数列求和讲义解析
数列求和各种方法总结归纳课件PPT
[冲关锦囊]
用错位相减法求和时,应注意 (1)要善于识别题目类型,特别是等比数列公比为负数
的情形; (2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“
错项对齐”以便下一步准确写出“Sn-qSn”的表达式.
[精析考题] [例3] (2011·全国新课标卷)等比数列{an}的各项均为正数,且2a1+ 3a2=1,a32=9a2a6. (1)求数列{an}的通项公式; (2)设bn=log3a1+log3a2+…+log3an,求数列{b1n}的前n项和.
(1)an=kn+b,利用等差数列前n项和公式直接求解;
所以,当n>1时,①-②得 用错位相减法求和时,应注意
①转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成.
①转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成.
数列求和各种方法总结归纳
二、非等差、等比数列求和的常用方法 1.倒序相加法
如果一个数列{an},首末两端等“距离”的两项的和相等 或等于同一常数,那么求这个数列的前n项和即可用倒 序相加法,如等差数列的前n项和即是用此法推导的.
2.分组求和法 若一个数列的通项公式是由若干个等差数列或等比数列 或可求和的数列组成,则求和时可用分组转化法,分别 求和而后相加减.
∴bn+1+1=2bn+2=2(bn+1).
∴((11b))要a1n=善=0于k,n识b+1别b+,题1利=目用1类≠等0型.差n1,数-特列别n前是+n1等项比1和数公列=式公直-比接为求n负解2+数n;1.
所以数列{b1n}的前n项和为-n2+n1.
[巧练模拟]—————(课堂突破保分题,分分必保!)
第讲数列的求和精选课件
【互动探究】 1.(2019 年陕西)已知{an}是公差不为零的等差数列,a1=1,
且 a1,a3,a9 成等比数列. (1)求数列{an}的通项公式; (2)求数列{2 a n}的前 n 项和 Sn.
4.数列 112,214,318,…,n+21n,…的前 n 项和 Sn=______ __12_n_(n_+__1_)_+__1_-__21_n___.
5.数列{an}的通项公式 an=
1 n+
n+1,若前
n
项的和为
10,
则项数 n=___1_2_0___.
考点1 利用公式或分组法求和
例1:(2011 年重庆)设{an}是公比为正数的等比数列,a1=2, a3=a2+4.
数列求和常用的方法
1.公式法 (1)等差数列{an}的前
n
项和公式:Sn=nnaa1+ 12+nann2-,1d.
(2)等比数列{an}的前n项和Sn:①当q=1时,Sn=__n_a_1_;
a11-qn
a1-anq
②当 q≠1 时,Sn=____1_-__q___=____1_-__q__.
2.分组求和法 把一个数列分成几个可以直接求和的数列. 3.错位相减法 适用于一个等差数列和等比数列对应项相乘构成的数列求 和. 4.裂项相消法 有时把一个数列的通项公式分成两项差的形式,相加过程消 去中间项,只剩有限项再求和.
解析:(1)P1(-1,0),an=n-2,bn=2n-2. (2)f(n)=n2- n-2, 2,n为 n为奇偶数数,. 假设存在符合条件. ①若 k 为偶数,则 k+5 为奇数. 有 f(k+5)=k+3,f(k)=2k-2. 如果 f(k+5)=2f(k)-2,则 k+3=4k-6⇒k=3 与 k 为偶数矛 盾.故不符(舍去). ②若 k 为奇数,则 k+5 为偶数, 有 f(k+5)=2k+8,f(k)=k-2. ∴2k+8=2(k-2)-2 这样的 k 也不存在. 综上所述:不存在符合条件的 k.
高一数列求和的7类题型和15种方法讲义
高一数列求和的7类题型和15种方法讲义数列求和是高中数学中比较重要的一章,其中有七种基本类型的题目,涉及到15种不同的解法。
一、基本概念- 数列:按照一定规律排列的一些数的集合。
- 通项公式:数列中第 $n$ 项和 $n$ 的公式,通常表示为$a_n$。
- 前 $n$ 项和:数列的前 $n$ 项之和,表示为 $S_n$。
二、七类题型1. 等差数列求和- 当公差为常数时使用求和公式:$S_n=\dfrac{(a_1+a_n)\cdot n}{2}$。
- 当公差为 $1$ 时,可以使用去端项的方法简化计算。
2. 等比数列求和- 当公比不为 $1$ 时使用求和公式:$S_n=\dfrac{a_1(1-q^n)}{1-q}$。
- 当公比为 $1$ 时,可以使用 $\mathrm{ln}$ 函数推导出求和公式。
3. 含有等差或等比数列的求和- 先化简为单独的等差数列或等比数列,再使用对应的求和公式。
- 如果难以化简,可以采用分段求和的方法,即按照数列的等差或等比段分段求和,最后相加。
4. 转化为数列求和- 将题目中的问题转化为数列求和的形式,即可以使用已知的求和公式来解决。
5. 凑整法- 将数列的相邻项相加,凑出一个整数,再使用等差或等比数列求和的方法求解。
6. 差分法- 求出相邻项之差的数列后,可以将原数列转化为等差数列或等比数列求和的形式。
7. 数学归纳法- 设定初始值成立,然后证明递推公式成立,最后得出结论。
- 通常适用于复杂问题的证明。
三、15种解法- 求和公式法- 套公式法- 化简求和法- 凑整法- 差分求和法- 分段求和法- 变项积分法- 叠加法- 逆向思维法- 归纳证明法- 凑数法- 分离求和法- 同除法- 矩阵幂法- 洛必达法数列求和问题也是高考的热门考点之一,要多多练习,熟能生巧。
等差数列求和公式讲义PPT课件一等奖新名师优质课获奖比赛公开课
2Sn n(a1 an )
Sn
n(a1 2
an )
an a1 (n 1)d
Sn
na1
n(n 1) 2
d
观察公式旳形式,回忆我们所学过旳知识,你 是否发觉了什么?它旳形式是不是跟我们学过 旳梯形面积公式相同?
学以致用
例1: 2023年11月14日教育部下发了《有关小学 “校校通”工程旳告知.某市据此提出了实施 “校校通”工程旳总目旳:从2023年起用23年旳 时间,在全市中小学建成不同原则旳校园网. 据测算,2023年该市用于“校校通”工程旳经费 为500万元. 为了确保工程旳顺利实施,计划 每年投入旳资金都比上一年增长50万元. 那么 从2023年起旳将来23年内,该市在“校校通”工 程旳总投入是多少?
+)sn = n +( n-1 )+(n-2)+… + 2 + 1
∴2 sn =(n+ 1)+ (n+ 1) +…+(n+ 1)
=n(n+1)
—— 倒序相加法
1 2 3 (n 1) n n (n 1) 2
思索:这种措施能否推广到求一般等
差数列前n项求和呢?
探究发觉
倒序相加法
如何求等差数列an的前n项和Sn ?
总结:实际问题,建立数学模型,利用数学旳观点 处理问题,然后再回归问题实际
解:根据题意,从2001-2023年,该市每年投入“校校通” 工程旳经费都比上一年增长50万元,所以,能够建立一种等 差数列{ an },表达从2023年起各年投入旳资金,其中,
a1 =500,d=50 那么,到2023年(n=10),投入旳资金总额为
泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建,她 宏伟壮观,纯白大理石砌建而成旳主体建筑叫人心醉神迷,成为世界七大奇迹之一。陵 寝以宝石镶饰,图案之细致令人叫绝。传说陵寝中有一种三角形图案,以相同大小旳圆 宝石镶饰而成,共有100层(见上图),奢靡之程度,可见一斑。你懂得这个图案一共花 费了多少宝石吗?
第20讲 数列的求和PPT课件
【典例分析】
【典例分析】
考点五 分组求和
有时,可将原数列分解成若干个可用公式法求和的新数列进行分 别求解.
【典例分析】
【典例分析】
考点一 公式法
【典例分析】
【典例分析】
考点二 裂项相消法 将数列的每一项分解成两项的差,逐一累加相消.
【典例分析】
【典例分析】
【典例分析】
考点三 错位相减法
【典例分析】【典例分析】来自【典例分析】考点四 倒序相加法
如等差数列前n项和公式的推导就是使用的该法,有时关于组合 数的求和问题,也常用倒序相加法.
第一部分 基础知识串讲
4.2 数列的求和
数列的求和问题是高中数学中的一个非常重要的知识点,也是各大高校 自主招生试题中经常涉及的内容.由于数列的形式多种多样、种类繁多, 除一般外表形式较为简单的实数数列以外,还有三角函数数列、反三角 函数数列、组合数列、复数数列等.因此,其求和方法也是灵活多样、纷 繁多变的.本节我们介绍几种数列求和的基本方法.
2024年高三培优讲义28---数列求和技巧进阶篇:并项简化计算,裂项求和进阶,奇偶项数列的处理
专题4-8 数列求和技巧进阶篇题型一:(1)已知142n n a a n −+=−,14a =求n S(2)已知12nn n a a −+=,11a =求n S题型二:(1)()252nn a n =−⨯,求n S .(待定系数法)(2)1111(1)(11)nn n n n n n n n a a b a a a a +++⎛⎫+ ⎪−+⎝=−⎭=(3)122(1)21111(1)2(1)2122(1)2−++−⎛⎫==−⋅=− ⎪+⋅+⋅+⋅+⋅⎝⎭n n n n nn n n n n n n n n n n (4)[]1(1)(1)(2)(1)(1)3n n n n n n n n +=++−−+,21n a n =−,1n n n b a a +=(5)222244111111414122121n n n c n n n n −+⎛⎫===+−⎪−−−+⎝⎭题型三:(1)2(1)n nn a =−,求数列{}n a 的前n 项和.(2)(21)(1)nn a n =−−,求数列{}n a 的前n 项和(3),2n n n a n b ==,求数列{}(1)n n n a b −的前n 项和题型四:已知数列()()21,2,n n n n a n ⎧+⎪=⎨⎪⎩为奇数为偶数 (1)求数列{}n a 的前20项和20T (2)求数列{}n a 的前2n 项和2n T . (3)求数列{}n a 的前21n −项和21n T −. (4)求数列{}n a 的前n 项和n T题型一 并项求和简化计算一般来说,并项求和的计算量比分组求和要小 1.已知21n a n =−,若2πcos 3n n n b a =,求数列{}n b 的前31n +项和31n T +.2.(2023秋·湖南长郡中学校考)已知n S 是数列{}n a 的前n 项和,1232,3,4a a a ===,数列{}12n n n a a a ++++是公差为1的等差数列,则40S = .重点题型·归类精讲3.记n S ,为数列{}n a 的前n 项和,已知142n n a a n −+=−,14a =求n S .4.已知数列{}n a 的前n 项和为1,(1)21nn n n S a a n ++−=−,则8S = .5.已知{}n a 的前n 项和为n S ,()()1221n n n n a a n +++−=,50600S =,则12a a += .6.已知21n a n =−,记()1nn n b S =−,求数列{}n b 的前30项的和30T .7.已知12n n a +=,设()21log nn n b a =−,数列{}n b 的前n 项和为n T ,求满足20k T =的k 的值.8.已知13n n a =−,若()22π1cos 3n n n b a =+,求数列{}n b 的前18项和18T .9.已知212n n a −=,设11b =,1,,n n n a n b b n n +⎧=⎨−+⎩为奇数为偶数,求数列{}n b 的前2n 项和2n S .题型二 裂项求和差比数列的其它处理方式(待定系数法)10.()252nn a n =−⨯,求n S .11.22n n a n =⨯,求n S .12.()2414133nn a n n =++⨯,求n S .【裂项相加】:(-1)n例:()()()21111111nn n n n n n +⎛⎫−⋅=−+ ⎪++⎝⎭,本类模型典型标志在通项中含有(1)n −乘以一个分式. 对于11(1)nn n n n n a a b a a ++=−+可以裂项为1111(1)(11)n n n n n n n n n a a b a a a a +++⎛⎫+ ⎪−+⎝=−⎭=13.若21n a n =−,数列{}n b 满足11(1)n n n n nb a a ++−=,{}n b 的前n 项和为n T ,求n T14.已知数列{}n a 满足31nn a =−,若()()()()22231321265log 1log 1nn n n n n b a a ++−⋅++=+⋅+,求数列{}n b 的前n 项和nT .15.已知21n b n =−,设()()121(1),11nn n n n n c T b b ++=−++为数列{}n c 的前n 项和,证明:216n T ≤−.16.已知21nn a =−,求111222(1)n n n n n a a +++⎧⎫⎛⎫+−⎪⎪−⋅⎨⎬ ⎪⎪⎪⎝⎭⎩⎭的前n 项和n T .17.已知()()612n a n n =++,若()()231nn n b n a =+−,求{}n b 的前n 项和n T .【等差数列相邻2两项之积构成的的新数列】例如:[]1(1)(1)(2)(1)(1)3n n n n n n n n +=++−−+ 一般式,当公差为k 时:[]1()()(2)()()3kn kn k kn kn k kn k kn k kn kn k k⋅+=⋅+⋅+−−⋅⋅+ 18.已知21n a n =−,1n n n b a a +=,求数列{n b }的前n 项和n T19.已知21n a n =−,()11nn n n b a a +=−,求数列{n b }的前n 项和n T .一次乘指数型:分母为一次函数和指数函数相乘例子:122(1)21111(1)2(1)2122(1)2−++−⎛⎫==−⋅=− ⎪+⋅+⋅+⋅+⋅⎝⎭n n n n nn n n n n n n n n n n 一般结构()()()()()11111n n na kn a kn ab b a kn b k n b a k k n b a b =−−⎡⎤⎡⎤−++++⎣⎦−++⎣−⎦20.已知3n n b =,若()()*24141n n n b c n n +=∈−N ,求数列{}n c 的前n 项和21.已知12nn a +=,记22(1)n n n a b n n++=+,n T 为数列{}n b 的前n 项和,求n T .22.已知2222n n n n b ++=,求证:()()3112..212233411n n b b b b b n n n n −+++⋯++<⨯⨯⨯−⨯⨯+.23.已知n a n =,设14122n n n a n n n a b a a a ++++=⋅⋅⋅,证明:1214nb b b ++⋅⋅⋅+<.对式子变形后再裂项24.已知121n a n =−,设214n n n c n a a +=,求数列{}n c 的前n 项和n T .25.已知24n a n =+,记1n nb na =,数列{}n b 的前n 项和为n T ,求n T .26.已知()()*1N 1n a n n n =∈+,若()221n n b n a =+,求数列{}n b 的前n 项和n T .27.已知1n n a n =+,证明:.题型三 (-1)n 的处理28.已知2(1)n nn a =−,求数列{}n a 的前n 项和n S .29.已知(21)(1)nn a n =−−,求数列{}n a 的前n 项和n S .30.在,2n n n a n b ==,求数列{}(1)n n n a b −的前n 项和n T .31.设n S 是数列{}n a 的前n 项和,已知30a =,1(1)2n nn n a S ++−=,令12n n n b a a +=+,求2462n b b b b ++++.3121234n n a a a n a a a ++++<+题型四 分奇偶项求和11.已知数列()()21,2,n n n n a n ⎧+⎪=⎨⎪⎩为奇数为偶数 (1)求数列{}n a 的前20项和20T ;(2)求数列{}n a 的前2n 项和2n T ;(3)求数列{}n a 的前21n −项和21n T −. (4)求数列{}n a 的前n 项和n T32.已知21,n a n −=2n a =212n +,记{}n a 的前n 项和为n S ,2023n S >,求n 的最小值.33.(2023·湖南岳阳·统考三模)已知3nn a =,若13log ,,n n n a n b a n ⎧⎪=⎨⎪⎩为奇数为偶数,求数列{}n b 的前n 项和n T .专题4-8 数列求和技巧进阶篇题型一:(1)已知142n n a a n −+=−,14a =求n S(2)已知12nn n a a −+=,11a =求n S题型二:(1)()252nn a n =−⨯,求n S .(待定系数法)(2)1111(1)(11)nn n n n n n n n a a b a a a a +++⎛⎫+ ⎪−+⎝=−⎭=(3)122(1)21111(1)2(1)2122(1)2−++−⎛⎫==−⋅=− ⎪+⋅+⋅+⋅+⋅⎝⎭n n n n nn n n n n n n n n n n (4)[]1(1)(1)(2)(1)(1)3n n n n n n n n +=++−−+,21n a n =−,1n n n b a a +=(5)222244111111414122121n n n c n n n n −+⎛⎫===+−⎪−−−+⎝⎭题型三:(1)2(1)nnn a =−,求数列{}n a 的前n 项和.(2)(21)(1)nn a n =−−,求数列{}n a 的前n 项和(3),2n n n a n b ==,求数列{}(1)n n n a b −的前n 项和题型四:已知数列()()21,2,n nn n a n ⎧+⎪=⎨⎪⎩为奇数为偶数 (1)求数列{}n a 的前20项和20T (2)求数列{}n a 的前2n 项和2n T . (3)求数列{}n a 的前21n −项和21n T −. (4)求数列{}n a 的前n 项和n T题型一 并项求和简化计算一般来说,并项求和的计算量比分组求和要小 1.已知21n a n =−,若2πcos 3n n n b a =,求数列{}n b 的前31n +项和31n T +. 【解析】()2π2πcos 21cos 33n n n n b a n ==−, 【法一】并项求和()()()()()3133162π62π6π63cos 61cos 61cos333n n n n n n b b b n n n −+−+++=−+−++ ()()()22π63cosπ61cos 2π61cos33n n n −=−+−++ 化简得()()3133111636161022n n n b b b n n n −+++=−−+−−+=,故()()()311234567313311102n n n n T b b b b b b b b b b b +−+=++++++++++=+=−【法二】分组求和重点题型·归类精讲311233231331n n n n n T b b b b b b b +−−+=+++++++()()()311111135165636112222n T n n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯−+⨯−+⨯++−⨯−+−⨯−+−⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()1612n ⎛⎫++⨯− ⎪⎝⎭()()()()165363561111161222222n n n n n n n +−+−+−⎛⎫⎛⎫⎛⎫=⨯−+⨯−+⨯++⨯− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭22233113232222n n n n n n =−+−++−−=−,所以,数列{}n b 的前31n +项和3112n T +=−2.(2023秋·湖南长郡中学校考)已知n S 是数列{}n a 的前n 项和,1232,3,4a a a ===,数列{}12n n n a a a ++++是公差为1的等差数列,则40S = . 【答案】366【分析】设12n n n n b a a a ++=++,易得()9118n b n n =+−⨯=+,再由4012538S a b b b =++++求解.【详解】解:设12n n n n b a a a ++=++,由题意知{}n b 是公差为1的等差数列, 则11239b a a a =++=,故()9118n b n n =+−⨯=+,则21110b b =+=, 故()()()()25381323828583881383642b b b ⨯++++=++++++=⨯+=.于是()()()401234567383940S a a a a a a a a a a =+++++++++,125382364366a b b b =++++=+=.3.记n S ,为数列{}n a 的前n 项和,已知142n n a a n −+=−,14a =求n S .【答案】22,2,n n n n S n n n ⎧+=⎨++⎩当为偶数时当为奇数时 【详解】解:()141242n n a a n n −+=−+=−,*n ∈N ,2n ≥. 当n 为偶数时,()()()()1234164222n n n nn S a a a a a a −+−=++++++=2n n =+; 当n 为奇数时,()()()()12345111042242n n n n n S a a a a a a a −−+−=+++++++=+22n n =++.综上所述,22,2,n n n n S n n n ⎧+=⎨++⎩当为偶数时当为奇数时.4.已知数列{}n a 的前n 项和为1,(1)21nn n n S a a n ++−=−,则8S = .【答案】36【解析】由题意可得n 为奇数时,12121,21n n n n a a n a a n +++−=−+=+, 两式相减得22n n a a ++=;n 为偶数时,12121,21n n n n a a n a a n ++++=−−=+,两式相加得24n n a a n ++=,故()()()()8135724682282436S a a a a a a a a =+++++++=+++=. 故答案为:365.已知{}n a 的前n 项和为n S ,()()1221n n n n a a n +++−=,50600S =,则12a a += .【答案】12−【解析】当43,n k k =+∈N 时,则()()()143222n n k k +=++为偶数,()()()()1222452n n k k ++=++为偶数,可得()()4543122143k k n n n n a a a a k +++++−==++,()()()122314644144n n n n k k a a a a k +++++++−+==+,两式相加可得:4645444378k k k k a a a a k ++++++=++,故()()()()5012501234567891047484950......S a a a a a a a a a a a a a a a a a =+++=++++++++++++++ ()()()()12121212795715 (956126002)a a a a a a +=+++++=++=++=,解得1212a a +=−.6.已知21n a n =−,记()1nn n b S =−,求数列{}n b 的前30项的和30T .【解析】2(121)2n n n S n +−==, 所以2(1)(1)=−−=⋅n n n n b n S , 所以2222223012342930T =−+−++−+()()()()()()2112433430292930=−⋅++−⋅+++−⋅+12342930=++++++30(130)4652⨯+==.7.已知12n n a +=,设()21log nn n b a =−,数列{}n b 的前n 项和为n T ,求满足20k T =的k 的值.【解析】()()()21log 11n nn n b a n =−=−+,212212(1)2(1)(21)1n nn n b b n n −−+=−⋅+−+=,当k 为偶数时,12341()()()2k k k k T b b b b b b −=++++++=,令202k kT ==,得40k =;当k 为奇数时,1113(2)22k k k k k T T b k ++++=−=−+=−,令3202k k T +==,得37k =, 所以40k =或37.8.已知13n n a =−,若()22π1cos 3n n n b a =+,求数列{}n b 的前18项和18T .【解析】()2222π2π12π1cos 11cos cos33393n n n n n n b a n ⎛⎫=+=−+= ⎪⎝⎭. 