高考数学全套知识点(通用版)

合集下载

高考数学知识点总结(全而精-一轮复习必备)

高考数学知识点总结(全而精-一轮复习必备)

高中数学第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为;②空集是任何集合的子集,记为;③空集是任何非空集合的真子集;如果,同时,那么A = B.如果.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=,则C s A= {0})A A ⊆A ⊆φB A ⊆A B ⊆C A C B B A ⊆⊆⊆,那么,+N③空集的补集是全集.④若集合A=集合B,则C B A=,C A B =C S(C A B)=D(注:C A B =).3. ①{(x,y)|xy =0,x∈R,y∈R}坐标轴上的点集.②{(x,y)|xy<0,x∈R,y∈R二、四象限的点集.③{(x,y)|xy>0,x∈R,y∈R} 一、三象限的点集.[注]:①对方程组解的集合应是点集.例:解的集合{(2,1)}.②点集与数集的交集是. (例:A ={(x,y)| y =x+1} B={y|y =x2+1} 则A∩B =)4. ①n个元素的子集有2n个. ②n个元素的真子集有2n-1个. ③n个元素的非空真子集有2n-2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题逆命题.②一个命题为真,则它的逆否命题一定为真. 原命题逆否命题.例:①若应是真命题.,则a+b = 5,成立,所以此命题为真.②.1或y = 2.,故是的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围.3.例:若.4.集合运算:交、并、补.5.主要性质和运算律(1)包含关系:(2)等价关系:(3)集合的运算律:交换律:结合律:分配律:.∅∅∅}⎩⎨⎧=-=+1323yxyxφ∅⇔⇔325≠≠≠+baba或,则且1≠x3≠y1≠∴yx且3≠+yx21≠≠yx且255xxx或,⇒{|,}{|}{,}A B x x A x BA B x x A x BA x U x A⇔∈∈⇔∈∈⇔∈∉U交:且并:或补:且C,,,,,;,;,.UA A A A U A UA B B C A C A B A A B B A B A A B B⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇CUA B A B A A B B A B U⊆⇔=⇔=⇔=C.;ABBAABBA==)()();()(CBACBACBACBA==)()()();()()(CABACBACABACBA==0-1律:等幂律:求补律:A∩C U A=φA∪C U A=U C U U=φ C Uφ=U反演律:C U(A∩B)= (C U A)∪(C U B) C U(A∪B)= (C U A)∩(C U B)6.有限集的元素个数定义:有限集A的元素的个数叫做集合A的基数,记为card( A)规定 card(φ) =0.基本公式:(3) card( U A)= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸1.整式不等式的解法根轴法(零点分段法)①将不等式化为a0(x-x1)(x-x2)…(x-x m)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.(自右向左正负相间)则不等式的解可以根据各区间的符号确定.特例①一元一次不等式ax>b解的讨论;②一元二次不等式ax2+box>0(a>0)解的讨论.>∆0=∆0<∆二次函数cbxaxy++=2(0>a)的图象,,,A A A U A A U A UΦ=ΦΦ===.,AAAAAA==(1)()()()()(2)()()()()()()()()card A B card A card B card A Bcard A B C card A card B card Ccard A B card B C card C Acard A B C=+-=++---+x)0)((002211><>++++--aaxaxaxa nnnn原命题若p 则q否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互一元二次方程()的根002>=++a c bx ax 有两相异实根)(,2121x x x x <有两相等实根ab x x 221-== 无实根的解集)0(02>>++a c bx ax {}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax {}21x x x x << ∅∅2.分式不等式的解法(1)标准化:移项通分化为>0(或<0); ≥0(或≤0)的形式,(2)转化为整式不等式(组)3.含绝对值不等式的解法(1)公式法:,与型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之.(三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。

