偏航系统原理及技术特点的分析
偏航系统的工作原理
偏航系统的工作原理
偏航系统是飞机上的一个重要的导航和控制系统,它的主要作用是控制飞机的方向。
其工作原理主要是通过对飞机的航向进行监测和调整,使飞机能够沿着预定的飞行路线前进,并保持稳定的飞行状态。
偏航系统的主要组成部分包括惯性导航系统、GPS导航系统、气压高度计、磁罗盘等。
其中惯性导航系统是偏航系统的核心部分,它可以通过对飞机的加速度和转角等信息进行计算,来确定飞机的位置和航向。
而GPS导航系统则可以提供更为精确的位置和航向信息,气压高度计则可以提供飞机的高度信息,磁罗盘则可以用来检测飞机的方向和航向。
在实际飞行中,偏航系统还需要进行一系列的自动控制和校正。
例如,对GPS信号的误差进行校正,对飞机的姿态进行调整,对飞机的速度和高度进行控制等。
这些控制和校正需要依靠飞机上的电子设备和计算机系统来完成。
总的来说,偏航系统的工作原理是非常复杂的,需要多个部件协同工作,才能保证飞机在飞行过程中的准确性和安全性。
因此,对于飞行员而言,熟悉偏航系统的工作原理和操作方法是非常重要的,这可以帮助他们更好地控制飞机,保证飞行的顺利和安全。
- 1 -。
偏航系统的工作原理
偏航系统的工作原理
偏航系统是航空器上用于控制飞机方向的重要组成部分。
它包括了多个部件,如指南针、陀螺仪、加速度计、计算机等。
偏航系统通过对这些部件的精密控制,实现了对飞机的方向控制。
首先,指南针是偏航系统的基础部件。
它通过感应地球的磁场来确定飞机的方向,提供了偏航系统的参考基准。
但是,由于地球磁场的不稳定性,指南针容易受到外界干扰,因此需要与其他部件配合使用。
其次,陀螺仪是偏航系统中重要的部件之一。
它能够感应飞机的旋转角度,并将这些信息传送给计算机。
在飞行过程中,陀螺仪能够稳定地保持飞机的方向,从而确保飞行的安全。
此外,加速度计也是偏航系统中的重要组成部分。
它能够感应飞机的加速度和速度,从而使得偏航系统更加精准地控制飞机方向。
在飞行过程中,加速度计能够快速地响应飞机的变化,从而保证了飞行的平稳。
最后,偏航系统中的计算机则是对上述部件进行整合和控制的核心。
它能够自动地计算飞机的位置、速度和方向等信息,并根据这些信息自动地调整偏航系统的控制。
同时,计算机也能够对飞行中的各种异常情况做出响应,保证了飞行的安全性。
总体来说,偏航系统是飞机上控制方向的重要组成部分。
它通过指南针、陀螺仪、加速度计和计算机等多个部件的协作,实现了对飞机方向的精准控制,保证了飞行的安全和稳定。
2.5 偏航系统解析
16
限位开关 大齿圈
接近开关
17
18
1
风力发电机组的偏航系统
风力发电机组的偏航系统一般分为被动偏航 系统和主动偏航系统。 被动偏航系统:多用于小型的独立风力发电 系统,由尾舵控制,风向改变时,被动对风。 主动偏航系统:多用大型并网型风力发电系 统,由位于下风向的风向标发出的信号进行主动 对风控制。
2
尾舵对风
被动偏航系统---尾舵对风是最常用 的一种对风装置, 它广泛用于小、微 型风力机。
7
偏航系统
功能:改变机舱朝向以实现对风、解缆保护
主要部件:
偏航大齿圈 侧面轴承
滑垫保持装置
滑动衬垫 偏航驱动装置
圆弹簧即调整螺栓
偏航计数器 风速风向仪
8
偏航系统装配位置
9
偏航系统结构
风轮安装在机舱前端,机舱安装在塔架上,机舱能以塔架轴线为轴转 动,使风轮面对来风。 塔架顶端的塔筒法兰上安装偏航轴承,偏航轴承的外圈固定在塔架顶 端,偏航轴承的内圈将用来安装机舱底盘。偏航轴承有很强的轴向承重能 力、能承受径向冲击力与倾覆力矩,在偏航轴承外圈的外围集成着偏航齿 轮。
12
偏航系统
13
偏航驱动装置
偏航电机及制动器、偏航小齿 轮箱、偏航小齿轮组成了偏航驱动 装置,他们、和主机架用螺栓件连 接在一起。 每个齿轮箱还有一个外置的透 明油位计,用于检查油位。 偏航电机内部含有温度传感器,控 制绕组温度在155℃之内。
14
偏航系统工作过程
首先,假设现在是东南风,风电机组正常工作,机舱叶 轮处于迎风状态,即朝向东南方向,但是随着时间变化,风 向逐渐的变化为南风了,那么机组就不能在原来位置工作了 。 这时,由风速风向仪测得风向变化,并传给控制系统存 储下来,控制系统又来控制偏航驱动装置中的四台偏航电机 往风速变化的方向同步运转,偏航电机通过减速齿轮箱带动 小齿轮旋转。小齿轮是与大齿圈相啮合的,与偏航电机、偏 航齿轮箱统一称为偏航驱动装置,上图可以看出,偏航驱动 装置通过螺栓紧固在主机架上,而大齿圈通过88个螺栓紧固 在塔筒法兰上,不可旋转,那么只能是小齿轮围绕着大齿圈 旋转带动主机架旋转,直到机舱位置与风向仪测得的风向相 一致。 当然风向变化是一个连续的过程,并不一定瞬时从东南 风就变为南风了,而是一个逐渐变化的过程。