因为当N k *∈时,2223231324π12π5cos 2πcos 2πcos 2π333318k k k b b b k k k k k k k −−⎛⎫⎛⎫⎛⎫⎛⎫++=−−+−−+=− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,()()()18123345161718T b b b b b b b b b =+++++++++.555555123456181818181818=−+−+−+−+−+− 558(123456)6183=+++++−⨯= 所以数列{}n b 的前18项和为583.9.已知212n n a −=,设11b =,1,,n n na nb b n n +⎧=⎨−+⎩为奇数为偶数,求数列{}n b 的前2n 项和2n S .【详解】当n 为奇数时,2112n n n b a −+==; 则当n 为偶数时,1n n b b n ++=. 2122n n S b b b =+++()()()()1223452221n n n b b b b b b b b −−=+++++++()2112422n a n −=+++++−()()43432222112212n n n n n n −−+−−=++=+−+.题型二 裂项求和差比数列的其它处理方式(待定系数法)10.()252nn a n =−⨯,求n S .【答案】()()()()125212222n n n nn a n n n n λμλμλλμ+=−⨯=⎡++⎤⨯−+⨯=++⨯⎣⎦,22259λλλμμ==⎧⎧⇒⎨⎨+=−=−⎩⎩()()12192292n n n a n n +=⎡+−⎤⨯−−⨯⎣⎦,()()1121921427214n n n S n n ++=⎡+−⎤⨯+=−⨯+⎣⎦.213n nn a +=,求n S . 【答案】()11212233333n n n n nn n n n a λμλμλμλ−−++++−==−=, 112312λλμλμ==⎧⎧⇒⎨⎨−==⎩⎩,()112233n n n n n a −−++=−,223n nn S +=−.11.22n n a n =⨯,求n S .【答案】()()2121122n nn a n n t n n t λμλμ+⎡⎤⎡⎤=++++⨯−++⨯⎣⎦⎣⎦()24222n n n t λλμλμ⎡⎤=+++++⨯⎣⎦, 令114042206t t λλλμμλμ==⎧⎧⎪⎪+=⇒=−⎨⎨⎪⎪++==⎩⎩()()21214162462n nn a n n n n +⎡⎤⎡⎤=+−++⨯−−+⨯⎣⎦⎣⎦ ()()()21211416262326n n n S n n n n ++⎡⎤=+−++⨯−=−+⨯−⎣⎦.12.()2414133nn a n n =++⨯,求n S .【答案】()()2121133n nn a n n t n n t λμλμ+⎡⎤⎡⎤=++++⨯−++⨯⎣⎦⎣⎦()22623323n n n t λλμλμ⎡⎤=+++++⨯⎣⎦24262141332132t t λλλμμλμ==⎧⎧⎪⎪+=⇒=⎨⎨⎪⎪++==⎩⎩, ()()21221123223n nn a n n n n +⎡⎤⎡⎤=++++⨯−++⨯⎣⎦⎣⎦, ()()()21212112315255315n n n S n n n n ++⎡⎤=++++⨯−=++⨯−⎣⎦.【裂项相加】:(-1)n例:()()()21111111nn n n n n n +⎛⎫−⋅=−+ ⎪++⎝⎭,本类模型典型标志在通项中含有(1)n −乘以一个分式.对于11(1)nn n n n n a a b a a ++=−+可以裂项为1111(1)(11)n n n n n n n nn a a b a a a a +++⎛⎫+ ⎪−+⎝=−⎭=13.若21n a n =−,数列{}n b 满足11(1)n n n n nb a a ++−=,{}n b 的前n 项和为n T ,求n T【答案】11(1)1421n n T n +⎡⎤−=+⎢⎥+⎣⎦. 【详解】由题可得1111(1)(1)(1)11(21)(21)42121n n n n n n n n b a a n n n n ++++−−−⎛⎫===+ ⎪−+−+⎝⎭,所以1111111(1)111(1)114343542121421n n n T n n n ++⎡⎤−−⎛⎫⎛⎫⎛⎫=+−++++=+ ⎪ ⎪ ⎪⎢⎥−++⎝⎭⎝⎭⎝⎭⎣⎦.14.已知数列{}n a 满足31nn a =−,若()()()()22231321265log 1log 1nn n n n n b a a ++−⋅++=+⋅+,求数列{}n b 的前n 项和nT .【答案】()()21142n n T n −=−+ 【分析】()()()2211112nn b n n ⎛⎫=−+⎪ ⎪++⎝⎭,分别在n 为偶数和n 为奇数的情况下,利用裂项相消法和11n n n T T b ++=−求得结果,综合两种情况可得n T .【详解】()()()()()()()()()22222233221212651265111log log 132231nnnn n n n n n n n n n n b ++⎛⎫−⋅++−⋅++∴===−+ ⎪ ⎪⋅⎝+++⎭+,当n为偶数时,()22222222111111112334451n T n n ⎛⎫⎛⎫⎛⎫⎛⎫=−−+++−−+⋅⋅⋅+−−+⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭+⎝⎭()()()22211114122n n n ⎛⎫+=− ⎪ ⎪+++⎝⎭;当n 为奇数时,()()()()112222111111443232n n n T T b n n n n ++=−=−−−=−−++++; 综上所述:()()21142n n T n −=−+.15.已知21n b n =−,设()()121(1),11nn n n n n c T b b ++=−++为数列{}n c 的前n 项和,证明:216n T ≤−.【详解】12121111(1)(1)(1),(1)(1)4(1)41nn n n n n n n c b b n n n n +++⎛⎫=−=−=−+ ⎪++++⎝⎭所以211111111111....1,41223212221421n T n n n n n ⎛⎫⎛⎫=−−++−−−+=− ⎪⎪−++⎝⎭⎝⎭由于2111(11)421n T n t n ⎛⎫=−≤≤−⎪+⎝⎭是递减的,所以211111.4216n T T ⎛⎫≤=−⎪⎭=− +⎝16.已知21nn a =−,求111222(1)n n n n n a a +++⎧⎫⎛⎫+−⎪⎪−⋅⎨⎬ ⎪⎪⎪⎝⎭⎩⎭的前n 项和n T .【解析】1111111122211(1)()(1)()(1)()n n n n n n n n n n n n n a a a a a a a a ++++++++++−−⋅=−=−+,所以()()()11111223111111111111121n n n n n nn n T a a a a a a a ++++++−−⎛⎫⎛⎫=+−+++−+=+=+ ⎪ ⎪−⎝⎭⎝⎭. 17.已知()()612n a n n =++,若()()231nn n b n a =+−,求{}n b 的前n 项和n T .【详解】()()()2316112n n n n b n a n n ⎛⎫=+−=−+ ⎪++⎝⎭, 所以()1211111166********n n n T b b b n n ⎛⎫⎛⎫⎛⎫=+++=−+++++−+ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭()6312nn =−+−+. 【等差数列相邻2两项之积构成的的新数列】例如:[]1(1)(1)(2)(1)(1)3n n n n n n n n +=++−−+一般式,当公差为k 时:[]1()()(2)()()3kn kn k kn kn k kn k kn k kn kn k k⋅+=⋅+⋅+−−⋅⋅+ 18.已知21n a n =−,1n n n b a a +=,求数列{n b }的前n 项和n T【答案】21(461)3n T n n n =+−.【分析】对n b 裂项,利用裂项相消法计算作答.【详解】当2n ≥时,()121112116n n n n n n n n n n n n a a a a a a a a a a a a ++−+++−+−=−=6n b =,因此,12111()6n n n n n n n b a a a a a a ++−+=−,1212312211()(15)66nk n n n n n n k b a a a a a a a a a ++++==−=−∑,则21121221151(15)(21)(21)(23)3(461)6623nn k n n n k T b b a a a a a n n n n n n ++==+=−+=−++−+=+−∑,13b =满足上式,所以21(461)3n T n n n =+−.19.已知21n a n =−,()11nn n n b a a +=−,求数列{n b }的前n 项和n T .【答案】2*2*22,2,N 221,21,N n n n n k k T n n n k k ⎧+=∈=⎨−−+=−∈⎩【分析】对n 分奇偶讨论,当n 为偶数时,采用并项法求和,当n 为奇数时,11n n n n T a a T −+=− 【详解】当n 为偶数时, ()1223344511nn n n T a a a a a a a a a a +=−+−++−+()()()21343511n n n a a a a a a a a a −+=−++−+++−+()()()24321244212n nn a a a n n +−=+++==+当n 为奇数时, 当1n =时,13T =− 当3n ≥时,11n n n n T a a T −+=−()()()213232421212212n n n n n n −+−=−−+=−−+ 经检验,1T 也满足上式,所以当n 为奇数时,2221n T n n =−−+综上,数列{}n b 的前n 项和2*2*22,2,N 221,21,N n n n n k k T n n n k k ⎧+=∈=⎨−−+=−∈⎩一次乘指数型:分母为一次函数和指数函数相乘例子:122(1)21111(1)2(1)2122(1)2−++−⎛⎫==−⋅=− ⎪+⋅+⋅+⋅+⋅⎝⎭n n n n nn n n n n n n n n n n 一般结构()()()()()11111n n na kn a kn ab b a kn b k n b a k k n b a b =−−⎡⎤⎡⎤−++++⎣⎦−++⎣−⎦20.已知3n n b =,若()()*24141n n n b c n n +=∈−N ,求数列{}n c 的前n 项和 【详解】由()()*24141n n n b c n n +=∈−N , 可得()()()()1441132121321321n n n n n c n n n n −+==−−+−+,则数列{}n c 的前n 项和为()()0112111111131333335321321n n n n −−+−+⋅⋅⋅+−⨯⨯⨯⨯−+ ()11321n n =−+.21.已知12nn a +=,记2(1)n n a b n n+=+,n T 为数列{}n b 的前n 项和,求n T . 【解析】因为22(1)n n n a b n n++=+, 所以()()()()1222112122121n n n n n n n b n n n n n n a +⎡⎤++===−⎢⎥+⋅+⋅++⎢⎥⎣⎦,所以数列{}n b 的前n 项和为:()12231111111212222232212n n n T n n +⎡⎤⎛⎫⎛⎫⎛⎫=−+−++−⎢⎥ ⎪ ⎪ ⎪ ⎪⋅⋅⋅⋅⋅+⋅⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦()()1111121121212n n n n +⎡⎤=−=−⎢⎥⋅+⋅+⋅⎢⎥⎣⎦.22.已知2222n n n n b ++=,求证:()()3112..212233411n n b b b b b n n n n −+++⋯++<⨯⨯⨯−⨯⨯+. 【详解】()()()1222211212n n n b n n n n n n n n n n n ++++++==⨯⨯+⨯+⨯⨯+⨯.()1111122212n n n n n ++⎛⎫=⨯+− ⎪ ⎪⨯+⨯⎝⎭()()3112..12233411n n b b b b bn n n n −∴+++⋯++⨯⨯⨯−⨯⨯+ ()21232311111111111221222222322212n n n n n ++⎛⎫=⨯+−++−+⋯++− ⎪ ⎪⨯⨯⨯⨯⨯+⨯⎝⎭. ()211111221121121212nn n +⎛⎫⎛⎫− ⎪ ⎪⎝⎭ ⎪=⨯+− ⎪⨯+⨯− ⎪ ⎪⎝⎭()111121 2.212n n n ++⎛⎫=−−< ⎪ ⎪+⨯⎝⎭另解:()()()21122122112212n n n n b n n n n n n n n n n ++⎛⎫++++==⨯− ⎪ ⎪⨯+⨯+⨯⨯+⨯⎝⎭()()311212233411n n b b b b bn n n n −∴+++⋯⋯++⨯⨯⨯−⨯⨯+()2231233412212222232212n n n n n n +⎛⎫++=⨯−+−+⋯+− ⎪ ⎪⨯⨯⨯⨯⨯+⨯⎝⎭ ()1221212n n n +⎛⎫+=⨯−< ⎪ ⎪+⨯⎝⎭.得证23.已知n a n =,设14122n n a n n n b a a a +++=⋅⋅⋅1214n b b b ++⋅⋅⋅+<. 【详解】解:因为14111241422(1)(2)12(2)n n n a n n n n n a n n b a a a n n n n n n ++++++++===⋅⋅⋅⋅⋅⋅+++⋅⋅+,1112(1)2(1)(2)n n n b n n n n +=−⋅⋅+⋅++,故12n b b b ++⋅⋅⋅+=22311111112122232232342(1)2(1)(2)n n n n n n +−+−+⋅⋅⋅+−⨯⨯⨯⨯⨯⨯⨯⨯⋅⋅+⋅++111142(1)(2)4n n n +=−<⋅++.对式子变形后再裂项24.已知121n a n =−,设214n n n c n a a +=,求数列{}n c 的前n 项和n T . 【解析】()()()()222212244411111141121214141212122121n n n n n n c n a a n n n n n n n n +−+⎛⎫=====+=+− ⎪−+−−−+−+⎝⎭ 12311111112335212121n n nT c c c c n n n n n ⎛⎫=++++=+−+−++−=+ ⎪−++⎝⎭.25.已知24n a n =+,记1n nb na =,数列{}n b 的前n 项和为n T ,求n T . 【解析】()111112442n n b na n n n n ⎛⎫===− ⎪++⎝⎭, ∴11111111111432435462n T n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=−+−+−+−++− ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111114212n n ⎛⎫=+−− ⎪++⎝⎭ 32384(1)(2)n n n +=−++.26.已知()()*1N 1n a n n n =∈+,若()221n n b n a =+,求数列{}n b 的前n 项和n T .【解析】2222111(1)n n b n n n +==+,则()2222222211111111223(1)(1)(1)n n n T n n n n +⎛⎫⎛⎫⎛⎫=−+−++−=−= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭.27.已知1n n a n =+,证明:. 【分析】由,得到,结合裂项求和及,即可得证. 【详解】解:由,则.所以.3121234n n a a a n a a a ++++<+1n na n =+1111122n n a a n n +⎛⎫=+− ⎪+⎝⎭11012n n +>++1n n a n =+()()()()2112111112222n n n n n aa n n n n n n ++++⎛⎫===+− ⎪+++⎝⎭3121211111111111232435112n n a a a n a a a n n n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++=+−+−+−++−+− ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥−++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦11113111122124212n n n n n n ⎛⎫⎛⎫=++−−=+−+ ⎪ ⎪++++⎝⎭⎝⎭因为,所以, 即题型三 (-1)n 的处理28.已知2(1)nnn a =−,求数列{}n a 的前n 项和n S .【解答】直接用等比数列求和公式(2)n n a =−,则()()()2122221233n n n S ⎡⎤−−−⎣⎦==−+⋅−−−29.已知(21)(1)nn a n =−−,求数列{}n a 的前n 项和n S .【分析】错位相减比分奇偶讨论要方便【解答】1231(1)3(1)5(1)(21)(1)n n S n =⨯−+⨯−+⨯−++−⨯−所以23411(1)3(1)5(1)(23)(1)(21)(1)n n n S n n +−=⨯−+⨯−+⨯−++−⨯−+−⨯−, 相减得23121(1)2[(1)(1)(1)](21)(1)n n n S n +=⨯−+⨯−+−++−−−⨯−211(1)1(1)12(21)(1)1(1)n n n −+⎡⎤−−−⎣⎦=−+⨯−−⨯−−−12(1)n n +=−−,所以1(1)(1)n nn S n n +=−−=−.30.在,2n n n a n b ==,求数列{}(1)n n n a b −的前n 项和n T .【分析】错位相减即可【解答】记(1)2(2)n n nn c n n =−⋅=−,1231(2)2(2)3(2)(1)(2)(2)n n n T n n n −=−+⋅−+⋅−+⋯+−⋅−+⋅−23122(2)2(2)(1)(2)(2)n n T n n +−=−+⋅−+⋯+−−+−123113(2)(2)(2)(2)(22)(2))21(21n n n n n T n n ++=−+−+−+⋯+−−−⎡−−⎤−−−⎣⎦=+,11012n n +>++3111342124n n n n ⎛⎫+−+<+ ⎪++⎝⎭3121234n n a a a n a a a ++++<+12(31)(2)9n n n T +−−+−=.31.设n S 是数列{}n a 的前n 项和,已知30a =,1(1)2n n n n a S ++−=,令12n n n b a a +=+,求2462n b b b b ++++.【答案】2122n +−【分析】根据偶数项和奇数项的关系可得221212222k k k k a a −++=+,进而根据分组求和即可. 【详解】当2n k =时,22122kk k a S ++=, 当21n k =−时,221212k k k a S −−=−,两式相加可得22121221222k k k k k k a S a S +−−=+−++,得221212222k k k k a a −++=+,由于12n n n b a a +=+,所以()()()()32547462622212222n n n b b b b a a a a a a a a +=++++++++++++()()()()21436522122222222n n −=++++++++()()24621352122222222n n −=+++++++++()()21414214221414n n n +−−=+=−−−题型四 分奇偶项求和11.已知数列()()21,2,n n n n a n ⎧+⎪=⎨⎪⎩为奇数为偶数 (1)求数列{}n a 的前20项和20T (2)求数列{}n a 的前2n 项和2n T . (3)求数列{}n a 的前21n −项和21n T −. (4)求数列{}n a 的前n 项和n T 【详解】(1)201351924620()()T C C c C c c C c =+++++++++24620(371139)(2222)=+++++++++()21011214(330)1062642143−+⨯+=+=−(2)由(1)知()()21,2,n n n n c n ⎧+⎪=⎨⎪⎩为奇数为偶数,数列{}n c 的奇数项是首项为3,公差为4的等差数列,偶数项是以首项为4,公比为4的等比数列.记13521n k A c c c c −=+++⋅⋅⋅+,2462n k B c c c c =+++⋅⋅⋅+2141k c k −=−,故234122n k A k k k +−=⋅=+ 222kk c =,故()224124241433k k nB ⋅−⋅==−− 1224123k k T A B k k +−=+=++ (3)2212124123k k k k T T c k k −−−=−=++ (4)当n 为偶数时,记n=2k则有1224123k k T k k +−=++,故222123n n n n T ++−=+当n 为奇数时,记n=2k -1则有2214123k k T k k −−=++,故21322423n n T n n +++=+− 故()22122212,22324,2,133n n n n n n k T n n n k k N +++++−⎧+−+=⎪⎪==⎪⎪⎩−∈+⎨32.已知21,n a n −=2n a =212n +,记{}n a 的前n 项和为n S ,2023n S >,求n 的最小值.【分析】解法一:枚举;解法二:分组求和得出()()2841123kk k k S −+=+,进而得出()21124823k k k k S −+⨯−=+,求解即可得出答案;解法三:分组求和得出()21124823k k k k S −+⨯−=+,求解即可得出答案. 【详解】解法一:9123456789S a a a a a a a a a =++++++++()()135792468a a a a a a a a a =++++++++ ()()3579123452222156806952023=++++++++=+=<,又1110910695227432023S S a =+=+=>;又0n a >,则1n n S S +<,且9102023S S <<, 所以n 的最小值为10. 解法二:*k ∈N 时,21232k k S a a a a =++++()()135212462k k a a a a a a a a −=+++++++++()()357211232222k k +=+++++++++()()841123k k k −+=+,()()()2121228411124822323kk k k k k k k k k S S a +−−++⨯−=−=+−=+, 所以5925156248695202323S S ⨯−⨯⨯−==+=<,()51025841562743202323S S ⨯−⨯==+=>, 又0n a >,则1n n S S +<,且9102023S S <<, 所以n 的最小值为10. 解法三:当*k ∈N 时,2112321k k S a a a a −−=++++()()1352124622k k a a a a a a a a −−=+++++++++ ()()357211232222k k −=+++++++++()()()118411114821423k k k k k k −−−++⎛⎫−=+=+ ⎪−⎝⎭, 所以()4925184156695202323S S ⨯−−⨯==+=<,25110910695227432023S S a ⨯+=+=+=>. 又0n a >,则1n n S S +<,且9102023S S <<, 所以n 的最小值为10.33.(2023·湖南岳阳·统考三模)已知3nn a =,若13log ,,n n n a n b a n ⎧⎪=⎨⎪⎩为奇数为偶数,求数列{}n b 的前n 项和n T .【解析】,3,n n n n b n −⎧=⎨⎩为奇数为偶数,当n 为偶数时,()()1213124n n n n T b b b b b b b b b −=++⋅⋅⋅+=++⋅⋅⋅++++⋅⋅⋅+()()24131333n n =−++⋅⋅⋅+−+++⋅⋅⋅+()2919112219nn n ⎛⎫− ⎪⎡⎤⋅+−⎣⎦⎝⎭=−⨯+− ()293184n n =−−; 当n 为奇数时()()211111931384n n n n n n T T b +++++=−=−−−()211193884n n ++=⨯−−;综上所述:()()2121193,884931,84n n nn n T n n +⎧+⨯−−⎪⎪=⎨⎪−−⎪⎩为奇数为偶数.。
专题10 数列 10.4数列求和 题型归纳讲义-2022届高三数学一轮复习(解析版)
