不等式的证明教案
不等式的基本性质教案
不等式的基本性质教案一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生解决实际问题的能力,提高逻辑思维能力。
3. 引导学生运用不等式的基本性质进行证明和求解。
二、教学内容:1. 不等式的定义及表示方法。
2. 不等式的基本性质(性质1、性质2、性质3)。
3. 不等式的运算规则。
三、教学重点与难点:1. 重点:不等式的基本性质及其运用。
2. 难点:不等式性质的证明和运用。
四、教学方法:1. 采用问题驱动法,引导学生探索不等式的基本性质。
2. 运用案例分析法,让学生在实际问题中应用不等式。
3. 利用小组合作学习法,培养学生的团队协作能力。
五、教学过程:1. 导入:通过生活实例引入不等式的概念,引导学生理解不等式的表示方法。
2. 新课导入:介绍不等式的基本性质,引导学生通过观察、分析、归纳性质1、性质2、性质3。
3. 案例分析:运用不等式的基本性质解决实际问题,巩固所学知识。
4. 课堂练习:设计相关练习题,让学生运用不等式的基本性质进行计算和证明。
5. 总结提升:对本节课的内容进行总结,强调不等式的基本性质及其运用。
6. 作业布置:布置适量作业,巩固所学知识。
六、教学评估:1. 通过课堂练习和作业,评估学生对不等式基本性质的理解和运用能力。
2. 观察学生在解决问题时的思维过程,评估其逻辑思维和问题解决能力。
3. 采用小组讨论的方式,评估学生在团队协作中的表现和沟通能力。
七、教学反馈与调整:1. 根据学生的学习情况,及时给予反馈,针对性地进行讲解和辅导。
2. 对于学生掌握不足的部分,可以适当重复讲解,或增加相关的练习题目。
3. 鼓励学生提问,积极解答学生的疑问,提高学生的学习兴趣和动力。
八、拓展与延伸:1. 引导学生思考不等式在现实生活中的应用,例如经济、科学、工程等领域。
2. 介绍不等式与其他数学概念的联系,如函数、方程、坐标系等。
3. 鼓励学生进行不等式相关的课题研究,提高学生的研究能力和创新思维。
不等式·含绝对值符号的不等式证明·教案
不等式·含绝对值符号的不等式证明·教案教学目标:1. 理解含绝对值符号的不等式的定义和性质;2. 学会解含绝对值符号的不等式;3. 能够运用含绝对值符号的不等式证明问题。
教学内容:1. 绝对值符号的定义和性质;2. 含绝对值符号的不等式的解法;3. 含绝对值符号的不等式证明的方法。
教学准备:1. 教学课件或黑板;2. 练习题。
教学过程:一、导入(5分钟)1. 引入绝对值符号的概念,讲解其定义和性质;2. 引导学生思考含绝对值符号的不等式与普通不等式的区别和联系;3. 提问:同学们认为含绝对值符号的不等式应该如何解呢?二、讲解(20分钟)1. 讲解含绝对值符号的不等式的解法,引导学生通过画图或列举特例来理解;2. 讲解含绝对值符号的不等式证明的方法,如利用绝对值的性质、分情况讨论等;3. 举例讲解,让学生跟随步骤一起解题,提问学生是否理解每一步的原理。
三、练习(15分钟)1. 让学生独立完成练习题,鼓励学生相互讨论和交流;2. 选取部分学生的作业进行点评,讲解错误的原因和解题思路;四、巩固(10分钟)1. 给出一些含有绝对值符号的不等式证明问题,让学生独立解决;2. 引导学生运用所学知识和方法,证明给定的不等式;3. 提问学生是否能够灵活运用所学知识,并解释原因。
2. 强调重点和难点,提醒学生注意易错点;3. 布置作业,让学生进一步巩固所学知识。
教学反思:本节课通过讲解和练习,让学生掌握了含绝对值符号的不等式的解法和证明方法。
在教学过程中,要注意引导学生理解绝对值符号的性质,以及如何运用分情况讨论等方法来解决含绝对值符号的不等式问题。
要加强练习和巩固,让学生能够灵活运用所学知识。
六、案例分析(15分钟)1. 给学生提供几个实际案例,涉及含绝对值符号的不等式问题;2. 引导学生运用所学知识和方法,分析并解决案例中的问题;3. 让学生分组讨论,分享解题思路和经验,互相学习。
七、拓展与应用(15分钟)1. 给学生提出一些含绝对值符号的不等式证明问题,要求学生独立解决;2. 鼓励学生运用所学知识和方法,创造自己的解题思路;3. 选取部分学生的作业进行点评,讲解优秀解题方法和技巧。
不等式·含绝对值符号的不等式证明·教案
不等式·含绝对值符号的不等式证明·教案一、教学目标1. 让学生理解含绝对值符号的不等式的含义。
2. 让学生掌握含绝对值符号的不等式的解法。
3. 培养学生运用不等式解决实际问题的能力。
二、教学内容1. 绝对值的概念及其性质。
2. 含绝对值符号的不等式的解法。
3. 实际例子中的应用。
三、教学重点与难点1. 教学重点:含绝对值符号的不等式的解法。
2. 教学难点:理解绝对值的概念及其性质。
四、教学方法1. 采用启发式教学法,引导学生自主探究含绝对值符号的不等式的解法。
2. 通过实际例子,让学生了解含绝对值符号的不等式在生活中的应用。
3. 利用小组讨论法,培养学生合作解决问题的能力。
五、教学过程1. 引入绝对值的概念,讲解绝对值的性质。
2. 讲解含绝对值符号的不等式的解法,引导学生进行自主练习。
3. 通过实际例子,让学生了解含绝对值符号的不等式在生活中的应用。
4. 组织小组讨论,让学生合作解决实际问题。
5. 总结本节课的主要内容,布置课后作业。
教案示例:一、教学目标1. 让学生理解绝对值的概念及其性质。
2. 让学生掌握含绝对值符号的不等式的解法。
3. 培养学生运用不等式解决实际问题的能力。
二、教学内容1. 绝对值的概念及其性质。
2. 含绝对值符号的不等式的解法。
3. 实际例子中的应用。
三、教学重点与难点1. 教学重点:含绝对值符号的不等式的解法。
2. 教学难点:理解绝对值的概念及其性质。
四、教学方法1. 采用启发式教学法,引导学生自主探究含绝对值符号的不等式的解法。
2. 通过实际例子,让学生了解含绝对值符号的不等式在生活中的应用。
3. 利用小组讨论法,培养学生合作解决问题的能力。
五、教学过程1. 引入绝对值的概念,讲解绝对值的性质。
讲解绝对值的定义:数轴上某个数与原点的距离称为该数的绝对值。
讲解绝对值的性质:(1) 任何数的绝对值都是非负数。
(2) 正数的绝对值是它本身。
(3) 负数的绝对值是它的相反数。
不等式的基本性质数学教案
不等式的基本性质数学教案教学目标:1. 理解不等式的概念及基本性质;2. 学会如何运用不等式的性质进行解题;3. 培养学生的逻辑思维能力和解决问题的能力。
教学重点:1. 不等式的概念及基本性质;2. 如何运用不等式的性质解题。
教学难点:1. 不等式的性质3的证明;2. 运用不等式的性质解题的方法。
教学准备:1. 教学课件或黑板;2. 练习题。
教学过程:一、导入(5分钟)1. 引入不等式的概念,让学生回顾已学过的不等式知识;2. 提问:不等式有哪些基本性质?二、新课讲解(15分钟)1. 讲解不等式的基本性质1:同向相加,逆向相减;2. 讲解不等式的基本性质2:同向相乘,逆向相除;3. 讲解不等式的基本性质3:乘以或除以同一个负数,不等号方向改变。
三、例题解析(15分钟)1. 举例说明如何运用不等式的基本性质解题;2. 让学生尝试解题,并给予指导。
四、课堂练习(10分钟)1. 让学生完成练习题,巩固所学知识;2. 对学生的练习进行点评,解答疑问。
2. 教师进行教学反思,看学生对本节课知识的掌握情况。
教学延伸:1. 讲解不等式的其他性质;2. 介绍不等式的应用领域。
教学反思:六、不等式的性质1和性质2的应用(15分钟)教学目标:1. 学会如何运用不等式的性质1和性质2进行解题;2. 培养学生的逻辑思维能力和解决问题的能力。
教学重点:1. 不等式的性质1和性质2;2. 如何运用不等式的性质1和性质2解题。
教学难点:1. 不等式的性质1和性质2的运用;2. 运用不等式的性质1和性质2解题的方法。
教学准备:1. 教学课件或黑板;2. 练习题。
教学过程:1. 复习不等式的性质1和性质2;2. 讲解如何运用不等式的性质1和性质2解题;3. 举例说明如何运用不等式的性质1和性质2解题;4.让学生尝试解题,并给予指导。
七、不等式的性质3和性质4的应用(15分钟)教学目标:1. 学会如何运用不等式的性质3和性质4进行解题;2. 培养学生的逻辑思维能力和解决问题的能力。
不等式的性质教学教案
不等式的性质教学教案一、教学目标1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生解决实际问题的能力,提高逻辑思维和运算能力。
3. 引导学生运用不等式的性质进行证明和推理,培养学生的数学素养。
二、教学内容1. 不等式的定义及表示方法2. 不等式的基本性质3. 不等式的运算规则4. 不等式与方程的关系5. 不等式在实际问题中的应用三、教学重点与难点1. 教学重点:不等式的概念、表示方法、基本性质和运算规则。
2. 教学难点:不等式的性质证明和应用。
四、教学方法1. 采用问题驱动法,引导学生探索不等式的性质。
2. 运用案例分析法,让学生解决实际问题,巩固不等式的应用。
3. 采用分组讨论法,培养学生的团队协作能力和沟通能力。
4. 利用多媒体辅助教学,提高课堂效果。
五、教学过程1. 导入新课:通过生活中的实例,引入不等式的概念,让学生感受不等式的实际意义。
2. 讲解不等式的表示方法,如“>”、“<”、“≥”、“≤”等,并进行举例说明。
3. 引导学生探索不等式的基本性质,如对称性、传递性等,并进行证明。
4. 讲解不等式的运算规则,如加减乘除等,并通过例题展示运算过程。
5. 分析不等式与方程的关系,引导学生掌握解不等式的方法。
6. 运用案例分析法,让学生解决实际问题,如分配问题、排序问题等。
8. 布置作业:设计相关练习题,巩固所学知识。
六、教学策略与评估1. 教学策略:运用比较方法,让学生通过观察和分析,发现不等式的性质。
利用图形和符号表示不等式,帮助学生形象地理解不等式的意义。
提供丰富的练习题,让学生在实践中掌握不等式的性质和应用。
鼓励学生参与课堂讨论,培养学生的表达能力和思维能力。
2. 评估策略:课堂提问:通过提问了解学生对不等式性质的理解程度。
作业批改:检查学生作业,评估学生对不等式性质的掌握情况。
小组讨论:观察学生在小组讨论中的表现,了解学生的合作能力和沟通能力。
课堂表现:评估学生在课堂上的参与度和表现。
教学案:3.5柯西不等式
柯西不等式教学目标:1.掌握二维柯西不等式的代数形式、向量形式和三角不等式. 2.掌握柯西不等式的一般形式.3.能利用柯西不等式解决不等式证明和最值问题. 教学重点:理解并掌握柯西不等式及其推广形式. 教学难点:柯西不等式在证明不等式和求最值中的应用. 教学过程: 一、课堂探究探究1:证明不等式:(a 2+b 2)(c 2+d 2)≥(ac +bd )2 分析一:比较法证明; 分析二:分析法证明.设计意图:通过课前自主预习,复习回顾不等式的证明方法,让学生初步认识柯西不等式的代数形式.定理1 柯西不等式:若a ,b ,c ,d 为实数,则 (a 2+b 2)(c 2+d 2)≥(ac +bd )2 ,当且仅当 ad =bc 时,等号成立.问题1:在柯西不等式中,取等号的条件可以写成a b =cd 吗?分析:不可以.当b ·d =0时,柯西不等式成立,但a b =cd 不成立.设计意图:体会柯西不等式的广泛性和一般性.探究2:(1)已知122=+b a ,122=+y x ,求证:by ax +≤1.分析:直接使用柯西不等式证明.设计意图:熟悉柯西不等式的结构特征及简单应用.(2)设在平面直角坐标系xOy 中有向量),(),,(d c b a ==βα,|α||β|与|α·β|的大小关系如何. 设计意图:找到柯西不等式的几何意义.定理2 柯西不等式的向量形式:设α,β为平面上的两个向量,则 |α||β|≥|α·β| ,当且仅当 α和β共线(平行) 时,等号成立.探究3:设R d c b a ∈,,,,求证:2222d c b a +++≥22)()(d b c a +++,等号当且仅当ad =bc 时成立.分析:两边平方后用分析法证明设计意图:进一步体会柯西不等式的应用,为引入三角形不等式做铺垫.定理3 三角形不等式:设x 1,x 2,x 3,y 1,y 2,y 3∈R ,那么(x 1-x 3)2+(y 1-y 3)2+(x 2-x 3)2+(y 2-y 3)2≥(x 1-x 2)2+(y 1-y 2)2. 问题2:三角形不等式的几何意义是什么?分析:三角形的两边之和大于第三边,等号成立时三点共线.探究4:柯西不等式能否推广到n 个元素的一般形式.定理4 柯西不等式的一般形式:设n 为大于1的自然数,i i b a ,(n i ,,2,1 =)为实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,等号当且仅当nn a b a b a b === 2211时成立(当0=i a 时,约定0=i b ,n i ,,2,1 =).二、例题选讲例题1.(1)已知b a ,为实数,证明))((2244b a b a ++≥233)(b a +. (2)已知+∈R y x ,,2=+y x ,求证:yx 11+≥2. 设计意图:熟悉柯西不等式在证明不等式中的应用.(1)分析:根据形式直接使用柯西不等式. 证明:由柯西不等式得)]()()[())((2222222244b a b a b a b a ++=++≥222)(b b a a ⋅+⋅233)(b a +=(2)分析:将yx 11+与y x +相乘,再利用柯西不等式. 证明:))(11(2111y x y x y x ++=+≥2)11(212=+y yx x例题2.(1)已知12=+y x ,求22y x +的最小值. (2)求函数x x y -+-=6453的最大值. 设计意图:熟悉柯西不等式在求最值中的应用. (1)分析:由题意配凑出柯西不等式的形式.证明:由柯西不等式得)21)((2222++y x ≥1)2(2=+y x 所以22y x +≥51.当且仅当21y x =,即52,51==y x 时,22y x +取最小值51. (2)分析:由柯西不等式配凑出常数.证明:由柯西不等式得()26453x x -+-≤()()()2565432222=⎪⎭⎫⎝⎛-+-+x x所以x x -+-6453≤5 当且仅当5463-=-x x ,即25134=x 时,函数x x y -+-=6453取最大值5.