九年级数学图形与证明2

合集下载

图形与证明(二)复习(1)练习1

图形与证明(二)复习(1)练习1

BC九年级数学 作业1、已知:菱形ABCD 中,对角线AC = 16 cm ,BE ⊥BC 于点E ,则BE 的长.为 。

2、直角梯形的一条对角线把梯形分成两个三角形, 其中一个是边长为4的等边三角形,那么梯形的中位线长为 。

3、如图,一张矩形纸片,要折叠出一个最大的正方形,小明把矩 形的一个角沿折痕AE 翻折上去,使AB 和AD 边上的AF 重合,则四边形ABEF 就是一个最大的正方形,他的判定方法是 。

4、下列图形:线段、正三角形、平行四边形、矩形、菱形、正方形、等腰梯形、直角梯形,其中既是中心对称图形,又是轴对称图形的共有 ( )(A )3个 (B )4个 (C )5个 (D ) 6个5、如图,△ABP 与△CDP 是两个全等的等边三角形,且PA ⊥PD.有下列四个结论:①∠PBC =15°;②AD ∥BC ;③直线PC 与AB 垂直;④四边形ABCD 是轴对称图形.其中正确的结论的个数为 ( )(A )1个 (B )2个 (C )3个 (D )4个6、如图,在梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,且AC=12,BD=9, 则该梯形两腰中点的连线EF 长是( ) A 、10 B 、221 C 、215 D 、127、如图,等腰梯形ABCD 中,AD ∥BC ,∠DBC=45º。

翻折梯形ABCD ,使点B 重合于点D ,折痕分别交边AB 、BC 于点F 、E 。

若AD=2,BC=8, 求:(1)BE 的长。

(2)CD :DE 的值。

CFBEADCB ADPDBCAEF CDBA EF8、如图是规格为8×8的正方形网格,请在所给网格中......按下列要求操作:⑴请在网格中建立平面直角坐标系, 使A点坐标为(-2,4),B点坐标为(-4,2);⑵在第二象限内的格点上..........画一点C, 使点C与线段AB组成一个以AB为底的等腰三角形, 且腰长是无理数, 则C点坐标是,△ABC的周长是(结果保留根号);⑶画出△ABC以点C为旋转中心、旋转180°后的△A′B′C, 连结AB′和A′B, 试说出四边形ABA′B′是何特殊四边形, 并说明理由.△与R t ABD△中,90=,,ABC BAD∠=∠= ,AD BC AC BD 相交于点G,过点A作AE D B∥交D A的∥交C B的延长线于点E,过点B作B F C A延长线于点F AE BF,,相交于点H.(1)图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)(2)证明四边形A H B G是菱形;(3)若使四边形A H B G是正方形,还需在R t ABC△的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)EF。

苏科版九年级数学目录

苏科版九年级数学目录

第一章图形与证明(二)
1.1等腰三角形的性质与判定
1.2直角三角形全等的判定
1.3平行四边形,矩形,菱形,正方形的性质和判定1.4等腰梯形的性质与判定
1.5中位线
第二章数据的离散程度
2.1 极差
2.2 方差与标准差
2.3 用计算器求标准差和方差
第三章二次根式
3.1 二次根式
3.2 二次根式的乘除
3.3 二次根式的加减
第四章二元一次方程
4.1 一元二次方程
4.2 一元二次方程的解法
4.3 用一元二次方程解集问题
第五章中心对称图形(二)
5.1 圆
5.2 圆的对称性
5.3 圆周角
5.4 确定圆的条件
5.5 直线与圆的位置关系
5.6 圆与圆的位置关系
5.7 正多边形与圆
5.8 弧长及扇形的面积
5.9 圆锥的侧面积与全面积
第六章二次函数
6.1 二次函数
6.2 二次函数的图像和性质6.3 二次函数与一元二次方程6.4 二次函数的应用
第七章锐角三角函数
7.1 正切
7.2 正弦,余弦
7.3 特殊角的三角函数
7.4 由三角函数值求锐角
7.5 解直角三角形
7.6 锐角三角函数的简单应用
第八章统计的简单应用
8.1 货比三家
8.2 中学生的视力情况检查
第九章概率的简单应用
9.1 抽签方法合理吗?
9.2 概率帮你做估计
9.3 保险公司怎样才能不亏本。

图形与证明(二)小结与思考

图形与证明(二)小结与思考

第一章 图形与证明(二)单元测试1第一章【知识回顾】【基础训练】1.梯形的中位线长为3,高为2,则该梯形的面积为 。

2.若等腰三角形的一个外角为70°,则它的底角为 度。

3.某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为A .9cmB .12cmC .15cmD .12cm 或15cm4.已知梯形的上底长为3cm ,中位线长为5cm ,则此梯形下底长为__________cm .2.直角三角形全等的判定:HL 4.等腰梯形的性质和判定 5.中位线 三角形的中位线 梯形的中位线注意:若等边三角形的边长为a ,则:其高为: ,面积为: 。

1.等腰三角形 等边三角形的性质和判定 等腰三角形的性质和判定 线段的垂直平分线的性质和判定 角的平分线的性质和判定3.平行四边形 平行四边形的性质和判定:4个判定定理 矩形的性质和判定:3个判定定理 菱形的性质和判定:3个判定定理 正方形的性质和判定:2个判定定理注注意:(1)中点四边形①顺次连接任意四边形各边中点,所得的新四边形是 ; ②顺次连接对角线相等的四边形各边中点,所得的新四边形是 ; ③顺次连接对角线互相垂直的四边形各边中点,所得的新四边形是 ; ④顺次连接对角线互相垂直且相等的四边形各边中点,所得的新四边形是 。

(2)菱形的面积公式:ab S 21= (b a ,是两条对角线的长)注意:(1)解决梯形问题的基本思路:通过分割和拼接转化成三角形和平行四边形进行解决。

即需要掌握常作的辅助线。

(2)梯形的面积公式:()lh hb a S =+=21(l -中位线长)5.如图,点P 到∠AOB 两边的距离相等,若∠POB =30°,则 ∠AOB =_____度.6.如图,要测量A 、B 两点间距离,在O 点打桩,取OA 的中点 C ,OB 的中点D ,测得CD =30米,则AB =______米. 7.平行四边形ABCD 中,AC ,BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是矩形,那么这个条件是( ) A .AB=BC B .AC=BD C .AC ⊥BD D .AB ⊥BD 8.(08,扬州)如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A 、当AB=BC 时,它是菱形B 、当AC ⊥BD 时,它是菱形 C 、当∠ABC=900时,它是矩形 D 、当AC=BD 时,它是正方形 9.下列条件中不能确定四边形ABCD 是平行四边形的是( )A.AB=CD ,AD ∥BCB.AB=CD ,AB ∥CDC.AB ∥CD ,AD ∥BCD.AB=CD ,AD=BC10.如图,下列条件之一能使平行四边形ABCD 是菱形的为( )①A C B D ⊥ ②90BAD ∠=③A B B C = ④A C B D =A .①③B .②③C .③④D .①②③11.如图,在四边形ABCD 中,A D ∥BC,∠D=90°,若再添加一个条件,就能推出四边形ABCD 是矩形,你所添加的条件是( ).(写出一种情况即可) 12.)如图,菱形ABCD 中,对角线AC ,BD 相交于点0,若再补充一个条件能使菱形ABCD 成为正方形,则这个条件是( )(只填一个条件即可).13.(08,临沂)如图,菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是BC 、CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为A . 32B . 33C . 34D . 3 14.顺次连接等腰梯形四边中点所得四边形是A.菱形B.正方形C.矩形D.等腰梯形ABCD 第10题DBC第11题ADBO第12题第13题15.顺次连结四边形四条边的中点,所得的四边形是菱形,则原四边形一定是 A .平行四边形 B .对角线相等的四边形 C .矩形. D .对角线互相垂直的四边形 16.如图所示,有一张一个角为60拼成的四边形是 ()A .邻边不等的矩形B .等腰梯形C .有一个角是锐角的菱形D .正方形17.某花木场有一块如等腰梯形ABCD 的空地(如图),各边的中点分别是E 、F 、G 、H ,用篱笆围成的四边形EFGH 场地的周长为40cm ,则对角线AC= cm 18.如图,在梯形ABCD 中,AD ∥BC ,AB =CD ,AC ⊥BD ,AD =6,BC =8,则梯形的高为 。