专题十《数列》讲义10.4数列求和知识梳理.数列求和1.公式法(1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d 2.推导方法:倒序相加法.(2)等比数列{a n }的前n 项和S n ,q ≠1.推导方法:乘公比,错位相减法.(3)一些常见的数列的前n 项和:①1+2+3+…+n =n (n +1)2;②2+4+6+…+2n =n (n +1);③1+3+5+…+(2n -1)=n 2.2.几种数列求和的常用方法(1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.题型一.裂项相消1.数列{a n}的通项公式a n=1or1),已知它的前n项和S n=99100,则项数n=()A.98B.99C.100D.101【解答】解:列{a n}的通项公式a n=1or1)=1−1r1,所以=1−12+12−13+⋯+1−1r1=1−1r1,由于前n项和S n=99100,所以1−1r1=99100,解得n=99.故选:B.2.已知等差数列{a n}满足a3=10,a1+a4=17.(1)求{a n}的通项公式;(2)设b n=3r1,求数列{b n}的前n项和S n.【解答】解:(1)设首项为a1,公差为d的等差数列,满足a3=10,a1+a4=17.所以3=101+4=17,解得1=4=3,所以a n=4+3(n﹣1)=3n+1.(2)由(1)得b n=3r1=13r1−13r4,所以S n=b1+b2+…+b n=14−17+17−110+⋯+13r1−13r4=14−13r4.3.已知数列{a n}的前n项和为S n,若4S n=(2n﹣1)a n+1+1,且a1=1.(1)求数列{a n}的通项公式;(2)设=1(+2),数列{c n}的前n项和为T n,求T n.【解答】解:(1)在4S n=(2n﹣1)a n+1+1中,令n=1,得a2=3,∵4S n=(2n﹣1)a n+1+1,∴当n≥2时,4S n﹣1=(2n﹣3)a n+1,两式相减,得4a n=(2n﹣1)a n+1﹣(2n﹣3)a n(n≥2),∴(2n+1)a n=(2n﹣1)a n+1,即r1=2r12K1(≥2).∴=K1⋅K1K2⋅K2K3⋯⋅32⋅21⋅1=2K12K3⋅2K32K5⋅2K52K7⋯53⋅31⋅1=2−1,故a n=2n﹣1.(2)=1(+2)=1(2K1)(2r1)=12(12K1−12r1),T n=c1+c2+…+c n=12[(1−13)+(13−15)+(15−17)+⋯+(12K1−12r1)]=12(1−12r1)=2r1,所以=2r1.题型二.错位相减1.已知等差数列{a n}公差不为零,且满足:a1=2,a1,a2,a5成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设=3,求数列{b n}的前n项和.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,d≠0,由题,1=222=15,即(1+p2=1(1+4p,解得d=4.∴a n=2+4(n﹣1)=4n﹣2.(Ⅱ)=3=(4n﹣2)•3n=2(2n﹣1)•3n,设数列{b n}的前n项和为T n,=2×1×31+2×3×32+2×5×33+⋯+2(2n﹣1)×3n,①3=2×1×32+2×3×33+2×5×34+⋯2(2n﹣1)×3n+1,②①﹣②,得:−2=2×1×3+2×2×32+2×2×33+⋯+2×2×3n﹣2(2n﹣1)×3n+1=6+4×32(1−3K1)1−3−2(2−1)×3r1=−12﹣4(n﹣1)•3n+1,∴=6+2(−1)⋅3r1.∴数列{b n}的前n项和=6+2(−1)⋅3r1.2.已知等差数列{a n}的前n项和为S n,S5=30,S7=56;各项均为正数的等比数列{b n}满足b1b2=13,b2b3=127.(1)求数列{a n}和{b n}的通项公式;(2)求数列{a n•b n}的前n项和T n.【解答】解:(1)设等差数列{a n}的首项为a1,公差为d,由S5=30,S7=56,得51+5×42=3071+7×62=56,解得1=2=2.∴a n=2+2(n﹣1)=2n;设等比数列{b n}的公比为q(q>0),由b1b2=13,b2b3=127,得12=13123=127,解得1=1=13.∴=(13)K1;(2)a n•b n=23K1=2⋅3K1.令{3K1}的前n项和为R n,则=130+231+332+⋯+3K1,13=13+232+333+⋯+K13K1+3两式作差可得:23=1+13+132+⋯+13K1−3=1×(1−13)1−13−3=32−2r32⋅3,∴=94−2r34⋅3K1.则=2=92−2r32⋅3K1.3.(2015·山东)设数列{a n}的前n项和为S n,已知2S n=3n+3.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n},满足a n b n=log3a n,求{b n}的前n项和T n.【解答】解:(Ⅰ)因为2S n=3n+3,所以2a1=31+3=6,故a1=3,=3n﹣1+3,当n>1时,2S n﹣1此时,2a n=2S n﹣2S n﹣1=3n﹣3n﹣1=2×3n﹣1,即a n=3n﹣1,所以a n=3,=13K1,>1..(Ⅱ)因为a n b n=log3a n,所以b1=13,当n>1时,b n=31﹣n•log33n﹣1=(n﹣1)×31﹣n,所以T1=b1=13;当n>1时,T n=b1+b2+…+b n=13+[1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n],所以3T n=1+[1×30+2×3﹣1+3×3﹣2+…+(n﹣1)×32﹣n],两式相减得:2T n=23+[30+3﹣1+3﹣2+…+32﹣n﹣(n﹣1)×31﹣n]=23+1−31−1−3−1−(n﹣1)×31﹣n=136−6r32×3,所以T n=1312−6r34×3,经检验,n=1时也适合,综上可得T n=1312−6r34×3.题型三.分组求和1.已知数列{a n}是公差不为零的等差数列,a1=2,且a1,a2,a4成等比数列.(1)求数列{a n}的通项公式;(2)设b n=a n﹣2,求数列{b n}的前n项和S n.【解答】解:(1)由题意,设等差数列{a n}的公差为d(d≠0),则a2=2+d,a4=2+3d,∵a1,a2,a4成等比数列,∴a22=a1•a4,即(2+d)2=2(2+3d),整理,得d2﹣2d=0,解得d=0(舍去),或d=2,∴a n=2+2(n﹣1)=2n,n∈N*.(2)由(1)知,设b n=a n﹣2=2n﹣22n=2n﹣4n,故S n=b1+b2+…+b n=(2×1﹣41)+(2×2﹣42)+…+(2n﹣4n)=2×(1+2+…+n)﹣(41+42+…+4n)=2×or1)2−4(1−4)1−4=n2+n+43−4r13.2.在公差不为0的等差数列{a n}中,a1,a3,a9成公比为a3的等比数列,又数列{b n}满足=2,=2−1,2,=2,(k∈N*).(1)求数列{a n}的通项公式;(2)求数列{b n}的前2n项和T2n.【解答】解:(1)公差d不为0的等差数列{a n}中,a1,a3,a9成公比为a3的等比数列,可得a32=a1a9,a3=a1a3,可得(a1+2d)2=a1(a1+8d),a1=1,化简可得a1=d=1,即有a n=n,n∈N*;(2)由(1)可得b n=2,=2−12,=2,k∈N*;前2n项和T2n=(2+8+16+…+22n﹣1)+(4+8+12+…+4n)=2(1−4)1−4+12n(4+4n)=2(4−1)3+2n(n+1).3.已知数列{a n}、{b n}满足:a n+1=a n+b n,{b n+2}为等比数列,且b1=2,a2=4,a3=10.(1)试判断数列{b n}是否为等差数列,并说明理由;(2)求数列{a n}的前n项和S n.【解答】解:(1)数列{b n}不是等差数列.理由如下:由a n+1﹣a n=b n,且a2=4,a3=10,b1=2,得b2=a3﹣a2=6,又∵数列{b n+2}为等比数列,∴数列{b n+2}的首项为4,公比为2.∴3+2=4×22=16,得b3=14,显然2b2=12≠b1+b3=16.故数列{b n}不是等差数列;(2)结合(1)知,等比数列{b n+2}的首项为4,公比为2.故+2=4⋅2K1=2r1,∴=2r1−2.∵a n+1﹣a n=b n,b1=2,a2=4,∴a1=2,∴−K1=2−2(n≥2).令n=2,…,(n﹣1).得2−1=22−2,3−2=23−2,…−K1=2−2(n≥2),累加得−2=(22+23+⋯+2)−2(−1)(n≥2).∴=(2+22+23+⋯+2)−2+2=2(2−1)2−1−2+2=2r1−2(n≥2).又a1=2满足上式,∴=2r1−2.∴=(22−2×1)+(23−2×2)+⋯+(2r1−2p=(22+23+…+2n+1)﹣2(1+2+…+n)=4(2−1)2−1−2×or1)2=2r2−2−−4.题型四.讨论奇偶、绝对值求和1.数列{a n}的前n项和记为S n,对任意的正整数n,均有4S n=(a n+1)2,且a n>0.(1)求a1及{a n}的通项公式;(2)令=(−1)K14r1,求数列{b n}的前n项和T n.【解答】解:(1)当n=1时,41=(1+1)2,则a1=1;当n≥2时,由4S n=(a n+1)2,知4S n﹣1=(a n﹣1+1)2,联立两式,得4a n=(a n+1)2﹣(a n﹣1+1)2,化简得(a n+a n﹣1)(a n﹣a n﹣1﹣2)=0,∵a n>0,∴a n﹣a n﹣1﹣2=0,即{a n}是以a1=1为首项,2为公差的等差数列,故a n=2n﹣1;(2)=(−1)K14r1=(−1)K14(2K1)(2r1)=(﹣1)n﹣1(12K1+12r1),下面对n分奇偶数讨论:当n为偶数时,T n=(1+13)﹣(13+15)+…+(12K3+12K1)﹣(12K1+12r1)=1−12r1=22r1,当n为奇数时,T n=(1+13)﹣(13+15)+…﹣(12K3+12K1)+(12K1+12r1)=1+12r12r22r1,所以T n=为奇数为偶数.2.已知等差数列{a n}前n项和为S n,a5=9,S5=25.(1)求数列{a n}的通项公式及前n项和S n;(2)设=(−1),求{b n}前2n项和T2n.【解答】解:(1)由题意,设等差数列{a n}的公差为d,则5=1+4=95=51+5×42=25,整理,得1+4=91+2=5,解得1=1=2,∴a n=1+2(n﹣1)=2n﹣1,n∈N*,=o1+2K1)2=2.(2)由(1)知,设=(−1)=(﹣1)n•n2.T2n=b1+b2+…+b2n=(b1+b2)+(b3+b4)+…+(b2n﹣1+b2n)=(﹣12+22)+(﹣32+42)+…+[﹣(2n﹣1)2+(2n)2]=[(2﹣1)×(2+1)]+[(4﹣3)×(4+3)]+…+[2n﹣(2n﹣1)]×[2n+(2n﹣1)]=1+2+3+4+…+(2n﹣1)+2n=2δ(1+2p2=2n2+n.3.已知数列{a n}满足a1=﹣2,a n+1=2a n+4.(1)求a2,a3,a4;(2)猜想{a n}的通项公式并加以证明;(3)求数列{|a n|}的前n项和S n.【解答】解:(1)由已知,易得a2=0,a3=4,a4=12.(2)猜想=2−4.因为a n+1=2a n+4,所以a n+1+4=2(a n+4),r1+4+4=2,则{a n+4}是以2为首项,以2为公比的等比数列,所以+4=2,所以==2−4.(3)当n=1时,a1=﹣2<0,S1=|a1|=2;当n≥2时,a n≥0,所以=−1+2+⋯+=2+(22−4)+⋯+(2−4)=2+22+⋯+2−4(−1)=2(1−2)1−2−4(−1)=2r1−4+2,又n=1时满足上式.所以,当n∈N*时,=2r1−4+2.题型五.数列求和选填综合1.首项为正数的等差数列{a n}中,34=75,当其前n项和S n取最大值时,n的值为()A.5B.6C.7D.8【解答】解:∵首项为正数的等差数列{a n}中,34=75,∴5(a1+2d)=7(a1+3d),整理,得:1=−112,∵a1>0,∴d<0,∴=−112B+oK1)2=2(n﹣6)2﹣18d,∴当其前n项和S n取最大值时,n的值为6.故选:B.2.在等比数列{a n}中,a2•a3=2a1,且a4与2a7的等差中项为17,设b n=a2n﹣1﹣a2n,n∈N*,则数列{b n}的前2n项和为112(1−42).【解答】解:等比数列{a n}中,a2•a3=2a1,且a4与2a7的等差中项为17,设首项为a1,公比为q,则:23=214+27=34,整理得:13=213+216=34,解得:1=14=2.则:=1K1=2K3,所以:b n =a 2n ﹣1﹣a 2n =22K32−22K3=−22n ﹣4,则:T 2n =−14(1−42)1−4=112(1−42).故答案为:112(1−42).3.已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2且对于任意n >1,n ∈N *满足S n +1+S n ﹣1=2(S n +1),则()A .a 4=7B .S 16=240C .a 10=19D .S 20=381【解答】解:当n ≥2时,S n +1+S n ﹣1=2(S n +1)⇒S n +1﹣S n =S n ﹣S n ﹣1+2⇒a n +1=a n +2.所以数列{a n }从第2项起为等差数列,a n =1,=12−2,≥2,所以,a 4=6,a 10=18.S n =a 1+(2+)(K1)2=n (n ﹣1)+1,S 16=16×15+1=241,S 20=20×19+1=381.故选:D .4.已知数列{a n }是首项为1,公差为2的等差数列,数列{b n }满足关系11+22+33+⋯+=12−1,数列{b n }的前n 项和为S n ,则S 5的值为()A .﹣454B .﹣450C .﹣446D .﹣442【解答】解:数列{a n }是首项为1,公差为2的等差数列,可得a n =1+2(n ﹣1)=2n ﹣1,由11+22+33+⋯+=12−1,可得11=12−1=−12,可得b 1=﹣2,又11+22+⋯+K1K1=12K1−1,且11+22+33+⋯+=12−1,两式相减可得=12−12K1=−12,可得b n=﹣(2n﹣1)•2n,则S5=﹣2﹣3•4﹣5•8﹣7•16﹣9•32=﹣454,故选:A.5.已知数列{a n}满足1=32,r1=3+3,若=3,则c1+c2+⋅⋅⋅+c n=(2r1)⋅3−14.【解答】解:因为1=32,r1=3+3,所以1r1=+33=13+1,即1r1−1=13,所以数列{1}是首项11=23,公差为13的等差数列,所以1=23+13(−1)=r13,则=3=(+1)3K1,则1+2+⋅⋅⋅+=2×30+3×31+4×32+⋅⋅⋅+(+1)×3K1,设T=2×30+3×31+4×32+⋅⋅⋅+(n+1)×3n﹣1①,则3T=2×3+3×32+……+n×3n﹣1+(n+1)×3n②,①﹣②可得:﹣2T=2+3+32+……+3n﹣1﹣(n+1)×3n=1+3−13−1−(n+1)×3n,则=(2r1)⋅3−14.即1+2+⋅⋅⋅+=(2r1)⋅3−14.故答案为:(2r1)⋅3−14.6.已知数列{a n}的前n项和为S n,a1=2,S n=λa n﹣2,其中λ为常数,若a n b n=13﹣n,则数列{b n}中的项的最小值为−1214.【解答】解:根据题意,数列{a n}的满足a1=2,S n=λa n﹣2,当n=1时,有a1=S1=λa1﹣2,即2=2λ﹣2,解可得λ=2,则S n=2a n﹣2,①=2a n﹣1﹣2,②则有S n﹣1①﹣②:a n=2a n﹣2a n﹣1,变形可得a n=2a n﹣1,则数列{a n }是首项为a 1=2,公比为2的等比数列,则a n =2n ,又由a n b n =13﹣n ,则b n =13−2,当n ≤13时,b n ≥0,当n ≥14时,b n <0,且{b n }为递增数列,则当n =14时,b n 取得最小值,此时b 14=−1214;故答案为:−1214.7.已知数列{a n }和{b n }首项均为1,且a n ﹣1≥a n (n ≥2),a n +1≥a n ,数列{b n }的前n 项和为S n ,且满足2S n S n +1+a n b n +1=0,则S 2019=()A .2019B .12019C .4037D .14037【解答】解:∵a n ﹣1≥a n (n ≥2),a n +1≥a n ,∴a n ≥a n +1≥a n ,∴a n =a n +1,另外:a 1≥a 2≥a 1,可得a 2=a 1=1,∴a n =1.∵2S n S n +1+a n b n +1=0,∴2S n S n +1+b n +1=0,∴2S n S n +1+S n +1﹣S n =0,∴1r1−1=2.∴数列{1}是等差数列,首项为1,公差为2.∴1=1+2(n ﹣1)=2n ﹣1,∴S n =12K1.∴S 2019=14037.故选:D .8.已知数列{a n }满足:a 1=1,a 2=13,11+22+⋅⋅⋅+=r1K1+6(n ≥2且n ∈N +),等比数列{b n }公比q =2,令c n =为奇数,为偶数,则数列{c n }的前n 项和S 2n =2n 2﹣n +4r1−43.【解答】解:因为a1=1,a2=13,11+22+⋅⋅⋅+=r1K1+6(n≥2且n∈N+),①可得n=2时,11+22=31+6,即b1+3b2=b3+6,由等比数列的{b n}的公比为q=2,即b1+6b1=4b1+6,解得b1=2,所以b n=2n,当n=3时,11+22+33=42+6,即2+3×4+83=3×16+6,解得a3=15,又11+22+⋯+K1K1=K2+6(n≥3,且n∈N+),②①﹣②可得,=r1K1−K2,即2=2r1K1−2K2,化为1+1K2=2K1,又11+13=6=22,所以{1}为等差数列,且公差d=12−11=2,则1=11+2(n﹣1)=2n﹣1,所以c n=2−1,为奇数2,为偶数,所以S2n=1+22+5+24+…+(4n﹣3)+22n=(1+5+…+4n﹣3)+(22+24+…+22n)=o1+4K3)2+4(1−4)1−4=2n2﹣n+4r1−43.故答案为:2n2﹣n+4r1−43.9.已知数列{a n}满足2a n a n+1+a n+3a n+1+2=0,其中1=−12,设=K+1,若b3为数列{b n}中唯一最小项,则实数λ的取值范围是(5,7)【解答】解:∵2a n a n+1+a n+3a n+1+2=0,∴a n+1=−(+2)2+3,∴r1+1=−(+2)2+3+1=+12+3,∴1r1+1=2+3+1=2+1+1,即1r1+1−1+1=2,所以数列{1+1}是公差为2的等差数列,∵11+1=2,∴1+1=2+(−1)×2=2n,∴b n=2n(n﹣λ),∴b n+1﹣b n=2(n+1)(n+1﹣λ)﹣2n(n﹣λ)=4n+2﹣2λ,因为b3为数列{b n}中唯一最小项,所以b1>b2>b3<b4<b5<…,∴当n=1时,b2﹣b1=6﹣2λ<0,得λ>3,当n=2时,b3﹣b2=10﹣2λ<0,得λ>5,当n≥3时,4n+2﹣2λ>0恒成立,即λ<2n+1,即有λ<7.所以5<λ<7.故答案为:(5,7).课后作业.数列求和1.已知各项均不相等的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比.(1)求数列{a n}的通项公式;(2)设T n为数列{1r1}的前n项和,若λT n≤a n+1对一切n∈N*恒成立,求实数λ的最大值.【解答】解:(1)各项均不相等的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比.设公差为d,由已知得:41+6=14(1+2p2=1(1+6p,,联立解得d=1或d=0(舍去),a1=2,故:a n=n+1.(2)由(1)得:1r1=1(r1)(r2)=1r1−1r2,所以:=12−13+13−14+⋯+1r1−1r2.=12−1r2,=2(r2).由于:λT n≤a n+1对一切n∈N*恒成立,所以:2(r2)≤+2,解得:≤2(r2)2+4)+8,由于:+4≥≥4故:2(+4)+8≥16,即:λ≤16.故λ的最大值为16.2.设等差数列{a n}的前n项和为S n,a3=6,a7=14.(1)求数列{a n}的通项公式及S n;(2)若_____,求数列{b n}的前n项和T n.在①b n=2•a n;②b n=2+r12;③b n=(﹣1)n•a n这三个条件中任选一个补充在第(2)问中,并对其求解.【解答】解:(1)设等差数列{a n}的公差为d,由a3=6,a7=14.得4d=a7﹣a3=14﹣6=8,解得d=2,所以a1=a3﹣2d=6﹣4=2,所以a n=2+2(n﹣1)=2n;S n=2(2+2n)=n2+n.(2)若选择条件①:由(1)可知a n=2n,则b n=2•a n=2n•4n,所以T n=b1+b2+…+b n=2×41+4×42++6×43…+(2n)•4n;4T n=2×42+4×43+6×44+…+(2n)•4n+1,两式相减得:﹣3T n=2×41+2×42+2×43+…+2×4n﹣2n•4n+1=2×4(1−4)1−4−2n•4n+1=−83(1﹣4n)﹣2n•4n+1,所以T n=89(1﹣4n)+23•4n+1;若选择条件②:由a n=2n,S n=n2+n,得b n=2+r12=82+8r4or1)=8+4or1)=8+4(1−1r1),所以T n=b1+b2+b3+…+b n=8n+4(1−12+12−13+⋯+1−1r1)=8n+4r1=82+12r1;若选择条件③:由a n=2n,得b n=(﹣1)n•a n=(﹣1)n•2n,所以T n=﹣2+4﹣6+8+…+(﹣1)n•2n,当n为偶数时,T n=(﹣2+4)+(﹣6+8)++[﹣2(n﹣1)+2n]=2×2=n,当n为奇数时,T n=(﹣2+4)+(﹣6+8)+…+[﹣2(n﹣2)+2(n﹣1)]﹣2n=K12×2n =﹣n﹣1,所以T n=,为奇数−−1,为偶数.3.已知数列{a n}的各项均为正数,前n项和为S n,且S n=(+1)2(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=2(−2)(r1),T n=b1+b2+…+b n,求T n.【解答】解:(1)S n=(+1)2(n∈N*),当n=1时,1=1(1+1)2,∴a1=1,当n≥2时,由S n=(+1)2,得2=2+①取n=n﹣1,得2K1=K12+K1②①﹣②得:2=2(−K1)=2−K12+−K1,∴(a n+a n﹣1)(a n﹣a n﹣1﹣1)=0,∵a n+a n﹣1>0,∴a n﹣a n﹣1=1,n≥2,∴数列{a n}是等差数列,则a n=n;(2)由S n=(+1)2,a n=n,∴=or1)2,则=2(−2)(r1)=(−2),∴=1−2+2(−2)2+⋯+K1(−2)K1+(−2),−2=1+2−2+⋯+K1(−2)K2+(−2)K1,两式作差得:∴−3=1+1−2+⋯+1(−2)K1−(−2)=1−(−12)1−(−12)−(−2)=2+(−12)K13−(−2),∴=3(−2)−2+(−12)K19=3r29(−2)−29.4.在数列{a n}中,a1=12,对任意的n∈N*,都有1(r1)r1=B+1B成立.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n;并求满足S n<1516时n的最大值.【解答】解:(I)∵a1=12,对任意的n∈N*,都有1(r1)r1=B+1B成立,∴1(r1)r1−1B=1.∴1B=2+(n﹣1)=n+1,∴a n=1or1).(II)a n=1or1)=1−1r1.∴数列{a n}的前n项和S n=(1−12)+(12−13)+⋯+(1−1r1)=1−1r1,S n<1516,即1−1r1<1516,解得n<15,因此满足S n<1516时n的最大值为14.。
第四节 数列求和 课件(共48张PPT)
-
1 n+3
)=
1 2
56-n+1 2-n+1 3. 答案:1256-n+1 2-n+1 3
考点1 分组转化法求和 [例1] (2020·焦作模拟)已知{an}为等差数列,且 a2=3,{an}前4项的和为16,数列{bn}满足b1=4,b4= 88,且数列{bn-an}为等比数列. (1)求数列{an}和{bn-an}的通项公式; (2
an=n(n1+k)型
[例2] (2020·中山七校联考)已知数列{an}为公差 不为0的等差数列,满足a1=5,且a2,a9,a30成等比数列.
(1)求{an}的通项公式; (2)若数列{bn}满足bn+1-bn=an(n∈N*),且b1=
3,求数列b1n的前n项和Tn.
1.裂项时常用的三种变形.
(1)n(n1+1)=n1-n+1 1.
(2)n(n1+2)=12n1-n+1 2.
(3)(2n-1)1(2n+1)=122n1-1-2n1+1.
(4)
1 n+
n+1=
n+1-
n.
2.应用裂项相消法时,应注意消项的规律具有对称 性,即前面剩第几项则后面剩倒数第几项.
3.在应用错位相减法求和时,若等比数列的公比为 参数,应分公比等于1和不等于1两种情况求解.
) B. 2 020-1
C. 2 021-1 D. 2 021+1
解析:由f(4)=2,可得4α=2,解得α=12,
则f(x)= x.