例题3.(1)若c b a ,,为正数,且1=++c b a ,求证:cb a 111++≥9. (2)已知5432=+++d c b a ,求2222d c b a +++的最小值.设计意图:熟悉柯西不等式一般形式在不等式的证明与求最值中的应用. (1)分析:将cb a 111++与c b a ++相乘,再利用柯西不等式的一般形式. 证明:由柯西不等式得()c b a c b a ++⎪⎭⎫⎝⎛++111≥91112=⎪⎭⎫ ⎝⎛⋅+⋅+⋅c c b b a a又因为1=++c b a ,所以cb a 111++≥9. (2)分析:根据柯西不等式的一般形式的结构特点,配凑出柯西不等式. 证明:由柯西不等式得()()222222224321++++++d c b a≥()254322=+++d c b a 所以2222d c b a +++≥65 当且仅当4321d c b a ===,即32,21,31,61====d c b a 时,2222d c b a +++取最小值65.三、课堂小结1.二维柯西不等式的代数形式,向量形式,三角形式的结构特征. 2.应用柯西不等式证明不等式和求最值时注意等号成立的条件. 3.使用柯西不等式时的转化与化归思想.四、当堂检测1.设+∈R b a ,,1=+b a ,求证ba 11+≥4. 证明:由柯西不等式得()b a b a b a +⎪⎭⎫ ⎝⎛+=+1111≥4112=⎪⎭⎫⎝⎛+b b a a2.已知122=+b a ,求证θθsin cos b a +≤1. 证明:由柯西不等式得2sin cos θθb a +≤()()1sin cos 2222=++θθb a所以θθsin cos b a +1≤13.设b a ,为正数,求)212)(1(ab b a ++的最小值. 解:由柯西不等式得)212)(1(a b b a ++≥2921212=⎪⎭⎫ ⎝⎛+b b a a当且仅当ab b a 2112⋅=⋅,即21=ab 时,)212)(1(a b b a ++取最小值29. 4.已知123=+y x ,求22y x +的最小值.解:由柯西不等式得()()222223++y x ≥()1232=+y x所以22y x +≥131当且仅当y x 32=,即132,133==y x 时,22y x +取最小值131.五、课后作业1.若a ,b ∈R ,且a 2+b 2=10,则a +b 的取值范围是( ) A .[-25,25] B .[-210,210] C .[-10,10]D .(-5,5]解析:∵a 2+b 2=10, ∴(a 2+b 2)(12+12)≥(a +b )2, 即20≥(a +b )2, ∴-25≤a +b ≤2 5. 答案:A2.已知x ,y ∈R +,且xy =1,则)11)(11(yx ++的最小值为( ) A .4 B .2 C .1D .14解析:)11)(11(y x ++≥2)11(xy+=4,故选A. 答案:A3.已知4x 2+5y 2=1,则2x +5y 的最大值是( ) A. 2 B .1 C .3D .9解析:∵2x +5y =2x ·1+5y ·1≤4x 2+5y 2·12+12=1·2= 2.∴2x +5y 的最大值为 2. 答案:A4.设a 1,a 2,…,a n 为实数,P =a 21+a 22+…+a 2nn ,Q =a 1+a 2+…+a n n,则P 与Q 的大小关系为( ) A .P >Q B .P ≥Q C .P <QD .不确定解析:由柯西不等式知(a 21+a 22+…+a 2n )12·()111n ⋯+++个12≥a 1+a 2+…+a n , ∴a 21+a 22+…+a 2n ·n ≥a 1+a 2+…+a n .即得 a 21+a 22+…+a 2nn ≥a 1+a 2+…+a n n,∴P ≥Q .答案:B5.设a ,b ,c ,d ,m ,n 都是正实数,P =ab +cd ,Q =ma +nc ·b m +dn,则P 与Q 的大小________. 解析:由柯西不等式,得 P =am ·bm+nc ×d n≤(am )2+(nc )2×⎝⎛⎭⎫b m 2+⎝⎛⎭⎫d n 2=am +nc ×b m +d n=Q . 答案:P ≤Q6.函数f (x )=x -6+12-x 的最大值为________. 解析:由柯西不等式得 (x -6+12-x )2≤(12+12)·[(x -6)2+(12-x )2]=12,∴x -6+12-x ≤23(当x =9时,“=”成立).答案:2 37.设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma +nb =5,则m 2+n 2的最小值为________.解析:由柯西不等式得(ma +nb )2≤(m 2+n 2)(a 2+b 2),即m 2+n 2≥5,当且仅当m a =nb时等号成立,∴m 2+n 2≥5,∴所求最小值为 5.答案: 58.函数y =2cos x +31-cos 2x 的最大值为________. 解析:y =2cos x +31-cos 2x =2cos x +32sin 2x ≤(cos 2x +sin 2x )[22+(32)2]=22.当且仅当cos x sin 2x =232,即tan x =±322时,函数有最大值22.答案:229.已知x ,y ,z 均为正实数,且x +y +z =1,则1x +4y +9z 的最小值为________.解析:利用柯西不等式. 由于(x +y +z )⎝⎛⎭⎫1x +4y +9z ≥⎝⎛ x ·1x +y ·2y +⎭⎫z ·3z 2=36, 所以1x +4y +9z≥36.当且仅当x 2=14y 2=19z 2,即x =16,y =13,z =12时,等号成立.∴1x +4y +9z 的最小值为36.答案:3610.已知a ,b ,c ∈R ,a +2b +3c =6,则a 2+4b 2+9c 2的最小值为________.解析:由柯西不等式,得(a 2+4b 2+9c 2)·(12+12+12)≥(a ·1+2b ·1+3c ·1)2=36,故a 2+4b 2+9c 2≥12,从而a 2+4b 2+9c 2的最小值为12. 答案:1211.设x ,y ,z ∈R ,且满足:x 2+y 2+z 2=1,x +2y +3z =14,则x +y +z =________. 解析:根据柯西不等式可得,(x 2+y 2+z 2)(12+22+32)≥(x +2y +3z )2=14,所以要取到等号,必须满足x 1=y 2=z 3,结合x +2y +3z =14,可得x +y +z =3147.答案:314712.已知实数a 、b 、c 满足a +2b +c =1,a 2+b 2+c 2=1. 求证:-23≤c ≤1.证明:因为a +2b +c =1,a 2+b 2+c 2=1,所以a +2b =1-c ,a 2+b 2=1-c 2. 由柯西不等式得:(12+22)(a 2+b 2)≥(a +2b )2, 5(1-c 2)≥(1-c )2, 整理得,3c 2-c -2≤0, 解得-23≤c ≤1.∴-23≤c ≤1.13.已知x ,y ,z ∈R ,且x -2y -3z =4,求x 2+y 2+z 2的最小值. 解:由柯西不等式,得[x +(-2)y +(-3)z ]2≤[12+(-2)2+(-3)2](x 2+y 2+z 2), 即(x -2y -3z )2≤14(x 2+y 2+z 2), 即16≤14(x 2+y 2+z 2).所以x 2+y 2+z 2≥87,当且仅当x =y -2=z -3,即当x =27,y =-47,z =-67时,x 2+y 2+z 2的最小值为87.14.已知实数a ,b ,c ,d 满足a +b +c +d =3,a 2+2b 2+3c 2+6d 2=5,求a 的最值. 解:由柯西不等式,有(2b 2+3c 2+6d 2)⎝⎛⎭⎫12+13+16≥(b +c +d )2, 即2b 2+3c 2+6d 2≥(b +c +d )2, 由条件可得,5-a 2≥(3-a )2, 解得1≤a ≤2,当且仅当2b 12=3c 13=6d16时等号成立, 代入b =12,c =13,d =16时,a max =2,代入b =1,c =23,d =13时,a min =1.15.设2x +3y +5z =29,求函数u =2x +1+3y +4+5z +6 的最大值. 解: 根据柯西不等式120=3[(2x +1)+(3y +4)+(5z +6)]≥(1×2x +1+1×3y +4+1×5z +6)2, 故2x +1+3y +4+5z +6≤230. 当且仅当2x +1=3y +4=5z +6, 即x =376,y =289,z =2215时等号成立,此时u max =230.。
高中数学教案 第5讲 基本不等式
第5讲基本不等式1.了解基本不等式的证明过程.2.能用基本不等式解决简单的最值问题.3.掌握基本不等式在生活实际中的应用.1.基本不等式ab ≤a +b2(a >0,b >0),等号成立的条件:当且仅当□1a =b 时取等号.2.两个重要的不等式(1)a 2+b 2≥□22ab (a ,b ∈R ),当且仅当a =b 时取等号.(2)ab ≤(a +b 2)2(a ,b ∈R ),当且仅当a =b 时取等号.3.利用基本不等式求最值(1)已知x ,y 都是正数,如果积xy 等于定值P ,那么当x =y 时,和x +y 有最小值□32P .(2)已知x ,y 都是正数,如果x +y 的和等于定值S ,那么当x =y 时,积xy 有最大值□414S 2.利用基本不等式求最值要注意:(1)满足“一正,二定,三相等”,忽略某个条件,就会出错.(2)一定要尽量避免多次使用基本不等式.若必须多次使用,则一定要保证它们等号成立的条件一致(等号同时成立).常用结论1.b a +ab≥2(a ,b 同号),当且仅当a =b 时取等号.2.ab ≤(a +b 2)2≤a 2+b 22(a ,b ∈R ).3.21a +1b ≤ab ≤a +b 2≤a 2+b 22(a >0,b >0).1.思考辨析(在括号内打“√”或“×”)(1)不等式a 2+b 2≥2ab 与a +b2≥ab 成立的条件是相同的.()(2)函数y =x +1x 的最小值是2.()(3)函数f (x )=cos x +4cos x ,x ∈(0,π2)的最小值等于4.()(4)“x >0且y >0”是“x y +yx ≥2”的充要条件.()答案:(1)×(2)×(3)×(4)×2.回源教材(1)已知x >-1,则x +1x +1的最小值为________.解析:x +1x +1=(x +1)+1x +1-1≥2(x +1)×1x +1-1=2-1=1,当且仅当x +1=1x +1,即x =0时等号成立.答案:1(2)若a >0,b >0,且ab =a +b +3,则ab 的最小值为________.解析:由ab =a +b +3≥2ab +3,得ab -2ab -3≥0,解得ab ≥3(ab ≤-1舍去),即ab ≥9,当且仅当a =b =3时取等号.答案:9(3)若把总长为20m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________m 2,此时矩形场地的长、宽分别是________m.解析:设矩形的一边为x m ,则另一边为12×(20-2x )=(10-x )m ,其中0<x<10,所以面积y =x (10-x )≤(x +10-x 2)2=25,当且仅当x =10-x ,即x =5时,等号成立,所以y max =25.此时矩形的长与宽均为5m.答案:255,5利用基本不等式求最值配凑法例1(1)已知x >2,则4x -2+x 的最小值是________.解析:由x >2知x -2>0,则4x -2+x =4x -2+(x -2)+2≥24x -2·(x -2)+2=6,当且仅当4x -2=x -2,即x =4时取“=”,所以4x -2+x 的最小值是6.答案:6(2)设0<x <32,则函数y =4x (3-2x )的最大值为________.解析:∵0<x <32,∴3-2x >0,y =4x (3-2x )=2[2x (3-2x )]≤22x +(3-2x )22=92,当且仅当2x =3-2x ,即x =34时,等号成立.∵34∈(0,32),∴函数y =4x (3-2x )(0<x <32)的最大值为92.答案:92常数代换法例2(2024·济宁高三月考)若a >0,b >0,3a +2b =6,则2a +3b的最小值为()A .6B .5C .4D .3解析:C因为a >0,b >0,3a +2b =6,所以2a +3b =16(2a +3b )(3a +2b )=16(12+4b a +9a b )≥16(12+24b a ·9a b )=4,当且仅当3a =2b =3时,取等号,即2a +3b的最小值为4.消元法例3(2024·菏泽期中)若正数x ,y 满足x 2+xy -3=0,则4x +y 的最小值是()A .3B .6C .23D .42解析:B因为正数x ,y 满足x 2+xy -3=0,所以y =3x -x ,由y >0,得3x-x >0,因为x >0,所以3-x 2>0,即0<x <3.所以4x +y =3x +3x ≥23x ·3x=6,当且仅当3x =3x,即x =1时等号成立.故选B .反思感悟利用基本不等式求最值的方法(1)知和求积的最值:“和为定值,积有最大值”.但应注意以下两点:①具备条件——正数;②验证等号成立.(2)知积求和的最值:“积为定值,和有最小值”,直接应用基本不等式求解,但要注意利用基本不等式求最值的条件.(3)构造不等式求最值:在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数1”的替换,构造不等式求解.训练1(1)已知x >0,y >0,且4x +2y -xy =0,则2x +y 的最小值为()A .16B .8+42C .12D .6+42解析:A 由题意可知2x +4y =1,∴2x +y =(2x +y )(2x +4y )=8x y +2yx+8≥28x y ·2yx+8=16,当且仅当8x y =2yx,即x =4,y =8时,等号成立,则2x +y 的最小值为16.