九上教案第一章 图形与证明(二)1.1 (2)

九上教案第一章 图形与证明(二)1.1   (2)

1.1等腰三角形的性质和判定(2)九年级数学备课组【学习目标】在掌握了等腰三角形的性质定理和判定定理的基础上,探索等边三角形和其它相关知识的证明方法。

【重点、难点】1、等边三角形的性质及其证明。

2、应用性质解题。

【预习指导】上节课中,我们对等腰三角形的性质定理和判定定理进行了证明,请你写出这些定理。

等腰三角形性质定理:(1)_______________________;(2)_______________________。

等腰三角形判定定理:______________________。

【思考与交流】1、证明:两角及其中一角的对边对应相等的两个三角形全等。

(简写为“AAS”)2、证明:(1)等边三角形的每个内角都等于60°。

(2)3个内角都相等的三角形是等边三角形。

3、证明:(1)线段垂直平分线上的点到线段两端点的距离相等。

(2)到一条线段两个端点距离相等的点在这条线段的垂直平分线上。

【典题选讲】例1.如图,在△ABC中,点O在AC上,过点O作M N∥BC,CE、CF分别是△ABC的内外角平分线,与MN分别交于E、F,求证:OE=OF.例2、在△ABC中,AB=AC,点D在AC上,且BC=BD=AD,则∠A的度数是多少?变式; .如下图,在△ABC中, AB=AC,点D、E分别在AC、AB上,且BC=BD=DE=EA,求∠A的度数。

【课堂练习】1、如图,在△ABC 中,∠B =∠C =36°,∠ADE =∠AED =2∠B ,由这些条件你能得到哪些结论?请证明你的结论。

2、已知:如图,△ABC 是等边三角形,DE ∥BC ,分别交AB 、AC 于点D 、E 。

求证:△ADE 是等边三角形。

【总结】本节课,我们又证明了哪些定理?你掌握了吗?A BC A B CDE。

初三上册数学第一章图形与证明单元试卷

初三上册数学第一章图形与证明单元试卷

初三上册数学第一章图形与证明(二)单元试卷以下是查字典数学网为您举荐的九年级上册数学第一章图形与证明(二)单元试题,期望本篇文章对您学习有所关心。

九年级上册数学第一章图形与证明(二)单元试题时刻:100分钟满分:150分一、选择题(3分8=24分)1.已知等腰三角形的一个内角为40,则那个等腰三角形的顶角为【】A.40B.100C. 40或100D. 70或502.使两个直角三角形全等的条件【】A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条边对应相等3.下面判定四边形是平行四边形的方法中,错误的是【】A.一组对边平行,另一组对边也平行B.一组对角相等,另一组对角也相等C.一组对边平行,一组对角相等D.一组对边平行,另一组对边相等4.已知四边形ABCD是平行四边形,下列结论中不正确的是【】A.当AB=BC时,它是菱形B.当ACBD时,它是菱形C.当ABC=90时,它是矩形D.当AC=BD时,它是正方形5.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE 交AB于点D,交AC于点E,则△BEC的周长为【】6.顺次连结四边形四条边的中点,所得的四边形是菱形,则原四边形一定是【】A.平行四边形.B.对角线相等的四边形.C.矩形.D.对角线互相垂直的四边形.7.如图,在□ABCD中,E是BC的中点,且AEC=DCE,则下列结论不正确的是A. B. DF=2BFC.四边形AECD是等腰梯形D.△ABE是等腰三角形8.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB= 3,则BC的长为二、填空题(3分8=24分)9.如图,在△ABC中,C=90,AD平分CAB,BC=8cm,BD=5cm,,那么D点到直线AB的距离是cm.10.等腰梯形ABCD中,AD//BC,AD=3cm,BC=5cm,C=60,则梯形的腰长是cm.11.如图,矩形ABCD的对角线AC,BD相交于点O,AB=2,BOC=1 20,则AC的长是__________.12.如图,菱形ABCD中,AE垂直平分BC,垂足为E,AB=4.则菱形ABCD的面积是,对角线BD的长是.13.在梯形ABCD中,AD//BC,对角线ACBD,且AC=5cm,BD=12c m,则梯形中位线的长等于______cm.14.如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC 上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是_____________.15.如图,若将边长为1的正方形ABCD绕点A逆时针旋转30到正方形ABCD,则图中阴影部分的面积为.16.如图,有一张面积为1的正方形纸片ABCD,M,N分别是AD,B C边的中点,将C点折叠至MN上,落在P点的位置,折痕为BQ,连结P Q,则PQ= .三、解答题(共102分)17.(本题8分)在等腰△ABC中,AB=AC=8,BAC=100,AD是BAC 的平分线,交BC于D,点E是AB的中点,连接DE.求:(1)求BAD的度数;(2)求B的度数;(3)求线段DE的长.18.(本题8分)如图,已知ACBC,BDAD,AC 与BD 交于O,AC = BD.求证:(1)BC=AD; (2)△OAB是等腰三角形.19.(本题8分)我们把依次连接任意一个四边形各边中点得到的四边形叫做中点四边形.如图,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,依次连接各边中点得到中点四边形EFGH.(1)那个中点四边形EFGH的形状是_________;(2)请证明你的结论.20.(本题10分)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连结CE.(1)求证:BD=EC;(2)若E=50 ,求BAO的大小.21.(本题10分)有公路l1同侧、l2异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)22.(本题10分)如图,在梯形ABCD中,AB∥DC,DB平分ADC,过点A作AE∥BD,交CD的延长线于点E,且C=2E.(1)求证:梯形ABCD是等腰梯形;(2)若BDC=30,AD=5,求CD的长.23.(本题10分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=DC,连接CF.(1)求证:D是BC的中点;(2)假如AB=AC,试推测四边形ADCF的形状,并证明你的结论.24.(本题12分)如图,等腰梯形ABCD中,AD∥BC,点E是线段AD 上的一个动点(E与A、D不重合),G、F、H分别是BE、BC、CE的中点.(1)试探究四边形EGFH的形状,并说明理由;(2)当点E运动到什么位置时,四边形EGFH是菱形?并加以证明;(3)若(2)中的菱形EGFH是正方形,请探究线段EF与线段BC的关系,并证明你的结论.25.(本题12分)我们给出如下定义:若一个四边形的两条对角线相等,则称那个四边形为等对角线四边形.请解答下列问题:(1)写出你所学过的专门四边形中是等对角线四边形的两种图形的名称;(2)探究:当等对角线四边形中两条对角线所夹锐角为60时,这对60角所对的两边之和与其中一条对角线的大小关系,并说明你的结论.26.(本题14分) 如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q.(1)试证明:不管点P运动到AB上何处时,都有△ADQ≌△ABQ ;(2)当点P在AB上运动到什么位置时,△ADQ的面积是正方形ABCD 面积的;(3)若点P从点A运动到点B,再连续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ADQ恰为等腰三角形.唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义差不多相去甚远。

