初二上数学----勾股定理 试题提高

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二上数学练习(二)----勾股定理

一、 知识点回顾:

1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2+b 2=c 2)

勾股定理的逆定理:如果三角形的三边长:a 、b 、c 有关系a 2+b 2=c 2,那么这个三角形是直角三角形。 勾股定理与勾股定理逆定理的区别与联系

区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理

联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关 2、双垂直图形的线段等积式 。

3、常见的勾股数 , , , 。

4、解决有关图形折叠的计算问题常见的方法是 。

5、解决立体图形的最短路线问题是分析观察找切开点和切开线,确定展开方向,平铺展开。 6.如果用勾股定理的逆定理判定一个三角形是否是直角三角形 (1)首先确定最大边;

(2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形。(若c 2>a 2+b 2则△ABC 是以∠C 为钝角的三角形,若c 2

例1、已知,△ABC 中,AB=17cm ,BC=16cm ,BC 边上的中线AD=15cm ,试说明△ABC 是等腰三角形。

变式:已知△ABC 的三边a 、b 、c ,且a+b=17,ab=60,c=13, △ABC 是否是直角三角形?你能说明理由吗?

关于旋转中的勾股定理的运用:

例2、如图,△ABC 是直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△AC P ′重合,若AP=3,求PP ′的长。

变式1:如图,P 是等边三角形ABC 内一点,

PA=2,PB=求△ABC 的边长.

分析:利用旋转变换,将△BPA 绕点B 逆时针选择60°,将三条线段集中到同一个三角形中,根据它们的数量关系,由勾股定理可知这是一个直角三角形.

P A

P

C

B

变式2、如图,△ABC为等腰直角三角形,∠BAC=90°,E、F是BC上的点,且∠EAF=45°,试探究222

、、间的关系,并说明理由.

BE CF EF

关于翻折问题

例3、如图,矩形纸片ABCD的边AB=10cm,BC=6cm,E为BC上一点,将矩形纸片沿AE折叠,点

B恰好落在CD边上的点G处,求BE的长.

变式:如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿直线AD翻折,点C落在点C’的位置,

BC=4,求BC’的长.

关于勾股定理在实际中的应用:

例4、如图,公路MN和公路PQ在P点处交汇,点A处有一所中学,AP=160米,点A到公路MN的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?

关于最短性问题

例5、如右图1-19,壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A 处,它发现在自己的正上方油罐上边缘的B 处有一只害虫,便决定捕捉这只害虫,为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行突然袭击.结果,壁虎的偷袭得到成功,获得了一顿美餐.请问壁虎至少要爬行多少路程才能捕到害虫?(π取3.14,结果保留1位小数,可以用计算器计算)

变式:如图为一棱长为3cm 的正方体,把所有面都分为9个小正方形,其边长都是1cm ,假设一只蚂蚁每秒爬行2cm ,则它从下地面A 点沿表面爬行至右侧面的B 点,最少要花几秒钟?

关于勾股定理的相关证明

例6、如图在凸四边形ABCD 中,∠ABC=30°, ∠ADC=60°,求证:BD 2=AB 2+BC 2.

变式、如图,在△ABC 中,AB=AC,P 为BC 上任意一点,求证:2

2

AB AP PB PC -=⋅

分析:考虑构造直角三角形,能利用勾股定理.

例7、如图,∠xoy=60°,M 是∠xoy 内的一点,它到ox 的距离MA 为2。它到oy 的距离为11。求OM 的长。

B

C

D

A

三、课后训练: 一、填空题

1.如图(1),在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需________米.

图(1)

2.种盛饮料的圆柱形杯(如图),测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做 ㎝。 3.已知:如图,△ABC 中,∠C = 90°,点O 为△ABC 的三条角平分线的交点,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,点D 、E 、F 分别是垂足,且BC = 8cm ,CA = 6cm ,则点O 到三边AB ,AC 和BC 的距离分别等于 cm

4.在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处。另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高_____________________米。

5.如图是一个三级台阶,它的每一级的长宽和高分别为20dm 、3dm 、

2dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B

点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是_____________. 二、选择题 1.已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) A 、25 B 、14 C 、7 D 、7或25 2.Rt △一直角边的长为11,另两边为自然数,则Rt △的周长为( ) A 、121 B 、120 C 、132 D 、不能确定

3.如果Rt △两直角边的比为5∶12,则斜边上的高与斜边的比为( ) A 、60∶13 B 、5∶12 C 、12∶13 D 、60∶169

4.已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( )

A 、24cm 2

B 、36cm 2

C 、48cm 2

D 、60cm 2

5.等腰三角形底边上的高为8,周长为32,则三角形的面积为( ) A 、56 B 、48 C 、40 D 、32

6.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米

售价a 元,则购买这种草皮至少需要( )

A 、450a 元

B 、225a 元

C 、150a 元

D 、300a 元

7.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )

A 、6cm 2

B 、8cm 2

C 、10cm 2

D 、12cm 2

8.在△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为 A .42 B .32 C .42或32 D .37或33 9. 如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是 ( )

(A )直角三角形 (B)锐角三角形 (C)钝角三角形 (D)以上答案都不对

C

O

A

B

D

E

F

第3题图

A

第4题图

2032

A

B 150°

20m 30m

第6题图

第7题图

A B

C

相关文档
最新文档