(2)(2024·深圳六校质检)已知x>0,y>0,若x+y+xy=3,则xy的最大值为()A.1B.2C.2D.22解析:A法一:由x>0,y>0,得x+y≥2xy,所以x+y+xy=3≥2xy+xy,当且仅当x=y时等号成立.令xy=t(t>0),则t2+2t-3≤0,解得0<t≤1,即0<xy≤1,故0<xy≤1,当且仅当x=y=1时等号成立,xy的最大值为1,故选A.法二:由x+y+xy=3,且x>0,得y=3-xx+1,则xy=x(3-x)x+1=-x2+3xx+1,因为x>0,y>0,则3-xx+1>0且x>0,解得0<x<3.设t=x+1∈(1,4),则x=t-1,xy=-x2+3xx+1=-(t-1)2+3(t-1)t=-t2+5t-4t=-t-4t+5=-(t+4t)+5≤-2t·4t+5=1,当且仅当t=4t,即t=2,也即x=y=1时等号成立,所以xy的最大值为1,故选A.(3)已知x>1,则y=x-1x2+3的最大值为________.解析:令t=x-1,∴x=t+1,∵x>1,∴t>0,∴y=t(t+1)2+3=tt2+2t+4=1t+4t+2≤124+2=16,当且仅当t=4t,t=2,即x=3时,等号成立,∴当x=3时,y max=1 6 .答案:1 6利用基本不等式求参数值或取值范围例4(1)当x>a时,2x+8x-a的最小值为10,则a=()A.1B.2 C.22D.4解析:A2x+8x-a=2(x-a)+8x-a+2a≥22(x-a)×8x-a+2a=8+2a,即8+2a=10,故a=1.(2)已知不等式(x+y)(1x+ay)≥9对任意正实数x,y恒成立,则正实数a的最小值为________.解析:已知不等式(x+y)(1x+ay)≥9对任意正实数x,y恒成立,只需求(x+y)(1x+ay)的最小值大于或等于9,∵(x+y)(1x+ay)=1+a+yx+axy≥a+2a+1=(a+1)2,当且仅当y=ax时,等号成立,∴(a+1)2≥9,∴a≥4,即正实数a的最小值为4.答案:4反思感悟利用基本不等式求最值及最值成立的条件,可确定某些参数的范围.训练2若正实数x,y满足x+y=1,且不等式4x+1+1y<m2+32m有解,则实数m的取值范围是________.解析:因为正实数x,y满足x+y=1,则(x+1)+y=2,所以4x+1+1y=12[(x+1)+y]·(4x+1+1y)=12(5+4yx+1+x+1y)≥1 2(5+24yx+1·x+1y)=92,+1=2y,+y=1,=13,=23时,等号成立,所以4x+1+1y的最小值为92.因为不等式4x+1+1y<m2+32m有解,则m2+32m>92,即2m2+3m-9>0,即(2m-3)(m+3)>0,解得m<-3或m>32.答案:(-∞,-3)∪(32,+∞)基本不等式的实际应用例5长征二号F遥十四运载火箭在设计生产中采用了很多新技术新材料.甲工厂承担了某种材料的生产,并以x千克/时(为保证质量要求1≤x≤10)的速度匀速生产,每小时可消耗A材料(kx2+9)千克,已知每小时生产1千克该产品时,消耗A材料10千克.(1)设生产m千克该产品,消耗A材料y千克,试把y表示为x的函数;(2)要使生产1000千克该产品消耗的A材料最少,工厂应选取何种生产速度?并求消耗的A材料最少为多少.解:(1)由题意得k+9=10,解得k=1,因为生产m千克该产品需要的时间是mx,所以y=mx(kx2+9)=m(x+9x),1≤x≤10.(2)由(1)知,生产1000千克该产品消耗的A材料为y=1000(x+9x)≥1000×29=6000(千克).当且仅当x=9x,即x=3时,等号成立,故工厂应选取3千克/时的生产速度,此时消耗的A材料最少,最少为6000千克.反思感悟1.根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值.2.解应用题时,一定要注意变量的实际意义及其取值范围.3.在应用基本不等式求函数的最值时,若等号取不到,则可利用函数的单调性求解.训练3某校为该校生物兴趣小组分配了一块面积为32m 2的矩形空地,该生物兴趣小组计划在该空地上设置三块全等的矩形试验区,如图,要求矩形试验区的四周各空0.5m ,各试验区之间也空0.5m .则每块试验区的面积的最大值为________m 2.解析:设矩形空地的长为x m ,则宽为32xm ,依题意可得,试验区的总面积S =(x -0.5×4)0.5×34-x -64x≤34-2x ×64x=18,当且仅当x =64x,即x =8时等号成立,易知x =8符合题意,所以每块试验区的面积的最大值为18÷3=6(m 2).答案:6限时规范训练(五)A 级基础落实练1.下列函数中,最小值为2的是()A .y =x +2xB .y =x 2+3x 2+2C .y =e x +e -xD .y =sin x +1sin x (0<x <π2)解析:C 当x <0时,y =x +2x <0,故A 错误;y =x 2+3x 2+2=x 2+2+1x 2+2≥2,当且仅当x2+2=1x2+2,即x2=-1时取等号,又x2≠-1,故B错误;y=e x+e-x≥2e x·e-x=2,当且仅当e x=e-x,即x=0时取等号,故C正确;当x∈(0,π2)时,sin x∈(0,1),y=sin x+1sin x≥2,当且仅当sin x=1sin x,即sin x=1时取等号,因为sin x∈(0,1),故D错误.2.已知a>0,b>0,若2a+b=4,则ab的最大值为()A.14B.4C.12D.2解析:D由题意得4=2a+b≥22ab,即2≥2ab,两边平方得4≥2ab,∴ab≤2,当且仅当a=1,b=2时,等号成立,∴ab的最大值为2.3.(2024·六安金寨县青山中学期末)已知x>2,y=4x+1x-2,则y的最小值为()A.8B.10C.12D.14解析:C∵x>2,∴y=4x+1x-2=4(x-2)+1x-2+8≥24(x-2)·1x-2+8=12,当且仅当4(x-2)=1x-2,即x=52时取等号,故选C.4.(2024·长沙雅礼中学第三次月考)已知x>0,y>0,且x+y=7,则(1+x)(2+y)的最大值为()A .36B .25C .16D .9解析:B法一:由x +y =7,得(x +1)+(y +2)=10,则(1+x )(2+y )≤(1+x )+(2+y )22=25,当且仅当1+x =2+y ,即x =4,y =3时等号成立,所以(1+x )·(2+y )的最大值为25.故选B .法二:因为x +y =7,所以y =7-x ,因为x >0,y >0,所以0<x <7,则(1+x )(2+y )=(1+x )(9-x )=-x 2+8x +9=-(x -4)2+25≤25,所以当x =4,y =3时,(1+x )(2+y )取得最大值25.故选B .5.(2023·忻州联考(二))已知0<a <2,则1a +92-a 的最小值是()A .4B .6C .8D .16解析:C 因为0<a <2,所以1a >0,92-a >0,则1a +92-a =12[a +(2-a )](1a +92-a )=12(1+9a 2-a +2-a a +9)=5+12(9a2-a +2-a a)≥5+9a 2-a ·2-aa=8,当且仅当9a 2-a =2-a a ,即a =12时等号成立,所以1a +92-a 的最小值为8.6.(多选)(2024·安徽名校联考)已知实数a ,b 满足a >b >0且a +b =2,则下列结论中正确的有()A .a 2+b 2>2B .8a +2b ≥9C .ln a +ln b >0D .a +1a >b +1b解析:AB对于A ,因为a >b >0且a +b =2,由基本不等式a 2+b 2>2ab ,得a 2+b 2=12[a 2+b 2+(a 2+b 2)]>12(a 2+b 2+2ab )=12(a +b )2=2(或由不等式a 2+b 22>(a +b 2)2直接得到),故A 正确;对于B ,8a +2b =12(8a +2b )(a +b )=12(10+8b a +2a b )≥12(10+28b a ·2ab)=9,当且仅当8b a =2a b ,即a =43,b =23时等号成立,故B 正确;对于C ,ln a +ln b =ln(ab )<ln(a +b 2)2=ln 1=0,故C 错误;对于D ,因为ab <(a +b 2)2=1,所以0<ab <1,所以(a +1a )-(b +1b )=(a -b )+b -a ab =(a -b )(1-1ab )=(a -b )(ab -1)ab<0,故D 错误.故选AB .7.函数y =x 2x +1(x >-1)的最小值为________.解析:因为y =x 2-1+1x +1=x -1+1x +1=x +1+1x +1-2(x >-1),所以y ≥2(x +1)·1(x +1)-2=0,当且仅当x =0时,等号成立.所以y =x 2x +1(x >-1)的最小值为0.答案:08.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系式为y =-x 2+18x -25(x ∈N *),则每台机器为该公司创造的最大年平均利润是________万元.解析:每台机器运转x 年的年平均利润为y x=18-(x +25x )万元,由于x >0,故y x≤18-225=8,当且仅当x =5时等号成立,此时每台机器为该公司创造的年平均利润最大,最大为8万元.答案:89.(2024·张家口部分学校期中)已知a >0,b >0,且有a 2+4ab =16b 2,则a +2b 的最小值为________.解析:(a +2b )2=a 2+4ab +4b 2=16b 2+4b 2≥216b 2×4b 2=16,当且仅当16b 2=4b 2,即b =2,a =4-22时取等号,由于a >0,b >0,所以a +2b ≥4,所以a +2b 的最小值为4.答案:410.(1)当x <32时,求函数y =x +82x -3的最大值;(2)已知0<x <2,求函数y =x 4-x 2的最大值.解:(1)y =12(2x -3)+82x -3+32=-(3-2x 2+83-2x )+32.当x <32时,有3-2x >0,所以3-2x 2+83-2x≥23-2x 2·83-2x =4,当且仅当3-2x 2=83-2x ,即x =-12时,取等号.于是y ≤-4+32=-52,故函数的最大值为-52.(2)因为0<x <2,所以4-x 2>0,则y =x 4-x 2=x 2·(4-x 2)≤x 2+(4-x 2)2=2,当且仅当x 2=4-x 2,即x =2时,取等号,所以y =x 4-x 2的最大值为2.11.已知x >0,y >0,且2x +8y =xy ,求:(1)xy 的最小值;(2)x +y 的最小值.解:(1)∵xy =2x +8y ≥22x ·8y ,即xy ≥8xy ,即xy ≥64,当且仅当2x =8y ,即x =16,y =4时,等号成立,∴xy 的最小值为64.(2)由2x +8y =xy ,得8x +2y=1,则x +y =(8x +2y)(x +y )=10+2x y +8y x ≥10+22x y ·8y x=18.当且仅当2x y =8y x,即x =12,y =6时等号成立,所以x +y 的最小值为18.B 级能力提升练12.(多选)(2022·新高考Ⅱ卷)若x ,y 满足x 2+y 2-xy =1,则()A .x +y ≤1B .x +y ≥-2C .x 2+y 2≤2D .x 2+y 2≥1解析:BC 对于A ,B ,由x 2+y 2-xy =1,得(x +y )2-1=3xy ≤3(x +y 2)2,当且仅当x =y 时取等号,解得-2≤x +y ≤2,所以A 不正确,B 正确;对于C ,D ,由x 2+y 2-xy =1,得x 2+y 2-1=xy ≤x 2+y 22,当且仅当x =y 时取等号,所以x 2+y 2≤2,所以C 正确,D 不正确.故选BC .13.(多选)(2023·安徽三模)已知正实数a ,b ,c 满足a 2-ab +4b 2-c =0,当c ab取最小值时,下列说法正确的是()A .a =2bB .c =4b 2C .2a +1b -6c 的最大值为1D .2a +1b -6c 的最小值为12解析:AC ∵正实数a ,b ,c 满足a 2-ab +4b 2-c =0,∴c ab a 2-ab +4b 2ab =a b +4b a -1≥2a b ·4b a -1=3,当且仅当a b =4b a ,即a =2b 时等号成立,A 正确;a =2b 时,c =(2b )2-2b 2+4b 2=6b 2,B 错误;2a +1b-6c =1b +1b -66b 2=-1b 2+2b =-(1b -1)2+1,当1b =1,即b =1时,2a +1b -6c的最大值1,C 正确,D 错误.故选AC .14.中华人民共和国第十四届运动会在陕西省举办,某公益团队联系全运会组委会举办一场纪念品展销会,并将所获利润全部用于社区体育设施建设.据市场调查,当每套纪念品(一个会徽和一个吉祥物)售价定为x 元时,销售量可达到(15-0.1x )万套.为配合这个活动,生产纪念品的厂家将每套纪念品的供货价格分为固定价格和浮动价格两部分,其中固定价格为50元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.约定不计其他成本,即销售每套纪念品的利润=售价-供货价格.(1)每套会徽及吉祥物售价为100元时,能获得的总利润是多少万元?(2)每套会徽及吉祥物售价为多少元时,单套的利润最大?最大值是多少元?解:(1)每套会徽及吉祥物售价为100元时,销售量为15-0.1×100=5(万套),供货单价为50+105=52(元),总利润为5×(100-52)=240(万元).(2)设售价为x 元,则销售量为(15-0.1x )万套,供货单价为(50+1015-0.1x )元,单套利润为x -50-1015-0.1x =(x -50-100150-x )元,因为15-0.1x >0,所以0<x <150.所以单套利润为y =x -50-100150-x =-(150-x )+100150-x +100≤100-2(150-x )·100150-x =80,当且仅当150-x =10,即x =140时取等号,所以每套会徽及吉祥物售价为140元时,单套的利润最大,最大值是80元.。
