高等数学-空间解析几何与向量代数练习题与答案
[整理]7空间解析几何与向量代数习题与答案
![[整理]7空间解析几何与向量代数习题与答案](https://img.taocdn.com/s3/m/8953ea7069eae009581bec92.png)
第七章 空间解析几何与向量代数A一、1、 平行于向量)6,7,6(-=a 的单位向量为______________.2、 设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角.3、 设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴上的投影,及在y 轴上的分向量. 二、1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(⨯⋅-⨯⋅及;及(3)a 、b 的夹角的余弦.2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ.三、1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.2、方程0242222=++-++z y x z y x 表示______________曲面.3、1)将xOy 坐标面上的x y 22=绕x 轴旋转一周,生成的曲面方程为 _______________,曲面名称为___________________.2)将xOy 坐标面上的x y x 222=+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________.3)将xOy 坐标面上的369422=-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________.4)在平面解析几何中2x y =表示____________图形。
在空间解析几何中2x y =表示______________图形.5)画出下列方程所表示的曲面 (1))(4222y x z +=(2))(422y x z += 四、1、指出方程组⎪⎩⎪⎨⎧==+319y 4x 22y 在平面解析几何中表示____________图形,在空间解 析几何中表示______________图形.2、求球面9222=++z y x 与平面1=+z x 的交线在xOy 面上的投影方程.3、求上半球2220y x a z --≤≤与圆柱体)0(22>≤+a ax y x 的公共部分在xOy 面及xOz 面上的投影.五、1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求过点(1,1,-1),且平行于向量a =(2,1,1)和b =(1,-1,0)的平面方程.3、求平行于xOz 面且过点(2,-5,3)的平面方程.4、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程. 六、1、求过点(1,2,3)且平行于直线51132-=-=z y x 的直线方程.2、求过点(0,2,4)且与两平面12=+z x ,23=-z y 平行的直线方程.3、求过点(2,0,-3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程.4、求过点(3,1,-2)且通过直线12354zy x =+=-的平面方程.5、求直线⎩⎨⎧=--=++03z y x z y x 与平面01=+--z y x 的夹角.6、求下列直线与直线、直线与平面的位置关系 1)直线⎩⎨⎧=++-=-+7272z y x z y x 与直线11321-=--=-zy x ; 2)直线431232--=+=-z y x 和平面x+y+z=3.7、求点(3,-1,2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离.B1、已知0=++c b a (c b a ,,为非零矢量),试证:a c c b b a ⨯=⨯=⨯.2、),(},1,1,1{,3b a b a b a ∠=⨯=⋅求.3、已知a 和b 为两非零向量,问t 取何值时,向量模||tb a +最小?并证明此时)(tb a b +⊥.4、求单位向量n ,使a n ⊥且x n ⊥轴,其中)8,6,3(=a .5、求过z 轴,且与平面052=-+z y x 的夹角为3π的平面方程.6、求过点)2,1,4(1M ,)1,5,3(2--M ,且垂直于07326=++-z y x 的平面.7、求过直线⎩⎨⎧=--+=-+-022012z y x z y x ,且与直线2l :211zy x =-=平行的平面.8、求在平面π:1=++z y x 上,且与直线⎩⎨⎧-==11z y L :垂直相交的直线方程.9、设质量为kg 100的物体从空间点)8,1,3(1M ,移动到点)2,4,1(2M ,计算重力所做的功(长度单位为m ).10、求曲线⎩⎨⎧==-+30222z x z y 在xoy 坐标面上的投影曲线的方程,并指出原曲线是什么曲线?11、已知k j OB k i OA 3,3+=+=,求OAB ∆的面积12、.求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面14=+-z y x 上的投影直线方程.C1、设向量c b a ,,有相同起点,且0=++c b a γβα,其中0=++γβα,γβα,,不全为零,证明:c b a ,,终点共线.2、求过点)1,2,1(0-M ,且与直线L :121122=--=+y x 相交成3π角的直线方程. 3、过)4,0,1(-且平行于平面01043=-+-z y x 又与直线21311zy x =-=+相交的直线方程.4、求两直线1L :1101-=-=-z y x 与直线2L :0236+=-=z y x 的最短距离. 