所以an=
1 f(n+1)+f(n)
=
1 n+1+
= n
n+1 -
n,
所以S2 020=a1+a2+a3+…+a2 020=( 2 - 1 )+ ( 3- 2)+( 4- 3)+…+( 2 021- 2 020)=
第三讲等比数列及数列求和讲义
第三讲 等比数列及数列求和一.知识提要:1.等比数列:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q 表示即{a n }成等比数列⇔nn a a 1+=q (n ∈N +,q ≠0)注意:等比数列的定义隐含了任一项a n≠0且q ≠02.等比数列的通项公式1:a n = a 1 q n-1(a 1 q ≠0);等比数列的通项公式2:a n =a m q n-m(a 1q ≠0)3.既是等差又是等比数列的数列:非零常数列.4.等比中项:如果在a 与b 中间插入一个数G,使a,G,b 成等比数列,那么称这个数G 为a 与b 的等比中项.即G=±ab ;a,G,b成等比数列⇔G 2=ab (a ·b ≠0)5.等比数列的性质:若m+n=p+q,则a n a m =a p a q6.等比数列的前n 项和公式:当q=1时,S n =na 1当q ≠1时,q q a S nn--=1)1(1 ① 或qqa a S n n --=11 ②;7.特殊数列求和:⑴1+2+3+…+n=2)1(+n n ;⑵1+3+5+…+(2n-1)=n 2;⑶6)12)(1(3212222++=++++n n n n ;⑷23333]2)1([321+=++++n n n8. S n 是等比数列{a n }的前n 项和①当q=-1且k 为偶数时, S n , S 2k -S k ,S 3k -S 2k 不是等比数列.②当q ≠-1或k 为奇数时, S n ,S 2k -S k ,S 3k -S 2k 仍成等比数列。
二.应用举例例 1.求下列各等比数列的通项公式:⑴a 1=-2,a 3=-8;⑵a 1=5,且2a n+1=-3a n例2.求数列1a =5, 且11+=+n n a a nn 的通项公式例3.已知{a n }、{b n }是项数相同的等比数列,求证{a n b n }是等比数列.例4. 已知:b 是a 与c 的等比中项,且a 、b 、c 同号,求证:3,3,3abc ca bc ab cb a ++++ 也成等比数列。
第十七讲数列求和解析版
第十七讲:数列求和【考点梳理】1、公式法:等差、等比数列直接用求和公式求解.2.分组求和:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.3.裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.4.错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解. 【典型题型讲解】考点一:公式法【典例例题】例1.已知等差数列{}n a 中,29a =,521a =. (1)求{}n a 的通项公式;(2)令2n a n b =,求数列{}n b 的前n 项和n S . 【解析】解:(1)设数列{}n a 的公差为d ,由题意得 19214a d a d +=⎧=⎨+⎩ 解得15a =,4d =,{}n a ∴的通项公式为41n a n =+.(2)由41n a n =+得412n n b +=,{}n b ∴是首项为512b =,公比42q =的等比数列.54442(21)32(21)2115n n n S -⨯-∴==-.【方法技巧与总结】根据数列的结构特征,确定数列的类型,符合等差或等比数列时,直接利用等差、等比数列相应公式求解. 【变式训练】1.已知公差为正数的等差数列{}n a ,2a 与8a 的等差中项为8,且3728a a =.(1)求{}n a 的通项公式;(2)从{}n a 中依次取出第1项、第3项、第9项、…、第13n -项,按照原来的顺序组成一个新数列{}n b ,求数列{}n b 的前n 项和n S .【解析】(1)设等差数列{}n a 的公差为()0d d >,2a 与8a 的等差中项为8,285228a a a ∴+==⨯,解得:58a =;()()()()375522828228a a a d a d d d =-+=-+=,3d ∴=, ()()5583537n a a n d n n ∴=+-=+-=-;(2)由(1)得:1337n na -=-,即37n nb =-,()()12313133333333777132n n n nn S n n n +---∴=+++⋅⋅⋅++-=-=--.考点二:分组求和【典例例题】例1.(2022·广东惠州·二模)已知正项等比数列{}n a 的前n 项和为n S ,12a =,且2a ,32a +,4a 成等差数列.(1)求数列{}n a 的通项公式; (2)设数列{}n b 满足21log n n nb a a =+,求数列{}n b 的前n 项和n T 【答案】.(1)2nn a =;(2)22122n n n n T ++=-.(1)设{}n a 的公比为q (0q >),因为12a =,且2a ,32a +,4a 成等差数列,所以2432(2)a a a +=+,即32222(22)q q q +=+,解得2q ,所以2n n a =; (2)由(1)12n n b n =+, n T 2111()(12)222nn =+++++++211(1)(1)2122122212n n n n n n -+++=+=--. 【方法技巧与总结】根据数列的通项公式,重新分组找可求和数列 【变式训练】1.(2022·广东韶关·二模)已知数列{}n a 前n 项和为n S ,()*111041n n n n a a a a S n +=≠⋅=-∈N ,,. (1)证明:24;n n a a +-=(2)设 ()12nn n n c a =-⋅+, 求数列{}n c 的前2n 项和2n T .【答案】.(1)证明见解析(2)212222n n T n +=+-(1)解:由题可知141n n n a a S +⋅=-,当1n =时,解得23a =,所以35a = 又因为12141n n n a a S +++⋅=-,将其与141n n n a a S +⋅=-两式相减得:()1214n n n n a a a a +++-=, 因为0n a ≠,有24n n a a +-=. 当1n =时,上式也成立, 综上,24n n a a +-=.(2)解:当n 为大于1的奇数时,有314a a -=,534a a -=,754a a -=,…,24n n a a --= 累加得1114212n n a a n +⎛⎫=+-⨯=- ⎪⎝⎭又11a =满足上式,所以n 为奇数时21n a n =-;当n 为大于2的偶数时,有424a a -=,644a a -=,864a a -=,…,24n n a a --= 累加得214212n n a a n ⎛⎫=+-⨯=- ⎪⎝⎭,23a =满足上式,又23a =,综上可知()*21n a n n =-∈N()()()121212n nn n n n c a n =-⋅+=--+21232n n T c c c c =++++()()()1232212135743412222222n n n T n n n +=-+-+---+-+++++=+-⎡⎤⎣⎦212222n n T n +=+-.2.(2022·广东·二模)已知递增等比数列{}n a 的前n 项和为n S ,且满足2134a a a =,314S =.(1)求数列{}n a 的通项公式.(2)若数列{}n b 满足()()*,3,313k n a n k b k N k k n k=⎧=∈⎨-<<⎩,求数列{}n b 的前15项和. 【答案】(1)2n n a = (2)92(1)设{}n a 的公比为q ,则由2134a a a =,得21114a q a a q =⋅.整理得14a q =.又314S =,得()21114a q q ++=.联立得()1214114a q a q q =⎧⎪⎨++=⎪⎩,消去1a ,得22520q q -+=.解得2q 或12q =.又因为{}n a 为递增等比数列,所以2q,12a =.所以112n n n a a q -==.(2)(方法一)当1k =时,()1*,31,03n a n b n N n =⎧=∈⎨<<⎩,则121b b ==,312b a ==,同理,列举得452b b ==,2622b a ==,783b b ==,3932b a ==,10114b b ==,41242b a ==,13145b b ==,51552b a ==.记{}n b 的前n项和为n T ,则151********1122334455T b b b a a a a a =+++=++++++++++++++()()1234521234522222=⨯+++++++++()()5212155292212⨯-+⨯=⨯+=-.所以数列{}nb 的前15项和为92.(方法二)由()()*,3,313k n a n k b k N k k n k =⎧=∈⎨-<<⎩,得()*,32,31,3n k k n k b k n k k N a n k =-⎧⎪==-∈⎨⎪=⎩,记{}n b 的前n 项和为n T ,则151********1122334455T b b b a a a a a =+++=++++++++++++++()()1234521234522222=⨯+++++++++()()5212155292212⨯-+⨯=⨯+=-.所以数列{}nb 的前15项和为92. 3.已知数列{}n a 中,11a =,12nn n a a +=,令2n n b a =.(1)求数列{}n b 的通项公式;(2)若n n c n =为奇数为偶数,求数列{}n c 的前14项和.【解析】(1)当1n =时,122a a =,又11a =,得22a =, 由12nn n a a +=①得1122n n n a a +++=②,①②两式相除可得22n na a +=,则12222n n n nb a b a ++==,且122b a ==, 所以数列{}n b 是以2为首项,2为公比的等比数列,故2n n b =.(2)当n为奇数时,122n n c -==;当nn c ==所以数列{}n c 的前14项和为()()121413132414c c c c c c c c c ++⋅⋅⋅+=++⋅⋅⋅++++⋅⋅⋅+ ()261222⎡⎤=+++⋅⋅⋅++++⋅⋅⋅+⎣⎦7214=-+131=考点三:裂项相消求和【典例例题】例1.记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式; (2)证明:121112na a a +++<. 【解析】(1)∵11a =,∴111S a ==,∴111S a =, 又∵n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列,∴()121133n n S n n a +=+-=,∴()23n n n a S +=, ∴当2n ≥时,()1113n n n a S --+=,∴()()112133n n n n n n a n a a S S --++=-=-,整理得:()()111n n n a n a --=+, 即111n n a n a n -+=-, ∴31211221n n n n n a a a a a a a a a a ---=⨯⨯⨯⋯⨯⨯ ()1341112212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--, 显然对于1n =也成立,∴{}n a 的通项公式()12n n n a +=; (2)()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭∴12111na a a +++1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 例2.记n S 为数列{}n a 的前n 项和,已知11a =,且13n n S a +=-. (1)求数列{}n a 的通项公式;(2)已知数列{}n c 满足________,记n T 为数列{}n c 的前n 项和,证明:2n T <. 从①211(1)(2)n n n n c a a a +++--=②221log n n n a c a ++=两个条件中任选一个,补充在第(2)问中的横线上并作答.【解析】(1)13n n S a +=-①,当1n =时,123a a =-,24a ∴=;当2n ≥时,13n n S a -=-② ①-②得,即12n n a a += 又2142a a =≠, ∴数列{}n a 是从第2项起的等比数列,即当2n ≥时,2222n nn a a -=⋅=.1,1,2, 2.n n n a n =⎧∴=⎨≥⎩.(2)若选择①:()()()()()()2211111122211212212121222121n n n n n n n n n n n n a c a a ++++++++⋅⎛⎫====- ⎪--------⎝⎭, 2231111111121212212121212121n n n n T ++⎛⎫⎛⎫∴=-+-++-=-< ⎪ ⎪------⎝⎭⎝⎭. 若选择②122n n n c ++=,则23134122222nn n n n T +++=++++③,34121341222222n n n n n T ++++=++++④, ③-④得341212131112311212422224422n n n n n n n T ++-+++⎛⎫⎛⎫=++++-=+-- ⎪ ⎪⎝⎭⎝⎭,14222n n n T ++∴=-<. 【方法技巧与总结】 1.等差型 (1)111(1)1=-++n n n n(2)1111()()=-++n n k k n n k (3)21111()4122121=---+n n n (4)1111(1)(2)2(1)(1)(2)⎡⎤=-⎢⎥+++++⎣⎦n n n n n n n 2.指数型(1)11112(21)(21)11(21)(21)(21)(21)2121++++---==-------n n n n n n n n n (2)113111()(31)(31)23131++=-----n n n n n(3)122(1)21111(1)2(1)2122(1)2-++-⎛⎫==-⋅=- ⎪+⋅+⋅+⋅+⋅⎝⎭n n n n nn n n n n n n n n n n (4)1111(41)31911333(2)2(2)22-+--⎛⎫⎡⎤-⋅=-⋅=- ⎪⎢⎥+++⎣⎦⎝⎭n n n n n n n n n n n(5)11(21)(1)(1)(1)(1)++⋅---=-++n n n n n n n n 【变式训练】1.已知数列{}n a 是公差不为零的等差数列,2414a a +=,且1a ,2a ,6a 成等比数列. (1)求{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n S . 【解析】(1)等差数列{}n a 中,324214a a a =+=,解得37a =,因1a ,2a ,6a 成等比数列,即2216a a a =,设{}n a 的公差为d ,于是得()()()277273d d d -=-+,整理得230d d -=,而0d ≠,解得3d =,所以()3332n a a n d n =+-=-. (2)由(1)知,()()1111()323133231n b n n n n ==--+-+,所以111111[(1)()()]34473231n S n n =-+-+⋅⋅⋅+--+11(1)33131nn n =-=++. 2.记n S 是公差不为零的等差数列{}n a 的前n 项和,若36S =,3a 是1a 和9a 的等比中项. (1)求数列{}n a 的通项公式;(2)记121n n n n b a a a ++=⋅⋅,求数列{}n b 的前20项和.【解析】(1)由题意知2319a a a =⋅,设等差数列{}n a 的公差为d ,则()()211182a a d a d +=+,因为0d ≠,解得1a d =又31336S a d =+=,可得11a d ==,所以数列{}n a 是以1为首项和公差为1的等差数列, 所以()11n a a n d n =+-=,*N n ∈(2)由(1)可知()()()()()1111122112n b n n n n n n n ⎛⎫==- ⎪ ⎪+++++⎝⎭, 设数列{}n b 的前n 和为n T ,则()()()1111111212232334112n T n n n n ⎛⎫=-+-+⋅⋅⋅+- ⎪ ⎪⨯⨯⨯⨯+++⎝⎭()()1112212n n ⎛⎫=- ⎪ ⎪++⎝⎭, 所以20111115222122462T ⎛⎫=⨯-=⎪⨯⎝⎭ 所以数列{}n b 的前20和为1154623.已知正项数列{n a }中,11a =,n S 是其前n项和,且满足)211n S S +=(1)求数列{n a }的通项公式: (2)已知数列{n b }满足()1111n n n n n a b a a +++=-,设数列{n b }的前n 项和为n T ,求n T 的最小值. 【解析】(1)正项数列{n a },11a =,满足)211n S S +=1,所以数列是以1为首项1为公差的等差数列,1(1)1n n =+-⨯=,所以2n S n =,当2n ≥时,221(1)21(N*)n n n a S S n n n n -=-=--=-∈,当1n =时也成立, 所以21(N*)n a n n =-∈. (2)因为()1111n n n n n a b a a +++=- ()()()()1112111212122121n n nn n n n ++-⎛⎫=-=+ ⎪-+-+⎝⎭所以1111111111(1)()(1)()1(1)23352121221n n n T n n n ++⎡⎤⎡⎤=+-+++-+=+-⎢⎥⎢⎥-++⎣⎦⎣⎦, 所以当n 为奇数时,11112212n T n ==++()>; 当n 为偶数时,111221n T n ==-+(), 由{n T }递增,得225n T T ≥=, 所以n T 的最小值为25.4.已知数列{}n a 的首项为正数,其前n 项和n S 满足82343n n n nS a S a =--.(1)求实数λ的值,使得{}2n S λ+是等比数列;(2)设13n n n n b S S +=,求数列{}2n b 的前n 项和.【解析】(1)当1n =时,111823a a a =-,11S a =,解得22118S a ==; 当2n ≥时,把1n n n a S S -=-代入题设条件得:22198n n S S -=+,即()221191n n S S -+=+,很显然}{21n S +是首项为8+1=9,公比为9的等比数列,∴1λ=;(2)由(1)知{}21n S +是首项为21190S +=≠,公比9q =的等比数列,所以291nnS =-,()()()()()()1211191919111188919919199111n nn nn n n n n n b ++++---⎛⎫==⨯=-⎪---⎝---⎭. 故数列{}2n b 的前n 项和为:2221122334112111111111111891919191919191918891n n n n b b b ++⎛⎫⎛⎫++⋅⋅⋅+=-+-+-++-=- ⎪ ⎪---------⎝⎭⎝⎭.5.已知数列{}n a 的前n 项和n S 满足()22N n n S a n ++=∈.(1)证明:数列{}2n S +是等比数列;(2)设数列()()1211n n n a a +⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭的前n 项和为n T ,求证:213n T ≤<.【解析】(1)证明:当1n =时,1122S a += ∴112S a ==当2n ≥时,()122n n n S S S -+=- 122n n S S -=+,()1222n n S S -+=+∴1222n n S S -+=+∴数列{}2n S +是以2为公比,首项124S +=的等比数列(2)由(1)知1242n n S -+=⨯,122n n S +=-,代入22n n S a +=得2n n a = ()()1121121212121n n n n n ++=-----∴2231111111212121212121n n n T +⎛⎫⎛⎫⎛⎫=-+-+⋯+-⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭111121n +=-<-由1n ≥,124n +≥,1213n +-≥111213n +≤-,所以111213n +-≥-- ∴1121213n +-≥- 综上所述213n T ≤<6.已知数列{}n a 的前n 项和为n S ,且满足12a =,1436n n n a a S ++=+. (1)求n a ;(2)求数列()21n n n n a ⎧⎫+⎪⎪⎨⎬+⎪⎪⎩⎭的前n 项和.【解析】(1)当1n =时,211436a a S +=+, ∵12a =,∴24a =.当2n ≥时,由1436n n n a a S ++=+,得11436n n n a a S --+=+, 两式相减得()1143n n n n n a a a a a +--+-= 即114n n a a +-=∴数列{}21n a -,{}2n a 均为公比为4的等比数列 ∴12121242n n n a ---=⋅=,122442n n n a -=⋅=∴2n n a =(2)∵()()()122112112212n n n n n n n n a n n n n +⎡⎤++==-⎢⎥++⋅+⋅⎢⎥⎣⎦∴数列()21n n n n a ⎧⎫+⎪⎪⎨⎬+⎪⎪⎩⎭的前n 项和()12231111111212222232212n n n T n n +⎡⎤⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+-⎢⎥ ⎪ ⎪ ⎪ ⎪⋅⋅⋅⋅⋅+⋅⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦()()1111121121212n n n n +⎡⎤=-=-⎢⎥⋅+⋅+⋅⎢⎥⎣⎦7.已知各项均不相等的等差数列{}n a 的前4项和为10,且124,,a a a 是等比数列{}n b 的前3项. (1)求,n n a b ; (2)设22121n n n n n c b a a ++=+⋅,求{}n c 的前n 项和n S . 【解析】(1)设等差数列{}n a 的公差为d ,0d ≠,则12214434102a d a a a ⨯⎧+=⎪⎨⎪=⎩,得()()121112353a d a d a a d +=⎧⎪⎨+=⋅+⎪⎩,得121235a d d a d +=⎧⎨=⎩, 因为0d ≠,所以11235a d d a +=⎧⎨=⎩,解得11a d ==,所以1(1)n a a n d n =+-=,所以111b a ==,22112b a ==+=,所以等比数列{}n b 的公比212a q a ==, 所以12n n b -=.(2)122212(1)n n n c n n -+=+⋅+122112(1)n n n -=+-+,所以2122222211111112221223(1)n n S n n -=+++++-+-++-+ 2121112(1)n n -=+--+212(1)nn =-+.8.等比数列{}n a 中,首项11a =,前n 项和为n S ,且满足()1344a a S +=. (1)求数列{}n a 的通项公式;(2)若31(1)log +=+⋅n n b n a ,求数列242n n b ⎧⎫+⎨⎬⎩⎭的前n 项和n T .【解析】(1)设数列{}n a 公比为q ,由11a =,()1344a a S +=,可得32330q q q -+-=,化简得()()2130q q +-=,即3q =,所以13-=n n a .(2)由(1)得3(1)log 3(1)n n b n n n =+=+,所以222224242112(1)(1)n n n b n n n n ⎡⎤++==-⎢⎥++⎣⎦所以22222111112122223(1)n T n n ⎡⎤⎛⎫⎛⎫=-+-++- ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎣⎦()()22222211111221222311n n n ⎡⎤=-+-++-=-⎢⎥++⎢⎥⎣⎦.. 考点四:错位相减【典例例题】例1.已知数列{}n a 的前n 项和为n S ,21n n S a =-. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足2log n n n a b a ⋅=,求数列{}n b 的前n 项和n T .【解析】(1)因为21n n S a =-,所以()*11212,n n S a n n --=-≥∈N ,所以()*11222,n n n n n a S S a a n n --=-=-≥∈N ,所以()*122,n n a a n n -=≥∈N ,当1n =时,11121a S a ==-,11a =,所以数列{}n a 是首项11a =,公比2q 的等比数列,所以12n n a ;(2)由2log n n n a b a ⋅=得12211log log 2122n n n n n n a n b a ----===,所以2101211222nn n T --=++++,231101221222222n n n n n T ---=+++++, 两式相减,得211111122222n n n n T --=+++-,11111122112212n n n n n -⎛⎫- ⎪-+⎝⎭=-=--,所以1122n n n T -+=-.【方法技巧与总结】【变式训练】1.若数列{}n a 满足221n n n a a a ++=,13a =,23243a a =. (1)求{}n a 的通项公式;(2)若3log n n b a =,求数列{}n n a b 的前n 项和n S .【解析】(1)因为数列{}n a 满足221n n n a a a ++=,13a =,23243a a =,所以0n a ≠.所以数列{}n a 为等比数列,设其公比为q (0q ≠).所以22323113243a a a q a q q =⨯=⨯=,解得:3q =.所以113n nn a a q -==.即{}n a 的通项公式为3nn a =.(2)由(1)可知:33l 3log og nn n b a n ===,所以3n n n a b n =⋅,所以1122n n n S a b a b a b =+++1213233n n =⋅+⋅++⋅ ①3⨯①得:231313233n n n S +=⋅+⋅++⋅ ②①-②得:()123111313131333n n n S n +-⋅=⋅+⋅+++⋅-⋅()1133331133nn n n S +-⋅=-⋅-- 所以()132134n n S n ++-=2.已知等差数列{}n a 的前n 项和为n S ,数列{}n b 为等比数列,且111a b ==,32312S b ==. (1)求数列{}n a ,{}n b 的通项公式;(2)若1n n n c a b +=,求数列{}n c 的前n 项和n T .【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q , 由题意得:13312a d +=,解得:3d =, 所以()13132n a n n =+-=-, 由2312b =得:24b =,所以214a q a ==, 所以14n n b -=(2)()1324nn n n c a b n +==-⋅,则()2344474324n n T n =+⨯+⨯++-①, ()2341444474324n n T n +=+⨯+⨯++-②,两式相减得:()23413434343434324n n n T n +-=+⨯+⨯+⨯++⨯--()()111164433241233414n n n n n +++-=+⨯--=-+--,所以()1414n n T n +=+-3.已知数列{n a }为等差数列,23a =,1453a a =,数列{n b }的前n 项和为n S ,且满足231n n S b =-. (1)求{n a }和{n b }的通项公式;(2)若n n n c a b =⋅,数列{n c }的前n 项和为n T ,且()31nn n T n m -⋅-<⋅对n *∈N 恒成立,求实数m 的取值范围.【解析】(1)解:等差数列{n a }中,设公差为d ,则211451133313312a a d a a a d a d =+=⎧⎧⇒⎨⎨=+=+⎩⎩ ()111312122n a d a a n n N a d d ++==⎧⎧⇒⇒⇒=-∈⎨⎨==⎩⎩数列{n b }中的前n 项和为n S ,且231n n S b =-① 当1n =时,11b =当2n ≥时,11231n n S b --=-② ②-①得:132)(n n b b n -=≥故数列{n b }是以1为首项,3为公比的等比数列,所以()13n n b n N -+=∈. (2)解:数列{n c }中,()1213n n n n c a b n -=⋅=-⋅.则()()01211333233213n n n T n n --=⨯+⨯++-⋅+-⋅ 所以()()12131333233213n n n T n n -=⨯+⨯++-⋅+-⋅故()()()11110221233...321312333n n n n T n ---=++++--⋅=-++++()()()1321312213223213nnn n n n n ---⋅=-+⋅--⋅=-⋅--所以()131nn T n =-⋅+∵()1313nn n n m T n -⋅>-⋅=-对n *∈N 恒成立.当n 为奇数时,()()1min 1133131312nn n n m m m m -⋅=->-⇒<-⇒<-=-=,当n 为偶数时,()()22max 11313138n n m m m -⋅=>-⇒>-=-=-综上:实数m 的取值范围为()82m ∈-,. 【巩固练习】 一、单选题1.数列()(){}121nn --的前2022项和等于( ) A .1010- B .2022 C .2018- D .2019【答案】B【解析】解:设数列()(){}121nn --的前2022项和为2022S , 当n 为奇数时()()()12121nn n --=--, 当n 为偶数时()()12121n n n --=-, 所以()2022135791140414043S =-+-+-+++-+()()()()135791*********=-++-++-+++-+⎡⎤⎣⎦210112022=⨯=.故选:B2.已知数列{}n a 的通项公式为cos 1),(n n a n n S π=-为数列的前n 项和,2021S =( ) A .1008 B .1009 C .1010 D .1011【答案】D【解析】解:因为当n 为奇数时cos 11()n π-=,n 为偶数时cos 1)1(n π-=-, 所以()1()cos 11n n π--=-,所以()1cos 1)1(n n a n n n π-=-=⨯-,所以20211234202020211101020211011S =-+-+-+=-⨯+=;故选:D3.