九上教案第一章 图形与证明(二)1.3 2

九上教案第一章 图形与证明(二)1.3  2

1.3 矩形的性质九年级数学备课组 学习目标:1、能用“基本事实”和“已经证明的定理”为依据,证明矩形的性质以及直角三角形斜边上的中线等于斜边的一半.2、进一步培养学生的分析、综合的思考方法,及表达书写能力.发展学生演绎推理能力.学习重点: 矩形的性质及其证明.学习难点: 分析、综合思考的方法.学习过程一、知识回顾:1、__________________________________________________叫矩形,由此可见矩形是特殊的____________________________,因而它具有平行四边形的所有性质.2、矩形有哪些平行四边形不具有的特殊性质?______________________________________________;______________________________________________.3、证明:矩形的四个角都是直角已知:如图 图形:画在下面求证:__________________________________证明:4、 证明:矩形对角线相等已知:如图图形:画在下面求证: 证明:二、新课:(一)观察如图 矩形ABCD ,对角线相交于O 将目光锁定在Rt △ABC 中,你能看到并想到它有什么特殊的性质吗? 证明:“直角三角形斜边上的中线等于斜边的一半.”已知: 求证: 图形:画在下面 证明:B C(二)例题教学如图: 矩形ABCD 的两条对角线相交于点O ,且AC =2AB ,求证: △AOB 为正三角形.(注意表达格式完整性与逻辑性)证明:(三)巩固练习: 1、如图 BD ,CE 是△ABC 的两条高,M 是BC 的中点,求证: ME =MDB CA B。

九上教案第一章 图形与证明(二) 1.1

九上教案第一章 图形与证明(二) 1.1

1.1等腰三角形的性质和判定(1)九年级数学备课组【学习目标】1、进一步掌握证明的基本步骤和书写格式。

2、能用“基本事实”和“已经证明的定理”为依据,证明等腰三角形的性质定理和判定定理。

【重点、难点】1、等腰三角形的性质及其证明。

2、应用性质解题。

【预习指导】:在初中数学八(下)的第十一章中,我们学习了证明的相关知识,你还记得吗?不妨回忆一下。

1、用_______________的过程,叫做证明。

经过________________称为定理。

2、证明与图形有关的命题,一般步骤有哪些?(1)_________________________;(2)_________________________;(3)_________________________.3、推理和证明的依据有哪几类?_____________、___________、___________。

4、我们初中数学中,选用了哪些真命题作为基本事实:(1)______________________;(2)______________________;(3)______________________;(4)______________________;(5)______________________。

此外,还有_____________和____________也都看作是基本事实。

5、在八(下)的第十一章中,我们依据上述的基本事实,证明了哪些定理?你能一一列出来吗?(1)______________________;(2)______________________;(3)______________________;(4)______________________;(5)______________________;(6)______________________;(7)______________________;(8)______________________;(9)______________________;(10)______________________。

苏科版九年级数学全册知识点整理

苏科版九年级数学全册知识点整理

圆心角、弧、弦之间的关系(等对等定理):
在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对
应的其余各组量都分别相等。
5.3 圆周角 概念:顶点在圆上,并且两边都和圆相交的角叫做圆周角。
定理:同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半。(圆心与圆 周角的位置关系分为三种情况:圆心在角的一边上;圆心在角的内部;圆心在角的外
情况只要设问题为 x;但也有时也须根据已知条件及等量关系等诸多方面考虑)
;②
寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即
可根据其列出方程) 。
※处理问题的过程可以进一步概括为:
问题 分析 抽象
方程 求解 检验
解答
第五章 中心对称图形(二)
5.1 圆 定义:圆是定点的距离等于定长的点的集合。其中,定点叫做圆心,定长叫做半径。
2对角线相等的梯形是等腰梯形。 1.5 中位线 三角形的中位线平行于第三边,并且等于第三边的一半。
梯形的中位线平行于两底,并且等于两底的一半。
中点四边形:依次连接一个四边形各边中点所得到的四边形称为中点四边形(中点四
边形一定是平行四边形)。
原四边形对角线
中点四边形
相等
菱形
互相垂直
矩形
相等且互相垂直
径。
内心: 与三角形各边都相切的圆叫做三角形的内切圆。
内切圆的圆心叫做三角形的内心,它是三角形的三条角平分线的交点。
这个三角形叫做圆的外切三角形。
5.6 圆与圆的位置关系 性质与判定:
如果两圆的半径分别为 R和r,圆心距为 d,那么
两圆外离←→ d>R+r 两圆外切←→ d=R+r

1.2直角三角形全等的判定2

1.2直角三角形全等的判定2

了解一下 反证法
初 中 数 学
九 上
如图, 的角平分线AD、 相交于点 相交于点O, 如图,△ABC的角平分线 、BE相交于点 ,点O到 的角平分线 到 各边的距离相等吗? 的平分线上吗? △ABC各边的距离相等吗?点O在∠C的平分线上吗? 各边的距离相等吗 在 的平分线上吗
A
O
E
B
D
C
初 中 数 学
初 中 数 学
九 上
初中数学九年级 上册 (苏科版) 苏科版) 图形与证明( 第一章 图形与证明(二) 1.2直角三角形全等的判定(2) 直角三角形全等的判定( ) 直角三角形全等的判定
初 中 数 学
九 上
回忆:直角三角形全等的判定方法。 回忆:直角三角形全等的判定方法。
初 中 数 学
九 上
证明:角平分线上的点到这个角两边的距离相等。 证明 角平分线上的点到这个角两边的距离相等。 角平分线上的点到这个角两边的距离相等 已知:如图, 的平分线, 已知:如图,OC是∠AOB的平分线, 是 的平分线 点P在OC上,PD⊥OA, PE ⊥OB, A 在 上 ⊥ , , 垂足分别为D、 , 垂足分别为 、E, D 求证: 求证:PD=PE
已知:如图, ⊥ 已知:如图,PD⊥OA,PE ⊥OB, , , 垂足 分别为D、E,且PD=PE。 分别为 、 , 。 求证: 的平分线上。 求证:点P在∠AOB的平分线上。 在 的平分线上
D
A
P O E B
初 中 数 学
九 上
思考与交流
“如果一个点到角的两边的距离不相等,那么这个点 如果一个点到角的两边的距离不相等, 如果一个点到角的两边的距离不相等 不在这个角的平分线上。 不在这个角的平分线上。” 你认为这个结论正确吗? 你认为这个结论正确吗? 如果正确,你能证明吗? 如果正确,你能证明吗?