5、柱面的准线是xoy 面上的圆周(中心在原点,半径为1),母线平行于向量}1,1,1{=g ,求此柱面方程.6、设向量a,b 非零,3),(,2π==b a b ,求xaxb a x -+→0lim.7、求直线⎪⎩⎪⎨⎧--==)1(212:y z y x L 绕y 轴旋转一周所围成曲面方程. 第七章 空间解析几何与向量代数习 题 答 案A一、1、⎩⎨⎧⎭⎬⎫-±116,117,116 2、21M M =2,21cos ,22cos ,21cos ==-=γβα,3,43,32πγπβπα=== 3、a 在x 轴上的投影为13,在y 轴上的分量为7j 二、1、1)3)1()2(2)1(13=-⋅-+⋅-+⋅=⋅b ak j i k j ib a 75121213++=---=⨯(2)18)(63)2(-=⋅-=⋅-b a b a ,k j i b a b a 14210)(22++=⨯=⨯ (3)2123),cos(^=⋅⋅=b a b a b a 2、}2,2,0{},1,4,2{3221-=-=M M M Mk j i kj iM M M M a 4462201423221--=--=⨯= }1724,1724,1726{--±=±a a 即为所求单位向量。
高数A1空间解析几何与向量代数(答案)
![高数A1空间解析几何与向量代数(答案)](https://img.taocdn.com/s3/m/69f7619f01f69e31423294da.png)
第八章 空间解析几何与向量代数1.自点()0000,,z y x P 分别作各坐标面和各坐标轴的垂线,写出各垂足的坐标。
解:按作图规则作出空间直角坐标系,作出如图平行六面体。
xoy D P ⊥0平面,垂足D 的坐标为()0,,00y x ;yoz E P ⊥0平面,垂足E 的坐标为()00,,0z y ;zox F P ⊥0平面,垂足F 的坐标为()00,0,z x ;x A P ⊥0轴,垂足A 的坐标为()0,0,0x ;y B P ⊥0轴,垂足B 的坐标为()0,,00y ; z C P ⊥0轴,垂足C 的坐标为()0,0,0z 。
2.在yoz 平面上,求与三点()2,1,3A 、()2,2,4--B 和()1,5,0C 等距离的点。
解:设所求点为(),,,0z y P 则()()2222213||-+-+=z y PA , ()()2222224||++++=z y PB ,()()22215||-+-=z y PC 。
由于P 与A 、B 、C 三点等距,故222||||||PC PB PA ==,于是有:()()()()()()()()⎪⎩⎪⎨⎧-+-=++++-+-=-+-+22222222221522415213z y z y z y z y , 解此方程组,得1=y ,2-=z ,故所求的点为()2,1,0-P 。
3.已知()2,2,21M ,()0,3,12M ,求21M M 的模、方向余弦与方向角。
解:由题设知:{}{},2,1,120,23,2121--=---=M M 则()(),2211222=-++-=21cos -=α,21cos =β,22cos -=γ,于是,32πα=,3πβ=,43πγ=。
4.已知{}1,5,3-=a ,{}3,2,2=b ,{}3,1,4--=c ,求下列各向量的坐标: (1)a 2;(2)c b a -+;(3)c b a 432+-;(4).b n a m +解:(1) {}2,10,62-=a ;(2){}5,8,1=-+c b a ;(3){}23,0,16432-=+-c b a ; (4){}.3,25,23n m n m n m b n a m +-++=+5.设向量的方向余弦分别满足(1)0cos =α;(2)1cos =β;(3)0cos cos ==βα,问这些向量与坐标轴或坐标面的关系如何?解:(1)0cos =α,向量与x 轴的夹角为2π,则向量与x 轴垂直或平行于yoz 平面;(2)1cos =β,向量与y 轴的夹角为0,则向量与y 轴同向;(3)0cos cos ==βα,则向量既垂直于x 轴,又垂直于y 轴,即向量垂直于xoy 面。
空间解析几何与向量代数习题与答案
![空间解析几何与向量代数习题与答案](https://img.taocdn.com/s3/m/27977a09dd36a32d73758154.png)
第七章 空间解析几何与向量代数A一、1、平行于向量)6,7,6(-=a 的单位向量为______________.2、设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角.3、设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴上的投影,及在y 轴上的分向量. 二、1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(⨯⋅-⨯⋅及;及(3)a 、b 的夹角的余弦.2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.2、方程0242222=++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22=绕x 轴旋转一周,生成的曲面方程为_______________,曲面名称为___________________.2)将xOy 坐标面上的x y x 222=+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________.3)将xOy 坐标面上的369422=-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________.4)在平面解析几何中2x y =表示____________图形。