2024高考数学知识点归纳总结

2024高考数学知识点归纳总结

2024高考数学知识点归纳总结第一章函数的初步1.函数的概念和性质:自变量、函数值、定义域、值域、单调性等。

2.常见函数的图像与性质:常数函数、线性函数、二次函数、反比例函数。

3.反函数的概念与性质:定义域、值域的互换、对称关系等。

4.函数的运算:加减乘除、复合、逆向运算等。

第二章数列与数理统计1.数列的概念与性质:数列的定义、通项公式、递推公式、等差数列、等比数列。

2.算数平均数、中位数、众数与离均差。

3.方差与标准差的概念与计算方法。

4.频数与频率:频数分布表、频率分布表等。

第三章高中函数1.函数的定义与性质:基本初等函数、分段函数。

2.函数的图像与性质:一次函数、幂函数、指数函数、对数函数、三角函数(正弦函数、余弦函数)等。

3.解析式的建立方法和解题技巧。

4.函数的图像与图形的简单变化:平移、翻转与伸缩。

第四章一元二次方程与不等式1.一元二次方程的定义与性质:解的个数与形式、判别式、根与系数之间的关系等。

2.根与系数之间的联系:求一次项系数、顶点坐标、对称轴与焦点、及抛物线方程等。

3.一元二次不等式:解集表示、解集的画图表示。

第五章二次函数与二次方程1.二次函数的性质:图像、单调性、极值点、对称轴、直线与抛物线的交点等。

2.二次函数图像的应用:最高点问题、根的情况及数值应用等。

第六章图形的性质与变换1.图形的简单性质与性质推理:内角和、外角和、对角线、对称性等。

2.图形的简单变换:平移、旋转、翻转、缩放等。

3.图形的计算:面积、体积的计算方法和应用。

第七章几何运动1.几何运动的基本概念与性质:初值、公差、项数等。

2.几何运动的求和计算:前n项和、无穷项和(算术级数与几何级数等)。

3.等差数列与等比数列。

4.利用等差数列与等比数列解决实际问题。

第八章概率与统计1.概率的基本概念与性质:样本空间、随机事件、概率的计算等。

2.事件的独立性:互斥事件、独立事件、相对独立事件等。

3.排列与组合:排列组合的基本概念、计算方法和应用。

数学高考必考知识点

数学高考必考知识点

数学高考必考知识点一、代数1. 集合与函数- 集合的基本概念、运算及其性质- 函数的定义、性质和常见类型(如线性函数、二次函数、指数函数、对数函数等)- 函数的图像和变换(平移、伸缩、对称等)2. 不等式与方程- 一元一次不等式和方程的解法- 二元一次不等式组和方程组的解法- 一元二次方程的解法及其判别式- 不等式的解集表示和基本性质3. 数列- 等差数列和等比数列的通项公式、求和公式- 数列的极限概念及其计算- 数列的递推关系和通项公式的求解二、几何1. 平面几何- 点、线、面的基本性质- 三角形、四边形的性质和计算- 圆的性质和相关公式- 相似与全等的判定和应用2. 立体几何- 空间几何体的性质和计算(如棱柱、棱锥、圆柱、圆锥、球等) - 空间向量及其在立体几何中的应用- 立体几何中的表面积和体积计算3. 解析几何- 直线和圆的解析表达式- 圆锥曲线(椭圆、双曲线、抛物线)的标准方程- 坐标变换和参数方程三、概率与统计1. 概率- 随机事件的概率计算- 条件概率和独立事件的概念- 排列组合的基本原理和公式2. 统计- 数据的收集、整理和描述- 均值、中位数、众数、方差、标准差等统计量的计算- 概率分布(如二项分布、正态分布)的概念和应用四、数学分析1. 极限与连续- 数列极限的概念和性质- 函数极限的定义和计算- 连续函数的性质和判断2. 导数与微分- 导数的定义、几何意义和物理意义- 常见函数的导数公式- 微分的概念和应用3. 积分- 不定积分的概念和基本积分表- 定积分的定义、性质和计算- 微积分基本定理及其应用五、数学解题技巧- 快速准确的计算方法- 图形和代数方法的结合使用- 逻辑推理和证明技巧- 常见数学问题的解题策略六、数学思维与应用- 数学建模和实际问题的应用- 创新思维在数学问题解决中的运用- 数学与其他学科的交叉融合七、复习策略- 定期复习和巩固基础知识- 针对性练习和模拟考试- 错题分析和知识点查漏补缺以上是数学高考必考知识点的概览。

高中数学知识点大全(完整版)

高中数学知识点大全(完整版)

高中数学知识点大全(完整版)高中数学学问点大全一、集合、简易规律1、集合;2、子集;3、补集;4、交集;5、并集;6、规律连结词;7、四种命题;8、充要条件。

二、函数1、映射;2、函数;3、函数的单调性;4、反函数;5、互为反函数的函数图象间的关系;6、指数概念的扩充;7、有理指数幂的运算;8、指数函数;9、对数;10、对数的运算性质;11、对数函数。

12、函数的应用举例。

三、数列(12课时,5个)1、数列;2、等差数列及其通项公式;3、等差数列前n项和公式;4、等比数列及其通顶公式;5、等比数列前n项和公式。

四、三角函数1、角的概念的推广;2、弧度制;3、任意角的三角函数;4、单位圆中的三角函数线;5、同角三角函数的基本关系式;6、正弦、余弦的诱导公式;7、两角和与差的正弦、余弦、正切;8、二倍角的正弦、余弦、正切;9、正弦函数、余弦函数的图象和性质;10、周期函数;11、函数的奇偶性;12、函数的图象;13、正切函数的图象和性质;14、已知三角函数值求角;15、正弦定理;16、余弦定理;17、斜三角形解法举例。

五、平面对量1、向量;2、向量的加法与减法;3、实数与向量的积;4、平面对量的坐标表示;5、线段的定比分点;6、平面对量的数量积;7、平面两点间的距离;8、平移。

六、不等式1、不等式;2、不等式的基本性质;3、不等式的证明;4、不等式的解法;5、含肯定值的不等式。

七、直线和圆的方程1、直线的倾斜角和斜率;2、直线方程的点斜式和两点式;3、直线方程的`一般式;4、两条直线平行与垂直的条件;5、两条直线的交角;6、点到直线的距离;7、用二元一次不等式表示平面区域;8、简洁线性规划问题;9、曲线与方程的概念;10、由已知条件列出曲线方程;11、圆的标准方程和一般方程;12、圆的参数方程。

八、圆锥曲线1、椭圆及其标准方程;2、椭圆的简洁几何性质;3、椭圆的参数方程;4、双曲线及其标准方程;5、双曲线的简洁几何性质;6、抛物线及其标准方程;7、抛物线的简洁几何性质。

高考数学考点大全总结概括

高考数学考点大全总结概括

高考数学考点大全总结概括高考数学必考知识点一一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。

二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。

三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。

四、三角函数(46课时,17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。

五、平面向量(12课时,8个)1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。

六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。

七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。

高考数学必考知识点全集

高考数学必考知识点全集

高考数学必考知识点全集作为高考数学科目的一部分,数学知识点的掌握对于考生来说是至关重要的。

在备考阶段,了解并掌握高考数学的必考知识点将对考生有很大的帮助。

本文将为大家提供一份高考数学必考知识点全集,希望对广大考生有所帮助。

第一章:代数与函数1. 多项式与有理式- 多项式的基本概念及性质- 多项式的四则运算- 有理式的概念及简单运算法则2. 函数与方程- 函数的基本概念及性质- 函数的表示及常见类型- 方程的基本概念及解法- 一元一次方程与一元一次不等式的解法3. 数列与数列与数列的基本概念及性质- 等差数列与等比数列的定义及性质- 数列的通项公式及前n项和- 货币资金和物价指数问题第二章:几何与空间几何1. 直线和曲线- 直线的基本性质及特征- 曲线的基本概念及特征2. 平面与空间几何- 平面的基本概念及性质- 空间几何的基本概念及性质3. 图形的性质与应用- 二维图形的性质及分类定义- 三维图形的性质及分类定义4. 三角形与三角函数- 三角形的基本概念及性质- 三角函数的基本概念及性质- 解三角形问题及相关应用第三章:概率与统计1. 概率与统计的基本概念- 概率的基本定义及性质- 统计的基本概念及应用2. 随机事件的概率计算- 随机事件的基本概念及计算方法- 条件概率及相关应用3. 数据分析与统计- 数据图表的构建及分析- 统计方法的基本应用- 一元数据及多元数据的表示与处理第四章:函数与微积分1. 整式与有理函数- 整式的基本概念及性质- 有理函数的基本定义及性质2. 三角函数与指数函数- 三角函数的定义及性质- 指数函数的基本概念及性质3. 极限与连续- 函数极限的基本概念及性质- 函数连续性的定义及判定法则4. 导数与微分- 导数的定义及计算法则- 微分的基本概念及应用以上只是高考数学必考知识点的一个简单总结,考生在备考过程中还需要根据各知识点的具体要求进行深入学习。