九年级上数学期中复习教案:图形与证明二

九年级上数学期中复习教案:图形与证明二

图形与证明二复习一、课前导学 知识点:二、课前练习:1.等腰三角形的一个角为50°,那么它的一个底角为______.2.四边形ABCD 中,若∠A ︰∠B ︰∠C ︰∠D =2︰2︰1︰3,那么这个四边形是 3.梯形的中位线长为3,高为2,则该梯形的面积为4.如图,已知梯形ABCD 中,AD ∥BC ,AB=CD=AD ,AC ,BD 相交于O 点,∠BCD=60°,则下列说法正确的是( )A .梯形ABCD 是轴对称图形B .BC=2ADC .梯形ABCD 是中心对称图形 D .AC 平分∠DCB5.矩形的两条对角线的一个夹角是60°,两条对角线的和是8cm ,周长是 cm ,较长边与对角线的夹角是ODCB A2.直角三角形全等的判定:HL 4.等腰梯形的性质和判定 5.中位线三角形的中位线: 梯形的中位线注意:若等边三角形的边长为a ,则:其高为: ,面积为: 。

1.等腰三角形 等边三角形的性质和判定 等腰三角形的性质和判定 线段的垂直平分线的性质和判定 角的平分线的性质和判定3.平行四边形 平行四边形的性质和判定:4个判定定理 矩形的性质和判定:3个判定定理 菱形的性质和判定:3个判定定理 正方形的性质和判定:2个判定定理 注注意:(1)中点四边形 ①顺次连接任意四边形各边中点,所得的新四边形是 ;②顺次连接对角线相等的四边形各边中点,所得的新四边形是 ; ③顺次连接对角线互相垂直的四边形各边中点,所得的新四边形是 ;④顺次连接对角线互相垂直且相等的四边形各边中点,所得的新四边形是 。

(2)菱形的面积公式:ab S 21= (b a ,是两条对角线的长) 注意:(1)解决梯形问题的基本思路:通过分割和拼接转化成三角形和平行四边形进行解决。

即需要掌握常作的辅助线。

(2)梯形的面积公式:()lh h b a S =+=21(l -中位线长)6.菱形的周长是20 cm,相邻两个内角的度数之比是1:2,则较短的对角线长为cm7. 若正方形的一条对角线的长为2cm,则这个正方形的面积为.8.如图:在四边形ABCD中,E是AB上的一点,△ADE和△BCE都是等边三角形,点P、Q、M、N分别为AB、BC、CD、DA的中点,则四边形MNPQ是三、例题选讲:1.已知,如图,△ABC中,D、E 分别是AC、AB上的点,BD与CE交于点O,给出下面四个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC(1)上述条件中,哪两个条件可判定△ABC是等腰三角形(请用序号写出所有情形);(2)选择第(1)题中的一种情形,证明△ABC是等腰三角形。

图形与证明(二)小结与思考(1)

图形与证明(二)小结与思考(1)

08-09学年度第一学期九年级数学教学案第一章小结与思考(1)学习目标:通过对本章知识的小结与梳理,进一步掌握等腰三角形的性质和判定、直角三角形全等的判定、角平分线的性质定理与判定定理、特殊四边形(平行四边形、矩形、菱形、正方形)的定义、性质和判定;等腰梯形的性质和判定;中位线定理,并会灵活运用.学习重点:性质定理和判定定理的应用 学习难点:性质定理和判定定理的应用 学习过程: 一、基础练习1、等腰三角形的一个底角为030,则顶角的度数是 度.2、等腰三角形的两边长分别为4和9,则第三边长为 .3、 下列命题为真命题的是( )A :三角形的中位线把三角形的面积分成相等的两部分;B :对角线相等且相互平分的四边形是正方形;C :关于某直线对称的两个三角形是全等三角形;D :一组对边平行,另一组对边相等的四边形一定是等腰梯形4、下列命题是假命题的是( )A :四个角相等的四边形是矩形;B :对角线互相平分的四边形是平行四边形;C :四条边相等的四边形是菱形;D :对角线互相垂直且相等的四边形是正方形5、如图在A B C D 中,∠ABC 的平分线交AD 于E ,且AE =2,DE =1,则A B C D 的周长等于 . 6、如图,点D 、E 、F 分别是A B C △三边上的中点.若A B C △的面积为12,则D EF△的面积为 . 二、例题学习1、如图,在等腰R t △ABC 中,∠ACB =90°,D 为BC 的中点,DE ⊥AB ,垂足为E ,过点B 作BF ∥AC 交DE 的延长线于点F ,连接CF .(1)求证:AD ⊥CF ;(2)连接AF ,试判断△ACF 的形状,并说明理由.(第5题)B A CF ED2、已知;如图.矩形ABCD的对角线AC与BD相交于点O,点O关于直线AD的对称点是E,连结AE、DE.(1)试判断四边形AODE的形状,说明理由; (2)请你连结EB、EC.并证明EB=EC.3、如图,在直角梯形纸片A B C D中,A B D C∥,90A∠= ,C D AD>,将纸片沿过点D的直线折叠,使点A落在边C D上的点E处,折痕为D F.连接E F并展开纸片.(1)求证:四边形AD EF是正方形;(2)取线段A F的中点G,连接E G,如果B G C D=,试说明四边形G B C E是等腰梯形.4、如图,已知AD与BC相交于E,∠1=∠2=∠3,BD=CD,∠ADB=90°,CH⊥AB于H,CH交AD于F.(1)求证:CD∥AB;(2)求证:△BDE≌△ACE;(3)若O为AB中点,求证:OF=12 BE.三、作业:见作业纸。

苏科版九年级上数学期末复习试卷二(图形与证明)

苏科版九年级上数学期末复习试卷二(图形与证明)

初三数学期末复习二(图形与证明)一、基础练习1、若顺次连结一个四边形各边中点所得的图形是正方形,那么这个四边形的对角线 A 、互相垂直 B 、相等 C 、互相平分 D 、互相垂直且相等 ( )2、如图,在□ABCD 中,E 是BC 的中点,且∠AEC=∠DCE ,下列结论不正确...的是( ) A 、BF=21DF B 、S △FAD =2S △FBE C 、四边形AECD 是等腰梯形 D 、∠AEB=∠ADC , 3、如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE 的和最小,则这个最小值为( )A. B. C .3 D4、如图,在梯形ABCD 中,AB ∥CD ,中位线EF 与对角线AC 、BD 交于M 、N 两点,若EF=18㎝,MN=8㎝,则AB 的长等于 。

5、如图,直线L 过正方形ABCD 的顶点B ,点A 、C 到直线L 的距离分别是1和2,则正方形的边长是 。

二、例题精讲例1、如图,把矩形纸片ABCD 沿EF 折叠,使点B 落在边AD 上的点B ′处,点A 落在点A ′处,(1)求证:B ′E=BF ;(2)设AE=a ,AB=b, BF=c,试猜想a 、b 、c 之间有何数量关系,并给予证明.21LDC BA 第5题图NM F E DC B A第4题图 A EP B C ABCDEFA ′B ′例2、如图在直角梯形ABCD 中,AD ∥BC ,AB ⊥AD ,AB =10 3 ,AD 、BC 的长是x 2-20x+75=0方程的两根,判断以点D 为圆心、AD 长为半径的圆与以C 圆心BC 为半径的圆的位置关系 。

