠AOD =∠ACB ,∵∠A =∠A ,∴△ABC ∽△ADO,∴AO AC =AD AB ,∴233=AD43 ,∴AD =8 .∴CD =AD−AC =58. 【答案】(1) 连接 .OC ,,∵OC =OD ∠D =30∘ .∴∠OCD =∠D =30∘ ,∵∠G =30∘ .∴∠DCG =180∘−∠D−∠G =120∘ .∴∠GCO =∠DCG−∠OCD =90∘ .∴OC ⊥CG 又 是 的半径.∵OC ⊙O 是 的切线.∴CG ⊙O (2) 是 的直径,,∵AB ⊙O CD ⊥AB .∴CE =12CD =3 在 中,,,∵Rt △OCE ∠CEO =90∘∠OCE =30∘ ,.∴EO =12CO CO 2=EO 2+CE 2设 ,则 .EO =x CO =2x .∴(2x )2=x 2+32解得 (舍负值).x =±3 .∴CO =23 .∴FO =23在 中,△OCG ,,∵∠OCG =90∘∠G =30∘ .∴GO =2CO =43 .∴GF =GO−FO =239. 【答案】(1) 连接 ,连接 ,OD AD 点 是 的中点,∵D BC ,∴∠1=∠2 ,∵OA =OD ,∴∠2=∠3即 ,∠1=∠2=∠3 ,∴∠1=∠3 ,∴AE ∥OD ,∵AE ⊥EF ,∴OD ⊥EF 即 是 的切线.EF ⊙O(2) 点是 的中点, 半径为 ,∵B OF ⊙O 3 ,∴BF =OB =3由()可知 ,1OD ⊥EF 在 中,Rt △ODF ,∵sinF =OD OF =36=12 ,,∴∠F =30∘∠DOF =60∘故S 阴影=S △ODF −S 扇ODB=12OD ⋅DF−60∘360∘π×32=3×332−32π=32(33−π).故阴影面积为:.32(33−π)10. 【答案】(1) 如图,连接 .OB 是 的切线,∵PB ⊙O .∴∠PBO =90∘ , 于 ,∵OA =OB BA ⊥PO D ,.∴AD =BD ∠POA =∠POB 又 ,∵PO =PO .∴△PAO ≌△PBO .∴∠PAO =∠PBO =90∘ 直线 为 的切线.∴PA ⊙O (2) ,,,∵OA =OC AD =BD BC =6 .∴OD =12BC =3设 .AD =x ,∵AD:FD =1:2 ,.∴FD =2x OA =OF =2x−3在 中,由勾股定理,得 .Rt △AOD (2x−3)2=x 2+32解之得,,(不合题意,舍去).x 1=4x 2=0 ,.∴AD =4OA =2x−3=5即 的半径的长 .⊙O 511. 【答案】(1) 如图所示,连接 ,BO ,∵∠ACB =30∘ ,∴∠OBC =∠OCB =30∘,,∵DE ⊥AC CB =BD 中,,∴Rt △DCE BE =12CD =BC ,∴∠BEC =∠BCE =30∘ 中,,∴△BCE ∠EBC =180∘−∠BEC−∠BCE =120∘ ,∴∠EBO =∠EBC−∠OBC =120∘−30∘=90∘ 是 的切线.∴BE ⊙O (2) 当 时,,BE =3BC =3 为 的直径,∵AC ⊙O ,∴∠ABC =90∘又 ,∵∠ACB =30∘ ,∴AB =tan 30∘×BC =3 ,,∴AC =2AB =23AO =3 ∴S 阴影部分=S 半圆−S Rt △ABC =12π×AO 2−12AB ×BC=12π×3−12×3×3=32π−32 3.12. 【答案】(1) 是 的直径, 是 的切线,∵AB ⊙O AP ⊙O ,∴AB ⊥AP ;∴∠BAP =90∘又 ,∵∠P =35∘ ∴∠ABP =90∘−35∘=55∘(2) 如图,连接 ,,.OC OD AC 是 的直径,∵AB ⊙O (直径所对的圆周角是直角),∴∠ACB =90∘ ;∴∠ACP =90∘又 为 的中点,∵D AP (直角三角形斜边上的中线等于斜边的一半);∴AD =CD 在 和 中,△OAD △OCD {OA =OC,OD =OD,AD =CD, ,△OAD ≌△OCD (SSS ) (全等三角形的对应角相等);∴∠OAD =∠OCD 又 是 的切线, 是切点,∵AP ⊙O A ,∴AB ⊥AP ,∴∠OAD =90∘ ,即直线 是 的切线.