此外,平时的练习也是十分重要的。

高考必背最完整的高中数学知识点

高考必背最完整的高中数学知识点

高考必背最完整的高中数学知识点一、代数1. 一次函数的性质:直线的斜率、截距和方程形式。

2. 二次函数的性质:顶点坐标、对称轴、开口方向和方程形式。

3. 幂函数与指数函数的性质。

4. 对数函数的性质:底数为正数时的定义、性质与常见公式。

5. 三角函数的基本概念:正弦函数、余弦函数和正切函数的周期、定义域、值域和图像。

6. 数列的概念及常见数列的通项公式和求和公式。

二、几何1. 平面几何基本概念:点、直线、平行和垂直关系。

2. 三角形的性质:角的度量、三角形类型和重要定理(如余弦定理和正弦定理)。

3. 圆的性质:圆周角、弧长和面积公式。

4. 球和立体几何的基本概念:体积、表面积和投影等。

三、概率与统计1. 概率的基本概念:事件、样本空间、概率以及概率的性质与计算。

2. 随机变量的概念及其分布函数和密度函数。

3. 统计的基本概念:总体、样本、参数和统计量。

4. 样本调查与统计分析的方法和步骤。

四、解析几何1. 向量的基本概念:向量的表示、向量的运算、向量的模和方向角。

2. 平面的方程:一般式、点法式、两点式和法向量式等。

3. 空间几何基本概念:点、直线、平面的关系与位置。

4. 空间直角坐标系:空间直角坐标系的建立与距离公式。

五、数学思维1. 基本解题方法和思维:分类讨论、递推法、数学归纳法等。

2. 数学证明的基本方法:直接证明、间接证明、反证法等。

3. 数学建模的基本流程和方法。

4. 数学问题的模型转化与解决策略。

以上是高考必背的最完整的高中数学知识点。

希望同学们在备考过程中认真复这些知识,做好各种题型的练,提高自己的数学水平,取得好成绩!加油!。

高考数学全套知识点

高考数学全套知识点

高考数学全套知识点数学是高考中的一门重要科目,对于每个考生来说都至关重要。

为了帮助大家更好地复习和掌握高考数学知识,下面将为大家总结和归纳高考数学的全套知识点。

一、代数与函数1. 实数、复数及其运算2. 幂次、根式与对数运算3. 数列与等差数列4. 不等式与不等式组5. 函数与方程二、平面几何1. 直线与圆2. 平面几何的坐标表示方法3. 三角形与相似三角形4. 四边形与平行四边形5. 三视图与立体几何6. 数量关系与运算三、概率与统计1. 可能性与概率2. 统计与统计量四、解析几何1. 直线与曲线的方程2. 空间几何3. 坐标系与变换五、数学建模1. 解题和模型构建的基本方法2. 数学模型的评价与实现以上是高考数学的全套知识点概述,接下来将针对每个知识点进行更详细的介绍。