已知首项为1的等差数列{}n a 的前n 项和为n S ,满足202220211202220212S S -=,则202011i iS ==∑( ) A .20202021B .40402021C .20212022D .40422022【答案】B 【解析】由202220211202220212S S -=可得:n S n ⎧⎫⎨⎬⎩⎭为等差数列,公差为12,首项为11111S a ==,所以()11111222n S n n n =+-=+, 则21122n S n n =+,()1211211n S n n n n ⎛⎫==- ⎪++⎝⎭,所以202011111111404021212232020202120212021i i S =⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪⎝⎭⎝⎭∑故选:B4.已知数列{}n a 满足11242n n a -=++++,则数列12n n n a a +⎧⎫⎨⎬⎩⎭的前5项和为( )A .131B .163C .3031D .6263【答案】D【解析】因为111124221,21n n n n n a a -++=++++=-=-,所以()()()()()()1111121212211212121212121n n n n n n n n n n n n a a +++++---===-------. 所以12n n n a a +⎧⎫⎨⎬⎩⎭前5项和为1223561611111111162121212121212121216363⎛⎫⎛⎫⎛⎫-+-++-=-=-= ⎪ ⎪ ⎪--------⎝⎭⎝⎭⎝⎭故选:D 二、多选题5.(2022·河北·模拟预测)将数列{32}n -与{}2n的公共项从小到大排列得到数列{}n a ,则下列说法正确的有( )A .数列{}n a 为等差数列B .数列{}n a 为等比数列C .14n n a +=D .数列{}(32)n n a -的前n 项和为1(1)44n n +-+【答案】BD【解析】数列{32}n -中的项为1,4,7,10,13,16,19,22,25,28,31, 34,37,40,43,46,49,52,55,58,61,64,67,…,数列{}2n中的项为2,4,8,16,32,64,128,…,∴数列{}n a 是首项为4,公比为4的等比数列,∴4nn a =;∴(32)(3)4=2--⋅nn n a n ,记数列{}(32)n n a -的前n 项和为n T ,则211444(35)4(32)4-=⨯+⨯++-⨯+-⨯n n n T n n , 23141444(35)4(32)4+=⨯+⨯++-⨯+-⨯n n n T n n ,两式相减: 231343(444)(32)4+-=++++--⨯n n n T n2114(14)43(32)414-+-=+⨯--⨯-n n n114416(32)4++=+---⨯n n n 1(33)412+=--⨯-n n ,∴14(1)4+=+-⨯n n T n .故选:BD 三、填空题6.(2022·四川省内江市第六中学模拟预测(理))已知数列{}n a 满足12a =,24a =,2(1)3+-=-+nn n a a ,则数列{}n a 的前20项和为___________. 【答案】330【解析】由题意,当n 为奇数时,2(1)32n n a a +-=-+=, 所以数列{}21n a -是公差为2,首项为2的等差数列, 所以2122(1)2n n a n -=+-=, 当n 为偶数时,2134n n a a +-=+=,所以数列{}2n a 是公差为4,首项为4的等差数列, 所以244(1)4n n n a =+-=,()()20122013192420......S a a a a a a a a a =+++=+++++++10(220)10(440)(2420)(4840)33022++=+++++++=+=, 故答案为:3307.设数列{}n a 的前n 项和为n S ,已知1222,(1)2n n n a a a -+=+-=,则60S =_________.【答案】960【解析】由12(1)2n n n a a -++-=,当n 为奇数时,有22n n a a ++=;当n 为偶数时,22n n a a +-=, ∴数列{}n a 的偶数项构成以2为首项,以2为公差的等差数列, 则()()601357575924685860S a a a a a a a a a a a a =+++++++++++++3029152********⨯=⨯+⨯+⨯=, 故答案为:960. 四、解答题8.已知数列{}n a ,{}n b 满足10a =,13b =,且112136n n n a a b --=+,111536n n n b a b --=+.(1)若{}n n a b λ+为等比数列,求λ值;(2)在(1)的条件下,求数列{}n a 的前n 项和n S . 【解析】(1)由题1121536n n n n a b a b λλλ--+++=+ ∵{}n n a b λ+为等比数列,设公比为q 则()11n n n n a b a b q λλ--+=+ ∴21356q q λλλ+⎧=⎪⎪⎨+⎪=⎪⎩,∴21536λλλ++=,即220λλ+-=,解得2λ=-或1λ= 当2λ=-时,12q =,即()111222n n n n a b a b ---+=-+ 又1123a b -+=,∴{}2n n a b -+成以3为首项,以12为公比的等比数列 当1λ=时,1q =即11n n n n a b a b --+=+ 又113a b +=,∴{}n n a b +成以3为首项,以1为公比的等比数列 综上:2λ=-或1λ=(2)由(1)得11232n n n a b -⎛⎫-+=⋅ ⎪⎝⎭,3n n a b +=∴1112n n a -⎛⎫=- ⎪⎝⎭∴0121111111112222n n S -⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1111221212nn n n -⎛⎫- ⎪⎛⎫⎝⎭=-=+- ⎪⎝⎭-9.已知各项都为正数的数列{}n a 满足1+32n n n a a +=⋅,11a = . (1)若2n n n b a =-,求证:{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .【解析】(1)因为1+32nn n a a +=⋅所以()111123222n n n n n n n n n b a a a b ++++=-=-+⋅-=--=-,因为1=1a ,所以1121b a =-=- 所以10n n b b +=-≠ 所以11n nb b +=- 所以{}n b 是首项和公比均为1-的等比数列. (2)由(1)易得:(1)n n b =-因为()2-1 =nn n n b a =-所以2(1)n nn a =+-所以()()()()1232=1111222nn n S -+-+-+⋅⋅⋅+-+++⋅⋅⋅+ ()()()111212212nn ⎡⎤----⎣⎦=+-1(1)5222+-=+-n n10.已知数列{}n a 为公差不为零的等差数列,其前n 项和为n S ,1712a a +=,525S =. (1)求数列{}n a 的通项公式;(2)令[]2log n n c a =,其中[]x 表示不超过x 的最大整数,求1220c c c +++的值.【解析】(1)设数列{}n a 为公差为d ,1712a a +=,525S =,∴()111612545252a a d a d ⎧++=⎪⎨⨯+=⎪⎩ ∴13,1a d ==∴数列{}n a 的通项公式为2n a n =+ (2)2n a n =+,则13a =,20162232a <=<,当()22log log 21n n c a n ⎡⎤⎡⎤⎣⎦⎣⎦==+=,则224n ≤+<,可得1n =, 当()22log log 22n n c a n ⎡⎤⎡⎤⎣⎦⎣⎦==+=,则428n ≤+<,可得26n ≤<,当()22log log 23n n c a n ⎡⎤⎡⎤⎣⎦⎣⎦==+=,则8216n ≤+<,可得614n ≤<, 当()22log log 24n n c a n ⎡⎤⎡⎤⎣⎦⎣⎦==+=,则16232n ≤+<,可得1431n ≤<,此时1420n ≤≤.所以,1,12,263,6144,1420n n n c n n =⎧⎪≤<⎪=⎨≤<⎪⎪≤≤⎩, 故1220124384761c c c +++=+⨯+⨯+⨯= 11.已知正项数列{}n a 的前n 项和n S 满足:12(N )n n S a a n +=-∈,且123+1,a a a ,成等差数列.(1)求数列{}n a 的通项公式;(2)令()()()2221N log log n n n b n a a ++=∈⋅,求证:数列{}n b 的前n 项和34n T <. 【解析】(1)由题意:()12,n n S a a n N +=-∈,()-1-112,2,N n n S a a n n +∴=-≥∈ 两式相减得到-1=2(2,)n n a a n n N +≥∈, 又0n a >,{}n a ∴是首项为1a ,公比为2的等比数列, 再由123+1,a a a ,成等差数列得,得()2132+1a a a =+, 即()11122+14a a a =+,则1=2a , {}n a ∴的通项公式为()2N n n a n +=∈.(2)由题意知,22211111()(2)22log 2log 2n n n b n n n n +===-++⋅ 1111111111(1)232435112n T n n n n ∴=-+-+-++-+--++ 11113111122124212n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭3N ,4n n T +∈∴< 12.已知数列{}n a 是等差数列,{}n b 是等比数列,且22b =,34b =,11a b =,851a b +=.(1)求数列{}n a 、{}n b 的通项公式;(2)设11n n n a c b ++=,数列{}n c 的前n 项和为n S ,求n S .【解析】(1)依题意,等比数列{}n b 的公比322b q b ==,则有2122n n n b b q --==,因此,111a b ==, 由851a b +=得85115a b =-=,等差数列{}n a 的公差81281a a d -==-,1(1)21n a a n d n =+-=-, 所以数列{}n a 、{}n b 的通项公式分别为:21n a n =-,12n n b -=.(2)由(1)知,111222n n n n n a n n c b -++===, 则23123412222n n n S -=+++++, 于是得23111231222222n n n n n S --=+++++, 两式相减得:23111()11112212122222211222n n n n n n n n S n --+=+++++-=-=--, 所以1242n n n S -+=-.。
2023年高考数学一轮复习讲义——数列求和
§6.5 数列求和 考试要求 1.熟练掌握等差、等比数列的前n 项和公式.2.掌握非等差数列、非等比数列求和的几种常见方法. 知识梳理数列求和的几种常用方法1.公式法直接利用等差数列、等比数列的前n 项和公式求和.(1)等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . (2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1(1-q n )1-q ,q ≠1. 2.分组求和法与并项求和法(1)若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.(2)形如a n =(-1)n ·f (n )类型,常采用两项合并求解.3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.4.裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(2)常见的裂项技巧①1n (n +1)=1n -1n +1. ②1n (n +2)=12⎝⎛⎭⎫1n -1n +2. ③1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1. ④1n +n +1=n +1-n .思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( √ ) (2)当n ≥2时,1n 2-1=12⎝ ⎛⎭⎪⎫1n -1-1n +1.( √ ) (3)求S n =a +2a 2+3a 3+…+na n 时,只要把上式等号两边同时乘a 即可根据错位相减法求得.( × )(4)求数列⎩⎨⎧⎭⎬⎫12n +2n +3的前n 项和可用分组转化法求和.( √ ) 教材改编题1.数列{a n }的通项公式是a n =(-1)n (2n -1),则该数列的前100项之和为( )A .-200B .-100C .200D .100答案 D解析 S 100=(-1+3)+(-5+7)+…+(-197+199)=2×50=100.2.等差数列{a n }中,已知公差d =12,且a 1+a 3+…+a 99=50,则a 2+a 4+…+a 100等于( ) A .50B .75C .100D .125 答案 B解析 a 2+a 4+…+a 100=(a 1+d )+(a 3+d )+…+(a 99+d )=(a 1+a 3+…+a 99)+50d=50+25=75.3.在数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0222 023,则项数n =________. 答案 2 022解析 a n =1n (n +1)=1n -1n +1, ∴S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=2 0222 023, ∴n =2 022.题型一 分组求和与并项求和例1 (2022·衡水质检)已知各项都不相等的等差数列{a n },a 6=6,又a 1,a 2,a 4成等比数列.(1)求数列{a n }的通项公式;(2)设b n =2n a +(-1)n a n ,求数列{b n }的前2n 项和T 2n .解 (1)∵{a n }为各项都不相等的等差数列,a 6=6,且a 1,a 2,a 4成等比数列.∴⎩⎪⎨⎪⎧ a 6=a 1+5d =6,(a 1+d )2=a 1(a 1+3d ),d ≠0,解得a 1=1,d =1,∴数列{a n }的通项公式a n =1+(n -1)×1=n .(2)由(1)知,b n =2n +(-1)n n ,记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ).记A =21+22+…+22n ,B =-1+2-3+4-…+2n ,则A =2(1-22n )1-2=22n +1-2, B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.延伸探究 在本例(2)中,如何求数列{b n }的前n 项和T n ?解 由本例(2)知b n =2n +(-1)n n .当n 为偶数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -1)+n ]=2-2n +11-2+n 2=2n +1+n 2-2;当n 为奇数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -2)+(n -1)-n ]=2n +1-2+n -12-n =2n +1-n 2-52. 所以T n =⎩⎨⎧ 2n +1+n 2-2,n 为偶数,2n +1-n 2-52,n 为奇数.教师备选(2020·新高考全国Ⅰ)已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8.(1)求{a n }的通项公式;(2)记b m 为{a n }在区间(0,m ](m ∈N *)中的项的个数,求数列{b m }的前100项和S 100. 解 (1)由于数列{a n }是公比大于1的等比数列,设首项为a 1,公比为q ,依题意有⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 1q 2=8, 解得⎩⎪⎨⎪⎧ a 1=32,q =12(舍)或⎩⎪⎨⎪⎧a 1=2,q =2, 所以{a n }的通项公式为a n =2n ,n ∈N *.(2)由于21=2,22=4,23=8,24=16,25=32,26=64,27=128,所以b 1对应的区间为(0,1],则b 1=0;b 2,b 3对应的区间分别为(0,2],(0,3],则b 2=b 3=1,即有2个1;b 4,b 5,b 6,b 7对应的区间分别为(0,4],(0,5],(0,6],(0,7],则b 4=b 5=b 6=b 7=2,即有22个2;b 8,b 9,…,b 15对应的区间分别为(0,8],(0,9],…,(0,15],则b 8=b 9=…=b 15=3, 即有23个3;b 16,b 17,…,b 31对应的区间分别为(0,16],(0,17],…,(0,31],则b 16=b 17=…=b 31=4,即有24个4;b 32,b 33,…,b 63对应的区间分别为(0,32],(0,33],…,(0,63],则b 32=b 33=…=b 63=5,即有25个5;b 64,b 65,…,b 100对应的区间分别为(0,64],(0,65],…,(0,100],则b 64=b 65=…=b 100=6,即有37个6.所以S 100=1×2+2×22+3×23+4×24+5×25+6×37=480.思维升华 (1)若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.(2)若数列{c n }的通项公式为c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{c n }的前n 项和.跟踪训练1 (2022·重庆质检)已知等差数列{a n }的前n 项和为S n ,a 5=9,S 5=25.(1)求数列{a n }的通项公式及S n ;(2)设b n =(-1)n S n ,求数列{b n }的前n 项和T n .解 (1)设数列{a n }的公差为d ,由S 5=5a 3=25得a 3=a 1+2d =5,又a 5=9=a 1+4d ,所以d =2,a 1=1,所以a n =2n -1,S n =n (1+2n -1)2=n 2. (2)结合(1)知b n =(-1)n n 2,当n 为偶数时,T n =(b 1+b 2)+(b 3+b 4)+(b 5+b 6)+…+(b n -1+b n )=(-12+22)+(-32+42)+(-52+62)+…+[-(n -1)2+n 2]=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)+…+[n -(n -1)][n +(n -1)]=1+2+3+…+n =n (n +1)2. 当n 为奇数时,n -1为偶数,T n =T n -1+(-1)n ·n 2=(n -1)n 2-n 2=-n (n +1)2. 综上可知,T n =(-1)n n (n +1)2. 题型二 错位相减法求和例2 (10分)(2021·全国乙卷)设{a n }是首项为1的等比数列,数列{b n }满足b n =na n 3.已知a 1,3a 2,9a 3成等差数列.(1)求{a n }和{b n }的通项公式; [切入点:设基本量q ](2)记S n 和T n 分别为{a n }和{b n }的前n 项和.证明:T n <S n 2. [关键点:b n =n ·⎝⎛⎭⎫13n ]教师备选(2020·全国Ⅰ)设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项.(1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和.解 (1)设{a n }的公比为q ,∵a 1为a 2,a 3的等差中项,∴2a 1=a 2+a 3=a 1q +a 1q 2,a 1≠0,∴q 2+q -2=0,∵q ≠1,∴q =-2.(2)设{na n }的前n 项和为S n ,a 1=1,a n =(-2)n -1,S n =1×1+2×(-2)+3×(-2)2+…+n (-2)n -1,①-2S n =1×(-2)+2×(-2)2+3×(-2)3+…+(n -1)·(-2)n -1+n (-2)n ,② ①-②得,3S n =1+(-2)+(-2)2+…+(-2)n -1-n (-2)n=1-(-2)n 1-(-2)-n (-2)n =1-(1+3n )(-2)n 3, ∴S n =1-(1+3n )(-2)n 9,n ∈N *. 思维升华 (1)如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,常采用错位相减法.(2)错位相减法求和时,应注意:①在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n -qS n ”的表达式.②应用等比数列求和公式必须注意公比q 是否等于1,如果q =1,应用公式S n =na 1.跟踪训练2 (2021·浙江)已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *). (1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0(n ∈N *),记{b n }的前n 项和为T n .若T n ≤λb n ,对任意n ∈N *恒成立,求实数λ的取值范围.解 (1)因为4S n +1=3S n -9,所以当n ≥2时,4S n =3S n -1-9,两式相减可得4a n +1=3a n ,即a n +1a n =34. 当n =1时,4S 2=4⎝⎛⎭⎫-94+a 2=-274-9, 解得a 2=-2716, 所以a 2a 1=34.所以数列{a n }是首项为-94,公比为34的等比数列, 所以a n =-94×⎝⎛⎭⎫34n -1=-3n +14n . (2)因为3b n +(n -4)a n =0,所以b n =(n -4)×⎝⎛⎭⎫34n .所以T n =-3×34-2×⎝⎛⎭⎫342-1×⎝⎛⎭⎫343+0×⎝⎛⎭⎫344+…+(n -4)×⎝⎛⎭⎫34n ,① 且34T n =-3×⎝⎛⎭⎫342-2×⎝⎛⎭⎫343-1×⎝⎛⎭⎫344+0×⎝⎛⎭⎫345+…+(n -5)×⎝⎛⎭⎫34n +(n -4)×⎝⎛⎭⎫34n +1,② ①-②得14T n =-3×34+⎝⎛⎭⎫342+⎝⎛⎭⎫343+…+⎝⎛⎭⎫34n -(n -4)×⎝⎛⎭⎫34n +1 =-94+916⎣⎡⎦⎤1-⎝⎛⎭⎫34n -11-34-(n -4)×⎝⎛⎭⎫34n +1 =-n ×⎝⎛⎭⎫34n +1,所以T n =-4n ×⎝⎛⎭⎫34n +1.因为T n ≤λb n 对任意n ∈N *恒成立,所以-4n ×⎝⎛⎭⎫34n +1≤λ⎣⎡⎦⎤(n -4)×⎝⎛⎭⎫34n 恒成立,即-3n ≤λ(n -4)恒成立, 当n <4时,λ≤-3n n -4=-3-12n -4,此时λ≤1; 当n =4时,-12≤0恒成立,当n >4时,λ≥-3n n -4=-3-12n -4,此时λ≥-3.所以-3≤λ≤1.题型三 裂项相消法求和例3 (2022·咸宁模拟)设{a n }是各项都为正数的单调递增数列,已知a 1=4,且a n 满足关系式:a n +1+a n =4+2a n +1a n ,n ∈N *. (1)求数列{a n }的通项公式; (2)若b n =1a n -1,求数列{b n }的前n 项和S n . 解 (1)因为a n +1+a n =4+2a n +1a n ,n ∈N *, 所以a n +1+a n -2a n +1a n =4, 即(a n +1-a n )2=4,又{a n }是各项为正数的单调递增数列,所以a n +1-a n =2,又a 1=2,所以{a n }是首项为2,公差为2的等差数列,所以a n =2+2(n -1)=2n ,所以a n =4n 2.(2)b n =1a n -1=14n 2-1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1, 所以S n =b 1+b 2+…+b n =12⎝⎛⎭⎫1-13+ 12⎝⎛⎭⎫13-15+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝⎛⎭⎪⎫1-12n +1=n 2n +1. 教师备选设数列{a n }的前n 项和为S n ,且2S n =3a n -1.(1)求{a n }的通项公式;(2)若b n =3n (a n +1)(a n +1+1),求{b n }的前n 项和T n ,证明:38≤T n <34. (1)解 因为2S n =3a n -1,所以2S 1=2a 1=3a 1-1,即a 1=1.当n ≥2时,2S n -1=3a n -1-1,则2S n -2S n -1=2a n =3a n -3a n -1,整理得a n a n -1=3, 则数列{a n }是以1为首项,3为公比的等比数列,故a n =1×3n -1=3n -1.(2)证明 由(1)得b n =3n(3n -1+1)(3n +1)=32×⎝ ⎛⎭⎪⎫13n -1+1-13n +1, 所以T n =32×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫130+1-131+1+⎝ ⎛⎭⎪⎫131+1-132+1+⎝ ⎛⎭⎪⎫132+1-133+1+…+⎝ ⎛⎭⎪⎫13n -1+1-13n +1, 即T n =32×⎝ ⎛⎭⎪⎫12-13n +1=34-323n +1, 所以T n <34, 又因为T n 为递增数列,所以T n ≥T 1=34-38=38, 所以38≤T n <34. 思维升华 利用裂项相消法求和的注意事项(1)抵消后不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.(2)将通项裂项后,有时需要调整前面的系数,如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1, 1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2. 跟踪训练3 (2022·河北衡水中学模拟)已知数列{a n }满足a 1=4,且当n ≥2时,(n -1)a n = n (a n -1+2n -2).(1)求证:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2)记b n =2n +1a 2n ,求数列{b n }的前n 项和S n . (1)证明 当n ≥2时,(n -1)a n =n (a n -1+2n -2),将上式两边都除以n (n -1),得a n n =a n -1+2n -2n -1, 即a n n -a n -1n -1=2, 所以数列⎩⎨⎧⎭⎬⎫a n n 是以a 11=4为首项,2为公差的等差数列. (2)解 由(1)得a n n=4+2(n -1)=2n +2, 即a n =2n (n +1),所以b n =2n +1a 2n =14⎣⎢⎡⎦⎥⎤1n 2-1(n +1)2, 所以S n =14⎩⎨⎧ ⎝⎛⎭⎫1-122+⎝⎛⎭⎫122-132+⎭⎪⎬⎪⎫…+⎣⎢⎡⎦⎥⎤1n 2-1(n +1)2 =14⎣⎢⎡⎦⎥⎤1-1(n +1)2=n 2+2n 4(n +1)2. 课时精练1.已知在等差数列{a n }中,S n 为其前n 项和,且a 3=5,S 7=49.(1)求数列{a n }的通项公式;(2)若b n =2n a+a n ,数列{b n }的前n 项和为T n ,且T n ≥1 000,求n 的取值范围. 解 (1)由等差数列性质知,S 7=7a 4=49,则a 4=7,故公差d =a 4-a 3=7-5=2,故a n =a 3+(n -3)d =2n -1.(2)由(1)知b n =22n -1+2n -1,T n =21+1+23+3+…+22n -1+2n -1=21+23+…+22n -1+(1+3+…+2n -1)=21-22n +11-4+n (1+2n -1)2 =22n +13+n 2-23. 易知T n 单调递增,且T 5=707<1 000,T 6=2 766>1 000,故T n ≥1 000,解得n ≥6,n ∈N *.2.(2020·全国Ⅲ改编)设数列{a n }满足a 1=3,a n +1=3a n -4n .(1)计算a 2,a 3,猜想{a n }的通项公式;(2)求数列{2n a n }的前n 项和S n .解 (1)由题意可得a 2=3a 1-4=9-4=5,a 3=3a 2-8=15-8=7,由数列{a n }的前三项可猜想数列{a n }是以3为首项,2为公差的等差数列,即a n =2n +1.(2)由(1)可知,a n ·2n =(2n +1)·2n ,S n =3×2+5×22+7×23+…+(2n -1)·2n -1+(2n +1)·2n ,① 2S n =3×22+5×23+7×24+…+(2n -1)·2n +(2n +1)·2n +1,② 由①-②得,-S n =6+2×(22+23+…+2n )-(2n +1)·2n +1=6+2×22×(1-2n -1)1-2-(2n +1)·2n +1 =(1-2n )·2n +1-2,即S n =(2n -1)·2n +1+2.3.(2022·合肥模拟)已知数列{a n }满足:a 1=2,a n +1=a n +2n .(1)求{a n }的通项公式;(2)若b n =log 2a n ,T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n .解 (1)由已知得a n +1-a n =2n ,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =2+2+22+…+2n -1=2+2(1-2n -1)1-2=2n . 又a 1=2,也满足上式,故a n =2n .(2)由(1)可知,b n =log 2a n =n ,1b n b n +1=1n (n +1)=1n -1n +1, T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=n n +1,故T n =n n +1.4.(2022·济宁模拟)已知数列{a n }是正项等比数列,满足a 3是2a 1,3a 2的等差中项,a 4=16.(1)求数列{a n }的通项公式;(2)若b n =(-1)n log 2a 2n +1,求数列{b n }的前n 项和T n . 解 (1)设等比数列{a n }的公比为q ,因为a 3是2a 1,3a 2的等差中项,所以2a 3=2a 1+3a 2,即2a 1q 2=2a 1+3a 1q ,因为a 1≠0,所以2q 2-3q -2=0,解得q =2或q =-12, 因为数列{a n }是正项等比数列,所以q =2.所以a n =a 4·q n -4=2n .(2)方法一 (分奇偶、并项求和)由(1)可知,a 2n +1=22n +1,所以b n =(-1)n ·log 2a 2n +1=(-1)n ·log 222n +1=(-1)n ·(2n +1),①若n 为偶数,T n =-3+5-7+9-…-(2n -1)+(2n +1)=(-3+5)+(-7+9)+…+[-(2n -1)+(2n +1)]=2×n 2=n ; ②若n 为奇数,当n ≥3时,T n =T n -1+b n =n -1-(2n +1)=-n -2,当n =1时,T 1=-3适合上式,综上得T n =⎩⎪⎨⎪⎧n ,n 为偶数,-n -2,n 为奇数 (或T n =(n +1)(-1)n -1,n ∈N *).方法二 (错位相减法)由(1)可知,a 2n +1=22n +1,所以b n =(-1)n ·log 2a 2n +1=(-1)n ·log 222n +1=(-1)n ·(2n +1), T n =(-1)1×3+(-1)2×5+(-1)3×7+…+(-1)n ·(2n +1), 所以-T n =(-1)2×3+(-1)3×5+(-1)4×7+…+(-1)n +1(2n +1), 所以2T n =-3+2[(-1)2+(-1)3+…+(-1)n ]-(-1)n +1(2n +1)=-3+2×1-(-1)n -12+(-1)n (2n +1) =-3+1-(-1)n -1+(-1)n (2n +1)=-2+(2n +2)(-1)n ,所以T n =(n +1)(-1)n -1,n ∈N *.5.(2022·重庆调研)在等差数列{a n }中,已知a 6=12,a 18=36.(1)求数列{a n }的通项公式a n ;(2)若________,求数列{b n }的前n 项和S n ,在①b n =4a n a n +1,②b n =(-1)n ·a n ,③b n =2n a n a ⋅这三个条件中任选一个补充在第(2)问中,并对其求解.解 (1)由题意知⎩⎪⎨⎪⎧a 1+5d =12,a 1+17d =36, 解得d =2,a 1=2.∴a n =2+(n -1)×2=2n .(2)选条件①.b n =42n ·2(n +1)=1n (n +1), 则S n =11×2+12×3+…+1n (n +1)=⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=n n +1. 选条件②.∵a n =2n ,b n =(-1)n a n =(-1)n ·2n , ∴S n =-2+4-6+8-…+(-1)n ·2n , 当n 为偶数时,S n =(-2+4)+(-6+8)+…+[-2(n -1)+2n ] =n 2×2=n ; 当n 为奇数时,n -1为偶数, S n =n -1-2n =-n -1. ∴S n =⎩⎪⎨⎪⎧ n ,n 为偶数,-n -1,n 为奇数. 选条件③.∵a n =2n ,b n =2n a n a ⋅,∴b n =22n ·2n =2n ·4n , ∴S n =2×41+4×42+6×43+…+2n ·4n ,① 4S n =2×42+4×43+6×44+…+2(n -1)·4n +2n ·4n +1,② ①-②得 -3S n =2×41+2×42+2×43+…+2×4n -2n ·4n +1=4(1-4n )1-4×2-2n ·4n +1 =8(1-4n )-3-2n ·4n +1, ∴S n =89(1-4n )+2n 3·4n +1.。