偏航系统的工作原理
偏航系统的工作原理
偏航系统是飞机上的一个重要系统,用于保持航向稳定并防止飞机偏离预定航线。
它的工作原理可以分为以下几个步骤:
1. 航向感知:偏航系统首先需要感知飞机的实际航向。
这通常通过飞机上的磁罗盘或惯性导航系统(INS)来实现。
磁罗盘
通过感应地球的磁场并测量飞机相对于北向的角度来确定航向。
INS则使用加速度计和陀螺仪等传感器来计算和跟踪飞机的航向。
2. 目标航向设定:飞行员通过飞机的自动驾驶系统或驾驶舱中的控制面板设置目标航向。
这是飞机应该沿着的预定航线的方向。
3. 偏航检测:偏航系统会将实际航向与目标航向进行比较,以便检测飞机是否存在偏离。
如果实际航向与目标航向之间有明显差异,则偏航系统会触发下一步骤。
4. 偏航修正:一旦偏航系统检测到飞机偏离目标航向,它会采取相应措施来修正偏航。
这可以通过控制飞机的方向舵以调整飞机的航向,或者通过调整引擎的输出来施加侧向力,使飞机恢复到目标航向上。
5. 反馈控制:偏航系统会持续监测飞机的实际航向和修正的效果,并进行反馈控制以确保飞机保持在目标航向上。
如果飞机再次偏离,偏航系统会及时采取适当的措施进行修正。
通过上述步骤,偏航系统能够有效地保持飞机的航向稳定,并及时纠正任何可能的偏离,从而确保飞机顺利按照预定航线飞行。
风力发电机偏航系统的工作原理
风力发电机偏航系统的工作原理风力发电机偏航系统是风力发电机的重要组成部分,它的主要作用是使风力发电机能够根据风向自动调整转向,使叶片始终对准风的方向,从而最大限度地捕捉到风能。
风力发电机偏航系统的工作原理可以简单地描述为以下几个步骤:1. 风向检测:风力发电机偏航系统首先需要准确地检测到风的方向。
通常,系统会使用一个或多个风向传感器来测量风的方向,并将这些信息传输给控制系统。
2. 信号处理:一旦风向传感器测量到风的方向,这些信号就会被传输到控制系统中进行处理。
控制系统会根据这些信号来确定风的方向,以便后续的调整。
3. 偏航控制:确定了风的方向后,控制系统会通过调整发电机的转向来使叶片对准风的方向。
通常,风力发电机偏航系统使用液压或电动机来实现转向的调整。
控制系统会根据风向信号来控制液压系统或电动机,使风力发电机转向。
4. 转向调整:一旦控制系统调整了风力发电机的转向,风力发电机就能够始终面向风的方向。
这样,风力发电机的叶片就能够最大限度地捕捉到风的能量,并将其转化为电能。
5. 反馈控制:风力发电机偏航系统通常还会包括反馈控制,以确保风力发电机能够稳定地对准风的方向。
反馈控制可以根据风向传感器的信号来实时调整风力发电机的转向,以保持其对准风的方向。
总结起来,风力发电机偏航系统的工作原理是通过风向传感器检测风的方向,控制系统根据这些信号来调整风力发电机的转向,使其始终面向风的方向。
这样,风力发电机就能够最大限度地捕捉到风的能量,并将其转化为电能。
风力发电机偏航系统的工作原理的实现离不开风向传感器、控制系统以及液压或电动机等关键组件的配合。
通过这些关键组件的协同工作,风力发电机偏航系统能够实现稳定的转向调整,从而提高风力发电机的发电效率。
风力发电机组偏航系统详细介绍
风力发电机组偏航系统详细介绍一、引言随着可再生能源的快速发展,风力发电成为了新兴的清洁能源选择之一、风力发电机组的偏航系统是其核心组成部分之一,它能够使风力发电机组在不同风向下旋转,实现最大风能有效利用。
本文将详细介绍风力发电机组偏航系统的原理、构成和工作过程。
二、原理1.风向感知:通过风速传感器和风向传感器,实时感知风的强度和方向。
2.控制系统:根据风向传感器的反馈信息,计算出偏航控制参数,并传递给执行机构。
3.执行机构:根据控制系统的指令,调整风轮的朝向,使其与风向保持一致。
三、构成1.传感器:风力发电机组偏航系统中的传感器主要包括风速传感器和风向传感器。
风速传感器用于感知风的强度,而风向传感器则用于感知风的方向。
2.控制系统:控制系统是风力发电机组偏航系统的核心部分,主要包括控制算法和控制器。
控制算法根据风向传感器的反馈信息计算出偏航控制参数,而控制器则将这些参数传递给执行机构。
3.执行机构:执行机构负责调整风力发电机组的朝向,使其与风向保持一致。
常见的执行机构包括偏航控制器、偏航电机等。
四、工作过程1.感知风向:风力发电机组偏航系统通过风向传感器感知风的方向。
2.计算控制参数:根据风向传感器的反馈信息,控制算法计算出偏航控制参数。
3.传递控制参数:控制器将计算得到的偏航控制参数传递给执行机构。
