例1、已知,△ABC 中,AB=17cm ,BC=16cm ,BC 边上的中线AD=15cm ,试说明△ABC 是等腰三角形。
变式:已知△ABC 的三边a 、b 、c ,且a+b=17,ab=60,c=13, △ABC 是否是直角三角形?你能说明理由吗?
关于旋转中的勾股定理的运用:
例2、如图,△ABC 是直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△AC P ′重合,若AP=3,求PP ′的长。
变式1:如图,P 是等边三角形ABC 内一点,
PA=2,PB=求△ABC 的边长.
分析:利用旋转变换,将△BPA 绕点B 逆时针选择60°,将三条线段集中到同一个三角形中,根据它们的数量关系,由勾股定理可知这是一个直角三角形.
P A
P
C
B
变式2、如图,△ABC为等腰直角三角形,∠BAC=90°,E、F是BC上的点,且∠EAF=45°,试探究222
、、间的关系,并说明理由.
BE CF EF
关于翻折问题
例3、如图,矩形纸片ABCD的边AB=10cm,BC=6cm,E为BC上一点,将矩形纸片沿AE折叠,点
B恰好落在CD边上的点G处,求BE的长.
变式:如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿直线AD翻折,点C落在点C’的位置,
BC=4,求BC’的长.
关于勾股定理在实际中的应用:
例4、如图,公路MN和公路PQ在P点处交汇,点A处有一所中学,AP=160米,点A到公路MN的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?
关于最短性问题
例5、如右图1-19,壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A 处,它发现在自己的正上方油罐上边缘的B 处有一只害虫,便决定捕捉这只害虫,为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行突然袭击.结果,壁虎的偷袭得到成功,获得了一顿美餐.请问壁虎至少要爬行多少路程才能捕到害虫?(π取3.14,结果保留1位小数,可以用计算器计算)
变式:如图为一棱长为3cm 的正方体,把所有面都分为9个小正方形,其边长都是1cm ,假设一只蚂蚁每秒爬行2cm ,则它从下地面A 点沿表面爬行至右侧面的B 点,最少要花几秒钟?
关于勾股定理的相关证明
例6、如图在凸四边形ABCD 中,∠ABC=30°, ∠ADC=60°,求证:BD 2=AB 2+BC 2.
变式、如图,在△ABC 中,AB=AC,P 为BC 上任意一点,求证:2
2
AB AP PB PC -=⋅
分析:考虑构造直角三角形,能利用勾股定理.
例7、如图,∠xoy=60°,M 是∠xoy 内的一点,它到ox 的距离MA 为2。它到oy 的距离为11。求OM 的长。
B
C
D
A
三、课后训练: 一、填空题
1.如图(1),在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需________米.
图(1)
2.种盛饮料的圆柱形杯(如图),测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做 ㎝。 3.已知:如图,△ABC 中,∠C = 90°,点O 为△ABC 的三条角平分线的交点,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,点D 、E 、F 分别是垂足,且BC = 8cm ,CA = 6cm ,则点O 到三边AB ,AC 和BC 的距离分别等于 cm
4.在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处。另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高_____________________米。
5.如图是一个三级台阶,它的每一级的长宽和高分别为20dm 、3dm 、
2dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B
点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是_____________. 二、选择题 1.已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) A 、25 B 、14 C 、7 D 、7或25 2.Rt △一直角边的长为11,另两边为自然数,则Rt △的周长为( ) A 、121 B 、120 C 、132 D 、不能确定
3.如果Rt △两直角边的比为5∶12,则斜边上的高与斜边的比为( ) A 、60∶13 B 、5∶12 C 、12∶13 D 、60∶169
4.已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( )
A 、24cm 2
B 、36cm 2
C 、48cm 2
D 、60cm 2
5.等腰三角形底边上的高为8,周长为32,则三角形的面积为( ) A 、56 B 、48 C 、40 D 、32
6.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米
售价a 元,则购买这种草皮至少需要( )
A 、450a 元
B 、225a 元
C 、150a 元
D 、300a 元
7.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )
A 、6cm 2
B 、8cm 2
C 、10cm 2
D 、12cm 2
8.在△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为 A .42 B .32 C .42或32 D .37或33 9. 如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是 ( )
(A )直角三角形 (B)锐角三角形 (C)钝角三角形 (D)以上答案都不对
C
O
A
B
D
E
F
第3题图
A
第4题图
2032
A
B 150°
20m 30m
第6题图
第7题图
A B
C