第4节 数列求和--2025年高考数学复习讲义及练习解析
第四节数列求和课标解读考向预测1.熟练掌握等差、等比数列的前n 项和公式.2.掌握数列求和的几种常见方法.数列求和是高考考查的重点知识,预计2025年高考会考查等差、等比数列的前n 项和公式以及其他求和公式,可能与通项公式相结合,也有可能与函数、方程、不等式等相结合,综合命题,难度适中.必备知识——强基础数列求和的几种常用方法1.公式法(1)等差数列的前n 项和公式①已知等差数列的第1项和第n 项求前n 项和S n =n (a 1+a n )2;②已知等差数列的第1项和公差求前n 项和S n =na 1+n (n -1)2d .(2)等比数列的前n 项和公式当q =1时,S n =na 1;当q ≠1时,①已知等比数列的第1项和第n 项求前n 项和S n =a 1-a n q1-q ;②已知等比数列的第1项和公比求前n 项和S n =a 1(1-q n )1-q .2.分组求和法与并项求和法(1)若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.(2)形如a n =(-1)n ·f (n )类型,常采用两项合并求解.3.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.4.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.5.倒序相加法如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解,如等差数列的前n 项和公式即是用此法推导的.1.1+2+3+4+…+n =n (n +1)2.2.12+22+…+n 2=n (n +1)(2n +1)6.3.裂项求和常用的变形(1)分式型:1n (n +k )=1(2n -1)(2n +1)=1n (n +1)(n +2)=121n (n +1)-1(n +1)(n +2)等.(2)指数型:2n (2n +1-1)(2n -1)=12n -1-12n +1-1,n +2n (n +1)·2n =1n ·2n -1-1(n +1)·2n 等.(3)根式型:1n +n +k =1k(n +k -n )等.(4)对数型:log m a n +1a n=log m a n +1-log m a n ,a n >0,m >0且m ≠1.1.概念辨析(正确的打“√”,错误的打“×”)(1)设数列{a n }的前n 项和为S n ,若a n =1n +1+n,则S 9=2.()(2)1n 2<1(n -1)n =1n -1-1n.()(3)求S n =a +2a 2+3a 3+…+na n 时只要把上式等号两边同时乘以a 即可根据错位相减法求和.()(4)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n=3n-12.()答案(1)×(2)×(3)×(4)√2.小题热身(1)(人教A选择性必修第二册4.4练习T2改编)数列{a n}的前n项和为S n,若a n=1n(n+1),则S5=()A.1B.56C.16D.130答案B解析∵a n=1n(n+1)=1n-1n+1,∴S5=a1+a2+…+a5=1-12+12-13+…+15-16=56.故选B.(2)(人教A选择性必修第二册4.4练习T1改编)数列{a n}的通项公式a n=(-1)n(2n-1),则该数列的前100项和为()A.-200B.-100C.200D.100答案D解析S100=(-1+3)+(-5+7)+…+(-197+199)=2×50=100.故选D.(3)(人教A选择性必修第二册习题4.3T3改编)若数列{a n}的通项公式a n=2n+2n-1,则数列{a n}的前n项和为()A.2n+n2-1B.2n+1+n2-1C.2n+1+n2-2D.2n+n-2答案C解析S n=a1+a2+a3+…+a n=(21+2×1-1)+(22+2×2-1)+(23+2×3-1)+…+(2n+2n-1)=(2+22+…+2n)+2(1+2+3+…+n)-n=2(1-2n)1-2+2×n(n+1)2-n=2(2n-1)+n2+n-n=2n+1+n2-2.故选C.(4)在数列{a n}中,a1=1,a n a n+1=-2,则S100=________.答案-50解析根据题意,由a1=1,a1a2=-2,得a2=-2,又a2a3=-2,得a3=1,a3a4=-2,得a4=-2,…,所以{a n}中所有的奇数项均为1,所有的偶数项均为-2,所以S100=a1+a2+…+a 99+a 100=1-2+…+1-2=50×(-1)=-50.考点探究——提素养考点一拆项分组法求和例1(2023·湖南岳阳统考三模)已知等比数列{a n }的前n 项和为S n ,其公比q ≠-1,a 4+a 5a 7+a 8=127,且S 4=a 3+93.(1)求数列{a n }的通项公式;(2)已知b n log 13a n ,n 为奇数,n ,n 为偶数,求数列{b n }的前n 项和T n .解(1)因为{a n }是等比数列,公比q ≠-1,则a 4=a 1q 3,a 5=a 1q 4,a 7=a 1q 6,a 8=a 1q 7,所以a 4+a 5a 7+a 8=a 1q 3+a 1q 4a 1q 6+a 1q 7=1q 3=127,解得q =3,由S 4=a 3+93,可得a 1(1-34)1-3=9a 1+93,解得a 1=3,所以数列{a n }的通项公式为a n =3n .(2)由(1)得b nn ,n 为奇数,n ,n 为偶数.当n 为偶数时,T n =b 1+b 2+…+b n =(b 1+b 3+…+b n -1)+(b 2+b 4+…+b n )=-(1+3+…+n -1)+(32+34+…+3n )=-n2·[1+(n -1)]2+9(1-9n2)1-9=98(3n -1)-n 24;当n 为奇数时,T n =T n +1-b n +1=98(3n +1-1)-(n +1)24-3n +1=18·3n +1-98-(n +1)24.综上所述,T nn +1-98-(n +1)24,n 为奇数,3n -1)-n 24,n 为偶数.【通性通法】拆项分组法求和的常见类型【巩固迁移】1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值为________.答案n 2+1-12n解析由题意可得,通项公式为a n =(2n -1)+12n,则S n =[1+3+5+…+(2n -1)]++122+123+…=n [1+(2n -1)]2+21-12=n 2+1-12n .考点二并项转化法求和例2在等差数列{a n }中,已知a 6=12,a 18=36.(1)求数列{a n }的通项公式;(2)若b n =(-1)n ·a n ,求数列{b n }的前n 项和S n .解(1)由题意,设等差数列{a n }的公差为d,1+5d =12,1+17d =36,1=2,=2,∴a n =2+(n -1)×2=2n .(2)由(1),得b n =(-1)n ·a n =(-1)n ·2n ,∴S n =b 1+b 2+…+b n =-2+4-6+8-…+(-1)n ·2n ,(ⅰ)当n 为偶数时,S n =b 1+b 2+…+b n =-2+4-6+8-…+(-1)n ·2n =(-2+4)+(-6+8)+…+[-2(n -1)+2n ]=2+2+…+2=n2×2=n ;(ⅱ)当n 为奇数时,n -1为偶数,S n =b 1+b 2+…+b n =S n -1+b n =n -1-2n =-n -1.∴Sn ,n 为偶数,n -1,n 为奇数.【通性通法】并项转化法求和【巩固迁移】2.(2024·浙江台州中学质检)已知数列{a n }满足a 1+2a 2+…+na n =2n ,数列{b n }满足对任意正整数m ≥2均有b m -1+b m +b m +1=1a m 成立.(1)求数列{a n }的通项公式;(2)求数列{b n }的前99项和.解(1)因为a 1+2a 2+…+na n =2n ,所以当n ≥2时,a 1+2a 2+…+(n -1)a n -1=2(n -1).两式相减,得na n =2,所以a n =2n (n ≥2).又当n =1时,a 1=2,也符合上式,所以a n =2n .(2)由(1)知1a n =n2.因为对任意的正整数m ≥2,均有b m -1+b m +b m +1=1a m =m2,故数列{b n }的前99项和b 1+b 2+b 3+b 4+b 5+b 6+…+b 97+b 98+b 99=(b 1+b 2+b 3)+(b 4+b 5+b 6)+…+(b 97+b 98+b 99)=1a 2+1a 5+…+1a 98=22+52+…+982=825.考点三裂项相消法求和例3(2023·承德模拟)已知数列{a n }的前n 项和为S n ,且a n +1S n=2n .(1)证明:数列{a n }是等差数列;(2)若a 2+1,a 3+1,a 5成等比数列.从下面三个条件中选择一个,求数列{b n }的前n 项和T n .①b n =na 2n a 2n +1;②b n =1a n +a n +1;③b n =2n +3a n a n +12n +1.注:如果选择多个条件分别解答,按第一个解答计分.解(1)证明:因为a n +1S n=2n ,即n (a n +1)=2S n ,当n =1时,a 1+1=2S 1,解得a 1=1,当n ≥2时,(n -1)(a n -1+1)=2S n -1,所以n (a n +1)-(n -1)(a n -1+1)=2S n -2S n -1,即n (a n +1)-(n -1)(a n -1+1)=2a n ,所以(n -2)a n -(n -1)a n -1+1=0,当n =2时,上述式子恒成立,当n >2时,两边同除以(n -2)(n -1)可得a n n -1-a n -1n -2=-1(n -1)(n -2)=1n -1-1n -2,即a n n -1-1n -1=a n -1n -2-1n -2,,即a n -1n -1=a 2-1,所以a n -1=(n -1)(a 2-1),即a n =(n -1)(a 2-1)+1,当n =1时,也适合上式,所以a n +1-a n =n (a 2-1)+1-(n -1)(a 2-1)-1=a 2-1,所以数列{a n }是以1为首项,a 2-1为公差的等差数列.(2)设{a n }的公差为d ,因为a 2+1,a 3+1,a 5成等比数列,所以(a 3+1)2=a 5(a 2+1),即(2+2d )2=(1+4d )(2+d ),解得d =2,所以a n =2n -1.若选①b n =na 2n a 2n +1,则b n =n (2n -1)2(2n +1)2=181(2n -1)2-1(2n +1)2,所以T n =18112-132+132-152+…+1(2n -1)2-1(2n +1)2=181-1(2n +1)2.若选②b n =1a n +a n +1,则b n =12n -1+2n +1=2n +1-2n -1(2n -1+2n +1)(2n +1-2n -1)=12(2n +1-2n -1),所以T n =12(3-1+5-3+…+2n +1-2n -1)=12(2n +1-1).若选③b n =2n +3a n a n +12n +1,则b n =2n +3(2n -1)(2n +1)2n +1=1(2n -1)×2n -1(2n +1)×2n +1,所以T n =11×21-13×22+13×22-15×23+…+1(2n -1)×2n -1(2n +1)×2n +1=12-1(2n +1)×2n +1.【通性通法】利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项;或者前面剩几项,后面也剩几项.(2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=,1a n a n +2=【巩固迁移】3.数列{a n }的通项公式为a n =1n +n +1,若{a n }的前n 项和为24,则n =()A .25B .576C .624D .625答案C解析a n =n +1-n ,所以S n =(2-1)+(3-2)+…+(n +1-n )=n +1-1,令S n =24,得n =624.故选C.4.(2022·新高考Ⅰ卷)记S n 为数列{a n }的前n 项和,已知a 1=1是公差为13的等差数列.(1)求{a n }的通项公式;(2)证明:1a 1+1a 2+…+1a n <2.解(1)1,公差为13的等差数列,所以S n a n =1+13(n -1)=n +23,故S n =n +23a n .①当n ≥2时,S n -1=n +13a n -1.②由①-②可知a n =n +23a n -n +13a n -1,所以(n -1)a n =(n +1)a n -1,即a n a n -1=n +1n -1.所以a 2a 1×a3a 2×…×a n -1a n -2×a n a n -1=31×42×53×…×n n -2×n +1n -1=n (n +1)2(n ≥2),所以a n =n (n +1)2(n ≥2),又a 1=1也满足上式,所以a n =n (n +1)2(n ∈N *).(2)证明:因为1a n =2n (n +1)=2n -2n +1所以1a 1+1a 2+…+1a n =21-22+22-23+…+2n -2n +1=2-2n +1<2.考点四错位相减法求和例4(2023·全国甲卷)已知数列{a n }中,a 2=1,设S n 为{a n }的前n 项和,2S n =na n .(1)求{a n }的通项公式;(2)n 项和T n .解(1)因为2S n =na n ,当n =1时,2a 1=a 1,即a 1=0;当n =3时,2(1+a 3)=3a 3,即a 3=2,当n ≥2时,2S n -1=(n -1)a n -1,所以2(S n-S n-1)=na n-(n-1)a n-1,即2a n=na n-(n-1)a n-1,化简得(n-2)a n=(n-1)a n-1,当n≥3时,a nn-1=a n-1n-2=…=a32=1,即a n=n-1,当n=1,2时都满足上式,所以a n=n-1(n∈N*).(2)因为a n+12n=n2n,所以T n=+++…+n,1 2T n=++…+(n-+n+1,两式相减得12T n+…-n+1=12×11-12-n+1=1-,即T n=2-(2+n,n∈N*.【通性通法】1.错位相减法求和的适用条件若{a n}是公差为d(d≠0)的等差数列,{b n}是公比为q(q≠1)的等比数列,求数列{an b n}的前n项和S n.2.错位相减法求和的步骤3.错位相减法求和的注意事项注意在写出S n与qS n的表达式时,应特别注意将两式“错位对齐”,以便下一步准确写出点一S n -qS n ,特别是等比数列公比为负数的情形注意点二等式右边由第一项、中间n -1项的和式、最后一项三部分组成注意点三经常把b 2+b 3+…+b n 这n -1项和看成n 项和,把-a n b n +1写成+a n b n +1导致错误【巩固迁移】5.(2023·河北示范性高中调研)已知数列{a n }的前n 项和为S n ,且a 2=6,a n +1=2(S n +1).(1)证明{a n }为等比数列,并求{a n }的通项公式;(2)求数列{na n }的前n 项和T n .解(1)因为a n +1=2(S n +1),所以a n =2(S n -1+1)(n ≥2),故a n +1-a n =2(S n -S n -1)=2a n ,即a n +1a n=3(n ≥2),又a 2=2(S 1+1)=2a 1+2,故a 1=2,即a2a 1=3,因此a n +1a n=3(n ∈N *).故{a n }是以2为首项,3为公比的等比数列.因此a n =2×3n -1(n ∈N *).(2)因为T n =2×1+2×2×3+2×3×32+…+2n ×3n -1,①故3T n =2×1×3+2×2×32+…+2(n -1)×3n -1+2n ×3n ,②①-②,得-2T n =2+(2×3+2×32+…+2×3n -1)-2n ×3n=2+2×3(3n -1-1)3-1-2n ×3n =-1+(1-2n )×3n ,即T n =(2n -1)×3n +12.考点五倒序相加法求和例5已知数列{a n },{b n }满足a 1=118,2a n +1-a n =16a n +1a n ,b n =1a n-16.(1)证明{b n }为等比数列,并求{b n }的通项公式;(2)求a 1b 1+a 2b 2+a 3b 3+…+a 7b 7.解(1)由2a n +1-a n =16a n +1a n ,可得1a n +1=2a n-16,于是1a n +1-16=即b n +1=2b n ,而b 1=1a 1-16=2,所以{b n }是首项为2,公比为2的等比数列.所以b n =2×2n -1=2n .(2)由(1)知a n =12n +16,所以a n b n =2n2n +16.因为a k b k +a 8-k b 8-k =2k 2k +16+28-k 28-k +16=2k -42k -4+1+11+2k -4=1,所以2(a 1b 1+a 2b 2+a 3b 3+…+a 7b 7)=(a 1b 1+a 7b 7)+(a 2b 2+a 6b 6)+…+(a 7b 7+a 1b 1)=7,因此a 1b 1+a 2b 2+a 3b 3+…+a 7b 7=72.【通性通法】倒序相加法的使用策略策略一将一个数列倒过来排列,当它与原数列相加时,若有规律可循,并且容易求和,则这样的数列求和时可用倒序相加法(等差数列前n 项和公式的推导即用此方法)策略二和对称性有关求和时可用倒序相加,比如函数关于点对称的性质,组合数中C k n =C n -kn 的性质【巩固迁移】6.已知函数f (x )对任意的x ∈R ,都有f (x )+f (1-x )=1,数列{a n }满足a n =f (0)+…+f (1),则数列{a n }的通项公式为________.答案a n =n +12解析∵f (x )+f (1-x )=1,∴1,又a n =f (0)+…+f (1)①,∴a n =f (1)+…+f (0)②,①+②,得2a n =n +1,∴a n =n +12.∴数列{a n }的通项公式为a n =n +12.课时作业一、单项选择题1.(2024·黑龙江牡丹江第二次阶段测试)已知等差数列{a n },a 2=3,a 5=6前8项和为()A .15B .25C .35D .45答案B解析由a 2=3,a 5=6可得公差d =a 5-a 23=1,所以a n =a 2+(n -2)d =n +1,因此1a n a n +1=1(n +1)(n +2)=1n +1-1n +2,8…=12-110=25.故选B.2.在数列{a n }中,a n =(-1)n -1(4n -3),前n 项和为S n ,则S 22-S 11为()A .-85B .85C .-65D .65答案C解析∵S 22=a 1+a 2+a 3+…+a 21+a 22=(1-5)+(9-13)+…+(81-85)=(-4)×11=-44,S 11=a 1+a 2+a 3+…+a 10+a 11=(1-5)+(9-13)+…+(33-37)+41=(-4)×5+41=21,∴S 22-S 11=-44-21=-65.3.(2023·青岛调研)已知数列{a n }的前n 项和是S n ,且满足a 1=3,a 2k =8a 2k -1,a 2k +1=12a 2k ,k ∈N *,则S 2023=()A .42023-1B .3×22023-3C .3×41012-9D .5×41011-2答案C解析∵a 2k =8a 2k -1,a 2k +1=12a 2k ,∴a 2k +1=4a 2k -1.又a 1=3,∴数列{a 2k -1}是首项为3,公比为4的等比数列.∵a 2=8a 1=24,a 2k +2a 2k =a 2k +2a 2k +1·a 2k +1a 2k=4,∴数列{a 2k }是首项为24,公比为4的等比数列.∴S 2023=(a 1+a 3+…+a 2023)+(a 2+a 4+…+a 2022)=3(1-41012)1-4+24(1-41011)1-4=3×41012-9.4.已知数列{a n }的前n 项和为S n ,且满足a n +a n +1+a n +2=cosn π3,a 1=1,则S 2023=()A .0B .12C .1D .32答案C解析S 2023=a 1+(a 2+a 3+a 4)+(a 5+a 6+a 7)+…+(a 2021+a 2022+a 2023)=1+cos2π3+cos 5π3+…+cos 2018π3+cos 2021π3=1+cos 2π3+1.故选C.5.数列{a n }的前n 项和S n =2n +2,数列{log 2a n }的前n 项和为T n ,则T 20=()A .190B .192C .180D .182答案B解析当n =1时,a 1=S 1=21+2=4,当n ≥2时,a n =S n -S n -1=2n +2-(2n -1+2)=2n -2n -1=2n -1,经检验a 1=4不满足上式,所以a n,n =1,n -1,n ≥2.设b n =log 2a n ,则b n,n =1,-1,n ≥2,所以T 20=b 1+b 2+b 3+b 4+…+b 20=2+1+2+3+…+19=192.故选B.6.(2024·湖北黄冈调研)已知数列{a n }满足a n ·(-1)n +a n +2=2n -1,S 20=650,则a 23=()A .231B .234C .279D .276答案B解析由a n ·(-1)n +a n +2=2n -1,S 20=650可知,当n 为偶数时,a n +a n +2=2n -1,当n 为奇数时,a n +2=a n +2n -1,所以S 20=(a 1+a 3+…+a 19)+(a 2+a 4)+(a 6+a 8)+(a 10+a 12)+(a 14+a 16)+(a 18+a 20)=650,即a 1+(a 1+1)+(a 1+6)+(a 1+15)+(a 1+28)+(a 1+45)+(a 1+66)+(a 1+91)+(a 1+120)+(a 1+153)+3+11+19+27+35=650,由此解得a 1=3,所以a 23=a 1+231=234.故选B.7.(2024·江苏常州高三阶段考试)已知正项数列{a n }是公差不为0的等差数列,且a 1,a 2,a 4成等比数列.若∑24k =11a k +a k +1=3,则a 1=()A .169B .916C .43D .34答案A解析设正项等差数列{a n }的公差为d ,且d ≠0,∵a 1,a 2,a 4成等比数列,∴a 22=a 1a 4,即(a 1+d )2=a 1(a 1+3d ),整理得,d 2=a 1d ,∵d ≠0,∴d =a 1,∵∑24k =11a k +a k +1=∑24k =1a k +1-a k(a k +1+a k )(a k +1-a k )=∑24k =1a k +1-a k a k +1-a k =∑24k =11d(a k +1-a k )=1d (a 2-a 1+a 3-a 2+…+a 25-a24)=1d (a25-a 1)=1d (a 1+24d -a 1)=3,即1a 1(5a 1-a 1)=3,即4a 1=3a 1,∵a 1>0,∴a1=169.故选A.8.已知函数fg(x )=f (x )+1,若an ={a n }的前2022项和为()A.2023B .2022C .2021D .2020答案B 解析由于函数f,则x 即0,所以f (x )+f (1-x )=0,所以g (x )+g (1-x )=[f (x )+1]+[f (1-x )+1]=2,所以2(a 1+a 2+…+a 2022)=2g…+=g+g +…+g2×2022,因此数列{a n }的前2022项和为a 1+a 2+…+a 2022=2022.故选B.二、多项选择题9.(2024·广东梅州市大埔县高三质检)已知数列{a n }的首项为4,且满足2(n +1)a n -na n +1=0(n ∈N *),则()A B .{a n }为递增数列C .{a n }的前n 项和S n =(n -1)·2n +1+4D n 项和T n =n 2+n 2答案BD解析由2(n +1)a n -na n +1=0得a n +1n +1=2·a n n ,是以a11=a 1=4为首项,2为公比的等比数列,故A 错误;因为an n =4·2n -1=2n +1,所以a n =n ·2n +1,显然递增,故B 正确;因为S n=1×22+2×23+…+n ×2n +1,2S n =1×23+2×24+…+n ×2n +2,所以-S n =1×22+23+…+2n +1-n ×2n +2=22(1-2n )1-2-n ·2n +2,故S n =(n -1)·2n +2+4,故C 错误;因为a n 2n +1=n ·2n +12n +1=n ,所n 项和T n =n (1+n )2=n 2+n 2,故D 正确.故选BD.10.设数列{a n }的前n 项和为S n ,若a n =1+1n 2+1(n +1)2,则下列结论中正确的是()A .a n =n 2+n +1n (n +1)B .S n =n 2+n -1n +1C .a n ≤32D .满足S n ≤2024的n 的最大值为2023答案ACD 解析a n =1+1n 2+1(n +1)2=[n (n +1)+1]2n 2(n +1)2=n 2+n +1n (n +1),故A 正确;因为a n =1+1n (n +1)=1+1n -1n +1,所以S n =n …n +1-1n +1=n 2+2n n +1,故B 错误;因为1+1n (n +1)>1+1(n +1)(n +2),所以a n >a n +1,所以{a n }是递减数列,所以a n ≤a 1=32,故C正确;因为a n =1+1n -1n +1>0,所以S n 递增,且S 2023<2024,S 2024>2024,所以满足S n ≤2024的n 的最大值为2023,故D 正确.故选ACD.三、填空题11.12!+23!+34!+…+n (n +1)!=________.答案1-1(n +1)!解析∵k (k +1)!=k +1-1(k +1)!=1k !-1(k +1)!,∴12!+23!+34!+…+n(n +1)!=1-12!+12!-13!+13!-14!+…+1(n -1)!-1n !+1n !-1(n +1)!=1-1(n +1)!.12.已知数列{a n }满足a n +2n +2,n 为奇数,a n ,n 为偶数,且a 1=2,a 2=1,则此数列的前20项和为________.答案1133解析当n 为奇数时,由a n +2=a n +2可知,{a n }的奇数项成等差数列,且公差为2,首项为a 1=2;当n 为偶数时,由a n +2=2a n 可知,{a n }的偶数项成等比数列,且公比为2,首项为a 2=1,故前20项和为a 1+a 2+a 3+…+a 19+a 20=(a 1+a 3+a 5+…+a 19)+(a 2+a 4+a 6+…+a 20)+10×92×2+1-2101-2=110+1023=1133.13.(2024·云南曲靖高三月考)已知正项数列{a n }满足a 1=2且a 2n +1-2a 2n -a n a n +1=0,令b n =(n +2)a n -257,则数列{b n }的前7项和为________.