4.调整朝向:执行机构根据控制参数的指令,调整风力发电机组的朝向,使其与风向保持一致。
5.持续监测:风力发电机组偏航系统持续监测风的方向,根据实时的风向信息进行调整,实现持续稳定的发电。
五、总结风力发电机组偏航系统是风力发电的关键技术之一,它能够在不同风向下实现最大风能有效利用。
本文详细介绍了风力发电机组偏航系统的原理、构成和工作过程。
通过合理的感知、计算和调整机制,风力发电机组能够始终面向风向,实现高效稳定的发电效果。
随着风力发电技术的不断发展,风力发电机组偏航系统也将不断完善,为可再生能源的发展做出更大的贡献。
偏航系统原理及维护
1.5MW 风力发电机偏航系统原理及维护UP77/82 风电机组偏航控制及维护目录1、偏航系统简介2、偏航系统工作原理3、偏航系统控制思想4、偏航系统故障5、偏航系统维护偏航系统简介偏航系统功能使机舱轴线能够跟踪变化稳定的风向;当机舱至塔底引出电缆到达设定的扭缆角度后自动解缆风向标风向标的接线包括四根线,分别是线,两根电源两个信号(我们实际的)线和两根加热线;目前每台机组上有两个风向标;风向标的N 指向机尾;偏航取一分钟平均风向偏航系统结构4 个偏航电机偏航轴承内摩擦的滑动轴承系统;内齿圈设计。
偏航驱动电机:数量:4 个对称布置,由电机驱动小齿轮带动整个机舱沿偏航轴承转动,实现机舱的偏航;内部有温度传感器,控制绕组温度偏航电子刹车装置,偏航齿轮箱:行星式减速齿轮箱偏航小齿轮偏航编码器绝对值编码器,记录偏航位置;偏航轴承齿数与编码器码盘齿数之比;左右限位开关,常开触点;左右安全链限位开关,常闭触点;偏航刹车片数量:10 个液压系统偏航刹车控制;偏航系统未工作时刹车片全部抱闸,机舱不转动;机舱对风偏航时,所有刹车片半松开,设置足够的阻尼,保持机舱平稳偏航;自动解缆时,偏航刹车片全松开。
偏航润滑装置偏航轴承润滑150cc/周偏航齿轮润滑50cc /周用量3:1润滑周期16 分钟/72 小时(偏航润滑油泵启动间隔时间:36H 偏航润滑油泵运行时间:960s )偏航系统工作原理偏航系统原理由四个偏航电机与偏航内齿轮咬合,偏航内齿轮与塔筒固定在一起,四个偏航电机带动机舱转动偏航电机由软启动器控制。
偏航软启动器软启动器使偏航电机平稳启动;晶闸管控制偏航电机启动电压缓慢上升,启动过程结束时,晶闸管截止;限制电机起动电流。
偏航软起动器工作时序图1. 主控给出软起使能EN 命令;2. 软起内部启动工作继电器READY 接点闭合;3. 启动初始电压30%Un ;4. 启动时间10s5. 内部旁路继电器TOR 接点闭合,晶闸管控制截止。
2017.6.10 偏航系统
(三)、零部件结构功能介绍
– 偏航驱动装置
偏航电机及制动器、偏航小齿轮箱、偏航小齿轮组成了偏航驱动装 置,他们是通过螺栓及内部的花键连接成一体的,再共同和主机架 用螺栓件连接在一起。偏航驱动装置共有4组,每一个偏航驱动装 置与主机架连接处的圆柱表面都是偏心的,以达到通过旋转整个驱 动装置调整小齿轮与齿圈啮合侧隙的目的。每个齿轮箱还有一个外 置的透明油位计(参考图11.2.1),用于检查油位。油位计是通过 管路和呼吸冒及加油螺塞连着的,当油位低于正常油位时,旋开加 油螺塞补充规定型号的润滑油。
风力发电机组的偏航系统一般分为主动偏航系统和被动偏航系统,被 动偏航系统指的是依靠风力通过相关机构完成机组风轮对风动作的偏 航方式,常见的有尾舵、舵轮和下风向三种;主动偏航指的是采用电 力或液压拖动来完成对风动作的偏航方式,常见的有齿轮驱动和滑动 两种形式。对于并网型风力发电机组来说,通常都采用主动偏航的齿 轮驱动形式,比如我们的这种机型FL1500/1577就是采用这种形式, 它是由四台偏航电机驱动与大齿圈啮合的小齿轮达到偏航目的的,其 结构参考下图。
图10.6
(三)、零部件结构功能介绍
偏航大齿圈 偏航大齿圈结构参考图10.1及10.3。偏航齿圈通过88个M36高强度螺 栓与塔架紧固在一起,齿圈内圈有一阶梯,上下面都是和滑动衬垫配 合。四个偏航小齿轮就是和这个大齿圈啮合并围绕着它旋转的,从而 带动整个机舱旋转。 接近开关 接近开关是一个光传感器,利用偏航齿圈齿的高低不同而使得光信号 不同来工作,采集光信号并计数。通过一左一右两个接近开关采集的 信号,控制系统控制机组偏航不超过650度,防止线缆缠绕。 接近开关是安装到支架上的,如图10.7所示,调整背紧螺母可以调整 接近开关和偏航齿圈齿顶之间的距离,为了采集到信号,这个距离应
偏航
二、偏航机构
几乎所有水平轴的风电机都会强迫偏航。即, 使用一个带有电动机及齿轮箱的机构来保持 风电机对着风偏转。750千瓦风电机上的偏航 机构上可以看到环绕外沿的偏航轴承,及内 部偏航马达及偏航闸的轮子。几乎所有逆风 设备的制造商都喜欢在不需要的情况下,停 止偏航机构。偏航机构由电子控制器来激发。