例3、问题探究(1)请在图①的正方形ABCD 内,画出使∠APB =90°的一个..点P ,并说明理由. (2)请在图②的正方形ABCD 内(含边),画出使∠APB =60°的所有..的点P ,并说明理由. 问题解决如图③,现有一块矩形钢板ABCD ,AB =4,BC =3,工人师傅想用它裁出两块全等的、面积最大的△APB 和△CP ’D 钢板,且∠APB =∠CP ’D =60°,请你在图③中画出符合要求的点P 和P ’,并求出△APB 的面积(结果保留根号).AC初三数学期末复习二作业1、将矩形纸片ABCD 按如图所示的方式折叠,AE 、EF 为折痕,∠BAE =30°,AB =3,折叠后,点C 落在AD 边上的C 1处,并且点B 落在EC 1边上的B 1处.则BC 的长为( ).A 、3B 、2C 、3D 、322、正方形ABCD 的边长为1,M 是AB 的中点,N 是BC 中点,AN 和CM相交于点O ,则四边形AOCD 的面积是( )(A )16 (B )34 (C )23 (D ) 343、在△ABC 中,BC =10,B 1、C 1分别是图①中AB 、AC 的中点,在图②中,2121、C 、C 、B B 分别是AB ,AC 的三等分点,在图③中921921;C 、C C B 、、BB 分别是AB 、AC 的10等分点,则992211C B C B C B +++ 的值是( ) A . 30 B . 45 C .55 D .60① ② ③ 4、如图,在平面直角坐标系中,平行四边形ABCD 的顶点A 、B 、D 的坐标分别是(0,0),(5,0),(2,3),则顶点C 的坐标是 。

苏科版数学九年级上图形与证明期中复习题

苏科版数学九年级上图形与证明期中复习题

期中复习一———图形与证明(2)一、填空题:1.等腰三角形有两边长为2和5,则周长为_____。

等腰三角形有一个角等于50°,则另两个角为_____。

2.在平面直角坐标系xOy中,已知点P(2,2),点Q在y轴上,△PQO是等腰三角形,则满足条件的点Q的坐标为_______________________________________________________3、已知□ABCD中,AB=8,BC=10,∠B=45°,□ABCD的面积为_________.□ABCD的周长为50cm,且AB: BC = 3:2,则AB=______cm,BC=______cm.4、矩形的两条对角线的夹角为60 o,两条对角线的长度的和为8cm,则这个矩形的一条较短边为___ cm.面积为5.菱形的对角线长分别是6和8,则菱形的周长___________,面积为_________菱形ABCD的周长为20,相邻两内角之比为1:2,则对角线长分别为_____________6、等腰梯形的一个角为120°,两底分别为10和30,则它的腰长为____________若等腰梯形的周长为80cm, 高为12cm,中位线长与腰长相等, 则它的面积为____________cm2.直角梯形的高是10㎝,一腰与下底的夹角为45°,且下底长为上底长的2倍,则直角梯形的面积是__________7、在四边形ABCD中,AD∥BC,∠D=90°,若再添加一个条件,就能推出四边形ABCD是矩形,你所添加的条件是___________________________________________.(写出三种情况)8. 用两个全等的直角三角形拼下列图形:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(3)正方形;(4)等腰三角形,一定可以拼成的图形是 ________________________9、顺次连接等腰梯形的各边中点所成的四边形是______________。

1.3.1平行四边形的性质和判定

1.3.1平行四边形的性质和判定

第一章 图形与证明(二)1.3.1平行四边形的性质和判定(九年级上数学003)—— 研究课主备:李维明 班级________姓名________一.学习目标:1.能证明平行四边形的性质定理和判定定理;;2.经历探索、猜想、证明的过程,从中体会探索结论的思考方法,理解对猜想进行证明的必要性,不断感受合情推理和演绎推理是认识事物的重要途径;.二.学习重点:平行四边形性质与判定定理的证明及应用;学习难点:分析与综合的思考方法,发展演绎推理的能力.三.教学过程知识回顾:1. 的四边形是平行四边形2.平行四边形的性质①对.边 ; ②对.角 ; 邻角 ; ③对.角线 ;④ 对.称性 . 3.(10 荆州)如图,在□ABCD 中,∠A =130°,在AD 上取DE =DC ,则∠ECB 的度数是 .4.(10 西宁)如图,在□ABCD 中,对角线AC 、BD 相交于点O ,如果AC =14,BD =8,AB =x ,那么x 的取值范围是 .5. 如图,在□ABCD 中,AC 、BD 为对角线,BC =6,BC 边上的高为4,则图中阴影部分的面积为 .探索研究1:你能证明知识回顾第2题的三个性质吗?请尝试证明.已知: .求证: .性质应用:例1.已知:如图,□ABCD 中,E 、F 分别是AD 、BC 的中点,求证:BE =DF .第3题图 第4题图 第5题图若将例1中的“E 、F 分别是AD 、BC 的中点”改为“AE =13AD ,CF =13BC ”,BE 与DF 相等吗? 例2. 已知:如图,□ABCD 的对角线AC 、BD 相交于点O ,过点O 的直线与AD 、BC 分别相交于点E 、F .求证:OE =OF .拓展1:S 四边形ABEF 与S 四边形DCEF 有何数量关系?并思考:将□ABCD 面积等分的直线有什么特征?拓展2:将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积,则这样的折纸方法有 种?拓展4:若将例2中的“过点O 的直线与AD 、BC 分别相交于点E 、F .”改为“过点O 的直线与BA ,DC 的延长线分别相交于点E ,F .”请画出图形并判断OE ,OF 是否还具有上题的结论?拓展3:(10 本溪)过□ABCD 对角线交点O 作直线m ,分别交直线AB 于点E ,交直线CD 于点F ,若AB =4,AE =6,则DF 的长是 .探索研究2:问题一 :你能证明“一组对边平行且相等的四边形是平行四边形.”吗?问题二: 证明:对角线互相平分的四边形是平行四边形.(口答)问题三:下面三个命题正确吗?如果正确,你能证明吗?如果错误,请你举出反例.①一组对边平行,另一组对边相等的四边形是平行四边形.②一组对边平行,另一组邻角相等的四边形是平行四边形.③一组对边平行,另一组对角相等的四边形是平行四边形.④两组对角分别相等的四边形是平行四边形.问题四:你认为“在四边形ABCD 中,如果OA =OC ,OB <OD ,那么四边形ABCD 不是平行四边形”这个结论正确吗?为什么?分析:假设 ,那么 ,这与条件 矛盾,所以四边形ABCD 平行四边形(“是”or “不是”).重温反证法:先提出与 相反的假设,然后由这个“假设”出发推导出 的结果,从而证明命题的 一定成立.这种证明的方法称为反证法.判定应用:例3.(10晋江)如图,请在下列四个关系中,选出两个恰当....的关系作为条件,推出四边形ABCD 是平行四边形,并予以证明.(写出一种即可)关系:①AD ∥BC ,②AB =CD ,③∠A =∠C ,④∠B +∠C =180°.已知:在四边形ABCD 中, , ;求证:四边形ABCD 是平行四边形.例4. (11 凉山)已知:如图,E 、F 是□ABCD 的对角线AC 上的两点,CE =AF .请你猜想:线段BE 与线段DF 有怎样的关系?并对你的猜想加以证明.思考: 若将“AF =CE ”改为下列条件:1.若BE ∥DF ,四边形BFDE 是平行四边形吗?2.若BE ⊥AC 于E ,DF ⊥AC 于F ,四边形BFDE 是平行四边形吗?3.若BE =DF ,四边形BFDE 是平行四边形吗?例5.(11 宜宾)如图,□ABCD 的对角线AC 、BD 交于点O ,E 、F 在AC 上,G 、H 在BD 上,且AF =CE ,BH =DG .求证:GF ∥HE .的四边形是平行四边形 对边.. 对角线... 对角..课后延伸:1.在四边形ABCD中,已知AB∥CD,请补充一个条件,使得四边形ABCD是平行四边形.2.若A、B、C是不在同一直线的三点,则以这三点为顶点画平行四边形,可画个.3.(11 泰州)四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判定这个四边形是平行四边形的条件有()A.1组B.2组C.3组D.4组4.(10 恩施)如图,已知,在□ABCD中,AE=CF,M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形5.(10 东莞)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,边结DF.⑴试说明AC=EF;⑵求证:四边形ADFE是平行四边形.6. (11重庆)如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC于点M、N,交BA、DC的延长线于点E、F,下列结论:①AO=BO;②OE=OF;③△EAM∽△EBN;④△EAO≌△CNO,其中正确的是()A.①②B.②③C. ②④D.③④7. ( 11威海)在□ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=()A.1:2 B.1:3 C.2:3 D.2:58.已知在△ABC中,AB=AC,D为边BC上任意一点,DE∥AC交AB于E,DF∥AB交AC于F (1)求证:DE+DF=AC.(2)思考:若D为BC延长线上一点,其他条件不变,那么DE、DF、AC之间又有怎样的数量关系?请画图并证明你的猜想.。