高中数学 第二讲 证明不等式的基本方法 一 比较法教案(含解析)5数学教案
一 比较法1.作差比较法(1)作差比较法的理论依据a -b >0⇔a >b ,a -b <0⇔a <b ,a -b =0⇔a =b .(2)作差比较法解题的一般步骤:①作差;②变形整理;③判定符号;④得出结论.其中变形整理是解题的关键,变形整理的目的是为了能够直接判定差的符号,常用的手段有:因式分解、配方、通分、分子或分母有理化等.2.作商比较法(1)作商比较法的理论依据是不等式的基本性质:①b >0,若a b >1,则a >b ;若ab <1,则a <b ;②b <0,若a b >1,则a <b ;若ab<1,则a >b .(2)作商比较法解题的一般步骤:①判定a ,b 的符号;②作商;③变形整理;④判定与1大小关系;⑤得出结论.作差比较法证明不等式[例1] y 3.[思路点拨] 因为不等式两边是同一种性质的整式,所以可以直接通过作差比较大小.[证明] x 3-x 2y +xy 2-(x 2y -xy 2+y 3)=x (x 2-xy +y 2)-y (x 2-xy +y 2) =(x -y )(x 2-xy +y 2)=(x -y )⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫x -y 22+3y 24. 因为x >y ,所以x -y >0,于是(x -y )⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫x -y 22+3y 24>0, 所以x 3-x 2y +xy 2>x 2y -xy 2+y 3.(1)作差比较法中,变形具有承上启下的作用,变形的目的在于判断差的符号,而不用考虑差能否化简或值是多少.(2)变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法.(3)因式分解是常用的变形手段,为了便于判断“差式”的符号,常将“差式”变形为一个常数,或几个因式积的形式,当所得的“差式”是某字母的二次三项式时,常用配方法判断符号.有时会遇到结果符号不能确定,这时候要对差式进行分类讨论.1.求证:a 2+b 2≥2(a -b -1). 证明:a 2+b 2-2(a -b -1) =(a -1)2+(b +1)2≥0, ∴a 2+b 2≥2(a -b -1). 2.已知a ,b ∈R +,n ∈N +, 求证:(a +b )(a n+b n)≤2(an +1+bn +1). 证明:∵(a +b )(a n+b n)-2(an +1+bn +1)=an +1+ab n +ba n +bn +1-2an +1-2bn +1=a (b n -a n)+b (a n-b n) =(a -b )(b n-a n).①当a >b >0时,b n-a n<0,a -b >0, ∴(a -b )(b n-a n )<0.②当b >a >0时,b n-a n>0,a -b <0. ∴(a -b )(b n-a n )<0.③当a =b >0时,(b n-a n)(a -b )=0.综合①②③可知,对于a ,b ∈R +,n ∈N +,都有(a +b )(a n+b n)≤2(an +1+bn +1).作商比较法证明不等式[例2] 设a >0,b >0,求证:a a b b≥(ab )2.[思路点拨] 不等式两端都是指数式,它们的值均为正数,可考虑用作商比较法.[证明] ∵a a b b>0,(ab )a +b2>0,∴a a b b (ab )a +b 2=a a -b 2·b b -a 2=⎝ ⎛⎭⎪⎫a b a -b 2.当a =b时,显然有⎝ ⎛⎭⎪⎫a b a -b2=1;当a >b >0时,a b >1,a -b2>0,∴由指数函数单调性,有⎝ ⎛⎭⎪⎫a b a -b2>1;当b >a >0时,0<a b <1,a -b2<0,∴由指数函数的单调性,有⎝ ⎛⎭⎪⎫a b a -b2>1.综上可知,对任意实数a ,b ,都有a a b b≥(ab )a +b2.当欲证的不等式两端是乘积形式或幂指数形式时,常采用作商比较法,用作商比较法时,如果需要在不等式两边同乘某个数,要注意该数的正负,且最后结果与1比较.3.已知a >b >c >0.求证:a 2a b 2b c 2c>a b +c b c +a c a +b.证明:由a >b >c >0,得ab +c b c +a c a +b >0.作商a 2a b 2b c 2c a b +c b c +a c a +b =a a a a b b b b c c c ca b a c b c b a c a cb=aa -b a a -c b b -c b b -a c c -a cc -b=⎝ ⎛⎭⎪⎫a b a -b ⎝ ⎛⎭⎪⎫a c a -c ⎝ ⎛⎭⎪⎫b c b -c. 由a >b >c >0,得a -b >0,a -c >0,b -c >0,且a b >1,a c >1,b c>1. ∴⎝ ⎛⎭⎪⎫a b a -b ⎝ ⎛⎭⎪⎫a c a -c ⎝ ⎛⎭⎪⎫b c b -c>1. ∴a 2a b 2b c 2c >ab +c b c +a c a +b.4.设n ∈N ,n >1,求证log n (n +1)>log (n +1)(n +2).证明:因为n >1,所以log n (n +1)>0,log (n +1)(n +2)>0, 所以log (n +1)(n +2)log n (n +1)=log (n +1)(n +2)·log (n +1)n≤⎣⎢⎡⎦⎥⎤log (n +1)(n +2)+log (n +1)n 22=⎣⎢⎡⎦⎥⎤log (n +1)(n 2+2n )22<⎣⎢⎡⎦⎥⎤log (n +1)(n +1)222=1. 故log (n +1)(n +2)<log n (n +1), 即原不等式得证.比较法的实际应用[例3] 一半时间以速度m 行走,另一半以速度n 行走;乙有一半路程以速度m 行走,另一半路程以速度n 行走.如果m ≠n ,问甲、乙二人谁先到达指定地点?[思路点拨] 先用m ,n 表示甲、乙两人走完全程所用时间,再进行比较.[解] 设从出发地点至指定地点的路程为s ,甲、乙二人走完这段路程所用的时间分别为t 1,t 2 ,依题意有t 12m +t 12n =s ,s 2m +s2n=t 2.∴t 1=2s m +n ,t 2=s (m +n )2mn.∴t1-t2=2sm+n-s(m+n)2mn=s[4mn-(m+n)2]2mn(m+n)=-s(m-n)22mn(m+n).其中s,m,n都是正数,且m≠n,∴t1-t2<0.即t1<t2.从而知甲比乙先到达指定地点.应用不等式解决实际问题时,关键是如何把等量关系、不等量关系转化为不等式的问题来解决,也即建立数学模型是解应用题的关键,最后利用不等式的知识来解.在实际应用不等关系问题时,常用比较法来判断数的大小关系,若是选择题或填空题则可用特殊值加以判断.5.某人乘出租车从A地到B地,有两种方案;第一种方案:乘起步价为10元.每千米1.2元的出租车,第二种方案:乘起步价为8元,每千米1.4元的出租车.按出租车管理条例,在起步价内,不同型号的出租车行驶的路程是相等的,则此人从A地到B地选择哪一种方案比较合适?解:设A地到B地距离为m千米.起步价内行驶的路程为a千米.显然当m≤a时,选起步价为8元的出租车比较便宜.当m>a时,设m=a+x(x>0),乘坐起步价为10元的出租车费用为P(x)元.乘坐起步价为8元的出租车费用为Q(x)元,则P(x)=10+1.2 x,Q (x )=8+1.4x .∵P (x )-Q (x )=2-0.2x =0.2(10-x ),∴当x >10时,P (x )<Q (x ),此时选择起步价为10元的出租车较为合适.当x <10时,P (x )>Q (x ),此时选起步价为8元的出租车较为合适.当x =10时,P (x )=Q (x ),两种出租车任选,费用相同. 1.下列关系中对任意a <b <0的实数都成立的是( ) A .a 2<b 2B .lg b 2<lg a 2C.ba>1 D.⎝ ⎛⎭⎪⎫12a 2>⎝ ⎛⎭⎪⎫12b 2 解析:选B ∵a <b <0,∴-a >-b >0. (-a )2>(-b )2>0.即a 2>b 2>0.∴b 2a2<1.又lg b 2-lg a 2=lg b 2a2<lg 1=0,∴lg b 2<lg a 2.2.已知P =1a 2+a +1,Q =a 2-a +1,那么P ,Q 的大小关系是( )A .P >QB .P <QC .P ≥QD .P ≤Q解析:选D 法一:Q P=(a 2-a +1)(a 2+a +1)=(a 2+1)2-a 2=a 4+a 2+1≥1, 又∵a 2+a +1>0恒成立, ∴Q ≥P .法二:P -Q =1-(a 2-a +1)(a 2+a +1)a 2+a +1 =-(a 4+a 2)a 2+a +1,∵a 2+a +1>0恒成立且a 4+a 2≥0, ∴P -Q ≤0,即Q ≥P .3.已知a >0,b >0,m =a b +ba,n =a +b ,p =a +b ,则m ,n ,p 的大小关系是( )A .m ≥n >pB .m >n ≥pC .n >m >pD .n ≥m >p解析:选A 由m =a b +ba,n =a +b ,得a =b >0时,m=n, 可排除B 、C 项.比较A 、D 项,不必论证与p 的关系.取特殊值a =4,b =1,则m =4+12=92,n =2+1=3,∴m >n ,可排除D ,故选A.4.设m >n ,n ∈N +,a =(lg x )m +(lg x )-m ,b =(lg x )n+(lg x )-n,x >1,则a 与b 的大小关系为( )A .a ≥bB .a ≤bC .与x 值有关,大小不定D .以上都不正确解析:选A a -b =lg mx +lg -mx -lg n x -lg -nx =(lg mx -lgnx )-⎝ ⎛⎭⎪⎫1lg n x -1lg m x=(lg m x -lg nx )-lg mx -lg nx lg m x lg n x=(lg mx -lg nx )⎝ ⎛⎭⎪⎫1-1lg m x lg n x=(lg m x -lgnx )⎝⎛⎭⎪⎫1-1lg m +n x .∵x >1,∴lg x >0. 当0<lg x <1时,a >b ; 当lg x =1时,a =b ; 当lg x >1时,a >b . ∴应选A.5.若0<x <1,则1x 与1x2的大小关系是________.解析:1x -1x 2=x -1x2.因为0<x <1,所以1x -1x2<0.所以1x <1 x2.答案:1x < 1 x26.设P=a2b2+5,Q=2ab-a2-4a,若P>Q,则实数a,b满足的条件为________.解析:P-Q=a2b2+5-(2ab-a2-4a)=a2b2+5-2ab+a2+4a=a2b2-2ab+1+4+a2+4a=(ab-1)2+(a+2)2,∵P>Q,∴P-Q>0,即(ab-1)2+(a+2)2>0,∴ab≠1或a≠-2.答案:ab≠1或a≠-27.一个个体户有一种商品,其成本低于3 5009元.如果月初售出可获利100元,再将本利存入银行,已知银行月息为2.5%,如果月末售出可获利120元,但要付成本的2%的保管费,这种商品应________出售(填“月初”或“月末”).解析:设这种商品的成本费为a元.月初售出的利润为L1=100+(a+100)×2.5%,月末售出的利润为L2=120-2%a,则L1-L2=100+0.025a+2.5-120+0.02a=0.045⎝ ⎛⎭⎪⎫a -3 5009, ∵a <3 5009, ∴L 1<L 2,月末出售好.答案:月末8.已知x ,y ∈R, 求证:sin x +sin y ≤1+sin x sin y . 证明:∵sin x +sin y -1-sin x sin y=sin x (1-sin y )-(1-sin y )=(1-sin y )(sin x -1).∵-1≤sin x ≤1,-1≤sin y ≤1.∴1-sin y ≥0,sin x -1≤0.∴(1-sin y )(sin x -1)≤0.即sin x +sin y ≤1+sin x sin y .9.若a >0,b >0,c >0,求证:a a b b c c ≥(abc )a +b +c 3.证明:不妨设a ≥b ≥c ≥0,那么由指数函数的性质,有 ⎝ ⎛⎭⎪⎫a b a -b 3≥1,⎝ ⎛⎭⎪⎫b c b -c 3≥1,⎝ ⎛⎭⎪⎫c a c -a 3≥1. 所以a a b b c c (abc )a +b +c 3=a a -b 3+a -c 3b b -c 3+b -a 3c c -a 3+c -b 3 =⎝ ⎛⎭⎪⎫a b a -b 3·⎝ ⎛⎭⎪⎫b c b -c 3·⎝ ⎛⎭⎪⎫c a c -a 3≥1. ∴原不等式成立.10.已知a<b<c,x<y<z,则ax+by+cz,ax+cy+bz,bx +ay+cz,bx+cy+az中最大的是哪一个?证明你的结论.解:ax+by+cz最大.理由如下:ax+by+cz-(ax+cy+bz)=(b-c)y+(c-b)z=(b-c)(y -z),∵a<b<c,x<y<z,∴b-c<0,y-z<0,∴ax+by+cz-(ax+cy+bz)>0,即ax+by+cz>ax+cy+bz.ax+by+cz-(bx+ay+cz)=(a-b)x+(b-a)y=(a-b)(x -y)>0,∴ax+by+cz>bx+ay+cz.ax+by+cz-(bx+cy+az)=(a-b)x+(b-c)y+(c-a)z=(a-b)x+(b-c)y+[(c-b)+(b-a)]z=(a-b)(x-z)+(b-c)(y-z)>0,∴ax+by+cz>bx+cy+az.故ax+by+cz最大.。
导数证明不等式的问题(教案)
导数证明不等式的问题
一、教学目标
1.知识与技能:掌握利用导数证明不等式的基本方法,以及会灵活处理几种“困境”
.