答案2021解析由a 2n +1-2a 2n -a n a n +1=0可得(a n +1+a n )(a n +1-2a n )=0,因为a n +1+a n >0,所以a n +1=2a n ,即a n +1a n=2,所以数列{a n }是以a 1=2为首项,2为公比的等比数列,所以a n =2×2n -1=2n ,所以b n =2n (n +2)-257,令c n =2n (n +2),{c n }的前n 项和为T n ,则T 7=3×21+4×22+5×23+…+9×27,2T 7=3×22+4×23+5×24+…+9×28,两式相减可得,-T 7=3×21+22+23+…+27-9×28=6+4×(1-26)1-2-9×28=6+4×63-9×256=-2046,所以T 7=2046,所以数列{b n }的前7项和为T 7-257×7=2046-25=2021.14.(2023·湖北重点中学模拟)已知数列{a n }的前n 项和为S n ,且2a n -S n =2,记数列n 项和为T n .若对于任意n ∈N *,不等式k >T n 恒成立,则实数k 的取值范围为________.答案13,+解析依题意2a n -S n =2,当n =1时,a 1=2,由2a n -1-S n -1=2,n ≥2,两式相减并化简得a n =2a n -1,所以数列{a n }是首项为2,公比为2的等比数列,即a n =2n ,所以a n(a n +1)(a n +1+1)=2n(2n +1)(2n +1+1)=12n +1-12n +1+1,所以T n …+=13-12n +1+1<13,所以实数k 的取值范围是13,+四、解答题15.(2024·湖北恩施模拟)已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -1·4na n a n +1,求数列{b n }的前n 项和T n .解(1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12.由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1,所以a n =2n -1.(2)b n =(-1)n -1·4na n a n +1=(-1)n -1·4n(2n -1)(2n +1)=(-1)n -1当n 为偶数时,T n…1-12n +1=2n2n +1;当n 为奇数时,T n…1+12n +1=2n +22n +1.所以T nn为奇数n 为偶数T n16.已知数列{a n }的前n 项和为S n ,且a 1=1,a n =-2S n -1S n (n ≥2).(1)求a n ;(2)设b n =2nS n ,求数列{b n }的前n 项和T n .解(1)∵a n =-2S n -1S n ,∴S n -S n -1=-2S n -1S n ,∴S n -1-S n =2S n S n -1,∴1S n -1S n -1=2,∴,且1S n =1S 1+2(n -1)=1+2n -2=2n -1,∴S n =12n -1(n ∈N *),∴当n ≥2时,a n =-2(2n -1)(2n -3),又a 1=1不满足上式,∴a nn ≥2.(2)由(1)可得b n =(2n -1)2n ,则T n =1×21+3×22+…+(2n -3)2n -1+(2n -1)2n ,2T n =1×22+3×23+…+(2n -3)2n +(2n -1)2n +1,两式相减得-T n =2+23+24+…+2n +1-(2n -1)2n +1=2+23(1-2n -1)1-2-(2n -1)2n +1=2-8+2n +2-(2n -1)2n +1=-6-(2n -3)2n +1,∴T n =(2n -3)2n +1+6.17.(2024·江西临川一中阶段考试)函数f (x )=ln x ,其中f (x )+f (y )=2,记S n =ln x n +ln (x n -1y )+…+ln (xy n -1)+ln y n(n ∈N *),则∑2024i =11S i =()A .20242025B .20252024C .20254048D .40482025答案A解析∵f (x )=ln x ,f (x )+f (y )=2,∴f (x )+f (y )=ln x +ln y =ln (xy )=2.S n =ln x n +ln (x n -1y )+…+ln (xy n -1)+ln y n ,即S n =ln y n +ln (xy n -1)+…+ln (x n -1y )+ln x n ,两式相加得,2S n =(n +1)ln(x n y n )=n (n +1)ln (xy )=2n (n +1),∴S n =n (n +1),∑2024i =11S i =∑2024i =11i (i +1)=∑2024i =11-12025=20242025.故选A.18.(2023·广西玉林统考三模)已知函数f (x )=e -x -e x ,若函数h (x )=f (x -4)+x ,数列{a n }为等差数列,a 1+a 2+a 3+…+a 11=44,则h (a 1)+h (a 2)+…+h (a 11)=________.答案44解析由题意,可得h (x )=f (x -4)+x =e -(x -4)-e x -4+x ,设等差数列{a n }的前n 项和为S n ,公差为d ,则S 11=11a 1+11×102d =11(a 1+5d )=11a 6=44,解得a 6=4,则h (a 6)=h (4)=e -(4-4)-e 4-4+a 6=a 6=4,根据等差中项的性质,可得a 1+a 11=2a 6=8,则h (a 1)+h (a 11)=e-(a 1-4)-e a 1-4+a 1+e-(a11-4)-e a 11-4+a 11=1e a 1-4+1e a 11-4-(e a 1-4+e a 11-4)+a 1+a 11=e a 1-4+e a 11-4e a 1+a 11-8-(e a 1-4+e a 11-4)+a 1+a 11=a 1+a 11=8,同理可得,h (a 2)+h (a 10)=8,h (a 3)+h (a 9)=8,h (a 4)+h (a 8)=8,h (a 5)+h (a 7)=8,所以h (a 1)+h (a 2)+…+h (a 11)=5×8+4=44.19.(2023·山西太原二模)已知等比数列{a n }的前n 项和为S n (S n ≠0),满足S 1,S 2,-S 3成等差数列,且a 1a 2=a 3.(1)求数列{a n }的通项公式;(2)设b n =-3a n(a n +1)(a n +1+1),求数列{b n }的前n 项和T n .解(1)设数列{a n }的公比为q ,依题意得S 1+(-S 3)=2S 2,所以-(a 2+a 3)=2(a 1+a 2),即-a 1(q +q 2)=2a 1(1+q ),因为a 1≠0,所以q 2+3q +2=0,解得q =-1或q =-2,因为S n ≠0,所以q =-2,又因为a 1a 2=a 3,所以a 21q =a 1q 2,即a 1=q =-2,所以a n =(-2)n .(2)由题意可得,b n =-3(-2)n[(-2)n +1][(-2)n +1+1]=(-2)n +1-(-2)n[(-2)n +1][(-2)n +1+1]=1(-2)n +1-1(-2)n +1+1,则T n =1(-2)1+1-1(-2)2+1+1(-2)2+1-1(-2)3+1+…+1(-2)n +1-1(-2)n +1+1=-1-1(-2)n +1+1.20.(2024·新疆阿克苏地区质检)已知正整数数列{a n },a 1=1,a 2=2,当n ≥2时,a 2n -1a n +1<a n -2025年高考数学复习讲义及练习解析211<a 2n +1a n +1恒成立.(1)证明数列{a n }是等比数列并求出其通项公式;(2)定义:|x |表示不大于xn 项和为S n ,求|S 1|+|S 2|+|S 3|+…+|S 2024|的值.解(1)由a 2n -1a n +1<a n -1<a 2n +1a n +1,得a 2n -1<a n -1a n +1<a 2n +1.因为{a n }是正整数数列,所以a n -1a n +1=a 2n (n ≥2,n ∈N *),于是{a n }是等比数列.又a 1=1,a 2=2,所以a n =2n -1,n ∈N *.(2)因为2n -1a n =2n -12n -1,S n =120+321+522+…+2n -12n -1,12S n =121+322+523+…+2n -12n ,两式相减得,12S n =1++122+123+…-2n -12n =3-2n +32n,所以S n =6-2n +32n -1<6,又S n +1-S n =2n +12n >0,即{S n }为递增数列,S 1=1,2<S 2=52<3,3<S 3=154<4,4<S 4=378<5,S 5=8316>5,所以|S 1|=1,|S 2|=2,|S 3|=3,|S 4|=4,|S n |=5(n ≥5),所以|S 1|+|S 2|+|S 3|+…+|S 2024|=1+2+3+4+=10110.。
高三理科数学一轮复习讲义,复习补习资料:第六章数列6.4数列求和(解析版)
§6.4 数列求和考纲展示►1.熟练掌握等差、等比数列的前n 项和公式.2.掌握非等差、等比数列求和的几种常见方法.考点1 公式法求和1.公式法直接利用等差数列、等比数列的前n 项和公式求和. (1)等差数列的前n 项和公式:S n =n a 1+a n 2=na 1+n n -2d .(2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1-q n1-q ,q ≠1.2.倒序相加法与并项求和法 (1)倒序相加法:如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和可用倒序相加法,如等差数列的前n 项和公式即是用此法推导的.(2)并项求和法:在一个数列的前n 项和中,可两两结合求解,则称之为并项求和. 形如a n =(-1)nf (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(1002-992)+(982-972)+…+(22-12)=(100+99)+(98+97)+…+(2+1)=5 050.非等差、等比数列求和的常用方法:倒序相加法;并项求和法.(1)[教材习题改编]一个球从100 m 高处自由落下,着地后又跳回到原高度的一半再落下,当它第10次着地时,经过的路程是( )A .100+200×(1-2-9) B .100+100(1-2-9) C .200(1-2-9)D .100(1-2-9)答案:A(2)[教材习题改编]已知函数f (n )=n 2cos n π,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=________.答案:-100解析:因为f (n )=n 2cos n π=⎩⎪⎨⎪⎧-n 2,n 为奇数,n 2,n 为偶数,所以f (n )=(-1)n ·n 2,由a n =f (n )+f (n +1)=(-1)n ·n 2+(-1)n +1·(n +1)2=(-1)n [n 2-(n +1)2]=(-1)n +1·(2n +1),得a 1+a 2+a 3+…+a 100=3+(-5)+7+(-9)+…+199+(-201)=50×(-2)=-100.数列求和的两个易错点:公比为参数;项数的奇偶数.(1)设数列{a n }的通项公式是a n =x n,则数列{a n }的前n 项和S n =________.答案:S n =⎩⎪⎨⎪⎧n ,x =1,x -xn1-x,x ≠1解析:当x =1时,S n =n ;当x ≠1时,S n =x-xn1-x.(2)设数列{a n }的通项公式是a n =(-1)n,则数列{a n }的前n 项和S n =________.答案:S n =⎩⎪⎨⎪⎧0,n 为偶数,-1,n 为奇数解析:若n 为偶数,则S n =0;若n 为奇数,则S n =-1.[典题1] (1)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.[答案] 27[解析] 由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为12的等差数列,故S 9=9a 1+-2×12=9+18=27.(2)若等比数列{a n }满足a 1+a 4=10,a 2+a 5=20,则{a n }的前n 项和S n =________. [答案]109(2n-1) [解析] 由题意a 2+a 5=q (a 1+a 4),得20=q ×10,故q =2,代入a 1+a 4=a 1+a 1q 3=10,得9a 1=10,即a 1=109.故S n =109-2n1-2=109(2n-1). [点石成金] 数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差或等比或可求数列前n 项和的数列来求之.考点2 分组转化法求和分组求和法若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.(1)数列112,314,518,…,⎣⎢⎡⎦⎥⎤n -+12n 的前n 项和S n =________________. 答案:n 2+1-12n(2)已知数列{a n }中,a n =⎩⎪⎨⎪⎧2n -1,n 为正奇数,2n -1,n 为正偶数, 设数列{a n }的前n 项和为S n ,则S 9=________.答案:377[典题2] 已知数列{a n }的通项公式是a n =2·3n -1+(-1)n ·(ln 2-ln 3)+(-1)nn ln 3,求其前n 项和S n .[解] 由通项公式知,S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n]·(ln 2-ln 3)+[-1+2-3+…+(-1)nn ]ln 3,所以当n 为偶数时,S n =2×1-3n1-3+n 2ln 3=3n+n 2ln 3-1;当n 为奇数时,S n =2×1-3n 1-3-(ln 2-ln 3)+⎝ ⎛⎭⎪⎫n -12-n ln 3=3n-n -12ln 3-ln 2-1.综上知,S n=⎩⎪⎨⎪⎧3n +n2ln 3-1,n 为偶数,3n-n -12ln 3-ln 2-1,n 为奇数.[点石成金] 分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组转化法求{a n }的前n 项和. (2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比或等差数列,可采用分组转化法求和.[提醒] 某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.在等差数列{a n }中,已知公差d =2,a 2是a 1 与a 4 的等比中项. (1)求数列{a n }的通项公式; (2)设b n =a nn +2,记T n =-b 1+b 2-b 3+b 4-…+(-1)nb n ,求T n .解:(1)由题意知,(a 1+d )2=a 1(a 1+3d ), 即(a 1+2)2=a 1(a 1+6), 解得a 1=2.所以数列{a n }的通项公式为a n =2n . (2)由题意知,b n =a nn +2=n (n +1).所以T n =-1×2+2×3-3×4+…+(-1)nn ×(n +1). 因为b n +1-b n =2(n +1), 可得当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n )=4+8+12+ (2)=n2+2n 2=n n +2;当n 为奇数时,T n =T n -1+(-b n )=n -n +2-n (n +1)=-n +22.所以T n=⎩⎪⎨⎪⎧-n +22,n 为奇数,nn +2,n 为偶数.考点3 错位相减法求和错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.(1)[教材习题改编]数列1,11+2,11+2+3,…,11+2+…+n的前n 项和为________. 答案:2n n +1解析:因为11+2+…+n =2n n +=2⎝ ⎛⎭⎪⎫1n -1n +1, 所以数列的前n 项和为2×⎝ ⎛⎭⎪⎫1-12+12-13+13-14+…+1n -1n +1=2×⎝ ⎛⎭⎪⎫1-1n +1=2n n +1. (2)[教材习题改编]数列22,422,623, (2)2n ,…的前n 项的和为________.答案:4-n +22n -1解析:设该数列的前n 项和为S n , 由题可知,S n =22+422+623+ (2)2n ,①12S n =222+423+624+ (2)2n +1,② ①-②,得⎝ ⎛⎭⎪⎫1-12S n =22+222+223+224+…+22n -2n 2n +1=2-12n -1-2n 2n +1, ∴S n =4-n +22n -1.[典题3] [2018·山东模拟]设数列{a n }的前n 项和为S n .已知2S n =3n+3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . [解] (1)因为2S n =3n+3, 所以2a 1=3+3,故a 1=3, 当n ≥2时,2S n -1=3n -1+3,此时2a n =2S n -2S n -1=3n-3n -1=2×3n -1,即a n =3n -1,所以a n =⎩⎪⎨⎪⎧3,n =1,3n -1,n ≥2.(2)因为a n b n =log 3a n ,所以b 1=13,当n ≥2时,b n =31-nlog 33n -1=(n -1)·31-n.所以T 1=b 1=13;当n ≥2时,T n =b 1+b 2+b 3+…+b n=13+[1×3-1+2×3-2+…+(n -1)×31-n], 所以3T n =1+[1×30+2×3-1+…+(n -1)×32-n],两式相减,得2T n =23+(30+3-1+3-2+…+32-n )-(n -1)×31-n=23+1-31-n1-3-1-(n -1)×31-n =136-6n +32×3n , 所以T n =1312-6n +34×3n ,经检验,n =1时也适合. 综上知,T n =1312-6n +34×3n .[点石成金] 用错位相减法求和的三个注意事项(1)要善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式.(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.[2018·天津模拟]已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5-3b 2=7.(1)求{a n }和{b n }的通项公式;(2)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.解:(1)设数列{a n }的公比为q ,数列{b n }的公差为d ,由题意知q >0.由已知,有⎩⎪⎨⎪⎧2q 2-3d =2,q 4-3d =10,消去d ,整理得q 4-2q 2-8=0,解得q 2=4. 又因为q >0,所以q =2,所以d =2. 所以数列{a n }的通项公式为a n =2n -1,n ∈N *;数列{b n }的通项公式为b n =2n -1,n ∈N *. (2)由(1)有c n =(2n -1)·2n -1,设{c n }的前n 项和为S n ,则S n =1×20+3×21+5×22+…+(2n -3)×2n -2+(2n -1)×2n -1,2S n =1×21+3×22+5×23+…+(2n -3)×2n -1+(2n -1)×2n,上述两式相减,得-S n =1+22+23+…+2n -(2n -1)×2n =2n +1-3-(2n -1)·2n =-(2n -3)·2n-3,所以S n =(2n -3)·2n+3,n ∈N *.考点4 裂项相消法求和裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (2)常见的裂项技巧: ①1n n +=1n -1n +1. ②1nn +=12⎝ ⎛⎭⎪⎫1n -1n +2. ③1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1.④1n +n +1=n +1-n .[考情聚焦] 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.裂项相消法求和是历年高考的重点,命题角度凸显灵活多变,在解题中要善于利用裂项相消的基本思想,变换数列a n 的通项公式,达到求解目的.主要有以下几个命题角度: 角度一 形如a n =1nn +k型 [典题4] [2019·重庆模拟]设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3. (1)求a n ;(2)设b n =1S n ,数列{b n }的前n 项和为T n ,求证:T n >34-1n +1(n ∈N *).(1)[解] 设数列{a n }的公差为d ,由题意,得⎩⎪⎨⎪⎧3a 1+3d =a 1+6d ,a 1+7d -a 1+2d =3,解得a 1=3,d =2,∴a n =a 1+(n -1)d =2n +1.(2)[证明] 由(1),得S n =na 1+n n -2d =n (n +2),∴b n =1nn +=12⎝ ⎛⎭⎪⎫1n -1n +2. ∴T n =b 1+b 2+…+b n -1+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2,∴T n =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2>12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +1=34-1n +1. 故T n >34-1n +1.角度二 形如a n =1n +k +n型[典题5] [2019·江南十校联考]已知函数f (x )=x a的图象过点(4,2),令a n =1f n ++f n,n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 014=( )A. 2 013-1B. 2 014-1C. 2 015-1D. 2 015+1[答案] C[解析] 由f (4)=2可得4a=2,解得a =12,则f (x )=x 12.∴a n =1f n ++f n=1n +1+n=n +1-n ,S 2 014=a 1+a 2+a 3+…+a 2 014=(2-1)+(3-2)+(4-3)+…+( 2 014- 2 013)+( 2 015- 2 014) = 2 015-1. 角度三形如a n =n +1n 2n +2型[典题6] 正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0. (1)求数列{a n }的通项公式a n ; (2)令b n =n +1n +2a 2n ,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n <564. (1)[解] 由S 2n -(n 2+n -1)S n -(n 2+n )=0,得 [S n -(n 2+n )](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n . 于是a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n . 综上,数列{a n }的通项公式为a n =2n . (2)[证明] 由于a n =2n , 故b n =n +1n +2a 2n =n +14n 2n +2=116⎣⎢⎡⎦⎥⎤1n 2-1n +2.T n =116⎣⎢⎡⎦⎥⎤1-132+122-142+132-152+…+1n -2-1n +2+1n2-1n +2=116⎣⎢⎡⎦⎥⎤1+122-1n +2-1n +2<116×⎝ ⎛⎭⎪⎫1+122=564. [点石成金] 利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项. (2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2.[方法技巧] 非等差、等比数列的一般数列求和,主要有两种思想:(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成.(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.[易错防范] 1.在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n,an +1的式子应进行合并.2.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项,特别是隔项相消.真题演练集训1.[2018·北京模拟]已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.答案:6解析:设等差数列{a n }的公差为d ,由已知,得⎩⎪⎨⎪⎧ a 1=6,2a 1+6d =0,解得⎩⎪⎨⎪⎧ a 1=6,d =-2,所以S 6=6a 1+12×6×5d =36+15×(-2)=6.2.[2018·四川模拟]设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.答案:-1n解析:∵ a n +1=S n +1-S n ,a n +1=S n S n +1,∴ S n +1-S n =S n S n +1.∵ S n ≠0,∴ 1S n -1S n +1=1,即1S n +1-1S n =-1. 又1S 1=-1,∴ ⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列. ∴ 1S n=-1+(n -1)×(-1)=-n , ∴ S n =-1n. 3.[2018·山东模拟]已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式; (2)令c n =a n +n +1b n +n ,求数列{c n }的前n 项和T n .解:(1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5,当n =1时,a 1=S 1=11,所以a n =6n +5.设数列{b n }的公差为d ,由⎩⎪⎨⎪⎧ a 1=b 1+b 2,a 2=b 2+b 3,得⎩⎪⎨⎪⎧ 11=2b 1+d ,17=2b 1+3d ,可解得b 1=4,d =3.所以b n =3n +1.(2)由(1)知,c n =n +n +1n +n =3(n +1)·2n +1.又T n =c 1+c 2+…+c n ,所以T n =3×[2×22+3×23+…+(n +1)×2n +1], 2T n =3×[2×23+3×24+…+(n +1)×2n +2], 两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+-2n 1-2-n +n +2=-3n ·2n +2, 所以T n =3n ·2n +2. 4.[2018·重庆模拟]S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和. 解:(1)由a 2n +2a n =4S n +3,①可知a 2n +1+2a n +1=4S n +1+3.②②-①,得a 2n +1-a 2n +2(a n +1-a n )=4a n +1,即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ). 由a n >0,得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1.(2)由a n =2n +1可知, b n =1a n a n +1=1n +n +=12⎝ ⎛⎭⎪⎫12n +1-12n +3. 设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=n n +.课外拓展阅读数列求和[典例] 已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8. (1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .[审题视角][解析] (1)当n =k ,k ∈N *时,S n =-12n 2+kn 取得最大值, 即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4. 当n =1时,a 1=S 1=-12+4=72, 当n ≥2时,a n =S n -S n -1=92-n . 当n =1时,上式也成立,故a n =92-n . (2)因为9-2a n 2n =n 2n -1, 所以T n =1+22+322+…+n -12n -2+n 2n -1,① 所以2T n =2+2+32+…+n -12n -3+n 2n -2,② ②-①,得2T n -T n =2+1+12+…+12n -2-n 2n -1 =4-12n -2-n 2n -1=4-n +22n -1. 故T n =4-n +22n -1. 方法点睛1.根据数列前n 项和的结构特征和最值确定k 和S n ,求出a n 后再根据⎩⎨⎧⎭⎬⎫9-2a n 2n 的结构特征确定利用错位相减法求T n .在审题时,要审题目中数式的结构特征判定解题方案.2.利用S n 求a n 时不要忽视当n =1的情况;错位相减时不要漏项或算错项数.3.可以通过当n =1,2时的特殊情况对结果进行验证.。
数列求和ppt课件
把数列的通项拆成两项之差,在求和时中间的
一些项可以相互抵消,从而求得前n项和.
如果一个数列的各项是由一个等差数列和一个等
比数列的对应项之积构成的,那么求这个数列的前n项
和即可用错位相减法求解.
如果一个数列{an}与首末两端等“距离”的
(4)倒序相加法:
两项的和相等或等于同一个常数,那么求这个数
an,n 为奇数,
2.若数列{cn}的通项公式为 cn=
其中数列{an},{bn}
bn,n 为偶数,
是等比数列或等差数列,可采用分组求和法求{cn}的前 n 项和.
聚焦必备知识
11
突破核心命题
限时规范训练
1.(2023·全国乙卷)记Sn为等差数列{an}的前n项和,已知a2=11,S10
=40.
(1)求{an}的通项公式;
列的前n项和即可用倒序相加法求解.
(3)错位相减法:
聚焦必备知识
4
常用结论
1.一些常见的数列的前 n 项和
n(n+1)
(1)1+2+3+…+n=
;
2
(2)2+4+6+…+2n=n(n+1);
(3)1+3+5+…+2n-1=n2.
突破核心命题
限时规范训练
聚焦必备知识
5
突破核心命题
限时规范训练
裂项相消法:适用的通项公式如下
( + ) +
聚焦必备知识
16
突破核心命题
考 点 二 裂项相消法求和
1
(1)数列{an}的前 n 项和为 Sn.若 an=
,则 Sn=____
n(n+1)
训练2
已知Sn是数列{an}的前n项和,Sn=n2.