九上教案第一章 图形与证明(二)1.3 4

九上教案第一章 图形与证明(二)1.3  4

1.3正方形的性质九年级数学备课组学习目标:1、会归纳正方形的特性并进行证明;2、能运用正方形的性质定理进行简单的计算与证明;3、在比较、归纳、总结的过程中,进一步体会特殊与一般之间的辩证关系. 学习重点:经历观察、实验、猜想、证明等活动,发展合情推理能力和初步的演绎推理能力.学习难点:有条理地、清晰地阐述自己的观点. 学习过程: 一、知识回顾1.什么样的平行四边形叫做正方形?2.正方形既是矩形又是菱形,它都有什么性质呢?(1)边的性质: ; (2)角的性质: ; (3)对角线的性质: ; (4)对称性: . 二、例题讲解例1、如图,正方形ABCD 的对角线AC 、BD 相交于点O ,正方形A ′B ′C ′D ′的顶点A ′与点O 重合,A ′B ′交BC 于点E ,A ′D ′交CD 于点F , (1) 若E 是BC 的中点,求证:OE=OF.(2)若正方形A ′B ′C ′D ′绕点O 旋转某个角度后,OE=OF 吗?两正方形重合部分的面积怎样变化?为什么?由(1)(2)可以得到什么结论?练习1:如图,将n 个边长都为1cm A n 分别是正方形的中心,则n )A .41cm 2B .4n cm n cm 2例2、已知:如图,在正方形ABCD 中,E 是BC 的中点,点F 在CD 上,∠FAE=∠BAE.求证:AF=BC+EC.练习2:1.求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.2.在正方形ABCD 中:(1)已知:如图①,点E 、F 分别在BC 、CD 上,且AE ⊥BF ,垂足为M ,求证:AE=BF.(2)如图②,如果点E 、F 、G 分别在BC 、CD 、DA 上,且GE ⊥BF ,垂足M ,那么GE 与BF 相等吗?证明你的结论.(3)如图③,如果点E 、F 、G 、H 分别在BC 、CD 、DA 、AB 上,且GE ⊥HF ,垂足M ,那么GE 与HF 相等吗?证明你的结论.图① 图② 图③三、课堂小结1.正方形与矩形,菱形,平行四边形的关系; 2.正方形的性质及应用;3.本节课我们把探索和解决问题的思路、方法、结论,从特殊情形逐步推广到一般的情形,从而得到一般的结论,这也是我们获得数学结论的一种重要的思想方法.四、课后练习1.如图,正方形ABCD 的边长为4,MN BC ∥分别交AB CD ,于点M N ,,在MN 上任取两点P Q ,,那么图中阴影部分的面积是 .第1题ABCDMN第2题AD C BFGE2. 如图,在正方形ABCD 中,E 为AB 边的中点,G ,F 分别为AD ,BC 边上的点,若1=AG ,2=BF ,︒=∠90GEF ,则GF= .3. 如图所示,正方形ABCD 中,点E 是CD 边上一点,连接AE ,交对角线BD 于点F ,连接CF ,则图中全等三角形共有( ) A .1对 B .2对 C .3对 D .4对第4题图 第5题图4. 如图,正方形ABCD 中,点E 在BC 的延长线上,AE 平分∠DAC,则下列结论: (1)∠E=22.5°; (2) ∠AFC=112.5°; (3) ∠ACE=135°;(4)AC=CE ;(5) AD ∶CE=1∶2. 其中正确的有( )A .5个 B.4个 C.3个 D.2个 5.如图,将边长为8cm 的正方形纸片ABCD 折叠,使点D 落在BC 边中点E 处,点A 落在点F 处,折痕为MN ,则线段CN 的长是( )A .3cm B.4cm C.5cm D.6cm 6.把正方形ABCD 绕着点A ,按顺时针方向旋转得到正方形AEFG ,边FG 与BC 交于点H (如图).试问线段HG 与线段HB 相等吗?先观察猜想,然后再证明你的猜想.7. 如图,已知正方形ABCD 的边AB 与正方形AEFM 的边AM 在同一直线上,直线BE 与DM 交于点N.求证:BN ⊥DMAMF D E NBC D C A BG H F EAD CE F B 第3题图选做题8.现有若干张边长不相等但都大于4cm 的正方形纸片,从中 任选一张,如图从距离正方形的四个顶点2cm 处,沿45°角画线,将正方形纸片分成5部分,则中间阴影部分的面积 是 cm 2;若在上述正方形纸片中再任选一张重复上述过程,并计算阴影部分的面积,你能发现什么规律?9.已知:如图,正方形ABCD 的周长为4a ,四边形EFGH 四个顶点E 、F 、G 、H 分别在AB 、BC 、CD 、DA 上滑动,在滑动过程中,始终有EH ∥BD ∥FG ,且EH =FG ,那么四边形EFGH 的周长是否可求?若能求出,它的周长是多少?若不能求出,请说明理由.22cm。