偏航装置大体上可以分成三部分
一、偏航误差
当转子不垂直于风向时,风电机存在偏航误差。偏 航误差意味着,风中的能量只有很少一部分可以在 转子区域流动。如果只发生这种情况,偏航控制将 是控制向风电机转子电力输入的极佳方式。但是, 转子靠近风源的部分受到的力比其它部分要大。一 方面,这意味着转子倾向于自动对着风偏转,逆风 或顺风的汽轮机都存在这种情况。另一方面,这意 味着叶片在转子每一次转动时,都会沿着受力方向 前后弯曲。存在偏航误差的风电机,与沿垂直于风 向偏航的风电机相比,将承受更大的疲劳负载。
偏航装置
• 借助电动机转动机舱,以使转子叶片调 整风向的最佳切入角度。偏航装置由电 子控制器操作,电子控制器可以通过风 向标来探知风向。通常,在风改变其方 向时,风电机一次只会偏转几度。值得 注意的是,小功率级别的风电机都是通 过统一的偏航装置调整所有叶片的角度, 而最新的风电机大都是每个叶片设置单 独的偏航系统。
三、电缆扭曲计数器
电缆用来将电流从风电机运载到塔下。但是 当风电机偶然沿一个方向偏转太长时间时, 电缆将越来越扭曲。因此风电机配备有电缆 扭曲计数器,用于提醒操作员应该将电缆解 开了。类似于所有风电机上的安全机构,系 统具有冗余。风电机还会配备有拉动开关, 在电缆扭曲太厉害时航减速器 机舱位置传感器 偏航加脂器 毛毡齿润滑器 偏航轴承 偏航刹车闸 偏航刹车盘。
偏航系统的功能
偏航系统的认识-完整PPT课件
风向传感器
风速传感器
风力发电机组应有两个可加热式风速计。在正常运行或风速大于最小极限 风速时,风速计程序连续检查和监视所有风速计的同步运行。计算机每秒 采集一次来自于风速仪的风速数据;每10min计算一次平均值,用于判别 起动风速和停机风速。测量数据的差值应在差值极限1.5m/s以内。如果所 有风速计发送的都是合理信号,控制系统将取一个平均值。
滑动轴承 回转支承
一、偏航系统的基本结构
1.偏航系统组成部件
1)偏航轴承
偏航轴承整装图
插入动画090711a5-偏航轴承驱动.mp4
一、偏航系统的基本结构
1.偏航系统组成部件
2)偏航驱动装置
驱动装置一般由驱动电机或驱动马达、 减速器、传动齿轮、轮齿间隙调整机构等 组成。驱动装置的减速器一般可采用行星 减速器或蜗轮蜗杆与行星减速器串联;传 动齿轮一般采用渐开线圆柱齿轮。
偏航驱动装置实物图
一、偏航系统的基本结构
1.偏航系统组成部件
3)偏航制动器
采用齿轮驱动的偏航系统时,为避免因振荡的风向变化而引起偏航轮齿产生交变载荷, 应采用偏航制动器(或称偏航阻尼器)来吸收微小的自由偏转振荡,防止偏航齿轮的交变应 力引起齿轮过早损伤。
偏航制动器一般采用液压拖动的钳盘式制动器.
偏航制动钳
能力目标
1.了解偏航系统的基本结构; 2.理解偏航系统的基本功能; 3.掌握偏航控制系统的运行原理。
基础知识
1.偏航系统的基本结构 2.偏航系统的基本功能 3.偏航控制系统运行原理
一、偏航系统的基本结构
偏航系统分为被动偏航和主动偏航。 被动偏航指的是依靠风力通过相关机构完成机组风轮对风动作的偏航方式,常见 的有尾舵、舵轮和下风向等。 主动偏航指的是采用电力或液压拖动来完成对风动作的偏航方式,常见的有齿轮驱 动和滑动两种形式。对于并网型风力发电机组来说,通常都采用主动偏航的齿轮驱动 形式。
偏航系统——精选推荐
偏航系统1. 偏航简介风的⽅向是随时间不断变化的,⽽风⼒发电机必须迎着风向才能最⼤效率的利⽤风能,因此风电机组的机舱也必须跟随着风向的变化来不断改变⽅向,以保证始终处于迎风状态,这就需要⼀个系统能够测得风向并根据测得风向控制机舱旋转对风,这就是我们将要介绍的偏航系统。
偏航系统是⽔平轴式风⼒发电机组必不可少的组成系统之⼀,对风电机组利⽤风能起着⾮常巨⼤的作⽤。
风⼒发电机组的偏航系统⼀般分为主动偏航系统和被动偏航系统,被动偏航系统指的是依靠风⼒通过相关机构完成机组风轮对风动作的偏航⽅式,常见的有尾舵、舵轮和下风向三种;主动偏航指的是采⽤电⼒或液压拖动来完成对风动作的偏航⽅式,常见的有齿轮驱动和滑动两种形式。
对于并⽹型风⼒发电机组来说,通常都采⽤主动偏航的齿轮驱动形式,⽐如我们的这种机型FL1500/1577就是采⽤这种形式,它是由四台偏航电机驱动与⼤齿圈啮合的⼩齿轮达到偏航⽬的的,其结构参考下图。
图10.1图10.2偏航系统包括偏航⼤齿圈、侧⾯轴承、滑垫保持装置、上下及侧⾯滑动衬垫、偏航驱动装置、圆弹簧及调整螺栓、偏航限位开关、接近开关、风速风向仪等等,关于这些部件的结构作⽤将在第3部分分别作详细介绍。