一、代数与函数1. 实数、复数及其运算:实数是数学中最基本的概念,包括有理数和无理数。

复数是由实部与虚部组成,具有特殊性质。

实数和复数的运算包括加减乘除等基本运算。

2. 幂次、根式与对数运算:幂次运算是指对一个数连乘多次,根式运算则是幂次运算的逆运算。

对数运算描述了一个数与另一个数之间的幂次关系。

3. 数列与等差数列:数列是一系列有规律的数按一定顺序排列而成,等差数列是其中的一种常见形式,其特点是每相邻两项之间的差值相等。

4. 不等式与不等式组:不等式是数学中的一种关系符号,用来表示两个数之间的大小关系。

不等式组则是由多个不等式组成的一组方程。

5. 函数与方程:函数是对数与数之间的一种特殊关系描述,方程则是函数的表达形式。

在数学中,函数和方程是相互关联的。

二、平面几何1. 直线与圆:直线是最基本的几何元素之一,由无数个点组成。

圆则由一组等距离于圆心的点组成。

2. 平面几何的坐标表示方法:平面几何常用的表示方法是坐标表示法,通过坐标系和坐标轴可以精确地描述平面上的点的位置。

3. 三角形与相似三角形:三角形是一个由三条边和三个顶点组成的多边形,相似三角形则是具有相同形状但不同大小的三角形。

高考数学必考知识点归纳全

高考数学必考知识点归纳全

高考数学必考知识点归纳全高考数学是高中阶段学生面临的一次重要考试,它涵盖了多个数学领域的基础知识点。

以下是高考数学必考知识点的归纳:一、集合与函数- 集合的概念:集合的表示、子集、并集、交集、补集。

- 函数的概念:函数的定义、值域、定义域、单调性、奇偶性。

- 函数的表示:函数的图象、函数的解析式。

二、代数基础- 指数与对数:指数函数、对数函数、对数运算法则。

- 幂运算:幂的运算法则、根式。

- 代数方程:一元一次方程、一元二次方程、高次方程、方程组的解法。

三、不等式与不等式组- 不等式的基本性质:不等式的基本解法、不等式组的解集。

- 绝对值不等式:绝对值的定义、绝对值不等式的解法。

四、数列- 等差数列:等差数列的定义、通项公式、求和公式。

- 等比数列:等比数列的定义、通项公式、求和公式。

- 数列的极限:数列极限的概念、极限的运算。

五、三角函数与解三角形- 三角函数:正弦、余弦、正切等基本三角函数的性质和图像。

- 解三角形:正弦定理、余弦定理、三角形的面积公式。

六、解析几何- 直线:直线的方程、直线的位置关系。

- 圆:圆的方程、圆与直线的位置关系。

- 椭圆、双曲线、抛物线:圆锥曲线的性质和方程。

七、立体几何- 空间直线与平面:空间直线的方程、平面的方程、线面关系。

- 多面体与旋转体:多面体的体积、旋转体的表面积和体积。

八、概率与统计初步- 随机事件的概率:概率的定义、概率的计算方法。

- 统计初步:数据的收集、整理、描述。

九、导数与微分- 导数的概念:导数的定义、几何意义。

- 基本导数公式:常见函数的导数公式。

- 微分的概念:微分的定义、微分的应用。

十、积分与应用- 不定积分:不定积分的概念、基本积分公式。

- 定积分:定积分的概念、定积分的计算方法。

- 积分的应用:面积、体积、物理量等的计算。

十一、复数- 复数的概念:复数的定义、复数的运算。

- 复数的几何表示:复平面、复数的模和辐角。

十二、逻辑推理与证明方法- 逻辑推理:命题逻辑、逻辑运算。

高考数学最全知识点

高考数学最全知识点

高考数学最全知识点一、代数与函数1. 整式与分式- 整式的定义与性质- 分式的定义与性质- 分式的化简与运算法则2. 方程与不等式- 一元一次方程与不等式- 一元二次方程与不等式- 二元一次方程与不等式- 绝对值方程与不等式3. 函数与图像- 函数的定义与性质- 基本初等函数的性质与图像- 复合函数与反函数- 二次函数与它的图像特征4. 一次、二次函数和分式函数- 一次函数的图像与性质- 二次函数的图像与性质- 分式函数的图像与性质二、解析几何1. 点、直线与圆- 坐标平面、点的坐标与点的表示- 直线的方程与性质- 圆的方程与性质2. 平面与空间图形- 不共面点的坐标与距离- 空间图形的投影与投影性质- 空间几何体的体积计算3. 向量与坐标变换- 向量的定义与性质- 向量的线性运算与数量积- 坐标变换与平移、旋转、对称三、概率与统计1. 排列与组合- 排列的概念与计算- 组合的概念与计算- 排列组合在实际问题中的应用2. 概率与事件- 概率的定义与性质- 事件的概念与运算- 事件的概率计算与应用3. 统计与数据分析- 统计数据的收集与整理- 统计量与频数分布表- 统计图表与数据分析四、数学思维与方法1. 数学思想方法与证明- 数学思维的培养与发展- 数学证明的基本方法与思路2. 推理与逻辑- 数学推理的基本规律与方法- 逻辑关系的分析与判断3. 分析与解决问题- 数学问题的分析与解决思路- 解决问题的数学模型与方法五、高考数学应试技巧1. 命题特点与解题技巧- 高考数学命题特点的认识- 解题技巧与策略的训练2. 考前复习与应试心态- 高考数学的复习计划与安排- 应试心态与考场策略3. 高考数学备考注意事项- 考试要点与考纲的掌握- 考前注意事项与常见错误的避免以上是高考数学的最全知识点,通过系统地学习和掌握这些知识点,相信你能在高考中取得优异的成绩。

祝你成功!。

高考数学最全知识点归纳

高考数学最全知识点归纳

高考数学最全知识点归纳高考数学作为高中阶段数学学习的总结和检验,涵盖了多个知识点,以下是对高考数学最全知识点的归纳:一、代数部分1. 集合与函数:理解集合的概念,包括集合的运算、子集、并集、交集、补集等;掌握函数的定义、性质、单调性、奇偶性、周期性等。