苏科版九年级数学上册知识点总结

苏科版九年级数学上册知识点总结

苏教版初三上册数学知识点整合第一章图形与证明(二)1、等腰三角形(1)三角形全等的性质及判定全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、(2)等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)(3)等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。

判定定理:有一个角是60度的等腰三角形是等边三角形。

或者三个角都相等的三角形是等边三角形。

(4)含30度的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。

2、直角三角形(1)勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方。

逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

(2)命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理。

(3)直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)3、线段的垂直平分线(1)线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等。

判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。

(2)三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。

(3)如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线。

4、角平分线(1)角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上。

九上教案第一章 图形与证明(二)1.3 3

九上教案第一章 图形与证明(二)1.3  3

1.3 菱形的性质九年级数学备课组教学目标:1.掌握菱形的性质判定,使学生能够灵活运用菱形知识解决有关问题,提高能力2.通过把矩形和菱形的定义、性质将易混淆的知识点分清楚,并以此培养学生辨正观点 教学重点:菱形的性质教学难点:性质定理的运用 生活数学与理论数学的相互转化。

教学过程 一、复习引入你能从一个平行四边形中剪出一个菱形来吗?学生活动,由平行四边形较短的边折叠到较长的边上,剪去不重合部分,可得到一个菱形。

有的学生可由其他方式得到一个菱形,也认可。

小组内互相交流学习,拓展思维,并由语言叙述自己的发现,学生归纳)。

1. ____________________________________________________________叫菱形。

菱形也是特殊的平行四边形,它有平行四边形的性质 ①________________________________________ ②___________________________________ ③______________________________________且有特殊性质① —————————————————————————————②——————————————————————————————2、菱形的面积计算公式:① S=底×高② S=对角线乘积的一半二.定理探索:证明: 菱形四条边相等1. 已知平行四边形ABCD ,且AB=AD ,求证① AB=BC=CD=DA2. 已知菱形ABCD , 对角线相交于O ,求证:对角线互相垂直,且每一条对角线平分一组内角。

三.例题讲解例1.如图3个全等的菱形构成的活动衣帽架,顶点A 、E 、F 、C 、G 、H 是上、下两排挂钩,根据需要可以改变挂钩之间 的距离(比如AC 两点可以自由上下活动),若菱形的边长为13厘米,要使两排挂钩之间 的距离为24厘米,并在点B 、M 处固定,则B 、M 之间的距离是多少?例2、如图是菱形花坛ABCD ,它的边长为20m ,∠ABC =60°,沿着菱形的对角线修建了两条小路AC 和BD ,求两条小路的长和花坛的面积(分别精确到0.01m 和0.01m 2).四.巩固练习 1若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为 2菱形的两邻角之比为1:2,边长为2,则菱形的面积为__________. 3.已知四边形ABCD 是菱形,O 是两条对角线的交点,AC=8cm ,DB=6cm ,MFE HGD C BADC•菱形的边长是________cm.4.菱形ABCD的周长为40cm,两条对角线AC:BD=4:3,那么对角线AC=______cm,BD=______cm.5.已知菱形的面积为30平方厘米,如果一条对角线长为12厘米,则别一条对角线长为________厘米6.菱形ABCD的对角线交于点O,AC=8,BD=6,求:菱形的高7.课本P18 练习18.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.五.小结矩形、菱形各具有哪些性质?填写下表:1.在解已知菱形的题目时,既要注意菱形的特殊性质,又要注意菱形具有的平行四边形的性质。