2.过程与方法:利用几个不等式的具体证明,巩固导数证明不等式的基本方法;同时结合几个辅助函数及其导函数的结构特点,能用不同的方法解决不同的情况.
3.情感态度与价值观:理解从外在结构入手,分析内在特点的过程,激发学生对数学的探究潜能.
二、教学过程
师:大家好,本节课我们一起来学习导数的不等式证明问题
.导数常作为高考的压轴题,对考生的能力要求非常高,
它不仅要求考生牢固掌握基础知识、基本技能,还要求考生具有较强的分析能力. 用导数证明不等式问题是各地高考常见题型之一.本节课,我们一起结合以下几个例题来研究导数证明形如:
的问题.1.作差构造辅助函数()()()()g x f x g x f x “”或“”。
基本不等式教案
基本不等式教案一、教学目标1、知识与技能目标(1)学生能够理解基本不等式的内容及其证明过程。
(2)掌握运用基本不等式求最值的方法和条件。
2、过程与方法目标(1)通过对基本不等式的探究,培养学生观察、分析、归纳和逻辑推理的能力。
(2)引导学生运用基本不等式解决实际问题,提高学生的数学应用意识和能力。
3、情感态度与价值观目标(1)让学生感受数学的简洁美和应用价值,激发学生学习数学的兴趣。
(2)培养学生严谨的治学态度和勇于探索的精神。
二、教学重难点1、教学重点(1)基本不等式的内容及证明。
(2)运用基本不等式求最值的方法和条件。
2、教学难点(1)基本不等式的证明。
(2)运用基本不等式求最值时条件的判断和正确应用。
三、教学方法讲授法、探究法、练习法四、教学过程(一)导入新课通过实际生活中的问题引入,比如:某工厂要建造一个面积为 100 平方米的矩形仓库,仓库的一边靠墙,墙长 16 米,问怎样建造才能使所用材料最省?(二)新课讲授1、基本不等式的推导对于任意两个正实数 a,b,有\(a + b \geq 2\sqrt{ab}\),当且仅当 a = b 时,等号成立。
证明:\\begin{align}(a b)^2&\geq 0\\a^2 2ab + b^2&\geq 0\\a^2 + 2ab + b^2&\geq 4ab\\(a + b)^2&\geq 4ab\\a + b&\geq 2\sqrt{ab}\end{align}\当且仅当\(a b = 0\),即\(a = b\)时,等号成立。
2、基本不等式的几何解释以直角三角形为例,直角边为 a,b,斜边为 c,那么\(c =\sqrt{a^2 + b^2}\)。
对于基本不等式\(a + b \geq 2\sqrt{ab}\),可以看作是以 a,b 为直角边的直角三角形的斜边长大于等于以\(\sqrt{ab}\)为边长的正方形的对角线长。
高中不等式经典教案(含详解)
高中不等式经典教案第一教时一、不等式的一个等价关系(充要条件)1.从实数与数轴上的点一一对应谈起0>-⇔>b a b a 0=-⇔=b a b a 0<-⇔<b a b a2.应用:例一 比较)5)(3(-+a a 与)4)(2(-+a a 的大小解:(取差))5)(3(-+a a - )4)(2(-+a a07)82()152(22<-=-----=a a a a∴)5)(3(-+a a <)4)(2(-+a a例二 已知x ≠0, 比较22)1(+x 与124++x x 的大小解:(取差)22)1(+x -)1(24++x x22424112x x x x x =---++=∵0≠x ∴02>x 从而22)1(+x >124++x x小结:步骤:作差—变形—判断—结论例三 比较大小1.231-和10 解:∵23231+=- ∵02524562)10()23(22<-=-=-+ ∴231-<102.a b 和ma mb ++ ),,(+∈R m b a 解:(取差)a b -m a m b ++)()(m a a a b m +-= ∵),,(+∈R m b a ∴当a b >时a b >m a m b ++;当a b =时a b =m a m b ++;当a b <时a b <ma mb ++ 3.设0>a 且1≠a ,0>t 比较t a log 21与21log +t a 的大小解:02)1(212≥-=-+t t t ∴t t ≥+21 当1>a 时t a log 21≤21log +t a ;当10<<a 时t a log 21≥21log +t a 四、不等式的性质1.性质1:如果b a >,那么a b <;如果a b <,那么b a >(对称性)证:∵b a > ∴0>-b a 由正数的相反数是负数0)(<--b a 0<-a b a b <2.性质2:如果b a >,c b > 那么c a >(传递性)证:∵b a >,c b > ∴0>-b a ,0>-c b∵两个正数的和仍是正数 ∴+-)(b a 0)(>-c b0>-c a ∴c a >对称性、性质2可以表示为如果b c <且a b <那么a c <补充题:1.若142=+y x ,比较22y x +与201的大小 解:241y x -= 22y x +-201=……=05)15(2≥-y ∴22y x +≥201 2.比较2sin θ与sin2θ的大小(0<θ<2π)略解:2sin θ-sin2θ=2sin θ(1-cos θ)当θ∈(0,π)时2sin θ(1-cos θ)≥0 2sin θ≥sin2θ当θ∈(π,2π)时2sin θ(1-cos θ)<0 2sin θ<sin2θ3.设0>a 且1≠a 比较)1(log 3+a a 与)1(log 2+a a 的大小解:)1()1()1(223-=+-+a a a a当10<<a 时1123+<+a a ∴)1(log 3+a a >)1(log 2+a a当1>a 时1123+>+a a ∴)1(log 3+a a >)1(log 2+a a∴总有)1(log 3+a a >)1(log 2+a a第二教时一、1.性质3:如果b a >,那么c b c a +>+ (加法单调性)反之亦然 证:∵0)()(>-=+-+b a c b c a ∴c b c a +>+从而可得移项法则:b c a b c b b a c b a ->⇒-+>-++⇒>+)()(推论:如果b a >且d c >,那么d b c a +>+ (相加法则)证:d b c a d b c b d c c b c a b a +>+⇒⎭⎬⎫+>+⇒>+>+⇒> 推论:如果b a >且d c <,那么d b c a ->- (相减法则)证:∵d c < ∴d c ->- d b c a d c b a ->-⇒⎩⎨⎧->-> 或证:)()()()(d c b a d b c a ---=---d c b a <> ⇒⎭⎬⎫<-∴>-∴00d c b a 上式>0 ……… 2.性质4:如果b a >且0>c , 那么bc ac >;如果b a >且0<c 那么bc ac < (乘法单调性)证:c b a bc ac )(-=- ∵b a > ∴0>-b a根据同号相乘得正,异号相乘得负,得:0>c 时0)(>-c b a 即:bc ac >0<c 时0)(<-c b a 即:bc ac <推论1 如果0>>b a 且0>>d c ,那么bd ac >(相乘法则)证:bd ac bd bc b d c bc ac c b a >⇒⎭⎬⎫>⇒>>>⇒>>0,0, 推论1’(补充)如果0>>b a 且d c <<0,那么d b c a >(相除法则) 证:∵0>>c d ∴⇒⎪⎭⎪⎬⎫>>>>0011b a d c d b c a > 推论2 如果0>>b a , 那么n n b a > )1(>∈n N n 且3.性质5:如果0>>b a ,那么n n b a > )1(>∈n N n 且证:(反证法)假设n n b a ≤ 则:若ba b a b a b a n n n n=⇒=<⇒<这都与b a >矛盾 ∴n n b a > 五、供选用的例题(或作业)1.已知0>>b a ,0<<d c ,0<e ,求证:db ec a e ->- 证:⇒⎪⎭⎪⎬⎫<-<-⇒>-<-⇒⎭⎬⎫<<>>011000e d b c a d b c a d c b a d b e c a e ->- 2.若R b a ∈,,求不等式ba b a 11,>>同时成立的条件 解:00011<⇒⎪⎭⎪⎬⎫<-⇒>>-=-ab a b b a ab a b b a 3.设R c b a ∈,,,0,0<=++abc c b a 求证0111>++cb a 证:∵0=++c b a ∴222c b a ++0222=+++bc ac ab又∵0≠abc ∴222c b a ++>0 ∴0<++bc ac ab ∵abcca bc ab c b a ++=++111 0<abc ∴0<++bc ac ab ∴0111>++cb a 4.||||,0b a ab >> 比较a 1与b1的大小 解:a 1-b 1aba b -= 当0,0>>b a 时∵||||b a >即b a > 0<-a b 0>ab ∴0<-ab a b ∴a 1<b 1 当0,0<<b a 时∵||||b a >即b a <0>-a b 0>ab ∴0>-ab a b ∴a 1>b 1 5.若0,>b a 求证:a b a b >⇔>1 解:01>-=-aa b a b ∵0>a ∴0>-a b ∴b a < 0>-⇒>a b a b ∵0>a ∴01>-=-ab a a b ∴1>a b6.若0,0<<>>d c b a 求证:db c a ->-ππααsin sin log log 证:∵1sin 0<<α π>1 ∴0log sin <πα又∵0,0>->->>d c b a ∴d b c a ->- ∴db c a -<-11 ∴原式成立第三教时一、定理:如果R b a ∈,,那么ab b a 222≥+(当且仅当b a =时取“=”) 证明:222)(2b a ab b a -=-+⇒⎭⎬⎫>-≠=-=0)(0)(22b a b a b a b a 时,当时,当ab b a 222≥+ 1.指出定理适用范围:R b a ∈,2.强调取“=”的条件b a =二、定理:如果b a ,是正数,那么ab b a ≥+2(当且仅当b a =时取“=”) 证明:∵ab b a 2)()(22≥+ ∴ab b a 2≥+ 即:ab b a ≥+2 当且仅当b a =时 ab b a =+2注意:1.这个定理适用的范围:+∈R a2.语言表述:两个正数的算术平均数不小于它们的几何平均数。
《不等式的性质》教案
《不等式的性质》教案一、教学目标:1. 理解不等式的概念,掌握不等式的基本性质。
2. 能够运用不等式的性质解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容:1. 不等式的定义和基本性质。
2. 不等式的运算规则。
3. 不等式在实际问题中的应用。
三、教学重点:1. 不等式的基本性质。
2. 不等式的运算规则。
四、教学难点:1. 不等式的性质在实际问题中的应用。
五、教学方法:1. 讲授法:讲解不等式的定义、性质和运算规则。
2. 案例分析法:通过实际问题引导学生运用不等式的性质解决问题。
3. 小组讨论法:分组讨论不等式问题,培养学生的合作能力。
教学过程:一、导入:1. 引入不等式的概念,引导学生回顾已学过的不等式知识。
2. 提问:不等式有什么特点?如何表示不等式?二、讲解不等式的基本性质:1. 性质1:不等式两边加(减)同一个数(或式子),不等号方向不变。
2. 性质2:不等式两边乘(除)同一个正数,不等号方向不变。
3. 性质3:不等式两边乘(除)同一个负数,不等号方向改变。
三、讲解不等式的运算规则:1. 不等式的加减法规则。
2. 不等式的乘除法规则。
四、案例分析:1. 举例说明不等式的性质在实际问题中的应用。
2. 引导学生运用不等式的性质解决问题。
五、小组讨论:1. 分成小组,让学生讨论不等式问题。
2. 鼓励学生提出自己的解题思路和答案。
六、总结:1. 回顾本节课所学的不等式的性质和运算规则。
2. 强调不等式在实际问题中的应用。
教学评价:1. 课后作业:布置有关不等式的练习题,检验学生对知识的掌握程度。
2. 课堂问答:通过提问了解学生对不等式的理解和运用情况。
3. 小组讨论:评价学生在讨论中的表现,包括思考问题、合作能力等。
六、教学反馈与评价:1. 课后收集学生作业,分析其掌握不等式性质的情况。
2. 在课堂中随机提问,了解学生对不等式性质的理解程度。
3. 观察小组讨论,评估学生在团队合作中的表现以及解决实际问题的能力。
综合法证明不等式
●教学难点
“由因导果”时,从哪个不等式出发合适是综合法证明不等式的难点.