在空间解析几何中2x y =表示______________图形.5)画出下列方程所表示的曲面 (1))(4222y x z += (2))(422y x z += 四、1、指出方程组⎪⎩⎪⎨⎧==+319y 4x 22y 在平面解析几何中表示____________图形,在空间解 析几何中表示______________图形.2、求球面9222=++z y x 与平面1=+z x 的交线在xOy 面上的投影方程. 3、求上半球2220y x a z --≤≤与圆柱体)0(22>≤+a ax y x 的公共部分在xOy 面及xOz 面上的投影. 五、1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求过点(1,1,-1),且平行于向量a =(2,1,1)和b =(1,-1,0)的平面方程.3、求平行于xOz 面且过点(2,-5,3)的平面方程.4、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程. 六、1、求过点(1,2,3)且平行于直线51132-=-=z y x 的直线方程. 2、求过点(0,2,4)且与两平面12=+z x ,23=-z y 平行的直线方程.3、求过点(2,0,-3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程.4、求过点(3,1,-2)且通过直线12354zy x =+=-的平面方程. 5、求直线⎩⎨⎧=--=++003z y x z y x 与平面01=+--z y x 的夹角.6、求下列直线与直线、直线与平面的位置关系 1)直线⎩⎨⎧=++-=-+7272z y x z y x 与直线11321-=--=-zy x ; 2)直线431232--=+=-z y x 和平面x+y+z=3. 7、求点(3,-1,2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离.B1、已知0=++c b a (c b a ,,为非零矢量),试证:a c c b b a ⨯=⨯=⨯.2、),(},1,1,1{,3b a b a b a ∠=⨯=⋅求.3、已知和为两非零向量,问取何值时,向量模||tb a +最小?并证明此时)(tb a b +⊥.4、求单位向量,使a n ⊥且x n ⊥轴,其中)8,6,3(=a .5、求过轴,且与平面052=-+z y x 的夹角为3π的平面方程. 6、求过点)2,1,4(1M ,)1,5,3(2--M ,且垂直于07326=++-z y x 的平面.7、求过直线⎩⎨⎧=--+=-+-022012z y x z y x ,且与直线:211zy x =-=平行的平面.8、求在平面:1=++z y x 上,且与直线⎩⎨⎧-==11z y L :垂直相交的直线方程.9、设质量为kg 100的物体从空间点)8,1,3(1M ,移动到点)2,4,1(2M ,计算重力所做的功(长度单位为).10、求曲线⎩⎨⎧==-+30222z x z y 在xoy 坐标面上的投影曲线的方程,并指出原曲线是什么曲线?11、已知k j OB k i OA 3,3+=+=,求OAB ∆的面积 12、.求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面14=+-z y x 上的投影直线方程.C1、设向量c b a ,,有相同起点,且0=++c b a γβα,其中0=++γβα,γβα,,不全为零,证明:c b a ,,终点共线.2、求过点)1,2,1(0-M ,且与直线:121122=--=+y x 相交成3π角的直线方程. 3、过)4,0,1(-且平行于平面01043=-+-z y x 又与直线21311zy x =-=+相交的直线方程. 4、求两直线:1101-=-=-z y x 与直线:0236+=-=z y x 的最短距离. 5、柱面的准线是xoy 面上的圆周(中心在原点,半径为1),母线平行于向量}1,1,1{=g ,求此柱面方程.6、设向量a,b 非零,3),(,2π==b a b ,求xaxb a x -+→0lim.7、求直线⎪⎩⎪⎨⎧--==)1(212:y z y x L 绕y 轴旋转一周所围成曲面方程. 第七章 空间解析几何与向量代数习 题 答 案A一、1、⎩⎨⎧⎭⎬⎫-±116,117,116 2、21M M =2,21cos ,22cos ,21cos ==-=γβα,3,43,32πγπβπα=== 3、在x 轴上的投影为13,在y 轴上的分量为7j 二、1、1)3)1()2(2)1(13=-⋅-+⋅-+⋅=⋅b ak j i k j i b a 75121213++=---=⨯(2)18)(63)2(-=⋅-=⋅-b a b a ,k j i b a b a 14210)(22++=⨯=⨯ (3)2123),cos(^=⋅⋅=b a b a b a 2、}2,2,0{},1,4,2{3221-=-=M M M Mk j i kj iM M M M a 4462201423221--=--=⨯= }1724,1724,1726{--±=±a a 即为所求单位向量。
高等数学第七章向量代数与空间解析几何习题
![高等数学第七章向量代数与空间解析几何习题](https://img.taocdn.com/s3/m/7c3cc8c587c24028905fc3bd.png)
解 ∵ a + b = AC = 2MC = −2MA ,
D
C
b
M
b − a = BD = 2MD = −2MB ,
∴
MA
=
−
1 2
(a
+
b),
MB
=
−
1 2
(b
−
A a ),
a
B
图 7.2
MC
=
1 2
(a
+
b),
MD
=
1 2
(b
−
a ).