2. 不等式:包括一元二次不等式的解法,绝对值不等式,分式不等式,以及不等式的应用。

3. 数列:理解等差数列和等比数列的概念、通项公式、求和公式,以及数列的极限问题。

4. 复数:复数的运算,包括加减乘除和共轭复数的概念,复数的几何意义等。

5. 代数式:包括多项式、分式、有理式等的运算,以及代数式的简化和分解。

6. 排列组合与概率:排列组合的基本原理,组合数的计算,以及概率的基本概念和计算方法。

二、几何部分1. 平面几何:包括直线、圆、椭圆、双曲线、抛物线等基本图形的性质和位置关系。

2. 立体几何:空间中点、线、面的位置关系,多面体和旋转体的性质,以及空间图形的计算。

3. 解析几何:坐标系中点、直线、圆、椭圆等图形的方程,以及图形的平移、旋转和对称变换。

三、三角部分1. 三角函数:正弦、余弦、正切等基本三角函数的定义、图像、性质和应用。

2. 三角恒等变换:包括和差化积、积化和差、倍角公式、半角公式等。

3. 解三角形:正弦定理、余弦定理的应用,以及三角形的解法。

四、微积分部分1. 极限:数列极限、函数极限的概念和计算方法。

2. 导数:导数的定义、性质、几何意义,以及基本导数公式。

3. 积分:不定积分和定积分的概念、性质、计算方法,以及在几何和物理中的应用。

五、统计与概率部分1. 统计:数据的收集、整理、描述,包括平均数、中位数、众数、方差、标准差等。

2. 概率:事件的概率计算,包括古典概型、几何概型、条件概率、独立事件等。

结束语高考数学的知识点广泛,要求学生不仅要掌握基础知识,还要能够灵活运用所学知识解决实际问题。

通过系统地复习和练习,相信每位学生都能够在高考中取得优异的成绩。

高考数学所有单元知识点

高考数学所有单元知识点

高考数学所有单元知识点高考数学是考生们备战高考的一大考试科目。

它包含了多个单元知识点,涵盖了数学的各个分支,如函数、几何、概率等。

下面将对高考数学的所有单元知识点进行详细介绍。

1. 函数与方程- 函数的定义与性质:函数的定义、函数的主要性质(单调性、奇偶性等)- 基本初等函数:常数函数、幂函数、指数函数、对数函数、三角函数等- 二次函数:一般式、顶点式、坐标系中的图像、性质与应用- 一次函数:斜率与截距、函数图像与应用- 倒数函数、反函数与复合函数- 方程与不等式:一元一次方程与不等式、一元二次方程与不等式、二元一次方程与一元一次方程组2. 数列与数列的极限- 数列的概念与性质:数列的定义、通项公式、前n项和等- 等差数列与等比数列:通项公式、求和公式以及应用- 数列极限:数列极限的定义、性质与判断- 数列极限的计算:夹逼定理、单调有界原理、无穷小量与无穷大量等3. 三角函数与立体几何- 三角函数的概念与性质:弧度制与角度制的相互转化、常用三角函数的值、周期性、性质与变换- 三角函数的图像与性质:正弦函数、余弦函数、正切函数等的图像、性质与应用- 三角函数的模型与问题:正弦定理、余弦定理、正切定理的应用 - 空间解析几何:平面与直线的方程、平面的交线、立体图形的体积与表面积4. 数量关系运算与应用题- 平方根与立方根:开方与求根式的运算与应用- 百分数、比例与利率:百分数的换算、比例的运算、利息的计算等- 图形的表示与运算:平面图形的表示、图形的相似性与全等性、图形的平移、旋转、翻转等- 实际问题的数学模型与求解:各种实际问题的数学建模与解题方法5. 概率与统计- 随机事件与概率:概率的定义与性质、基本事件、和事件的计算 - 组合与排列:排列与组合的定义与计算、二项式定理的应用- 统计与抽样:统计的概念与方法、抽样的方法与应用高考数学的所有单元知识点综合而成,涵盖了数学的各个方面。

对于考生来说,熟练掌握这些知识点,理解其概念与性质,并能够灵活运用于解题过程中,是取得高分的关键。

高考数学知识点全归纳

高考数学知识点全归纳

高考数学知识点全归纳
一、函数与方程
1.一次函数与二次函数的性质及应用
2.指数函数与对数函数的性质及应用
3.三角函数的性质及应用
4.常用函数及其图像
5.函数的定义与性质
6.方程与不等式的解法
7.方程与不等式的应用
二、数列与数学归纳法
1.数列的概念与性质
2.等差数列与等比数列的性质及应用
3.递推数列与通项公式
4.数学归纳法的原理与应用
三、平面几何
1.平面图形的性质与判定
2.平面图形的面积与周长
3.空间几何的基本概念与性质
4.空间几何的体积与表面积
5.空间几何的投影与旋转
四、立体几何
1.空间几何的基本概念与性质
2.空间几何的体积与表面积
3.空间几何的投影与旋转
4.立体几何的组合图形
5.立体几何的体积计算
五、概率与统计
1.概率的基本概念与性质
2.事件与概率的计算
3.概率的应用与问题解决
4.统计的基本概念与性质
5.统计的数据处理与分析
六、解析几何
1.平面直角坐标系与距离计算
2.点、线、平面的位置关系与性质
3.曲线的方程与性质
4.二次曲线的方程及性质
5.解析几何的应用与问题解决
七、数论与离散数学
1.整数与整数运算
2.素数与最大公约数、最小公倍数
3.同余与模运算
4.离散数学的基本概念与性质
5.离散数学的应用与问题解决
八、数学思维与证明
1.数学思维与问题解决方法
2.定理、引理、推论的证明方法
3.逻辑与证明的基本概念与性质
4.数学思想与发展历程。

高考数学132个知识点

高考数学132个知识点

高考数学132个知识点高考数学是每个高中学生所必须面对的考试科目,其重要性不言而喻。

在备考期间,学生们需要掌握一定数量的数学知识点。

现在,我将为大家列举132个高考数学知识点,帮助大家进行复习和准备。

一、基础知识1. 数的四则运算2. 整式的加减乘除运算3. 基本初等函数4. 二次根式5. 比例与比例的性质6. 直线的倾斜角和斜率7. 向量的运算8. 平面向量的坐标表示9. 向量的数量积和数量积的几何应用10. 矩形坐标系与直角坐标系11. 坐标变换12. 反比例函数13. 对数与指数运算14. 幂函数15. 三角函数及其图像二、函数与方程1. 函数的概念、性质及表示法2. 方程与不等式3. 一次函数、线性函数和解一元一次方程4. 二次函数5. 二次函数的图像和性质6. 二次函数的相关知识7. 幂函数、指数函数和对数函数8. 指数方程和对数方程9. 三角函数10. 三角函数图像与性质11. 三角函数的定义域、值域和周期12. 三角函数的和差化积及积化和差13. 三角函数的表示式及其变换三、几何与空间1. 几何的基本思想与基本性质2. 几何证明3. 平面与空间的直线和平面4. 线段的中点、垂直平分线和角平分线5. 角的概念和性质6. 多边形的性质7. 圆的性质与相关定理8. 圆锥曲线的一般性质9. 空间几何体的性质10. 向量的模、夹角、平行、垂直和共面11. 向量空间12. 线性相关与线性无关13. 矩阵的运算与性质14. 随机事件、随机变量与概率四、数据与统计1. 数据的收集和整理2. 数据的统计分析与表示3. 概率与统计的基本概念4. 随机事件与修正的概率5. 随机变量及其分布6. 随机变量的数学期望和方差7. 列联表的分析8. 抽样调查和统计推断这是132个高考数学知识点的概括,涵盖了高考数学的各个方面。

在备考期间,我们可以根据这些知识点进行有针对性的复习,巩固自己的数学基础。

通过大量的练习,充分理解和掌握这些知识点,我们就能够在高考中取得好成绩。

高考数学知识点全部汇编

高考数学知识点全部汇编

高考数学知识点全部汇编随着高中阶段的结束,高考也逐渐临近。

作为高中生最重要的考试之一,高考对于每个学生来说都至关重要。

而数学作为高考必考科目之一,更是让很多学生望而生畏。

为了帮助学生更好地备考数学科目,本文将对高考数学知识点进行全部汇编。

一、数与代数1. 整式的加法、减法和乘法2. 分式的概念与运算3. 方程与不等式的基本性质和解题方法4. 平方根与实数5. 等差数列和等比数列6. 指数与对数7. 几何与图形二、函数与方程1. 函数的概念、性质及表示方法2. 二次函数及其图像3. 一次函数与一次不等式4. 反函数与组合函数5. 导数与导数的应用6. 三角函数及其应用7. 概率与统计三、空间与几何1. 点、线、面及其关系2. 几何变换3. 向量的概念、运算及其应用4. 平面向量的坐标表示5. 圆与圆相关的性质6. 多面体的表面积与体积7. 空间直角坐标系与空间向量四、解析几何与线性代数1. 直线与平面的位置关系2. 点、直线、面的参数方程3. 矩阵与行列式4. 矩阵的运算与逆5. 向量空间及其基本性质6. 线性方程组的解法7. 特征值与特征向量8. 线性规划与线性规划问题五、概率与数理统计1. 随机事件与概率2. 基本概率公式及其应用3. 二项分布、泊松分布、正态分布等概率分布4. 样本与统计量5. 参数估计与假设检验6. 相关与回归分析总结:以上列举了高考数学的全部知识点,涵盖了整式、分式、方程、函数、几何、向量、矩阵、概率与数理统计等多个方面。