●教学方法
引导、探索、综合、归纳四步教学法.
●教具准备
投影片三张
第一张:记作§6.3.3 A
综合法证明不等式的常用关系
1.a2≥0或(a±b)2≥0;
(6) ,(a,b,c∈R+),当且仅当a=b=c时取“=”号;
(7)a3+b3+c3≥3abc,(a,b,c∈R+),当且仅当a=b=c时取“=”号.
今天,我们在上一节课学习“公式法”证明不等式的基础上,继续学习证明不等式的一种常用的重要的方法——综合法.
Ⅱ.讲授新课
(简述“综合法”证明不等式的基本思想)
a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc.
[师]观察题目,不等式左边含有“a2+b2”的形式,我们可以创设运用基本不等式:a2+b2≥2ab;还可以这样思考:不等式左边出现有三次因式:a2b,b2c,c2a,ab2,bc2,ca2的“和”,右边有三正数a,b,c的“积”,我们可以创设运用重要不等式:a3+b3+c3≥3abc.(教师引导学生,完成证明)
2.a2+b2≥2ab,a2+b2≥-2ab,即a2+b2≥2|ab|;
3. ,(a,b∈R+),当且仅当a=b时取“=”号;
4.ab≤ ,(a,b∈R);ab≤( )2,(a,b∈R+),当且仅当a=b时取“=”号;
5. ≥2,(ab>0),当且仅当a=b时取“=”号;
不等式的性质(教案) 教学设计
不等式的性质(教案)教学设计一、教学目标1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生运用不等式解决实际问题的能力。
3. 提高学生分析问题、解决问题的能力。
二、教学内容1. 不等式的定义及表示方法。
2. 不等式的基本性质。
3. 不等式的应用。
三、教学重点与难点1. 教学重点:不等式的概念、表示方法及基本性质。
2. 教学难点:不等式的应用。
四、教学方法1. 采用问题驱动法,引导学生探究不等式的性质。
2. 运用案例分析法,让学生解决实际问题。
3. 利用小组讨论法,培养学生的合作能力。
五、教学过程1. 导入新课:通过生活实例引入不等式的概念,让学生感受不等式在实际生活中的应用。
2. 讲解不等式的表示方法,引导学生掌握不等式的基本写法。
3. 探究不等式的基本性质,引导学生发现并证明不等式的性质。
4. 运用案例分析,让学生解决实际问题,巩固不等式的应用。
5. 课堂小结,总结本节课的主要内容和知识点。
6. 布置作业,巩固所学知识。
附:教学反思在教学过程中,要注意关注学生的学习情况,针对不同学生的特点进行针对性指导。
要注重培养学生的动手操作能力和思维能力,让学生在学习过程中体验到数学的乐趣。
在案例分析环节,要选取具有代表性的实例,引导学生运用所学知识解决实际问题,提高学生的应用能力。
六、教学评价1. 评价内容:学生对不等式概念的理解、不等式表示方法的掌握、不等式性质的应用。
2. 评价方式:课堂问答、作业批改、小组讨论、课后访谈。
3. 评价标准:a. 对不等式概念的理解:能正确表述不等式的定义,区分不等式与等式。
b. 对不等式表示方法的掌握:能熟练运用不等号表示大小关系,正确书写不等式。
c. 对不等式性质的应用:能运用不等式性质解决实际问题,正确进行不等式变形。
七、教学拓展1. 对比等式与不等式的异同,让学生深入理解不等式的概念。
2. 介绍不等式的起源和发展历程,激发学生学习兴趣。
3. 引导学生探究不等式与其他数学知识的关系,如代数、几何等。
2024届高考一轮复习数学教案(新人教B版):利用导数证明不等式
§3.6利用导数证明不等式考试要求导数中的不等式证明是高考的常考题型,常与函数的性质、函数的零点与极值、数列等相结合,虽然题目难度较大,但是解题方法多种多样,如构造函数法、放缩法等,针对不同的题目,灵活采用不同的解题方法,可以达到事半功倍的效果.题型一将不等式转化为函数的最值问题例1(2023·潍坊模拟)已知函数f (x )=e x -ax -a ,a ∈R .(1)讨论f (x )的单调性;(2)当a =1时,令g (x )=2f (x )x2.证明:当x >0时,g (x )>1.(1)解函数f (x )=e x -ax -a 的定义域为R ,求导得f ′(x )=e x -a ,当a ≤0时,f ′(x )>0恒成立,即f (x )在(-∞,+∞)上单调递增,当a >0时,令f ′(x )=e x -a >0,解得x >ln a ,令f ′(x )<0,解得x <ln a ,即f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,所以当a ≤0时,f (x )在(-∞,+∞)上单调递增,当a >0时,f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增.(2)证明当a =1时,g (x )=2(e x -x -1)x 2,当x >0时,2(e x -x -1)x 2>1⇔e x >1+x +x 22⇔12x 2+x +1e x <1,令F (x )=12x 2+x +1e x -1,x >0,F ′(x )=-12x 2e x<0恒成立,则F (x )在(0,+∞)上单调递减,F (x )<F (0)=1e 0-1=0,因此12x 2+x +1e x<1成立,所以当x >0时,g (x )>1,即原不等式得证.思维升华待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,有时对复杂的式子要进行变形,利用导数研究其单调性和最值,借助所构造函数的单调性和最值即可得证.跟踪训练1设a 为实数,函数f (x )=e x -2x +2a ,x ∈R .(1)求f (x )的单调区间与极值;(2)求证:当a >ln 2-1且x >0时,e x >x 2-2ax +1.(1)解由f (x )=e x -2x +2a (x ∈R )知,f ′(x )=e x -2.令f ′(x )=0,得x =ln 2,当x <ln 2时,f ′(x )<0,函数f (x )在区间(-∞,ln 2)上单调递减;当x >ln 2时,f ′(x )>0,函数f (x )在区间(ln 2,+∞)上单调递增,所以f (x )的单调递减区间是(-∞,ln 2),单调递增区间是(ln 2,+∞),f (x )的极小值为f (ln 2)=e ln 2-2ln 2+2a =2-2ln 2+2a ,无极大值.(2)证明要证当a >ln 2-1且x >0时,e x >x 2-2ax +1,即证当a >ln 2-1且x >0时,e x -x 2+2ax -1>0,设g (x )=e x -x 2+2ax -1(x >0),则g ′(x )=e x -2x +2a ,由(1)知g ′(x )min =2-2ln 2+2a ,又a >ln 2-1,则g ′(x )min >0,于是对∀x ∈(0,+∞),都有g ′(x )>0,所以g (x )在(0,+∞)上单调递增,于是对∀x >0,都有g (x )>g (0)=0,即e x -x 2+2ax -1>0,故e x >x 2-2ax +1.题型二将不等式转化为两个函数的最值进行比较例2(2023·苏州模拟)已知函数f (x )=eln x -ax (a ∈R ).(1)讨论f (x )的单调性;(2)当a =e 时,证明f (x )-e x x+2e ≤0.(1)解函数的定义域为(0,+∞),∵f ′(x )=e x -a =e -ax x(x >0),∴当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,故函数f (x )在区间(0,+∞)上单调递增;当a >0时,由f ′(x )>0,得0<x <e a ,由f ′(x )<0,得x >e a,即函数f (x )综上,当a ≤0时,f (x )在区间(0,+∞)上单调递增;当a >0时,f (x )(2)证明证明f (x )-e x x +2e ≤0,只需证明f (x )≤e x x-2e ,由(1)知,当a =e 时,函数f (x )在区间(0,1)上单调递增,在(1,+∞)上单调递减,∴f (x )max =f (1)=-e.令g (x )=e x x -2e(x >0),则g ′(x )=(x -1)e x x2,∴当x ∈(0,1)时,g ′(x )<0,函数g (x )单调递减;当x ∈(1,+∞)时,g ′(x )>0,函数g (x )单调递增,∴g (x )min =g (1)=-e ,∴当x >0,a =e 时,f (x )-e x x+2e ≤0.思维升华若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个函数,从而找到可以传递的中间量,达到证明的目标.本例中同时含ln x 与e x ,不能直接构造函数,把指数与对数分离两边,分别计算它们的最值,借助最值进行证明.跟踪训练2(2023·合肥模拟)已知函数f (x )=e x +x 2-x -1.(1)求f (x )的最小值;(2)证明:e x +x ln x +x 2-2x >0.(1)解由题意可得f ′(x )=e x +2x -1,则函数f ′(x )在R 上单调递增,且f ′(0)=0.由f ′(x )>0,得x >0;由f ′(x )<0,得x <0.则f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,故f (x )min =f (0)=0.(2)证明要证e x +x ln x +x 2-2x >0,即证e x +x 2-x -1>-x ln x +x -1.由(1)可知当x >0时,f (x )>0恒成立.设g (x )=-x ln x +x -1,x >0,则g ′(x )=-ln x .由g ′(x )>0,得0<x <1;由g ′(x )<0,得x >1.则g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而g (x )≤g (1)=0,当且仅当x =1时,等号成立.故f (x )>g (x ),即e x +x ln x +x 2-2x >0.题型三适当放缩证明不等式例3已知函数f (x )=a e x -1-ln x -1.(1)若a=1,求f(x)在(1,f(1))处的切线方程;(2)证明:当a≥1时,f(x)≥0.(1)解当a=1时,f(x)=e x-1-ln x-1(x>0),f′(x)=e x-1-1x,k=f′(1)=0,又f(1)=0,∴切点为(1,0).∴切线方程为y-0=0(x-1),即y=0. (2)证明∵a≥1,∴a e x-1≥e x-1,∴f(x)≥e x-1-ln x-1.方法一令φ(x)=e x-1-ln x-1(x>0),∴φ′(x)=e x-1-1 x,令h(x)=e x-1-1 x,∴h′(x)=e x-1+1x2>0,∴φ′(x)在(0,+∞)上单调递增,又φ′(1)=0,∴当x∈(0,1)时,φ′(x)<0;当x∈(1,+∞)时,φ′(x)>0,∴φ(x)在(0,1)上单调递减,在(1,+∞)上单调递增,∴φ(x)min=φ(1)=0,∴φ(x)≥0,∴f(x)≥φ(x)≥0,即f(x)≥0.方法二令g(x)=e x-x-1,∴g′(x)=e x-1.当x∈(-∞,0)时,g′(x)<0;当x∈(0,+∞)时,g′(x)>0,∴g(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,∴g(x)min=g(0)=0,故e x≥x+1,当且仅当x=0时取“=”.同理可证ln x≤x-1,当且仅当x=1时取“=”.由e x≥x+1⇒e x-1≥x(当且仅当x=1时取“=”),由x-1≥ln x⇒x≥ln x+1(当且仅当x=1时取“=”),∴e x-1≥x≥ln x+1,即e x-1≥ln x+1,即e x-1-ln x-1≥0(当且仅当x=1时取“=”),即f(x)≥0.思维升华导数方法证明不等式中,最常见的是e x和ln x与其他代数式结合的问题,对于这类问题,可以考虑先对e x和ln x进行放缩,使问题简化,简化后再构建函数进行证明.