2. 偏航功能、原理偏航系统的功能就是捕捉风向控制机舱平稳、精确、可靠的对风,它的⼯作过程是这样的,假设现在是东南风,风电机组正常⼯作,机舱叶轮处于迎风状态,也就是朝向东南⽅向,但是随着时间变化,风向逐渐的变化为南风了了,那么风电机组肯定不能在原来位置⼯作了,这时就由风速风向仪测得风向变化,并传给控制系统存储下来,控制系统⼜来控制偏航驱动装置中的四台偏航电机往风速变化的⽅向同步运转,偏航电机通过减速齿轮箱带动⼩齿轮旋转。
⼩齿轮是与⼤齿圈相啮合的,与偏航电机、偏航齿轮箱统⼀称为偏航驱动装置,右上图可以看出,偏航驱动装置是通过螺栓紧固在主机架上的。
⽽⼤齿圈是通过88个螺栓紧固在塔筒法兰上⾯的,也就是说⼤齿圈是不可能旋转的,那么只能是⼩齿轮围绕着⼤齿圈旋转带动主机架旋转,直到机舱位置与风向仪测得的风向相⼀致。
风电机组偏航系统
3.1 侧面轴承及其组件
• 侧面轴承是一个弧状的阶梯块,共有6块,每块都有5个的 沉孔分布于圆弧,用于放置定位销、圆形弹簧和压板,每 个孔的底部有M33的螺纹孔,用于安装调整螺栓,因为下 滑动衬垫是用专用粘胶粘合在压板上的,所以调整调整螺 栓的旋入深度就可以调整滑动衬垫与大齿圈之间的紧密程
度,从而得到最佳阻尼。参考Байду номын сангаас图。
• 偏航齿圈通过88个M36高强度螺栓与塔架 紧固在一起,齿圈内圈有一阶梯,上下面 都是和滑动衬垫配合。四个偏航小齿轮就 是和这个大齿圈啮合并围绕着它旋转的, 从而带动整个机舱旋转。
3.4 接近开关
• 接近开关是一个光传感器,利用偏航齿圈齿的高 低不同而使得光信号不同来工作,采集光信号并 计数。通过一左一右两个接近开关采集的信号, 控制系统控制机组偏航不超过650度,防止线缆 缠绕。
3.7 风速风向仪
• 偏航实现其功能,必须采集到风向,风速风向仪 就是实现这个功能的。风速风向仪位于机舱罩子 外部,远离叶轮一侧,阻流板前面。结构如图所 示
4.偏航常见故障及可能原因
4.1 齿圈齿面磨损原因
• 齿轮副的长期啮合运转 • 相互啮合的齿轮副齿侧间隙中渗入杂质 • 润滑脂严重缺失使得齿轮副处于干摩擦状
• 圆弹簧是放在定位销上的,每个定位销共有8个圆弹簧, 分两组背靠背放置。
3.2 滑垫保持装置及其组件
• 下滑动衬垫是放入压板凹槽内的,而上滑动衬垫 若要固定于凹槽内,就要靠滑垫保持装置了,共 有6片,靠近叶轮一侧有两片,每片上有7个凹槽 用于粘结滑动衬垫,如下图(右)所示。六个小 孔用于侧面轴承与主机架连接螺栓穿过使得滑垫 保持装置与主机架连接为一体。
• 正对叶轮方向看去,限位开关位于接近开关左侧, 直接通过螺栓固定于主机架上。齿轮箱限位开关 (GCLS)与大齿圈相啮合,限位开关上的齿轮 将转动传递到凸轮开关轴上,在凸轮开关轴上有 三个凸轮环,其正常位置(三个凸轮盘之间的角 度错位)可以单独调整。三个开关均为快动开关 (切换时间短),并且每个都有一个断路触点和 闭合触点
偏航系统原理及维护袁凌
偏航系统原理及维护袁凌偏航系统是一种用于控制船舶、飞机和车辆等交通工具行进方向的仪器设备,它能够通过相应的控制机构和传感器实时监测车辆的方向,并根据设定的目标方向进行调整。
在交通运输领域,偏航系统的原理和维护非常重要,下面将对其进行详细介绍。
偏航系统的原理:偏航系统的核心原理是通过感知当前的偏航角度,并通过控制舵和驱动装置进行相应的调整,使交通工具朝着设定的方向行进。
它主要由以下几个部分组成:1.偏航角度传感器:偏航角度传感器是用于感知车辆的当前偏航角度的设备,通常采用陀螺仪、加速度计、磁力计等技术进行测量。
2.控制单元:控制单元是偏航系统的核心部件,它接收偏航角度传感器的信号,并根据设定的目标方向进行计算和调整。
其中,控制单元通常包括一个控制算法,用于判断当前偏航情况并进行相应的调整。
3.驱动装置:驱动装置是用于控制车辆行进方向的机构,通常包括液压舵机、电动舵机等。
它能够根据控制单元的指令,实时调整车辆的方向。
偏航系统的维护:偏航系统维护的目的是确保其正常工作,提高运输工具的安全性和可靠性。
以下是一些常见的偏航系统维护方法:1.定期检查:定期检查偏航系统的各个部件,包括偏航角度传感器、控制单元和驱动装置等。
检查时应注意是否有损坏、松动或腐蚀等问题。
2.清洁保养:保持偏航系统的清洁,清除可能对其运行产生负面影响的污垢和积尘。
特别是对于驱动装置,要定期清洗和润滑,以保证其灵活性和正常工作。
3.校准调整:定期对偏航系统进行校准调整,使其输出准确可靠。
校准的方法通常是通过专业设备进行,根据厂家提供的标准和要求进行调整。