在备考过程中,学生可以根据自己的掌握情况,有针对性地进行复习和练习。

同时,需要注意的是,不仅要掌握知识点的定义和性质,还要能够应用到实际问题中,灵活运用解题方法。

除了理论知识的学习,高考数学还需要注重解题技巧和思维方法的培养,提高解题能力。

在备考过程中,合理规划时间,每天进行有效的学习与复习,做好笔记和总结,可以帮助学生更好地掌握高考数学知识点。

此外,要善于利用各种复习资料,例如历年高考真题、模拟试卷等,通过多做题目来提升解题能力和应试能力。

高考数学知识点归纳(完整版)

高考数学知识点归纳(完整版)

高考数学知识点归纳(完整版)高考数学知识点归纳第一,函数与导数主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。

是高考的重点和难点。

第五,概率和统计这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析主要是证明平行或垂直,求角和距离。

主要考察对定理的熟悉程度、运用程度。

第七,解析几何高考的难点,运算量大,一般含参数。

高考数学知识点高考数学必考知识点归纳必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解) 高考数学必考知识点归纳必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。

这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。

这部分知识高考占22---27分2、直线方程:高考时不单独命题,易和圆锥曲线结合命题3、圆方程高考数学必考知识点归纳必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。

高考数学必考知识点归纳必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。

2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。

09年理科占到5分,文科占到13分。

高考数学必考知识点归纳必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。

高考数学总知识点大全

高考数学总知识点大全

高考数学总知识点大全随着高考的临近,数学考试成为许多学生最为关注的科目之一。

为了帮助同学们更好地复习和备考,本篇文章将对高考数学的总知识点进行全面整理和总结。

希望能够帮助各位同学在高考中取得好成绩。

一. 初等数学基础知识1. 基本数学符号和术语2. 数的四则运算3. 分数与比例4. 代数式与运算5. 方程与不等式6. 图形与几何7. 平面向量二. 数与代数运算1. 实数的性质与运算2. 复数的性质与运算3. 向量的性质与运算4. 矩阵与行列式5. 指数与对数6. 三角函数与解三角形三. 空间与几何1. 空间几何基础知识2. 空间中的平面与直线3. 球面与球4. 空间向量与立体几何5. 解析几何四. 数据与概率统计1. 数据的收集与整理2. 描述统计3. 概率基本概念4. 随机变量及其分布5. 统计量的估计与检验五. 数学思维与解题方法1. 数学证明方法2. 数学建模与问题求解3. 数学推理与逻辑4. 数学思维与创新六. 综合应用与拓展1. 数学与实际问题的应用2. 数学的跨学科拓展3. 数学与科学、工程、经济的关系4. 数学与艺术、文化的互动以上就是高考数学的总知识点大全。

对于每个知识点,同学们需要了解其基本概念、性质和运算规则,并能够熟练运用于解题过程中。

在备考过程中,建议同学们多做真题和模拟题,提高解题的能力和应变能力。

此外,高考数学考试还注重同学们的解题思路和解题方法。

因此,同学们需要注重培养一种严密的数学思维和解题思路,善于转化问题、抽象问题、归纳问题和推理问题。

同时也要善于运用相关的数学工具和软件,以提高解题的效率和准确性。

最后,希望同学们能够通过合理的复习和备考,充分准备好高考数学考试,取得优异的成绩。

数学虽然有时让人感到困惑,但只要掌握了基本原理和解题方法,相信你们一定能够应对各种高考数学题目的挑战。

加油吧!。

高考数学必考知识点大全

高考数学必考知识点大全

高考数学必考知识点大全1.代数运算
-同底数幂的乘除法
-倍数关系与比例
-有理数的概念与运算法则
-一元一次方程的解法
-二次函数的三种表示形式
2.平面几何
-圆的基本概念与性质
-圆心角、弧度制与弧长的关系
-相似三角形的性质和判定方法
-平行线的性质和判定方法
-三角形的基本性质与判定方法
3.立体几何
-正方体、长方体、棱柱、棱锥、棱台的计算公式-圆锥的体积、曲面积的计算公式
-球的表面积、体积的计算公式
-空间向量的运算法则
-平面与立体图形的位置关系
4.概率论与数理统计
-随机事件的概念与性质
-事件的关系与运算法则
-事件的概率计算方法
-抽样调查与统计分析的基本方法-随机变量与概率分布的概念与性质5.函数与导数
-函数的概念与性质
-函数的求值与运算法则
-一元函数的最大值与最小值问题-导数的概念与基本性质
-导数的计算方法和应用
6.数列与数学归纳法
-等差数列与等比数列的概念与性质-数列的通项公式与前n项和公式-数列极限的概念与性质
-递推数列与其计算公式
-数学归纳法的基本原理和应用
7.三角函数与解三角形
-三角函数的基本性质与计算方法
-三角函数的图像与性质
-三角函数的运算法则
-解三角形的基本原理和方法
-解三角形的应用问题和求解技巧
8.数与图的关系
-数据的收集和整理方法
-数据的分析和解释方法
-数据的图表表示与分析
-数据统计和概率的计算方法
-利用图表解决实际问题的技巧与方法。