《数列求和专题》课件
数列求和的分类
有穷数列求和
数列的项数是有限的,求和时只需要 将所有项加起来即可。
无穷数列求和
数列的项数是无限的,需要采用特定 的方法进行求和。
数列求和的基本方法
公式法
对于一些特定的数列,可以直 接使用公式进行求和。
裂项法
将数列中的每一项都拆分成两 个部分,然后分别进行求和。
错位相减法
将数列中的每一项都乘以一个 常数,然后错位相减,得到一 个等差数列,最后进行求和。
03
等比数列求和
等比数列的定义
等比数列是一种常见的数列,其 中任意两个相邻项之间的比值都
相等。
等比数列的每一项都可以由首项 和公比唯一确定。
等比数列的通项公式为 $a_n=a_1*q^{(n-1)}$,其中 $a_n$是第n项,$a_1$是首项
,q是公比。
等比数列的通项公式
等比数列的通项公式 是数列中任意一项的 数学表示。
详细描述
分组转化法的基本思路是将原数列分组,每组内的项可以转化为等差数列或等比数列,然后利用相应 的求和公式计算每组的和,最后将各组的和相加得到原数列的和。这种方法适用于一些复杂的数列求 和问题。
05
数列求和的应用
在数学竞赛中的应用
数学竞赛中,数列求和是常见的 题型,考察学生的数学思维和计
算能力。
数列求和在金融领域中还应用于计算复利、评估贷款还款等金融业务。
在日常生活中的应用
在日常生活中,数列求和的应用也十 分常见,如计算购物清单的总价、计 算工资总额等。
数列求和在日常生活中的应用还体现 在统计数据、计算平均值等方面。
通过数列求和,人们可以快速准确地 计算出一系列数字的总和,提高日常 生活中的计算效率。
数列求和讲义解析
数列求和讲义解析【课前双基巩固】 知识聚焦 1.(1)①(a 1+a n )n2na 1+n(n -1)d 2②na 1a 1(1-q n )1−qa 1-a n q 1−q(2)若干个等差或等比或可求和2.(1)同一个常数 (2)并项法3.两项之差4.积 对点演练 1.2n+(n -1)(n+2)2[解析] S n =1−2n 1−2+n (n+1)2=2n+(n -1)(n+2)2.2.2061 [解析] ∵a n =1313n -2-13n+1,∴S 20=131-14+14-17+…+158-161=131-161=2061.3.(n-2)·2n+2 [解析] S n =0+1×21+2×22+…+(n-2)×2n-2+(n-1)×2n-1①, 则2S n =0+1×22+2×23+…+(n-2)×2n-1+(n-1)×2n②,由①-②,得-S n =2+22+23+…+2n-1-(n-1)×2n=2−2n 1−2-(n-1)×2n =-(n-2)×2n -2,即S n =(n-2)·2n+2.4.n2n+1[解析] 因为S n =4n 2-1,则1S n =14n 2-1=1(2n+1)(2n -1)=1212n -1-12n+1,则数列{1S n}的前n 项和为1211-13+1213-15+…+1212n -1-12n+1=121-12n+1=n2n+1. 5.4-n+42n [解析] 设S=3×12+4×122+5×123+…+(n+2)×12n ,则12S=3×122+4×123+5×124+…+(n+2)×12n+1.两式相减得12S=3×12+122+123+…+12n-n+22n+1,∴S=3+12+122+…+12n -1-n+22n =3+12[1−(12)n -1]1−12-n+22n =4-n+42n .6.990 [解析] 当n 为奇数时,a n+2-a n =0,则a n =2;当n 为偶数时,a n+2-a n =2,则a n =n.故S 60=2×30+(2+4+…+60)=990.7.30272[解析] 因为a 1=12,a n+1=12+√a n -a n 2,所以a 2=1,a 3=12,a 4=1,…,可得a n ={12,n =2k -1(k N *),1,n =2k(k N *),故该数列的前2018项的和S 2018=1009×1+12=30272.【课堂考点探究】例1 [思路点拨] (1)将数列中的项用a 2和d 表示,根据等比数列的性质可得到关于d 的一元二次方程,求得d 的值后,即可得到数列{a n }的通项公式;(2)根据(1)可求得{b n }的通项公式,用分组求和法可得其前n 项和T n .解:(1)设等差数列{a n }的公差为d ,因为a 2=4,且a 1,a 3,a 9成等比数列, 即4-d ,4+d ,4+7d 成等比数列,所以有(4-d )(4+7d )=(4+d )2,即8d 2-16d=0,解得d=2或d=0(舍去),所以a 1=2,数列{a n }的通项公式为a n =2n. (2)由(1)知b n =2n+22n=2n+4n,所以T n =2×(1+2+3+…+n )+(4+42+43+ (4))=2×n·(n+1)2+4(1−4n )1−4=n (n +1)+4n+13-43.变式题 解:(1)当n=1时,a 1=S 1=1. 当n ≥2时,a n =S n -S n-1=n 2+n 2-(n -1)2+(n -1)2=n.又a 1=1满足上式,所以数列{a n }的通项公式为a n =n (n ∈N *).(2)由(1)知,b n =2n+(-1)n ·n.记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+ (22))+(-1+2-3+4-…+2n )=2(1−22n )1−2+n=22n+1-2+n.故数列{b n }的前2n 项和T 2n =22n+1+n-2(n ∈N *).例2 [思路点拨] (1)对于{a n }可根据条件建立关于首项a 1与公差d 的方程,求得首项和公差即可求得数列的通项公式,对于b n ,利用递推关系求解数列的通项公式即可;(2)根据数列{c n } 的特点利用错位相减法求解数列的前n 项和.解:(1)设等差数列{a n }的公差为d.∵a 2=2,a 3+a 5=8,∴a 1+d=2,2a 1+6d=8,解得a 1=1,d=1,∴a n =n. ∵b n+1=S n +2(n ∈N *)①,∴b n =S n-1+2(n ∈N *,n ≥2)②.①-②得,b n+1-b n =S n -S n-1=b n (n ∈N *,n ≥2),∴b n+1=2b n (n ∈N *,n ≥2).∵b 1=2,b 2=2+2=4=2b 1,∴{b n }是以2为首项,2为公比的等比数列, ∴b n =2n.(2)c n =a n b n=n 2n ,则T n =12+222+323+…+n -12n -1+n2n ①,则12T n =122+223+324+…+n -12n +n2n+1②, ①-②得,12T n =12+122+…+12n -n2n+1=12(1−12n )1−12-n 2n+1=1-2+n2n+1,∴T n =2-n+22n .变式题 解:(1)当n ≥2时,由a n+1=2S n +3,得a n =2S n-1+3, 两式相减,得a n+1-a n =2S n -2S n-1=2a n ,∴a n+1=3a n ,∴a n+1a n=3.当n=1时,a 2=2S 1+3=2a 1+3=9,则a2a 1=3.∴数列{a n }是首项a 1=3,公比为3的等比数列. ∴a n =3×3n-1=3n.(2)由(1)得b n =(2n-1)a n =(2n-1)·3n,∴T n =1×3+3×32+5×33+…+(2n-1)·3n①, 3T n =1×32+3×33+5×34+…+(2n-1)·3n+1②,①-②得-2T n =1×3+2×32+2×33+…+2×3n -(2n-1)·3n+1=3+2×(32+33+ (3))-(2n-1)·3n+1=3+2×32(1−3n -1)1−3-(2n-1)·3n+1=-6-(2n-2)·3n+1.∴T n =(n-1)·3n+1+3.例3 [思路点拨] 首先根据条件判断数列{1a n 2}为等差数列,其次求得a n ,然后求出b n 的表达式,最后根据其结构利用裂项相消法求解.2 [解析] 由条件知1a n+12-1a n2=4,则{1a n2}是首项为1,公差为4的等差数列,所以1a n2=4n-3.又{a n }为正项数列,所以1a n=√4n -3,所以1b n=√4n +1+√4n -3,所以b n =√4n -3+√4n+1=14(√4n +1-√4n -3),故T 20=b 1+b 2+…+b 20=14[(√5-1)+(√9-√5)+…+(√81-√77)]=14(√81-1)=2. 例4 [思路点拨] (1)将已知条件转化为关于首项a 1与公差d 的方程组,进而得到数列{a n }的通项公式;(2)首先由(1)确定数列{b n }的通项公式,然后根据其结构利用裂项相消法求得T n . 解:(1)设等差数列{a n }的公差为d. ∵ a 22=a 3+a 6,∴(a 1+d )2=a 1+2d+a 1+5d①,∵ a 32=a 1·a 11 ,∴(a 1+2d )2=a 1·(a 1+10d )②.∵d≠0,∴由①②解得a 1=2,d=3. ∴ 数列{a n }的通项公式为a n =3n-1.(2)由题意知b n =(-1)nn(3n -32)·(3n+32)=(-1)n ·16·13n -32+13n+32=(-1)n ·19·12n -1+12n+1,∴T n =19-11+13+13+15-15+17+…+(-1)n12n -1+12n+1=19-1+(-1)n12n+1.强化演练 1.B [解析] a n =√n+√n+1=√n +1-√n ,故S n =√n +1-√1,令S k =√k +1-√1=9,解得k=99,故选B.2.D [解析] ∵a n =√n+√n+2=12(√n +2-√n ),∴S n =12(√3-1+√4-√2+√5-√3+√6-√4+…+√n -√n -2+√n +1-√n -1+√n +2-√n )=12(-1-√2+√n +1+√n +2)=12(√n +2+√n +1-√2-1),故选D.3.A [解析] 令m=1,则a n+1-a n =n+1,将1,2,3,…,n-1分别代入上式,累加得(a n -a n-1)+(a n-1-a n-2)+…+(a 2-a 1)=n (n+1)2-1,所以a n -a 1=n(n+1)2-1,即a n =n(n+1)2,所以1a n=21n -1n+1,则1a 1+1a 2+…+1a 20=21-12+12-13+…+120-121=4021,故选A.4.解:(1)设等比数列{a n }的公比为q ,因为a 3a 5=a 42=4(a 4-1),所以a 4=2,又因为a 1=14, 所以a 4a 1=q 3=8,则q=2,所以a n =14×2n-1=2n-3.(2)证明:b n =log 2(16a n )=log 22n+1=n+1,1bn b n+1=1(n+1)(n+2)=1n+1-1n+2.则S n =12-13+13-14+14-15+…+1n+1-1n+2=12-1n+2<12.一、 填空题1.122-1+132-1+142-1+…+1(n +1)2-1的值为____________. 答案 34-12⎝⎛⎭⎫1n +1+1n +2解析 ∵1(n +1)2-1=1n 2+2n =1n (n +2)=12⎝⎛⎭⎫1n -1n +2,∴122-1+132-1+142-1+…+1(n +1)2-1=12⎝⎛⎭⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝⎛⎭⎫32-1n +1-1n +2 =34-12⎝⎛⎭⎫1n +1+1n +2. 2.已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5,则数列⎩⎨⎧⎭⎬⎫1a 2n -1a 2n +1的前8项和为____________.答案 -815解析 设数列{a n }的公差为d ,则S n =na 1+n (n -1)2d .由已知可得⎩⎨⎧3a 1+3d =0,5a 1+10d =-5,解得a 1=1,d =-1,故{a n }的通项公式为a n =2-n . 所以1a 2n -1a 2n +1=1(3-2n )(1-2n )=12⎝⎛⎭⎫12n -3-12n -1,所以数列⎩⎨⎧⎭⎬⎫1a 2n -1a 2n +1的前8项和为12⎝⎛⎭⎫1-1-11+11-13+…+116-3-116-1 =-815.3.若数列{a n }的通项为a n =4n -1,b n =a 1+a 2+…+a nn,n ∈N *,则数列{b n }的前n 项和是____________.答案 n (n +2)解析 a 1+a 2+…+a n =(4×1-1)+(4×2-1)+…+(4n -1)=4(1+2+…+n )-n =2n (n +1)-n =2n 2+n , ∴b n =2n +1,b 1+b 2+…+b n =(2×1+1)+(2×2+1)+…+(2n +1) =n 2+2n =n (n +2).4.设数列1,(1+2),…,(1+2+22+…+2n -1),…的前n 项和为S n ,则S n =____________. 答案 2n +1-n -2解析 ∵a n =1+2+22+…+2n -1=1-2n 1-2=2n-1,∴S n =(2+22+23+ (2))-n =2(1-2n )1-2-n =2n +1-n -2.5.设数列{a n }的通项公式是a n =(-1)n ·n ,则a 1+a 2+a 3+…+a 100=____________. 答案 50解析 由题意知,a 1+a 2+a 3+…+a 100=-1+2-3+4+…+(-1)200·100=(-1+2)+(-3+4)+…+(-99+100)=50.6.已知数列{}a n :12,13+23,14+24+34,…,110+210+310+…+910,…,若b n =1a n a n +1,那么数列{}b n 的前n 项和S n 为____________. 答案4nn +1解析 a n =1+2+3+…+n n +1=n 2,∴b n =1a n a n +1=4n (n +1)=4⎝⎛⎭⎫1n -1n +1,∴S n =4⎣⎡ ⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎦⎤⎝⎛⎭⎫1n -1n +1=4⎝⎛⎭⎫1-1n +1=4n n +1.7.等差数列{a n }的通项公式a n =2n -1,数列{1a n a n +1},其前n 项和为S n ,则S n 等于____________. 答案n2n +1解析 ∵a n =2n -1,∴1a n a n +1=1(2n +1)(2n -1)=12⎝⎛⎭⎫12n -1-12n +1.∴S n =12⎝⎛⎭⎫1-13+13-15+15-17+…+12n -1-12n +1=12⎝⎛⎭⎫1-12n +1=n2n +1. 8.数列{a n },{b n }满足a n b n =1,a n =n 2+3n +2,则{b n }的前10项之和为____________. 答案512解析 b n =1a n =1(n +1)(n +2)=1n +1-1n +2,S 10=b 1+b 2+b 3+…+b 10=12-13+13-14+14-15+…+111-112=12-112=512.9.设{a n }是等差数列,{b n }是各项都为正数的等比数列,且a 1=b 1=1,a 3+b 5=19,a 5+b 3=9,则数列{a n b n }的前n 项和S n =__________. 答案 (n -1)·2n +1解析 由条件易求出a n =n ,b n =2n -1(n ∈N *). ∴S n =1×1+2×21+3×22+…+n ×2n -1,① 2S n =1×2+2×22+…+(n -1)×2n -1+n ×2n .② 由①-②,得-S n =1+21+22+…+2n -1-n ×2n , ∴S n =(n -1)·2n +1.10.若数列{a n }的通项公式为a n =(-1)n (3n -2),则a 1+a 2+…+a 10=____________. 答案 15解析 a 1+a 2+…+a 10=-1+4-7+10-…+(-1)10·28=(-1+4)+(-7+10)+…+(-25+28)=15.11. (1002-992)+(982-972)+…+(22-12)=____________. 答案 5 050解析 原式=100+99+98+97+…+2+1=100×(100+1)2=5 050.二、解答题12.已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5-3b 2=7. (1)求{a n }和{b n }的通项公式;(2)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.解析 (1)设数列{a n }的公比为q ,数列{b n }的公差为d ,由题意q >0.由已知,有⎩⎨⎧2q 2-3d =2,q 4-3d =10,消去d ,整理得q 4-2q 2-8=0,又因为q >0,解得q =2,所以d =2.所以数列{a n }的通项公式为a n =2n -1,n ∈N *; 数列{b n }的通项公式为b n =2n -1,n ∈N *.(2)由(1)有c n =(2n -1)·2n -1, 设{c n }的前n 项和为S n ,则S n =1×20+3×21+5×22+…+(2n -3)×2n -2+(2n -1)×2n -1, 2S n =1×21+3×22+5×23+…+(2n -3)×2n -1+(2n -1)×2n , 上述两式相减,得-S n =1+22+23+…+2n -(2n -1)×2n =2n +1-3-(2n -1)×2n =-(2n -3)×2n -3, 所以,S n =(2n -3)·2n +3,n ∈N *.13.在等差数列{a n }中,a 2=4,a 4+a 7=15. (1)求数列{a n }的通项公式;(2)设b n =2a n -2+n ,求b 1+b 2+b 3+…+b 10的值. 解析 (1)设等差数列{a n }的公差为d ,由已知得⎩⎨⎧ a 1+d =4,(a 1+3d )+(a 1+6d )=15,解得⎩⎨⎧a 1=3,d =1.所以a n =a 1+(n -1)d =n +2. (2)由(1)可得b n =2n +n ,所以b 1+b 2+b 3+…+b 10=(2+1)+(22+2)+(23+3)+…+(210+10) =(2+22+23+…+210)+(1+2+3+…+10) =2(1-210)1-2+(1+10)×102=(211-2)+55 =211+53=2 101.。
数列求和公开课课件
数列求和在实际生活中的应用
如存款利息计算、物品分批购买等。
通过实际问题理解数列求和的意义
将实际问题抽象为数列求和,培养学生运用数学知识解决实际问题的能力。
数列求和与其他数学知识的联系
数列求和与函数的关系
数列是一种特殊的函数,数列求和可以看作是函数求和在离散点 上的应用。
数列求和与极限的联系
数列求和的极限就是无穷级数的和,无穷级数是分析数学的重要工 具。
数列求和与微积分的联系
通过微积分的基本定理,可以将数列求和转化为定积分进行计算。
数列求和的思维训练与拓展
培养逻辑思维
通过数列求和的学习,培 养学生的逻辑思维能力, 学会从已知条件出发推导 出结论。
培养创新思维
通过一题多解、一题多变 等方式,培养学生的创新 思维能力,学会从不同角 度思考问题。
在计算机科学中,数列求和常用 于算法分析和数据处理等方面。 例如,在计算某个算法的时间复 杂度时,需要用到数列求和的知
识。
02
等差数列求和
等差数列的定义与性质
定义
等差数列是指在一个数列中,从 第二项起,每一项与它的前一项 的差等于同一个常数的一种数列 。
性质
等差数列的公差是一个常数,等 差数列的任意两项之和是一个常 数,等差数列的中项等于首项与 末项的平均数。
数列求和公开课课件
目录
• 引言 • 等差数列求和 • 等比数列求和 • 分组数列求和 • 递推数列求和 • 数列求和的综合应用
01
引言
数列求和的背景与意义
数列求和的概念
数列求和是数学中的一个重要概念,指的是将数列中的所有项加起来得到的结 果。
第五节数列的求和精讲课件 文课件
∴Sn= [(10-1)+(102-1)+…+(10n-1)] = [(10+102+…+10n)-n] =
=
①当x≠±1时,
②当x=±1时,Sn=4n. (3)∵ak=(2k-1)+2k+(2k+1)+…+[(2k-1)+(k-1)]
∴Sn=a1+a2+…+an=
点评:通过对原数列通项结构特点的分析研究,将数列分 解为若干个能求和的新数列的和或差,从而求得原数列的 和.使用这种方法的关键是对通项的合理分解变形.
变式探究
2.(2012·武汉武昌区调研改编)已知数列{an}满足a1=2,an+1 =3an+3n+1-2n(n∈N*).
(1)设bn=
,证明:数列{bn}为等差数列,并求数列
{an}的通项公式;
(2)求数列{an}的前n项和Sn.
(1)证明:∵bn+1-bn=
∴{bn}为等差数列.又b1=0,∴bn=n-1. ∴an=(n-1)·3n+2n. (2)解析:设Tn=0·31+1·32+…+(n-1)·3n,则 3Tn=0·32+1·33+…+(n-1)·3n+1.
所以(a1+2d)2=a1(a1+6d),解得a1=2d(舍去d=0). 因为S4=14,所以4a1+6d=14, 所以d=1,a1=2, 所以an=n+1(n∈N*).
点评:裂项相消法求和就是将数列中的每一项拆成两项或多 项,使这些拆开的项出现有规律的相互抵消,没有抵消的项 的代数和就是求和的结果.使用此法的关键,一是合理裂项, 二是正确抵消.
由①-②得,-Sn=1+2+22+…+2n-1-n×2n=2· -n·2n+1=(1-n)2n-1,
所以Sn=1+(n-1)·2n.
点评:(1)如果数列{an}是等差数列,{bn}是等比数列,就使 用错位相减法求数列{an·bn}的前n项和. (2)“错位相减”的本质是“指数相同的两式相减”,因此在 写出“Sn”和“qSn”的表达式后,将两式“指数相同的两项 对齐”,以便下一步准确写出“Sn-qSn”的表达式.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以
Tn=2×(1+2+3+…+n)+(4+42+43+…+4n)=2×n·
n+1 2
+
4 1−4n =n
1−4
n+1
+
4n+1-4.
33
变式题 解:(1)当 n=1 时,a1=S1=1.
当
n≥2
时,an=Sn-Sn-1=n22+n-
n-1
2+ 2
n-1
=n.又
a1=1
满足上式,
所以数列 an 的通项公式为 an=n(n∈N*).
由条件知an21+1-a1n2=4,则
1 an2
是首项为 1,公差为 4 的等差数列,所以a1n2=4n-3.
又
an
为正项数列,所以 1 =
an
4n-3,所以 1 =
bn
4n + 1+
4n-3,
所以 bn=
1 4n-3+
=1(
4n+1 4
4n + 1-
4n-3),
故 T20=b1+b2+…+b20=14[( 5-1)+( 9- 5)+…+( 81- 77)]=14( 81-1)=2.
a1 a2
+ 1 =2 1-1 + 1-1 +…+ 1 - 1 =40,故选 A.
a20
2
23
20 21
21
4.解:(1)设等比数列{an}的公比为 q,因为 a3a5=a42=4(a4-1),所以 a4=2,又因为 a1=14,
所以a4=q3=8,则
a1
q=2,所以
an=14×2n-1=2n-3.
由①-②,得-Sn=2+22+23+…+2n-1-(n-1)×2n=21−−22n-(n-1)×2n=-(n-2)×2n-2,即 Sn=(n-2)·2n+2.
4. n
2n+1
[解析] 因为 Sn=4n2-1,则S1n=4n12-1=(2n+11)(2n-1)=12
1- 1
2n-1 2n+1
,则数列 1 的前 n 项和为
选 D.
3.A [解析] 令 m=1,则 an+1-an=n+1,将 1,2,3,…,n-1 分别代入上式,累加得(an-an-1)+(an-1-an-2)+…
+(a2-a1)=n
n+1 2
-1,所以
an-a1=n(n2+1)-1,即
an=n(n2+1),所以a1n=2
1- 1
n n+1
,则 1 + 1 +…
Sn
1 1-1 +1 1-1 +…+1 1 - 1 =1 1- 1 = n .
2 13 2 35
2 2n-1 2n+1 2 2n+1 2n+1
5.4-n2+n4 [解析] 设 S=3×12+4×212+5×213+…+(n+2)×21n,则12S=3×212+4×213+5×214+…
+(n+2)×2n1+1.
(2)由题意知 bn=
-1
n
3n-32
n ·
3n+32
=
-1
n·1·
6
3n1-32+3n1+32
= -1 n·1·
9
1+ 1
2n-1 2n+1
,
∴Tn=19
-
1+1
13
+
1+1
35
-
1+1
57
+…+ -1 n
1+ 1
2n-1 2n+1
强化演练
=1 -1+ -1 n 1 .
9
2n+1
1.B
[解析]
an=
∴数列 an 是首项 a1=3,公比为 3 的等比数列.
∴an=3×3n-1=3n. (2)由(1)得 bn=(2n-1)an=(2n-1)·3n, ∴Tn=1×3+3×32+5×33+…+(2n-1)·3n①, 3Tn=1×32+3×33+5×34+…+(2n-1)·3n+1②,
①-②得-2Tn=1×3+2×32+2×33+…+2×3n-(2n-1)·3n+1=3+2×(32+33+…
(2)证明:bn=log2(16an)=log22n+1=n+1,bnb1n+1=
1 n+1 n+2
=1-1.
n+1 n+2
则 Sn=12-13+13-14+14-15+…+n+11-n+12=12-n+12<12.
n+2 2
.
2.20
61
[解析] ∵an=13
1- 1
3n-2 3n+1
,∴S20=13
1-1 + 1-1 +…+ 1 - 1
4
47
58 61
=1 1- 1 =20.
3 61 61
3.(n-2)·2n+2 [解析] Sn=0+1×21+2×22+…+(n-2)×2n-2+(n-1)×2n-1①,
则 2Sn=0+1×22+2×23+…+(n-2)×2n-1+(n-1)×2n②,
解:(1)设等差数列 an 的公差为 d,因为 a2=4,且 a1,a3,a9 成等比数列,
即 4-d,4+d,4+7d 成等比数列, 所以有(4-d)(4+7d)=(4+d)2,即 8d2-16d=0,解得 d=2 或 d=0(舍去),
所以 a1=2,数列 an 的通项公式为 an=2n.
(2)由(1)知 bn=2n+22n =2n+4n,
数列求和讲义解析
1.(1)①(a1+an)n
2
na1+n(n2-1)d
②na1
a1(1-qn) 1−q
a1-anq (2)若干个等差或等比或可求和
1−q
2.(1)同一个常数 (2)并项法 3.两项之差 4.积 对点演练
1.2n+ n-1 n+2
2
[解析]
Sn=11−−22n+n
n+1 2
=2n+
n-1
例 4 [思路点拨] (1)将已知条件转化为关于首项 a1 与公差 d 的方程组,进而得到数列 an 的 通项公式;(2)首先由(1)确定数列 bn 的通项公式,然后根据其结构利用裂项相消法求得 Tn.
解:(1)设等差数列 an 的公差为 d. ∵ a22=a3+a6,∴(a1+d)2=a1+2d+a1+5d①, ∵ a32=a1·a11 ,∴(a1+2d)2=a1·(a1+10d)②. ∵d≠0,∴由①②解得 a1=2,d=3. ∴ 数列 an 的通项公式为 an=3n-1.
1−21n 1−12
-2nn+1=1-22n++n1,
∴Tn=2-n2+n2.
变式题 解:(1)当 n≥2 时,由 an+1=2Sn+3,得 an=2Sn-1+3,
两式相减,得 an+1-an=2Sn-2Sn-1=2an,∴an+1=3an,∴ana+n1=3.
当 n=1 时,a2=2S1+3=2a1+3=9,则aa21=3.
7.3027
2
[解析] 因为 a1=12,an+1=12+
an-an2,所以 a2=1,a3=12,a4=1,…,可得 an=
1 2
,n
1,n
= =
2k-1(k N*),故该 2k(k N*),
数列的前 2018 项的和 S2018=1009×
1+1
2
=3027.
2
【课堂考点探究】
例 1 [思路点拨] (1)将数列中的项用 a2 和 d 表示,根据等比数列的性质可得到关于 d 的一元 二次方程,求得 d 的值后,即可得到数列 an 的通项公式;(2)根据(1)可求得 bn 的通项公式,用分 组求和法可得其前 n 项和 Tn.
两式相减得1S=3×1+
2
2
212+213+…+21n
-2nn++21,
∴S=3+
12+212+…+2n1-1
1
-n2+n2=3+2
1−
1 2
n-1
1−12
-n2+n2=4-n2+n4.
6.990 [解析] 当 n 为奇数时,an+2-an=0,则 an=2;当 n 为偶数时,an+2-an=2,则 an=n.故 S60=2×30+(2+4+…+60)=990.
+3n)-(2n-1)·3n+1=3+2×32 1−3n-1 -(2n-1)·3n+1=-6-(2n-2)·3n+1.