苏科版九年级上数学第一章图形与证明(二)检测题试卷

苏科版九年级上数学第一章图形与证明(二)检测题试卷

- 1 -九 年 级 数 学 试 题(图形与证明(二))NO:002班级 学号 姓名 自我评价1.若等腰三角形的一个底角为50°,则顶角为 ( ) A .50° B .100° C .80° D .65°2.下列条件中,能判断两个直角三角形全等的是 ( ) A .两条直角边对应相等 B .有两条边对应相等 C .一条边和一个锐角对应相等 D .一条边和一个角对应相等3.如图,□ABCD 的周长是28㎝,△ABC 的周长是22㎝,则AC 的长为 ( )A .14㎝B .12㎝C .10㎝D .8㎝4.下列命题中,真命题是 ( ) A.两条对角线相等的四边形是矩形 B.两条对角线互相垂直的四边形是菱形 C.两条对角线互相垂直且相等的四边形是正方形 D.两条对角线互相平分的四边形是平行四边形5.已知菱形的两条对角线长分别为6和8,则菱形的周长为( ) A .20 B .30 C .40 D .10 6.如图,在菱形ABCD 中,不一定成立的 ( ) A .四边形ABCD 是平行四边形B .AC ⊥BDC .△ABD 是等边三角形 D .∠CAB =∠CAD7.如图,在ABC △中,点E D F ,,分别在边AB ,BC ,CA 上,且DE CA ∥,DF BA ∥.下列四个判断中,不正确...的是 ( ) A.四边形AEDF 是平行四边形 B.如果90BAC ∠=,那么四边形AEDF 是矩形 C.如果AD 平分BAC ∠,那么四边形AEDF 是菱形D.如果AD BC ⊥且AB AC =,那么四边形AEDF 是正方形8.如上图,AD 是△ABC 的中线,E 是AD 的中点,BE 的延长线交AC 于点F ,若FC=12 AF 的长为: A.4 B. 6 C. 10 D.8 ( ) 9如上图,在矩形ABCD 中,AB=2AD ,点E 是CD 上一点,且AE=AB ,则∠CBE 等于 A .65° B .15° C .22.5° D .30° ( )DBADCB AA FCDBEF ECBA- 2 -10.在梯形ABCD 中,AD//BC ,对角线AC ⊥BD ,且cm AC 5=,BD=12c m ,则梯形中位线的长等于 ( ) A. 7.5cmB. 7cmC. 6.5cmD. 6cm11.如图,正方形ABCD 的边长为2,点E 在AB 边上,四边形EFGB 也为正方形, 设△AFC 的面积为S ,则 ( ) A .S=2 B .S=4 C .S=2.4 D .S 与BE 长度有关12.如图直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =3,BC =5,将腰CD 以D 为中心逆时针旋转90°至ED ,连AE 、CE ,则△ADE 的面积是 ( ) A .1 B .2 C .3 D .不能确定 二.填空题(本大题共6小题,每小题3分,共18分)13.如图(1),在平面四边形ABCD 中,CE AB ⊥,E 为垂足.如果125A =∠,则BCE =∠14.在四边形ABCD 中,已知AB ∥CD ,请补充一个条件: ,使得四边形ABCD 是平行四边形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k7平台的太假
[单选,A1型题]可用于治疗夜盲症的药物是()A.砂仁B.苍术C.豆蔻D.草果E.以上都不是 [单选,A2型题,A1/A2型题]婴儿期是指()。A.从出生后至满1周岁之前B.从出生后28天至满1周岁之前C.从出生后1个月至1周岁之前D.从1周岁至2周岁之前E.从1周岁至3周岁之前 [填空题]做直流耐压试验,升压速度一般为()。 [单选]确诊朊毒体疾病的实验室方法是()A.计算机断层扫描B.脑电图出现特征性的周期性尖锐复合波C.脑组织切片呈海绵状改变D.免疫组化或生物学技术检查PrPscE.磁共振成像 [问答题,简答题]实施清洁生产有哪些途径和方法? [单选]使用行车更换布基卷时,要做到平稳、()起吊。A.垂直B.匀速C.点动D.低速 [单选]确诊肠结核可根据()A.有腹痛、腹泻、发热等临床表现B.X线钡剂灌肠发现回盲部病变C.结核菌素试验阳性D.粪便发现抗酸杆菌E.纤维结肠镜 [单选,A1型题]精神药品处方至少保存()A.1年B.2年C.3年D.5年E.7年 [问答题,简答题]偶氮二异丁腈泄漏如何处理? [单选,A2型题,A1/A2型题]脾气虚、脾阳虚、脾气下陷、脾不统血证的共同见症是()A.畏寒肢冷,肢体水肿B.食少便溏,少气乏力C.便血出血,月经量多D.腹部疼痛,喜温喜按E.脘腹重坠,食后益甚 [单选]将两个或两个不同的元素并竖在一起时,能看出差异,这是()构成。A、近似B、特异C、对比D、密集 [单选]在切割机退卷架上的布基卷用完前,要提前按好准备使用的布基卷()。A.卷轴B.卡盘C.螺钉D.楔钉 [单选]目前我国已基本形成了以()为中心、国家统一会计制度为基础的法规体系。A.会计法B.注册会计师法C.会计管理条例D.会计师管理条例 [单选]对引起行政补偿的合法行为,不应理解为()。A.结果合法B.目的合法C.程序合法D.形式合法 [单选]2010年9月《信托公司净资本管理办法》颁布,这标志着我国信托业的行业监管转变为()。A.窗口指导B.行政调控C.市场调控D.计划调控 [问答题,简答题]从技术角度简述互联网的概念。 [单选]串励直流电动机若空载运行则会发生()现象。A.飞车B.停车C.因电流极大冒烟D.因转矩极小而拖不动负载 [判断题]储蓄机构受理挂失后,必须冻结该项储蓄存款。()A.正确B.错误 [单选]在类风湿关节炎中,对组织起主要作用的是()。A.IgA型类风湿因子B.IgG型类风湿因子C.IgM型类风湿因子D.IgG型类风湿因子和抗原IgM形成的免疫复合物E.IgG型类风湿因子和抗原IgG形成的免疫复合物 [单选]关于躯体疾病所致精神障碍的共同特点,正确的是()。A.精神症状具有特异性(不同疾病引起不同的精神症状)B.精神障碍与原发病的病情平行发展C.急性期多数意识清晰D.精神症状相对比较固定E.预后一般不可逆 [多选]了解客户的风险属性有许多方法,以下选项中属于的是()。A.与客户面对面沟通、观察B.风险测评问卷C.应用风险属性工具D.了解客户过往的投资历史E.了解客户过往的行为 [单选,A4型题,A3/A4型题]女,49岁,上腹胀满5年,2个月来食欲不振,全身无力,体检无明显异常发现,X线钡餐未见异常。胃镜活检:炎性细胞浸润及肠上皮化生,未见腺体萎缩。应诊断为()A.胃粘膜脱垂B.早期胃癌C.慢性萎缩性胃炎D.慢性浅表性胃炎E.胃神经症 [单选]教材是落实课程目标和内容的()。A.教学参照B.教学范例C.基本载体D.以上都是 [单选]可行性研究中一般应该以()结论作为项目或方案取舍的主要依据。A.技术分析B.工艺分析C.财务评价D.国民经济评价 [单选]下列哪项不是预防局麻药中毒的措施()A.一次用药量不超过限量B.避免误入血管C.局麻药中加少量肾上腺素D.麻醉前适量用苯妥英钠E.根据病人情况酌情减量 [单选]使子宫对缩宫素敏感增加,下列哪种是正确的()A.大剂量缩宫素B.孕激素C.小剂量缩宫素D.麦角新碱E.雌激素 [单选,A1型题]动脉导管未闭脉压增大的主要原因是()A.心脏存在着异常的通道B.主动脉的血分流至肺动脉C.肺循环血流量的明显增多D.体循环血流量的明显减少E.收缩压的明显升高 [单选]以下不是黄瘤病临床类型的是()A.结节性黄瘤B.扁平黄瘤C.发疹性黄瘤D.重症黄瘤 [单选]关于经济法的本质,下列说法不正确的是()。A.经济法是平衡协调法B.经济法是权力本位法C.经济法是以公为主、公私兼顾的法D.经济法是经济民主和经济集中对立统一法 [单选]为了达到管理优化的目的,提高管理效益,必须对管理进行充分的系统分析,这就是管理的()。A.系统原理B.人本原理C.整分合原理D.弹性原理E.排队论原理 [单选]关于传染病流行病学资料,下列不正确的是()A.流行病学资料在诊断中占有重要地位B.是否患过该病表明有无发病的可能C.是否在流行地区、流行季节表明有无感染的可能D.考虑传染病诊断时必须取得有关流行病学资料作参考E.某些传染病在发病年龄和职业方面有选择性 [单选]港口与航道工程施工期项目经理的技术管理工作中不妥的是()。A.组织项目及时熟悉、审查图纸B.组织进行项目全面一次性的技术交底C.主持生产技术碰头会D.贯彻、检查各级的技术责任制,明确各级组织和人员的分工 [单选]个体户赵某去世后,未留有遗嘱。留下两女、一男。大女儿3岁时由大伯父领养,二女儿结婚,嫁在外省。赵某去世后,大女儿、二女儿都主张继承权;张某自称是赵某的非婚生子女,以我国承认非婚生子女享有同婚生子女同样的继承权为由,也要求继承遗产。而赵某的妻子和儿子认为只 [单选]治疗溃疡性结肠炎的首选药物是()A.肾上腺糖皮质激素B.柳氮磺胺吡啶C.前列腺素D.甲硝唑E.阿莫西林 [单选]某大豆种植者在4月份开始种植大豆,并预计在11月份将收获的大豆在市场上出售,预期大豆产量为70吨。为规避大豆价格波动的风险,该种植者决定在期货市场上进行套期保值操作,正确做法应是()。A.买人70吨11月份到期的大豆期货合约B.卖出70吨11月份到期的大豆期货合约C.买 [单选]雪情通告的标志是().A.NOTAMSB.SNOTAMC.SNOWTAM [单选]胎膜早破的原因,哪项是错误的()A.子宫收缩乏力B.头盆不称C.臀位D.胎头高浮E.横位 [单选]下列对关节的描述,错误的是()A.关节面上有关节软骨B.关节囊外层称纤维膜C.关节囊的内层称滑膜D.内、外两层之间的腔隙称关节腔E.关节腔内有少量滑液,腔内呈负压 [单选]紫花地丁来源于()A.菊科B.豆科C.毛茛科D.堇菜科E.唇形科 [单选,A2型题,A1/A2型题]治疗放射性核素内污染,促进钚、钍、铯等核素排泄的首选药物为()。A.二巯基丙磺钠(Na-DMPS)B.二巯丁二酸(DMSA.C.二巯基丁二钠(Na-DMS)D.依地酸钙钠(CaNa2-EDTA.E.喷替酸钙钠(CaNa3-
相关文档
最新文档