高考数学一百个知识点

高考数学一百个知识点

高考数学一百个知识点数学,作为一门重要的学科,常常是许多学生的噩梦之一。

然而,在高考中,数学却扮演着至关重要的角色。

为了帮助考生更好地备考高考数学,本文将介绍一百个高考数学的知识点,涵盖了高三数学全年的内容。

希望这些知识点能够帮助考生加深对数学知识的理解,提高应试能力。

一、代数知识点1. 二次函数的概念及性质2. 一元二次方程的解法3. 利用配方法进行因式分解4. 绝对值不等式的求解方法5. 对数函数的定义及性质6. 三角函数的定义、基本关系式和性质7. 复数的定义、运算法则及应用8. 二项式定理及其应用9. 等比数列的定义、通项公式及其求和公式二、数论知识点10. 整数的概念及性质11. 常用的整数性质12. 最大公因数与最小公倍数的求法三、平面几何知识点13. 平面几何基本概念14. 直线与平面的交点及其相关性质15. 圆的基本性质和圆心角的性质16. 弦与切线的关系及性质17. 相似三角形的判定与性质18. 各种三角形的面积和海伦公式的应用19. 平行线与平行四边形的性质20. 三角形周长与面积的计算21. 三角函数在平面几何中的应用四、空间几何知识点22. 空间几何基本概念23. 线面垂直交角的判定24. 点、线、面的投影及性质25. 线面垂直于平行线的判定26. 空间向量的定义、运算及应用27. 球的基本性质及切线的性质28. 空间几何等距映射的性质五、概率与统计知识点29. 随机事件及其概率的计算30. 概率的加法定理与乘法定理31. 排列与组合的计算32. 正态分布的概念及其性质33. 统计图表的读取与分析34. 两个随机变量的线性相关性及其相关系数六、立体几何知识点35. 二面角的定义及性质36. 柱、锥、球的表面积和体积的计算37. 空间图形的投影与截面38. 球台与球切线的性质39. 空间几何折叠七、导数知识点40. 导数的定义、运算法则及分段函数的导数41. 导数的几何意义及其应用42. 高阶导数的计算43. 求极值的方法及其应用44. 泰勒公式的应用八、积分知识点45. 积分的定义及其性质46. 定积分的计算方法47. 反常积分的概念及其计算方法48. 曲线的弧长与曲线下面积49. 平面图形的重心与质心九、数列与函数知识点50. 数列的概念及其分类51. 数列的极限的计算方法52. 数列极限的性质及其应用53. 函数的概念及分类54. 函数的极限的定义与计算方法55. 函数极限的性质与无穷小56. 函数极限的插值与夹逼定理57. 函数的连续性与间断点的判定58. 函数的单调性及其应用59. 函数的导数与求导法则60. 函数的导数与函数图象的几何关系61. 函数的微分与泰勒公式的推广62. 函数的最值与最值判定的方法63. 函数的周期性与对称性十、立体几何知识点64. 空间几何的基本概念及性质65. 程量可构性的判定与证明66. 凸体的概念及其特征67. 三视图、一视图与前、后投影的关系68. 空间向量与叉积的运算及其在几何中的应用69. 空间平面与空间直线的相交关系70. 球的截面与球冠体的体积的计算71. 空间旋转体的性质与体积的计算十一、数形结合知识点72. 根据问题进行几何图形的构造73. 利用等量变换思想解决实际问题74. 利用正态分布解决问题75. 几何图形的坐标表示与计算76. 利用向量图形解决问题77. 利用平面向量解决平面几何问题78. 运用计算器解决问题79. 利用几何关系解决问题80. 利用概率计算问题81. 运用分类讨论方法解决问题82. 利用导数解析几何问题十二、统计与概率知识点83. 随机事件与概率计算84. 事件间的关系及其组合计算85. 概率的计算规则86. 排列与组合的计算87. 离散型随机变量的分布律计算88. 二项分布、几何分布、泊松分布的计算十三、解析几何知识点89. 平面直角坐标系与极坐标系90. 点、线、面的方程及其相互关系91. 几何图形的变换及其性质92. 直线、圆与曲线的解析性质93. 平面与空间的距离计算94. 向量的概念及其运算规则95. 平面方程的应用96. 二次曲线方程的应用十四、数学推理与证明知识点97. 数列的递推关系的确定与证明98. 几何问题的证明与推理99. 联立方程的解法与证明100. 数论问题的证明与推理以上这些知识点是高考数学中的常见考点,希望考生能够结合实际情况,有针对性地进行复习和巩固。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学全套知识点(通用版)1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。

∅ 注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

{}{}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ⊂(答:,,)-⎧⎨⎩⎫⎬⎭10133. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n(3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B ==,4. 你会用补集思想解决问题吗?(排除法、间接法)的取值范围。

5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().⌝若为真,当且仅当、均为真∧p q p q∨若为真,当且仅当、至少有一个为真p q p q⌝p p若为真,当且仅当为假6. 命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。

)原命题与逆否命题同真、同假;逆命题与否命题同真同假。

7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B中有元素无原象)8. 函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)9. 求函数的定义域有哪些常见类型?10. 如何求复合函数的定义域?[]>->=+-())()()0义域是如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x_。

[]-(答:,)a a11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?12. 反函数存在的条件是什么?(一一对应函数) 求反函数的步骤掌握了吗?(①反解x ;②互换x 、y ;③注明定义域) ()()如:求函数的反函数f x xx xx ()=+≥-<⎧⎨⎪⎩⎪1002()()(答:)f x x x x x -=->--<⎧⎨⎪⎩⎪1110() 13. 反函数的性质有哪些?①互为反函数的图象关于直线y =x 对称; ②保存了原来函数的单调性、奇函数性;14. 如何用定义证明函数的单调性? (取值、作差、判正负) 如何判断复合函数的单调性?∴……)15. 如何利用导数判断函数的单调性?()在区间,内,若总有则为增函数。

(在个别点上导数等于a b f x f x '()()≥0零,不影响函数的单调性),反之也对,若呢?f x '()≤0值是( ) A. 0B. 1C. 2D. 3由已知在,上为增函数,则,即f x aa ()[)1313+∞≤≤ ∴a 的最大值为3)16. 函数f (x )具有奇偶性的必要(非充分)条件是什么? (f(x)定义域关于原点对称)若总成立为奇函数函数图象关于原点对称f x f x f x ()()()-=-⇔⇔ 若总成立为偶函数函数图象关于轴对称f x f x f x y ()()()-=⇔⇔ 注意如下结论:(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。