10. 用向量的方法证明: 连接三角形两边中点的线段(中位线)平行且等于第三
而
a⋅b =
a
⋅
b
⋅
cos(a,
b)
=
10
×
cos
π 3
=5,
所以
r 2 = 100 − 60 + 36 = 76 ,
故 r = 76 .
3. 已知 a + b + c = 0 , 求证 a × b = b × c = c × a
证 法1
∵a + b + c = 0 ,
所以
c = −(a + b) ,
解 因 a = m − 2n + 3 p = (8i + 5 j + 8k) − 2(2i − 4 j + 7k) + 3(i + j − k) = 7i + 16 j − 9k ,
故沿 x 轴方向的分向量为 axi = 7i ; 沿 y 轴方向的分向量为 ay j = 16 j .
16. 若线段 AB 被点 C(2, 0, 2)和D(5, −2, 0) 三等分, 试求向量 AB 、点 A 及点 B 的
高等数学 空间解析几何与向量代数练习题与答案(优选.)
![高等数学 空间解析几何与向量代数练习题与答案(优选.)](https://img.taocdn.com/s3/m/91733c47c281e53a5802ff78.png)
最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改空间解析几何与矢量代数小练习一 填空题 5’x9=45分1、 平行于向量)6,7,6(-=a 的单位向量为______________.2、 设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模_________________, 方向余弦_________________和方向角_________________3、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.4、方程0242222=++-++z y x z y x 表示______________曲面.5、方程22x y z +=表示______________曲面.6、222x y z +=表示______________曲面.7、 在空间解析几何中2x y =表示______________图形.二 计算题 11’x5=55分1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程.3、求过点(1,2,3)且平行于直线51132-=-=z y x 的直线方程.4、求过点(2,0,-3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方5、已知:k i OA 3+=,k j OB 3+=,求OAB ∆的面积。
参考答案一 填空题1、⎩⎨⎧⎭⎬⎫-±116,117,1162、21M M =2,21cos ,22cos ,21cos ==-=γβα,3,43,32πγπβπα=== 3、14)2()3()1(222=++-+-z y x4、以(1,-2,-1)为球心,半径为6的球面5、旋转抛物面6、 圆锥面7、 抛物柱面二 计算题1、04573=-+-z y x2、029=--z y3、531221-=-=-z y x 4、065111416=---z y x5 219==∆S最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改赠人玫瑰,手留余香。
向量代数与空间解析几何课堂练习题参考答案
![向量代数与空间解析几何课堂练习题参考答案](https://img.taocdn.com/s3/m/05c17ccb28ea81c758f57861.png)
向量代数与空间解析几何课堂练习题参考答案一、 填空题1.设c b a, ,为非零向量,且c b a ⨯=,a c b ⨯= ,b a c ⨯= ,则=++c b a 3 。
解:显然c b a, ,互相垂直。
∵c b c b c b c b a ),sin( ==⨯=,同理c a b =, b a c=,∴2b a b a bc b a ===,又0≠a ,∴1 1 2=⇒=b b ,同理可证1 1,==c a,故3 =++c b a 。
2.2)( =⋅⨯c b a ,则[]=+⋅+⨯+)()()( a c c b b a4 。
解:[])()]()(([)()()( a c c b b c b a a c c b b a+⋅+⨯++⨯=+⋅+⨯+)(][a c c b b b c a b a+⋅⨯+⨯+⨯+⨯=)()()()()()(a c c b a c c a a c b a +⋅⨯++⋅⨯++⋅⨯= a c b c c b a c a c c a a b a c b a ⋅⨯+⋅⨯+⋅⨯+⋅⨯+⋅⨯+⋅⨯=)()()()()()( 4)(2)()(=⋅⨯=⋅⨯+⋅⨯=c b a a c b c b a。
3.已知三角形)1 ,1 ,1(A ,)4 ,3 ,2(B ,)2 ,3 ,4(C ,则ABC ∆的面积=S 62 。