∴∠OCD =90∘CD ⊙O13. 【答案】(1) 平分 ,∵AE ∠BAC ,∴∠CAE =∠EAD ,∵OA =OE ,∴∠EAD =∠OEA ,∴∠OEA =∠CAE ,∴OE ∥AC ,∴∠OEB =∠C =90∘ ,∴OE ⊥BC 是 的切线.∴BC ⊙O (2) ,∵∠EAB =30∘ ,∴∠EOD =60∘ ,∴∠OEB =90∘ ,∴∠B =30∘ ,∴OB =2OE =2OD =6 ,∴BE =OB 2−OE 2=33,,∴S △OEB =932S 扇形=3π2 .∴S 阴影=932−3π214. 【答案】(1) 如图,连接 .OH 平分 ,∵PH ∠APB .∴∠HPA =∠HPB ,∵OP =OH .∴∠OHP =∠HPA .∴∠HPB =∠OHP .∴OH ∥BP ,∵BP ⊥BH .∴OH ⊥BH 是 的切线.∴HB ⊙O (2) 如图,过点 作 ,垂足为 .O OE ⊥PC E ,,,∵OE ⊥PC OH ⊥BH BP ⊥BH 四边形 是矩形.∴EOHB ,.∴OE =BH =6OH =BE .∴CE =OH−4 ,∵OE ⊥PC.∴PE =EC =OH−4=OP−4在 中,,.Rt △POE OP 2=PE 2+OE 2 .∴OP 2=(OP−4)2+36 .∴OP =132 .∴AP =2OP =13 的直径是 .∴⊙O 1315. 【答案】(1) 连接 ,AD 是 的直径,∵AB ⊙O ,∴∠ADB =90∘又 ,∵AB =AC .∴DC =BD (2) 连接半径 ,OD ,,∵OA =OB CD =BD ,∴OD ∥AC ,∴∠ODE =∠CED 又 ,∵DE ⊥AC ,∴∠CED =90∘ ,即 ,∴∠ODE =90∘OD ⊥DE 是 的切线.∴DE ⊙O 16. 【答案】(1) 连接 .OC 是 的直径, 是 上一点,∵AB ⊙O C ⊙O ,即 .∴∠ACB =90∘∠ACO +∠OCB =90∘ ,,∵OA =OC ∠BCD =∠A ,∴∠ACO =∠A =∠BCD ,即 ,∴∠BCD +∠OCB =90∘∠OCD =90∘ 是 的切线.∴CD ⊙O (2) 在 中,,,,Rt △OCD ∠OCD =90∘OC =3CD =4 ,∴OD =OC 2+CD 2=5 .∴BD =OD−OB =5−3=217. 【答案】(1) 连接 ,OD 是 的直径,∵AC ⊙O,∴∠ABC =90∘ 平分 ,∵BD ∠ABC ,∴∠ABD =45∘ ,∴∠ODE =90∘ ,∵DE ∥AC ,∴∠ODE =∠AOD =90∘ 是 的切线.∴DE ⊙O (2) 在 中,,,Rt △ABC AB =45BC =25 ,∴AC =AB 2+BC 2=10 ,∴OD =5过点 作 ,垂足为 ,C CG ⊥DE G 则四边形 为正方形,ODGC ,∴DG =CG =OD =5 ,∵DE ∥AC ,∴∠CEG =∠ACB ,∴tan∠CEG =tan∠ACB ,即 ,∴CG GE =AB BC 5GE =4525解得:,GE =52 .∴DE =DG +GE =15218. 【答案】(1) 是半圆 的直径,∵AB O ,∴BD ⊥AD ,∴∠DBA +∠A =90∘ ,∵∠DBC =∠A ,即 ,∴∠DBA +∠DBC =90∘AB ⊥BC 是半圆 的切线.∴BC O (2) ,∵OC ∥AD ,∴∠BEC =∠D =90∘ ,,∵BD ⊥AD BD =6 ,∴BE =DE =3 ,∵∠DBC =∠A ,∴△BCE ∽△BAD ,即 ,∴CE BD =BE AD 46=3AD .