常见的放缩公式如下:(1)e x≥1+x,当且仅当x=0时取等号;(2)ln x≤x-1,当且仅当x=1时取等号.跟踪训练3(2022·南充模拟)已知函数f(x)=ax-sin x.(1)若函数f(x)为增函数,求实数a的取值范围;(2)求证:当x>0时,e x>2sin x.(1)解∵f(x)=ax-sin x,∴f′(x)=a-cos x,由函数f(x)为增函数,则f′(x)=a-cos x≥0恒成立,即a≥cos x在R上恒成立,∵y=cos x∈[-1,1],∴a≥1,即实数a的取值范围是[1,+∞).(2)证明由(1)知,当a=1时,f(x)=x-sin x为增函数,当x>0时,f(x)>f(0)=0⇒x>sin x,要证当x>0时,e x>2sin x,只需证当x>0时,e x>2x,即证e x-2x>0在(0,+∞)上恒成立,设g(x)=e x-2x(x>0),则g′(x)=e x-2,令g′(x)=0解得x=ln2,∴g(x)在(0,ln2)上单调递减,在(ln2,+∞)上单调递增,∴g(x)min=g(ln2)=e ln2-2ln2=2(1-ln2)>0,∴g(x)≥g(ln2)>0,∴e x>2x成立,故当x>0时,e x>2sin x.课时精练1.已知函数f(x)=ax+x ln x,且曲线y=f(x)在点(e,f(e))处的切线与直线4x-y+1=0平行.(1)求实数a的值;(2)求证:当x >0时,f (x )>4x -3.(1)解f (x )的定义域为(0,+∞),f ′(x )=ln x +1+a ,由题意知,f ′(e)=2+a =4,则a =2.(2)证明由(1)知,f (x )=2x +x ln x ,令g (x )=f (x )-(4x -3)=x ln x -2x +3,则g ′(x )=ln x -1,由ln x -1>0得x >e ,由ln x -1<0得0<x <e ,故g (x )在(0,e)上单调递减,在(e ,+∞)上单调递增,∴g (x )min =g (e)=3-e>0,即g (x )>0,即f (x )>4x -3.2.(2023·淄博模拟)已知函数f (x )=e x -x -1.(1)求函数f (x )的单调区间和极值;(2)当x ≥0时,求证:f (x )+x +1≥12x 2+cos x .(1)解易知函数f (x )的定义域为R ,∵f (x )=e x -x -1,∴f ′(x )=e x -1,令f ′(x )>0,解得x >0,f (x )在(0,+∞)上单调递增,令f ′(x )<0,解得x <0,f (x )在(-∞,0)上单调递减,即f (x )的单调递增区间为(0,+∞),单调递减区间为(-∞,0),∴函数f (x )的极小值为f (0)=0,无极大值.(2)证明要证f (x )+x +1≥12x 2+cos x ,即证e x -12x 2-cos x ≥0,设g (x )=e x -12x 2-cos x ,要证原不等式成立,即证g (x )≥0成立,∵g ′(x )=e x -x +sin x ,sin x ≥-1,∴g ′(x )=e x -x +sin x ≥e x -x -1x =-π2+2k π,k ∈Z 由(1)知,e x -x -1≥0(x =0时等号成立),∴g ′(x )>0,∴g (x )在(0,+∞)上单调递增,∴在区间[0,+∞)上,g (x )≥g (0)=0,∴当x ≥0时,f (x )+x +1≥12x 2+cos x 得证.3.已知函数f (x )=x ln x -ax .(1)当a =-1时,求函数f (x )在(0,+∞)上的最值;(2)证明:对一切x ∈(0,+∞),都有ln x +1>1e x +1-2e 2x 成立.(1)解函数f (x )=x ln x -ax 的定义域为(0,+∞),当a =-1时,f (x )=x ln x +x ,f ′(x )=ln x +2,由f ′(x )=0,得x =1e2,当0<x <1e2时,f ′(x )<0;当x >1e2时,f ′(x )>0,所以f (x )0,1e 2上单调递减,在1e 2,+∞因此f (x )在x =1e 2处取得最小值,即f (x )min =f 1e 2=-1e2,无最大值.(2)证明当x >0时,ln x +1>1ex +1-2e 2x ,等价于x (ln x +1)>x ex +1-2e 2,由(1)知,当a =-1时,f (x )=x ln x +x ≥-1e 2,当且仅当x =1e2时取等号,设G (x )=x ex +1-2e 2,x ∈(0,+∞),则G ′(x )=1-x e x +1,易知G (x )max =G (1)=-1e 2,当且仅当x =1时取到,从而可知对一切x ∈(0,+∞),都有f (x )>G (x ),即ln x +1>1e x +1-2e 2x .4.(2022·新高考全国Ⅱ)已知函数f (x )=x e ax -e x .(1)当a =1时,讨论f (x )的单调性;(2)当x >0时,f (x )<-1,求a 的取值范围;(3)设n ∈N +,证明:112+1+122+2+…+1n 2+n >ln(n +1).(1)解当a =1时,f (x )=(x -1)e x ,x ∈R ,则f ′(x )=x e x ,当x <0时,f ′(x )<0,当x >0时,f ′(x )>0,故f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)解设h (x )=x e ax -e x +1,则h (0)=0,又h ′(x )=(1+ax )e ax -e x ,设g (x )=(1+ax )e ax -e x ,则g ′(x )=(2a +a 2x )e ax -e x ,若a >12,则g ′(0)=2a -1>0,因为g ′(x )为连续不间断函数,故存在x 0∈(0,+∞),使得∀x ∈(0,x 0),总有g ′(x )>0,故g (x )在(0,x 0)上单调递增,故g (x )>g (0)=0,故h (x )在(0,x 0)上单调递增,故h (x )>h (0)=0,与题设矛盾.若0<a ≤12,则h ′(x )=(1+ax )e ax -e x =e ax +ln(1+ax )-e x ,下证:对任意x >0,总有ln(1+x )<x 成立,证明:设S (x )=ln(1+x )-x ,x >0,故S ′(x )=11+x -1=-x 1+x<0,故S (x )在(0,+∞)上单调递减,故S (x )<S (0)=0,即ln(1+x )<x 成立.由上述不等式有e ax +ln(1+ax )-e x <e ax +ax -e x =e 2ax -e x ≤0,故h ′(x )≤0总成立,即h (x )在(0,+∞)上单调递减,所以h (x )<h (0)=0,满足题意.若a ≤0,则h ′(x )=e ax -e x +ax e ax <1-1+0=0,所以h (x )在(0,+∞)上单调递减,所以h (x )<h (0)=0,满足题意.综上,a ≤12.(3)证明取a =12,则∀x >0,总有12ex x -e x +1<0成立,令t =12e x ,则t >1,t 2=e x ,x =2ln t ,故2t ln t <t 2-1,即2ln t <t -1t对任意的t >1恒成立.所以对任意的n ∈N +,有2ln n +1n <n +1n -n n +1,整理得ln(n +1)-ln n <1n 2+n ,故112+1+122+2+…+1n 2+n>ln 2-ln 1+ln 3-ln 2+…+ln(n +1)-ln n =ln(n +1),故不等式成立.。
《不等式及其基本性质》教案
《不等式及其基本性质》教案一、教学目标:(1)知识与技能:学生能够理解不等式的概念,掌握不等式的基本性质,能够运用不等式解决实际问题。
(2)过程与方法:通过观察、分析、归纳不等式的基本性质,培养学生逻辑思维能力和抽象概括能力。
(3)情感态度与价值观:培养学生对数学的兴趣,使学生感受到数学在生活中的重要性。
二、教学重点与难点:重点:不等式的概念,不等式的基本性质。
难点:不等式性质的证明和运用。
三、教学方法与手段:采用问题驱动法、案例分析法、小组讨论法等多种教学方法,结合多媒体课件、板书等教学手段,引导学生主动探究、积极参与。
四、教学过程:(1)导入新课:通过生活实例引入不等式的概念,激发学生的学习兴趣。
(2)新课讲解:讲解不等式的概念,引导学生理解不等式的含义。
举例说明不等式的基本性质,引导学生通过观察、分析、归纳不等式的性质。
(3)案例分析:分析实际问题,运用不等式解决问题,巩固所学知识。
(4)小组讨论:组织学生进行小组讨论,分享不等式应用实例,互相学习、交流。
(5)课堂小结:总结不等式的概念和基本性质,强调重点知识。
五、课后作业:布置适量课后作业,巩固所学知识,提高学生运用不等式解决实际问题的能力。
教案设计参考结束,可根据实际教学情况进行调整和优化。
六、教学评估:通过课堂提问、作业批改、小组讨论等方式,了解学生对不等式及其基本性质的理解程度,针对学生的掌握情况,及时调整教学方法和策略。
七、教学反思:本节课结束后,教师应认真反思教学效果,思考如何更好地引导学生理解不等式的概念和基本性质,以及如何在教学中激发学生的学习兴趣和主动性。
八、拓展与延伸:介绍不等式在实际生活中的应用,如优化问题、经济领域等,激发学生学习不等式的兴趣,培养学生的应用意识。
九、教学资源:1. 多媒体课件:用于展示不等式的概念、性质及应用实例。
2. 板书:用于黑板上展示关键知识点和推导过程。
3. 教学案例:用于分析实际问题,引导学生运用不等式解决实际问题。
不等式的性质教案
不等式的性质教学目的: 1理解同向不等式,异向不等式概念; 2理解不等式的性质定理1—3及其证明; 3理解证明不等式的逻辑推理方法. 4通过对不等式性质定理的掌握,培养学生灵活应变的解题能力和思考问题严谨周密的习惯教学重点:掌握不等式性质定理1、2、3及推论,注意每个定理的条件教学难点:1理解定理1、定理2的证明,即“a >b ⇔b <a 和a >b ,b >c ⇒a >c ”的证明这两个定理证明的依据是实数大小的比较与实数运算的符号法则 2定理3的推论,即“a >b ,c >d ⇒a +c >b +d ”是同向不等式相加法则的依据但两个同向不等式的两边分别相减时,就不能得出一般结论授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学方法:引导启发结合法——即在教师引导下,由学生利用已学过的有关知识,顺利完成定理的证明过程及定理的简单应用教学过程:一、复习引入:1.判断两个实数大小的充要条件是:0>-⇔>b a b a 0=-⇔=b a b a0<-⇔<b a b a2.(1)如果甲的年龄大于乙的年龄,那么乙的年龄小于甲的年龄吗?为什么?(2)如果甲的个子比乙高,乙的个子比丙高,那么甲的个子比丙高吗?为什么? 从而引出不等式的性质及其证明方法.二、讲解新课:1.同向不等式:两个不等号方向相同的不等式,例如:a>b ,c>d ,是同向不等式 异向不等式:两个不等号方向相反的不等式例如:a>b ,c<d ,是异向不等式 2.不等式的性质:性质1:如果a>b ,那么b<a ,如果b<a ,那么a>b .(对称性)即:a>b ⇒b<a ;b<a ⇒a>b证明:∵a>b ∴a-b>0由正数的相反数是负数,得-(a-b)<0即b-a<0 ∴b<a (定理的后半部分略) .点评:可能个别学生认为定理l 没有必要证明,那么问题:若a>b ,则a 1和b1谁大?根据学生的错误来说明证明的必要性“实数a 、b 的大小”与“a-b 与零的关系”是证明不等式性质的基础,本定理也称不等式的对称性.性质2:如果a>b ,且b>c ,那么a>c .(传递性)即a>b ,b>c ⇒a>c证明:∵a>b ,b>c ∴a-b>0, b-c>0根据两个正数的和仍是正数,得(a-b)+( b-c)>0 即a -c>0∴a>c根据定理l ,定理2还可以表示为:c<b ,b<a ⇒c<a点评:这是不等式的传递性、这种传递性可以推广到n 个的情形.性质3:如果a>b ,那么a+c>b+c .