解:}3 ,2 ,1{=AB ,}1 ,2 ,3{=AC ,}4 ,8 ,4{123321--==⨯kj i AC AB ,.62)4(8)4(21222=-++-S 4.设一平面过原点及)2 ,3 ,6(-A ,且与平面824=+-z y x 垂直, 则此平面方程为0322=-+z y x 。
解:}2 ,3 ,6{-=,已知平面的法向量为}2 ,1 ,4{-=,则所求平面的法向量为}3 ,2 ,2{2}6 ,4 ,4{}2 ,1 ,4{}2 ,3 ,6{1--=--=-⨯-=⨯=n , 故所求平面的方程为0)0(3)0(2)0(2=---+-z y x ,即0322=-+z y x 。
(完整版)空间解析几何与向量代数习题与答案
![(完整版)空间解析几何与向量代数习题与答案](https://img.taocdn.com/s3/m/1597d7d7a8956bec0875e301.png)
第七章 空间解析几何与向量代数A一、1、平行于向量)6,7,6(-=a 的单位向量为______________.2、设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角.3、设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴上的投影,及在y 轴上的分向量. 二、1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(⨯⋅-⨯⋅及;及(3)a 、b 的夹角的余弦.2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.2、方程0242222=++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22=绕x 轴旋转一周,生成的曲面方程为_______________,曲面名称为___________________.2)将xOy 坐标面上的x y x 222=+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________.3)将xOy 坐标面上的369422=-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________.4)在平面解析几何中2x y =表示____________图形。
在空间解析几何中2x y =表示______________图形.5)画出下列方程所表示的曲面 (1))(4222y x z += (2))(422y x z += 四、1、指出方程组⎪⎩⎪⎨⎧==+319y 4x 22y 在平面解析几何中表示____________图形,在空间解 析几何中表示______________图形.2、求球面9222=++z y x 与平面1=+z x 的交线在xOy 面上的投影方程. 3、求上半球2220y x a z --≤≤与圆柱体)0(22>≤+a ax y x 的公共部分在xOy 面及xOz 面上的投影. 五、1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求过点(1,1,-1),且平行于向量a =(2,1,1)和b =(1,-1,0)的平面方程.3、求平行于xOz 面且过点(2,-5,3)的平面方程.4、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程. 六、1、求过点(1,2,3)且平行于直线51132-=-=z y x 的直线方程. 2、求过点(0,2,4)且与两平面12=+z x ,23=-z y 平行的直线方程.3、求过点(2,0,-3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程.4、求过点(3,1,-2)且通过直线12354zy x =+=-的平面方程. 5、求直线⎩⎨⎧=--=++003z y x z y x 与平面01=+--z y x 的夹角.6、求下列直线与直线、直线与平面的位置关系 1)直线⎩⎨⎧=++-=-+7272z y x z y x 与直线11321-=--=-zy x ; 2)直线431232--=+=-z y x 和平面x+y+z=3. 7、求点(3,-1,2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离.B1、已知0=++c b a (c b a ,,为非零矢量),试证:a c c b b a ⨯=⨯=⨯.2、),(},1,1,1{,3b a b a b a ∠=⨯=⋅求.3、已知和为两非零向量,问取何值时,向量模||tb a +最小?并证明此时)(tb a b +⊥.4、求单位向量,使a n ⊥且x n ⊥轴,其中)8,6,3(=a .5、求过轴,且与平面052=-+z y x 的夹角为3π的平面方程. 6、求过点)2,1,4(1M ,)1,5,3(2--M ,且垂直于07326=++-z y x 的平面.7、求过直线⎩⎨⎧=--+=-+-022012z y x z y x ,且与直线:211zy x =-=平行的平面.8、求在平面:1=++z y x 上,且与直线⎩⎨⎧-==11z y L :垂直相交的直线方程.9、设质量为kg 100的物体从空间点)8,1,3(1M ,移动到点)2,4,1(2M ,计算重力所做的功(长度单位为).10、求曲线⎩⎨⎧==-+30222z x z y 在xoy 坐标面上的投影曲线的方程,并指出原曲线是什么曲线?11、已知k j OB k i OA 3,3+=+=,求OAB ∆的面积 12、.