4.故障排除:一旦发现偏航系统出现故障或异常,应立即进行排除。
在进行故障排除时,应首先检查是否有电源故障、连接不良或传输线路故障等。
如果无法解决,应及时寻求专业维修人员的帮助。
5.实施预防措施:为了防止偏航系统发生故障,可以采取一些预防措施。
例如,安装冗余系统来增加可靠性,定期维护和检查,及时更换老化的部件等。
偏航系统浅谈
偏航系统浅谈摘要风作为自然的产物,风能具有能量密度低、随机性和不稳定性等特点。
因此,控制技术是机组安全高效运行的关键,偏航控制系统成为水平轴风力发电机组的重要组成部分.本文简述了风机偏航系统,其中包括偏航系统的功能、组成及工作原理等。
其次还介绍了偏航系统常见故障点的分析。
关键词:偏航系统组成工作原理常见故障点目录一、引言 (4)二、偏航系统的功能 (5)三、偏航系统的组成 (6)四、偏航系统工作原理 (7)(一)测量 (7)(二)偏航识别 (8)(三)偏航执行过程 (8)五、偏航系统的维护 (8)(一)偏航减速器的运行检查: (8)(二)润滑油加注: (9)(三)偏航小齿轮与外齿圈的啮合间隙 (9)1.偏航轴承: (9)2.偏航刹车: (10)3.紧固螺栓: (10)六、偏航系统常见故障点分析 (10)(一)机械方面原因: (10)1.检查偏航电机 (10)2.检查偏航齿轮箱 (10)3.检查偏航驱动小齿轮 (10)4.检查偏航轴承 (10)5.检查刹车器安装对中性 (11)(二)电控方面原因: (12)(三)液压方面原因: (12)七、结束语 (13)参考文献 (14)偏航系统浅谈一、引言随着不可再生资源的消耗,可再生利用的新能源在全球得到广泛关注。
风能以其巨大的储量、广泛的分布、便捷地采集得到发达国家和部分发展中国家的青睐。
偏航系统在作为风电控制系统的重要组成部分,主要应用于水平轴的风力发电机组。
其作用在于当风向变化时,能够快速平稳地对准风向,以便获得最大的风能。
二、偏航系统的功能风力发电机组的偏航系统也可以成为对风系统,由于风向经常改变,如果叶轮扫风面和风向不垂直,不但功率输出减少,而且载荷情况也更加恶劣。
偏航系统的功能就是跟踪风向的变化,驱动机舱围绕塔架中心线旋转,使风轮扫风掠面与风向保持垂直.偏航系统的功能就是跟踪风向的变化,驱动机舱围绕塔架中心线旋转,使风轮扫风掠面与风向保持垂直.机舱在反复调整方向的过程中,有可能发生沿着同一方向累计转了很多圈,造成机舱与塔底之间的电缆扭绞,因此偏航系统具备解缆功能.而且保证机组在小风状态下自行解缆,避免了在高风速段偏航解缆造成的发电量损失。
偏航系统的工作原理
偏航系统的工作原理
偏航系统是一种航空器上的重要安全设备,用于控制飞机的飞行方向。
它的工作原理可以简单描述如下:
1. 数据采集:偏航系统通过多种传感器(如陀螺仪、加速度计、磁罗盘等)来收集有关飞机当前状态和环境条件的数据。
2. 数据处理:获取到的数据经过处理和计算,用于确定飞机当前的偏航状态,包括飞行方向、旋转速率等。
3. 偏航控制:根据偏航状态的识别,偏航系统会自动调整飞机的偏航姿态,以使飞机保持在所需的飞行方向上。
4. 反馈控制:偏航系统会不断监测飞机的偏航状态,并与预期的飞行方向进行比较。
如果出现偏差,系统将自动调整飞机姿态,保持在预定的航向上。
5. 状态指示:偏航系统还会通过仪表盘上的指示器,向飞行员提供当前飞机的偏航状态信息,以便及时做出相应的调整操作。
总结起来,偏航系统通过数据采集、数据处理、偏航控制和状态指示等步骤,实现飞机偏航状态的监测和自动调整,确保飞机沿着预定的航向稳定飞行。
这样可以提高飞行安全性,并减轻飞行员的工作负担。
偏航系统工作原理
偏航系统工作原理
偏航系统是用来控制飞行器中出现的偏航运动,确保飞行器能够保持水平飞行状态的关键系统之一。
它的工作原理涉及到惯性导航系统、气动阻力控制和自动驾驶等技术。
1. 惯性导航系统:偏航系统通常集成了惯性导航系统,该系统通过使用陀螺仪测量飞行器的姿态和方向的变化。
陀螺仪会测量飞行器的旋转速度,并将这些数据传输给偏航系统进行处理。
2. 气动阻力控制:当飞行器发生偏航运动时,偏航系统会根据惯性导航系统提供的数据来判断具体的偏航角度,并根据这些信息控制飞行器的气动阻力。
通过改变气动阻力,飞行器可以产生相反的偏航力矩,以抵消或减少偏航运动,同时保持飞行器的稳定。
3. 自动驾驶:偏航系统通常与自动驾驶系统相互配合工作。
自动驾驶系统可以根据飞行计划和地面导航系统提供的导航信息,使用偏航系统来自动调整飞行器的姿态和方向。
当飞行器偏离了预定航线时,自动驾驶系统将指示偏航系统采取相应的措施来纠正偏航运动。
综上所述,偏航系统通过惯性导航系统的数据和气动阻力控制等技术,实现了对飞行器偏航运动的控制和纠正。