即a>b ⇒a+c>b+c证明:∵a>b , ∴a-b>0,∴(a+c)-( b+c)>0 即a+c>b+c点评:(1)定理3的逆命题也成立;(2)利用定理3可以得出:如果a+b>c ,那么a>c-b ,也就是说,不等式中任何一项改变符号后,可以把它从—边移到另一边.性质4:如果a>b ,且c>d ,那么a+c>b+d .(相加法则)即a>b , c>d ⇒a+c>b+d .证法一:⇒⎭⎬⎫+>+⇒>+>+⇒>d b c b d c c b c a b a a+c>b+d 证法二:⇒>-+-⇒⎭⎬⎫>-⇒>>-⇒>000d c b a d c d c b a b a a+c>b+d 点评:(1)这一推论可以推广到任意有限个同向不等式两边分别相加,即:两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向;(2)两个同向不等式的两边分别相减时,不能作出一般的结论;三、讲解范例:例 已知a>b ,c<d ,求证:a-c>b-d .(相减法则)分析:思路一:证明“a -c >b -d ”,实际是根据已知条件比较a -c 与b -d 的大小,所以以实数的运算性质与大小顺序之间的关系为依据,直接运用实数运算的符号法则来确定差的符号,最后达到证题目的证法一:∵a >b ,c <d∵a -b >0,d -c >0∴(a -c )-(b -d )=(a -b )+(d -c )>0(两个正数的和仍为正数)故a -c >b -d思路二:我们已熟悉不等式的性质中的定理1~定理3及推论,所以运用不等式的性质,加以变形,最后达到证明目的证法二:∵c <d ∴-c >-d又∵a >b∴a +(-c )>b +(-d )∴a -c >b -d四、课堂练习: 1判断下列命题的真假,并说明理由:(1)如果a >b ,那么a -c >b -c ;(2)如果a >b ,那么c a c 分析:从不等式性质定理找依据,与性质定理相违的为假,与定理相符的为真 答案:(1)真因为推理符号定理3 (2)假2,3(初中)可知,当c <0时,c a c 即不等式两边同乘以一个数,必须明确这个数的正负2回答下列问题:(1)如果a >b ,c >d ,能否断定a +c 与b +d 谁大谁小?举例说明;(2)如果a >b ,c >d ,能否断定a -2c 与b -2d 谁大谁小?举例说明 答案:(1)不能断定例如:2>1,1<3⇒2+1<1+3;而2>1,-1<-0⇒2-1>1-08异向不等式作加法没定论(2)不能断定例如a >b ,c =1>d =-1⇒a -2c =a -2,b +2=b -2d ,其大小不定a =8>1=b 时a -2c =6>b +2=3而a =2>1=b 时a -2c =0<b +2=33求证:(1)如果a >b ,c >d ,那么a -d >b -c ;(2)如果a >b ,那么c -2a <c -2b 证明:(1).c b d a d b c b d c d c d b d a b a ->-⇒⎪⎭⎪⎬⎫-<-⇒-<-⇒>->-⇒>(2)a >b ⇒-2a <-2b ⇒c -2a <c -2b 4已和a >b >c >d >0,且d c b a =,求证:a +d >b +c 证明:∵dc b a = ∴d d c b b a -=- ∴(a -b )d =(c -d )b又∵a >b >c >d >0∴a -b >0,c -d >0,b >d >0且d b >1 ∴d b d c b a =-->1 ∴a -b >c -d 即a +d >b +c评述:此题中,不等式性质和比例定理联合使用,使式子形与形之间的转换更迅速这道题不仅有不等式性质应用的信息,更有比例的信息,因此这道题既要重视性质的运用技巧,也要重视比例定理的应用技巧五、小结 :本节课我们学习了不等式的性质定理1~定理3及其推论,理解不等式性质的反对称性(a >b ⇔b <a =、传递性(a >b ,b >c ⇒a >c )、可加性(a >b ⇒a +c >b +c )、加法法则(a >b ,c >d ⇒a +c >b +d ),并记住这些性质的条件,尤其是字母的符号及不等式的方向,要搞清楚这些性质的主要用途及其证明的基本方法六、课后作业:课本P 84 习题3.1 A 组 4、5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式的证明(二)第二课时
四川省中江中学校李和敬
教学目标
1.进一步熟练掌握比较法证明不等式;2.了解作商比较法证明不等式;3.提高学生解题时应变能力.
教学重点比较法的应用
教学难点常见解题技巧
教学方法启发引导式
教学活动
(一)导入新课
(教师活动)教师打出字幕(复习提问),请三位同学回答问题,教师点评.
(学生活动)思考问题,回答.
[字幕]1.比较法证明不等式的步骤是怎样的?
2.比较法证明不等式的步骤中,依据、手段、目的各是什么?
3.用比较法证明不等式的步骤中,最关键的是哪一步?学了哪些常用的变形方法?对式子的变形还有其它方法吗?
[点评]用比较法证明不等式步骤中,关键是对差式的变形.在我们所学的知识中,对式子变形的常用方法除了配方、通分,还有因式分解.这节课我们将继续学习比较法证明不等式,积累对差式变形的常用方法和比较法思想的应用.(板书课题)设计意图:复习巩固已学知识,衔接新知识,引入本节课学习的内容.
(二)新课讲授
【尝试探索,建立新知】
(教师活动)提出问题,引导学生研究解决问题,并点评.
(学生活动)尝试解决问题.
[问题]
1.化简2.比较与()的大小
(学生解答问题)
[点评]
①问题1,我们采用了因式分解的方法进行简化.
②通过学习比较法证明不等式,我们不难发现,比较法的思想方法还可用来比较两个式子的大小.
设计意图:启发学生研究问题,建立新知,形成新的知识体系.
【例题示范,学会应用】
(教师活动)教师打出字幕(例题),引导、启发学生研究问题,井点评解题过程.(学生活动)分析,研究问题.
[字幕]例题3 已知a,b是正数,且,求证:
[分析]依题目特点,作差后重新组项,采用因式分解来变形.
证明:(见课本)
[点评]因式分解也是对差式变形的一种常用方法.此例将差式变形为几个因式的积的形式,在确定符号中,表达过程较复杂,如何书写证明过程,例3给出了一个好的示范.
[字幕]例4试问:与()的大小关系.并说明理由.
[分析]作差通分,对分子、分母因式分解,然后分类讨论确定符号.解:
因为,所以,
若,则所以.
即
若,则所以.
即
若,则所以.
即
综上所述:时,
时,
时,
[点评]解这道题在判断符号时用了分类讨论,分类讨论是重要的数学思想方法.要理解为什么分类,怎样分类.分类时要不重不漏.
[字幕]例5甲、乙两人同时同地沿同一条路线走到同一地点.甲有一半时间以速度m行走,另一半时间以速度n行走;有一半路程乙以速度m行走,另一半路程以速度n 行走,如果,问甲、乙两人谁先到达指定地点.
[分析]设从出发地点至指定地点的路程为,甲、乙两人走完这段路程用的时间分别为,,要回答题目中的问题,只要比较、的大小就可以了.
解:(见课本)
[点评]此题是一个实际问题,学习了如何利用比较法证明不等式的思想方法解决有关实际问题.要培养自己学数学,用数学的良好品质.
设计意图:巩固比较法证明不等式的方法,掌握因式分解的变形方法和分类讨论确定符号的方法.培养学生应用知识解决实际问题的能力.
(教师活动)教师打出字幕(练习),要求学生独立思考,完成练习;请甲、乙两位学生板演;巡视学生的解题情况,对正确的给予肯定,对偏差及时纠正;点评练习中存在的问题.
(学生活动)在笔记本上完成练习,甲、乙两位同学板演.
[字幕]练习:1.设,比较与的大小.
2.已知,,,求证
设计意图:掌握比较法证明不等式及思想方法的应用.灵活掌握因式分解法对差式的变形和分类讨论确定符号.反馈信息,调节课堂教学.
【分析归纳、小结解法】
(教师活动)分析归纳例题的解题过程,小结对差式变形、确定符号的常用方法和利用不等式解决实际问题的解题步骤.
(学生活动)与教师一道小结,并记录在笔记本上.
1.比较法不仅是证明不等式的一种基本、重要的方法,也是比较两个式子大小的一种重要方法.
2.对差式变形的常用方法有:配方法,通分法,因式分解法等.
3.会用分类讨论的方法确定差式的符号.
4.利用不等式解决实际问题的解题步骤:①类比列方程解应用题的步骤.②分析题意,设未知数,找出数量关系(函数关系,相等关系或不等关系),③列出函数关系、等式或不等式,④求解,作答.
设计意图:培养学生分析归纳问题的能力,掌握用比较法证明不等式的知识体系.(三)小结
(教师活动)教师小结本节课所学的知识及数学思想与方法.
(学生活动)与教师一道小结,并记录笔记.
本节课学习了对差式变形的一种常用方法——因式分解法;对符号确定的分类讨论法;应用比较法的思想解决实际问题.
通过学习比较法证明不等式,要明确比较法证明不等式的理论依据,理解转化,使问题简化是比较法证明不等式中所蕴含的重要数学思想,掌握求差后对差式变形以及判断符号的重要方法,并在以后的学习中继续积累方法,培养用数学知识解决实际问题的能力.设计意图:培养学生对所学的知识进行概括归纳的能力,巩固所学的知识,领会化归、类比、分类讨论的重要数学思想方法.
(四)布置作业
1.课本作业:P17 7、8。
2,思考题:已知,求证
3.研究性题:对于同样的距离,船在流水中来回行驶一次的时间和船在静水中来回行驶一次的时间是否相等?(假设船在流水中的速度和部在静水中的速度保持不变)设计意图:思考题让学生了解商值比较法,掌握分类讨论的思想.研究性题是使学生理论联系实际,用数学解决实际问题,提高应用数学的能力.
(五)课后点评
1.教学评价、反馈调节措施的构想:本节课采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,通过启发诱导学生深入思考问题,解决问题,反馈学习信息,调节教学活动.
2.教学措施的设计:由于对差式变形,确定符号是掌握比较法证明不等式的关键,本节课在上节课的基础上继续学习差式变形的方法和符号的确定,例3和例4分别使学生掌握因式分解变形和分类讨论确定符号,例5使学生对所学的知识会应用.例题设计目的在于突出重点,突破难点,学会应用.
作业答案
思考题:证明:
因为,所以当时,,故
又因为,所以
当时,,故,即,所以
当时,.故,即,所以
综上所述,
研究性题:设两地距离为,船在静水中的速度为,水流速度为(),则
所以船在流水中来回行驶一次的时间比在静水中来回行驶一次的时间长.
情绪,贯穿于我们的生活之中。
由于生理的不同,与男性相比,女性情感活动更强烈,也更容易情绪化。
如果说父亲在家庭中扮演的是掌舵者、领导人的角色,那么母亲则是一个家庭的调节阀、供氧机。
虽然家庭的重担由父母双方共同承担,但与父亲相比,母亲承担更多。
在工作与家庭双重压力下不少母亲感到力不从心,情绪也变得更加不稳定。
但母亲的情绪决定着一个家庭的温度,决定着一个家庭的和谐程度。
首先从家庭生活中来看,女性温柔、细腻的特质可以在家庭生活中营造出一种暖意融融的气氛,在这种气氛下,再大的矛盾与困难都能克服。
如果说父亲是一把披荆斩棘的利剑,母亲则是一张情意绵绵的丝网,她用爱将家庭与外面漆黑冰冷的世界剥离开来。
女性相较于男性而言,更善于表达内心情感,更懂得利用语言与情绪的力量,母亲的笑脸、暖言能给每个家庭成员力量。
每个孩子都是一块白纸,你想让他变成什么样子他就是什么样子,在孩子的成长过程中,母亲的影响是不可能替代的。
母亲是孩子情感依赖的主要角色,如果母亲在与孩子的接触中,不能控制自己的情绪,那么孩子长大之后很可能会情绪调节失衡。
有本书中说:“对大多数的成年人而言,即使一生只跟母亲发生过一次问题,心中就会存在一个说话、行为和反应跟童年时期一模一样的‘母亲复本’。
”
母亲情绪不稳定,一会对孩子赞赏有加,一会对孩子大声呵斥,这会造成造成孩子长大后戒备心重,缺乏信任。
总是对孩子抱怨,朝孩子吐苦水,也会把孩子变成一个消极的人。
母亲的情绪决定家庭的温度,在家庭生活中学会控制自己的情绪,要发火前深呼吸,以微笑面对家人,对待爱人、孩子多用表扬多夸奖,不要总是看到不足的地方。
在合肥张家,母亲陆英是个能很好控制自己的情绪的人。
她自结婚后与丈夫从未红过脸,处处周到讨得婆婆欢心,对待儿女从不歇斯底里疾言厉色,她用自己良好的情绪为家庭及儿女成长撑起了一把保护伞。