求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面14=+-z y x 上的投影直线方程.C1、设向量c b a ,,有相同起点,且0=++c b a γβα,其中0=++γβα,γβα,,不全为零,证明:c b a ,,终点共线.2、求过点)1,2,1(0-M ,且与直线:121122=--=+y x 相交成3π角的直线方程. 3、过)4,0,1(-且平行于平面01043=-+-z y x 又与直线21311zy x =-=+相交的直线方程. 4、求两直线:1101-=-=-z y x 与直线:0236+=-=z y x 的最短距离. 5、柱面的准线是xoy 面上的圆周(中心在原点,半径为1),母线平行于向量}1,1,1{=g ,求此柱面方程.6、设向量a,b 非零,3),(,2π==b a b ,求xaxb a x -+→0lim.7、求直线⎪⎩⎪⎨⎧--==)1(212:y z y x L 绕y 轴旋转一周所围成曲面方程. 第七章 空间解析几何与向量代数习 题 答 案A一、1、⎩⎨⎧⎭⎬⎫-±116,117,116 2、21M M =2,21cos ,22cos ,21cos ==-=γβα,3,43,32πγπβπα=== 3、在x 轴上的投影为13,在y 轴上的分量为7j 二、1、1)3)1()2(2)1(13=-⋅-+⋅-+⋅=⋅b ak j i k j i b a 75121213++=---=⨯(2)18)(63)2(-=⋅-=⋅-b a b a ,k j i b a b a 14210)(22++=⨯=⨯ (3)2123),cos(^=⋅⋅=b a b a b a 2、}2,2,0{},1,4,2{3221-=-=M M M Mk j i kj iM M M M a 4462201423221--=--=⨯= }1724,1724,1726{--±=±a a 即为所求单位向量。
(完整版)高等数学空间解析几何与向量代数练习题与答案.doc
![(完整版)高等数学空间解析几何与向量代数练习题与答案.doc](https://img.taocdn.com/s3/m/de92f030a0116c175e0e4800.png)
空间解析几何与矢量代数小练习一填空题 5 ’x9=45 分1、平行于向量a(6,7, 6) 的单位向量为______________.2、设已知两点M1( 4, 2 ,1)和 M 2 (3,0,2) ,计算向量M1M2的模_________________,方向余弦 _________________和方向角 _________________3、以点 (1,3,-2) 为球心,且通过坐标原点的球面方程为__________________.4、方程x2 y 2 z 2 2x 4 y 2z 0 表示______________曲面.5、方程x2 y2 z 表示______________曲面.6、x2 y2 z2 表示 ______________曲面 .7、在空间解析几何中y x2 表示 ______________图形 .二计算题11 ’x5=55 分1、求过点 (3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求平行于x 轴且过两点 (4,0,-2)和(5,1,7)的平面方程.3、求过点 (1,2,3) 且平行于直线xy 3z 1的直线方程 .2 1 54、求过点 (2,0,-3)x 2 y 4z 7 0且与直线5 y 2z 1垂直的平面方3x 05、已知:OA i 3k ,OB j 3k ,求OAB 的面积。
1参考答案一 填空题1、6 ,7 ,611 11 112、 M 1 M 2 =2, cos1,cos2,cos1 ,2 ,3 ,2223433、 ( x 1) 2( y3) 2 ( z2) 2144、以 (1,-2,-1) 为球心 , 半径为6 的球面5、旋转抛物面6、 圆锥面7、 抛物柱面二 计算题1、 3x 7y 5 z 4 0 2 、 9 y z 2 0 3、x 1y 2 z34、 16x 14y 11z 65 02155 S1OA OB 19222。
(完整版)高等数学空间解析几何与向量代数练习题与答案
![(完整版)高等数学空间解析几何与向量代数练习题与答案](https://img.taocdn.com/s3/m/cec40f40ff4733687e21af45b307e87101f6f8ba.png)