这样可以确保飞行器保持水平飞行状态,提高飞行安全性和稳定性。
偏航系统原理及技术特点的分析
偏航系统原理及技术特点的分析一.偏航的构成及原理:偏航系统主要由偏航测量及偏航驱动部分,机械传动部分,扭缆保护装置三大部分组成,其各部分组成及工作原理如下:(一)、偏航测量及偏航驱动部分:偏航测量及偏航驱动主要由风向标、偏航识别和偏航执行机构组成。
1.测量:风机对风的测量主要是由风向标来完成。
随着数字电路的发展,风向标的种类也有许多。
风向标是一种光电感应传感器。
有一种内部带有一个8位的格雷码盘,当风向标随风转动时,同时也带动格雷码盘转动,由此得到不同的格雷码盘,通过光电感应元件,变成一组8位数字信号传入单板机。
格雷码盘将360°分成256个区,每个区为1.41°,固其测量精度为1.41°.另一种风向标在转动时,将同时带动两个传感器一起转动,风向标正向是一号传感器,为0°轴,二号传感器同一号传感器成90°夹角,为90°轴,这样就将形成一个虚拟的坐标,坐标里有4个象限,当风向标转动后,就会同风机现在的方向形成夹角,而风机现在的方向必定会落在风向标所带的坐标象限内,这样一来就会使风机偏航,偏航动作见表2.偏航识别和执行机构当风向标的信号被采集后,通过数据传输到工业单板机.工业单板机通过程序计算后进行判断,是否应偏航?当确定须偏航后,计算机发出偏航动作信号.信号经放大后先驱动顺偏或逆偏继电器,再由继电器驱动接触器吸合,使偏航电机带电运行来完成顺时针或逆时针转动对风.偏航正、反向驱动电路是互为闭锁回路。
(二)机械传动部分传动部分主要由偏航电机、偏航减速机构、偏航小齿轮、偏航齿圈、偏航刹车组成。
1.偏航电机各类风机都采胩三相异步电动机,额定功率BONUS150KW风机为0.55KW,TACKE600KW风机为2.2KW,ANBONUS450KW风机为0.55KW(双电机),JACOBS500KW风机为0.55KW(双电机),国产化600KW风机为0.55KW(双电机),都带有电磁闸.双电机可增加齿面的接触面积,增大啮合强度,转动更平稳.2.偏航减速机构减速器一般都由二通讯组成.第一级都是螺旋齿轮减速器,第二级为行里齿轮减速器.TACKE风机为使偏航转动平稳,还单独安装了一个减速器.3.偏航小齿轮和偏航齿盘小齿轮由偏航电机经减速器减速后驱动,带动机舱在偏航齿盘上转动,偏航齿盘固定在塔架上是不动的,这样就可使机舱能正确对风叶轮能转动对风.4.偏航刹车及减振除了150KW风机只有电磁闸以外,其它的风机还都带有液压刹车.在液压刹车里,TACKE600KW、JACOBS500KW及国产化600KW风机采用盘式刹车,ANBONUS450KW风机采用撑杆式刹车。
偏航系统原理及维护
偏航系统原理及维护UP77/82 风电机组偏航控制及维护目录1、偏航系统简介2、偏航系统工作原理3、偏航系统控制思想4、偏航系统故障5、偏航系统维护偏航系统简介偏航系统功能✓使机舱轴线能够跟踪变化稳定的风向;✓当机舱至塔底引出电缆到达设定的扭缆角度后自动解缆。
风向标▪风向标的接线包括四根线,分别是两根电源线,两个信号〔我们实际的〕线和两根加热线;▪目前每台机组上有两个风向标;▪风向标的N指向机尾;▪偏航取一分钟平均风向。
偏航系统结构4个偏航电机偏航刹车片〔10个〕偏航内齿圈塔筒偏航大齿圈侧面轴承▪偏航轴承➢内摩擦的滑动轴承系统;➢内齿圈设计。
偏航驱动电机:➢数量:4个➢对称布置,由电机驱动小齿轮带动整个机舱沿偏航轴承转动,实现机舱的偏航;➢内部有温度传感器,控制绕组温度➢偏航电子刹车装置,➢偏航齿轮箱:行星式减速齿轮箱➢偏航小齿轮▪偏航编码器➢绝对值编码器,记录偏航位置;➢偏航轴承齿数与编码器碼盘齿数之比;➢左右限位开关,常开触点;➢左右安全链限位开关,常闭触点;偏航刹车片➢数量:10个➢液压系统偏航刹车控制;➢偏航系统未工作时刹车片全部抱闸,机舱不转动;➢机舱对风偏航时,所有刹车片半松开,设置足够的阻尼,保持机舱平稳偏航;➢自动解缆时,偏航刹车片全松开。
偏航润滑装置➢偏航轴承润滑150cc/周➢偏航齿轮润滑50cc /周➢用量3:1➢润滑周期16分钟/72小时〔偏航润滑油泵启动间隔时间:36H 偏航润滑油泵运行时间:960s 〕偏航系统工作原理偏航系统原理▪由四个偏航电机与偏航内齿轮咬合,偏航内齿轮与塔筒固定在一起,四个偏航电机带动机舱转动。
▪偏航电机由软启动器控制。
偏航软启动器✓软启动器使偏航电机平稳启动;✓晶闸管控制偏航电机启动电压缓慢上升,启动过程结束时,晶闸管截止;✓限制电机起动电流。