17. 你熟悉周期函数的定义吗?函数,T是一个周期。

)如:18. 你掌握常用的图象变换了吗? f x f x y ()()与的图象关于轴对称- f x f x x ()()与的图象关于轴对称- f x f x ()()与的图象关于原点对称-- f x f x y x ()()与的图象关于直线对称-=1 f x f a x x a ()()与的图象关于直线对称2-= f x f a x a ()()()与的图象关于点,对称--20将图象左移个单位右移个单位y f x a a a a y f x a y f x a =>−→−−−−−−−−>=+=-()()()()()00 上移个单位下移个单位b b b b y f x a b y f x a b()()()()>−→−−−−−−−−>=++=+-00 注意如下“翻折”变换:y=log 2x19. 你熟练掌握常用函数的图象和性质了吗?()()一次函数:10y kx b k =+≠()()()反比例函数:推广为是中心,200y k x k y b k x ak O a b =≠=+-≠'()的双曲线。

()()二次函数图象为抛物线30244222y ax bx c a a x b a ac b a=++≠=+⎛⎝ ⎫⎭⎪+-应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程②求闭区间[m ,n ]上的最值。

③求区间定(动),对称轴动(定)的最值问题。

④一元二次方程根的分布问题。

如:二次方程的两根都大于ax bx c k b a k f k 20020++=⇔≥->>⎧⎨⎪⎪⎩⎪⎪∆()由图象记性质! (注意底数的限定!)()()“对勾函数”60y x k xk =+>利用它的单调性求最值与利用均值不等式求最值的区别是什么?20. 你在基本运算上常出现错误吗?log log log log log a a a a n a M N M N M nM =-=,121. 如何解抽象函数问题? (赋值法、结构变换法)(),满足,证明是偶函数。

2x R f x f xy f x f y f x ∈=+()()()()()22. 掌握求函数值域的常用方法了吗?(二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。

)如求下列函数的最值:23. 你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗?24. 熟记三角函数的定义,单位圆中三角函数线的定义又如:求函数的定义域和值域。

y x =--⎛⎝ ⎫⎭⎪122cos π (∵)122120--⎛⎝ ⎫⎭⎪=-≥cos sin πx x∴,如图:sin x ≤2225. 你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗?()y x k k k Z =-+⎡⎣⎢⎤⎦⎥∈sin 的增区间为,2222ππππ ()减区间为,22232k k k Z ππππ++⎡⎣⎢⎤⎦⎥∈()()图象的对称点为,,对称轴为k x k k Z πππ02=+∈ []()y x k k k Z =+∈cos 的增区间为,22πππ []()减区间为,222k k k Z ππππ++∈()图象的对称点为,,对称轴为k x k k Z πππ+⎛⎝ ⎫⎭⎪=∈20 y x k k k Z =-+⎛⎝ ⎫⎭⎪∈tan 的增区间为,ππππ22()()[]26. y =Asin x +正弦型函数的图象和性质要熟记。

或ωϕωϕy A x =+cos ()振幅,周期12||||A T =πω ()若,则为对称轴。

f x A x x 00=±=()()若,则,为对称点,反之也对。

f x x 0000=()五点作图:令依次为,,,,,求出与,依点202322ωϕππππx x y +(x ,y )作图象。

()根据图象求解析式。

(求、、值)3A ωϕ解条件组求、值ωϕ()∆正切型函数,y A x T =+=tan ||ωϕπω 27. 在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。

28. 在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗?29. 熟练掌握三角函数图象变换了吗? (平移变换、伸缩变换) 平移公式:()点(,),平移至(,),则1P x y a h k P x y x x h y y k→=−→−−−−−=+=+⎧⎨⎩()''''' ()曲线,沿向量,平移后的方程为,200f x y a h k f x h y k ()()()==--=→如:函数的图象经过怎样的变换才能得到的y x y x =-⎛⎝ ⎫⎭⎪-=2241sin sin π图象?30. 熟练掌握同角三角函数关系和诱导公式了吗?“·”化为的三角函数——“奇变,偶不变,符号看象限”,k παα2±“奇”、“偶”指k 取奇、偶数。

()如:cos tan sin 947621πππ+-⎛⎝ ⎫⎭⎪+=又如:函数,则的值为y y =++sin tan cos cot ααααA. 正值或负值B. 负值C. 非负值D. 正值31. 熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗? 理解公式之间的联系:应用以上公式对三角函数式化简。

(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。

) 具体方法:()()角的变换:如, (1222)βαβααβαβαβ=+-+=-⎛⎝ ⎫⎭⎪--⎛⎝ ⎫⎭⎪(2)名的变换:化弦或化切 (3)次数的变换:升、降幂公式(4)形的变换:统一函数形式,注意运用代数运算。

()()如:已知,,求的值。

sin cos cos tan tan ααααββα121232-=-=--(由已知得:,∴sin cos sin cos sin tan αααααα221122===()()[]()()∴··)tan tan tan tan tan tan βαβααβααβαα-=--=--+-=-+=212312123121832. 正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形?(应用:已知两边一夹角求第三边;已知三边求角。

)正弦定理:a A b B c C R a R A b R B c R Csin sin sin sin sin sin ===⇔===⎧⎨⎪⎩⎪2222()求角;1C()(()由已知式得:112112-++-=cos cos A B C()由正弦定理及得:212222a b c =+33. 用反三角函数表示角时要注意角的范围。

[]反正弦:,,,arcsin x x ∈-⎡⎣⎢⎤⎦⎥∈-ππ2211[][]反余弦:,,,arccosx x ∈∈-011π ()反正切:,,arctan x x R ∈-⎛⎝ ⎫⎭⎪∈ππ22 34. 不等式的性质有哪些?答案:C35. 利用均值不等式:()a b ab a b R a b ab ab a b 222222+≥∈+≥≤+⎛⎝ ⎫⎭⎪+,;;求最值时,你是否注 意到“,”且“等号成立”时的条件,积或和其中之一为定a b R ab a b ∈++()()值?(一正、二定、三相等) 注意如下结论:当且仅当时等号成立。

相关文档
最新文档