∴AD =4.519. 【答案】(1) 过点 作 ,垂足是 .O OM ⊥AB M 与 相切于点 ,∵⊙O AC D ,∴OD ⊥AC ,∠ADO =∠AMO =90∘ 是等边三角形,,∵△ABC AO ⊥BC 是 的角平分线,∴OA ∠MAD ,,∵OD ⊥AC OM ⊥AB .∴OM =OD 与 相切.∴AB ⊙O (2) 过点 作 ,垂足是 ,连接 .O ON ⊥BE N OF ,,∵AB =AC AO ⊥BC ∴ 是 的中点,O BC ,∴OB =12BC =12×8=4 在直角 中,,,△ABC ∠ABE =90∘∠MBO =60∘ ,∴∠OBN =30∘ ,,,∵ON ⊥BE ∠OBN =30∘OB =4 ,,∴ON =12OB =2BN =42−22=23 ,∵AB ⊥BE ∴四边形 是矩形,OMBN .∴BN =OM =23 .∵OF =OM =23由勾股定理得 .NF =(23)2−22=22 .∴BF =BN +NF =23+2220. 【答案】(1) 连接 ,如图所示:OB 是 的直径,∵AC ⊙O ,∴∠ABC =90∘ ,∴∠C +∠BAC =90∘ ,∵OA =OB ,∴∠BAC =∠OBA ,∵∠PBA =∠C ,即 ,∴∠PBA +∠OBA =90∘PB ⊥OB 是 的切线.∴PB ⊙O (2) 的半径为 ,∵⊙O 22,,∴OB =22AC =42 ,∵OP ∥BC ,∴∠CBO =∠BOP ,∵OC =OB ,∴∠C =∠CBO ,∴∠C =∠BOP 又 ,∵∠ABC =∠PBO =90∘ ,∴△ABC ∽△PBO ,即 ,∴BC OB =AC OP BC 22=428 .∴BC =2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学关于圆的证明集锦
⊙O⊥∠△
一、BC为⊙O的直径,A是弦BD延长线上一点,切线DE平分AC于E,求证:
(1)AC是⊙O的切线,(2)若AD:BD=3:2,AC=15,求⊙O的直径。
二、点I是△ABC的内心,AI的延长线交边BC于点D,交△ABC外接圆⊙O
于点E,连接BE、CE,(1)若AB=2CE,AD=6,求:CD的长;(2)求证C、I两点在以E为圆心,EB为半径的圆上。
三、AB为⊙O直径,BC切⊙O于B,CO交⊙O于D,AD的延长线交BC于E,
若∠C=25°,求∠A的度数?
四、如图,BC、AD是⊙O的两条弦,且AD=BC,求证:AB=CD
五、在Rt△ABC中,∠ACB=90°,以AB、BC、CA为直径分别作半圆,围城的两月牙形(阴影)S
1、S
2
,
设△ABC面积为S,求证:S=S
1+S
2
六、已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E,连AC、OC、BC,求证:
(1)∠ACO=∠BCD;(2)若EB=8,CD=24,求⊙O的直径。
七、如图,已知⊙O的半径为8cm,点A为半径OB的延长线上一点,射线AC切⊙O于点C,弧AB的长为2πcm,求
线段AB的长度。
八、PA、PB是⊙O的切线,AB为切点,AC是⊙O的直径,∠P=50°,求:∠BAC的度数。
九、C是⊙O的直径AB的延长线上一点,D是⊙O上的一点,且AD=CD,∠C=30°,
求证:DC是⊙O的切线。
十、已知,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D作DE⊥AC
于点E,交BC的延长线于点F,求证:(1)AD=BD;(2)DF是⊙O的切线。
十一、如图24—A—11,AB为半圆直径,O 为圆心,C为半圆上一点,E是弧AC的中点,OE交弦AC 于点D。
若AC=8cm,DE=2cm,求OD的长。
图24—A—11。