偏航软起动器工作时序图1.主控给出软起使能EN命令;2.软起内部启开工作继电器READY接点闭合;3.启动初始电压30%Un;5.内部旁路继电器TOR接点闭合,晶闸管控制截止。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
偏航系统原理及技术特点的分析
一.偏航的构成及原理:
偏航系统主要由偏航测量及偏航驱动部分,机械传动部分,扭缆保护装置三大部分组成,其各部分组成及工作原理如下:
(一)、偏航测量及偏航驱动部分:
偏航测量及偏航驱动主要由风向标、偏航识别和偏航执行机构组成。
1.测量:
风机对风的测量主要是由风向标来完成。
随着数字电路的发展,风向标的种类也有许多。
风向标是一种光电感应传感器。
有一种内部带有一个8位的格雷码盘,当风向标随风转动时,同时也带动格雷码盘转动,由此得到不同的格雷码盘,通过光电感应元件,变成一组8位数字信号传入单板机。
格雷码盘将360°分成256个区,每个区为1.41°,固其测量精度为1.41°.另一种风向标在转动时,将同时带动两个传感器一起转动,风向标正向是一号传感器,为0°轴,二号传感器同一号传感器成90°夹角,为90°轴,这样就将形成一个虚拟的坐标,坐标里有4个象限,当风向标转动后,就会同风机现在的方向形成夹角,而风机现在的方向必定会落在风向标所带的坐标象限内,这样一来就会使风机偏航,偏航动作见表
2.偏航识别和执行机构
当风向标的信号被采集后,通过数据传输到工业单板机.工业单板机通过程序计算后进行判断,是否应偏航?当确定须偏航后,计算机发出偏航动作信号.信号经放大后先驱动顺偏或逆偏继电器,再由继电器驱动接触器吸合,使偏航电机带电运行来完成顺时针或逆时针转动对风.偏航正、反向驱动电路是互为闭锁回路。
(二)机械传动部分
传动部分主要由偏航电机、偏航减速机构、偏航小齿轮、偏航齿圈、偏航刹车组成。
1.偏航电机
各类风机都采胩三相异步电动机,额定功率BONUS150KW风机为0.55KW,TACKE600KW风机为2.2KW,ANBONUS450KW风机为0.55KW(双电机),
JACOBS500KW风机为0.55KW(双电机),国产化600KW风机为0.55KW(双电机),都带有电磁闸.双电机可增加齿面的接触面积,增大啮合强度,转动更平稳.
2.偏航减速机构
减速器一般都由二通讯组成.第一级都是螺旋齿轮减速器,第二级为行里齿轮减速器.TACKE风机为使偏航转动平稳,还单独安装了一个减速器.
3.偏航小齿轮和偏航齿盘
小齿轮由偏航电机经减速器减速后驱动,带动机舱在偏航齿盘上转动,偏航齿盘固定在塔架上是不动的,这样就可使机舱能正确对风叶轮能转动对风.
4.偏航刹车及减振
除了150KW风机只有电磁闸以外,其它的风机还都带有液压刹车.在液压刹车里,TACKE600KW、JACOBS500KW及国产化600KW风机采用盘式刹车,
ANBONUS450KW风机采用撑杆式刹车。
并且JACBOS500KW和国产化600KW风机在偏航时,液压刹车不带有一定的余压,使转动平稳,减小叶轮因偏航引起的振动,保护偏航轴承,150KW风机还装有五个滑爪,滑爪由上滑靴构成,上滑靴为一个尼龙块,下滑靴中有一长方形的槽,槽内有二组碟簧上放一个长方形的铜块,偏航齿盘夹在上、下滑靴之间,通过螺栓可以调节偏航盘与滑靴之间的间隙,依靠滑块与偏航盘之间的磨擦力减小由偏航引起的振动。
(三)扭缆保护装置
扭缆保护一般由凸轮控制器(或偏航位置传感器)和扭缆开关组成
凸轮控制器由小齿轮与偏航盘相啮合,在偏航动作的同时也会带动凸轮控制器内部的齿轮转动,当转动一定圈后会触动机械开关动作。
计算机接收到后就进行判断,是否需要解缆。
一般凸轮控制器有三个开关顺偏位置开关、中间位置开关、逆偏位置开关。
TACKE600KW风机是靠偏航位置传感器来进行扭缆测量的。
这个装置由两个距半个齿间隔的记数传感器组成,当偏航动作后,由这两个记数据传感器记录偏航齿圈上的齿数,由计算机进行数据运算来识别偏航的圈数,转过3圈后,进行无条件解缆。
电缆转
动将金属线在电缆上,当金属线都绕在电缆上后会拉动此开关,使风机立即停止偏航,这是最后一道保护,只有在计算机控制失放后动作。
其绕在电缆上的金属线的长度一般设为4倍的电缆线周长。
二.偏航系统的技术特点
1.偏航系统都能对风向变化进行自动识别,并进行自动对风。
2.偏航系统的电机都有采用软起动方式,减少了起动电流对电机的冲击,并使起动平稳,延长电机寿命。
3.偏航系统都安装有减速器,使转起动平稳,减小撞击。
4.风机偏航系统都有扭缆保护装置,使其自动运行更安全可靠。
5.偏航系统都有可靠的执行电路来进行工作。
6.偏航系统都具有锁定状装置,以提高风机的可靠性。