空间解析几何与矢量代数小练习一填空题 5’x9=45分1、平行于向量a=(6,7,-6)的单位向量为______________.2、设已知两点M1(4,2,1)和M2(3,0,2),计算向量M1M2的模_________________,方向余弦_________________和方向角_________________3、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.4、方程x2+y2+z2-2x+4y+2z=0表示______________曲面.5、方程x2+y2=z表示______________曲面.6、x2+y2=z2表示______________曲面.7、在空间解析几何中y=x2表示______________图形.二计算题 11’x5=55分1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求平行于x轴且过两点(4,0,-2)和(5,1,7)的平面方程.3、求过点(1,2,3)且平行于直线x y-3z-12=1=5的直线方程.4、求过点(2,0,-3)且与直线⎧⎨x-2y+4z-7=0⎩3x+5y-2z+1=0垂直的平面方5、已知:OA=ϖi+3kϖ,OB=ϖj+3kϖ,求∆OAB的面积。
参考答案一填空题1、±⎨⎧67-6⎫⎩11,11,11⎬⎭2、M 11M 2=2,cos α=-2,cos β=22,cos γ=12,α=2π3,β=3ππ4,γ=33、(x -1)2+(y -3)2+(z +2)2=144、以(1,-2,-1)为球心,半径为6的球面5、旋转抛物面6、圆锥面7、抛物柱面二计算题1、3x -7y +5z -4=02、9y -z -2=03、x -1y -2z -32=1=5 4、16x -14y -11z -65=05S ∆=12OA ⨯OB =192。
第七章 空间解析几何与向量代数(答案)
![第七章 空间解析几何与向量代数(答案)](https://img.taocdn.com/s3/m/3f0d22e281c758f5f61f67e5.png)
第七章 空间解析几何与向量代数一、选择题1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 AB 的模是:(A )A )5B ) 3C ) 6D )92. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( B )A ){-1,1,5}.B ) {-1,-1,5}.C ) {1,-1,5}.D ){-1,-1,6}.3. 设a ={1,-1,3}, b ={2, 1,-2},求用标准基i , j , k 表示向量c=a-b 为(A )A )-i -2j +5kB )-i -j +3kC )-i -j +5kD )-2i -j +5k4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:( C )A )2πB )4πC )3πD )π5. 一质点在力F =3i +4j +5k 的作用下,从点A (1,2,0)移动到点B (3, 2,-1),求力F 所作的功是:( B )A )5焦耳B )1焦耳C )3焦耳D )9焦耳6. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是:( C )A )2πB )4πC )3π D )π7. 求点)10,1,2(-M 到直线L :12213+=-=z y x 的距离是:( A ) A )138 B 118 C )158 D )1 8. 设,23,a i k b i j k =-=++ 求a b ⨯ 是:( )A )-i -2j +5kB )-i -j +3kC )-i -j +5kD )3i -3j +3k9. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( A )A B )364 C )32 D )3 10. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程是:( D ) A )2x+3y=5=0 B )x-y+1=0C )x+y+1=0D )01=-+y x .11、若非零向量a,b 满足关系式-=+a b a b ,则必有( C );(A )-+a b =a b ; (B )=a b ; (C )0⋅a b =; (D )⨯a b =0.12、已知{}{}2,1,21,3,2---a =,b =,则Pr j b a =( D );(A )53; (B )5; (C )3; (D13、直线11z 01y 11x -=-=--与平面04z y x 2=+-+的夹角为 B ; (A )6π; (B )3π; (C )4π; (D )2π. 14、点(1,1,1)在平面02=+-+1z y x 的投影为 A ;(A )⎪⎭⎫ ⎝⎛23,0,21; (B )13,0,22⎛⎫-- ⎪⎝⎭; (C )()1,1,0-;(D )11,1,22⎛⎫-- ⎪⎝⎭. 15、方程222231x y z -+=表示 曲面,其对称轴在 上;(A)单叶双曲面,x 轴; (B)双叶双曲面,x 轴;(C)单叶双曲面,y 轴; (D)双叶双曲面,z16设,a b 为非零向量,且a b ⊥, 则必有( C ) A a b a b +=+ B a b a b -=- C +=-a b a b D +=-a b a b17、设向量,a b 相平行,但方向相反,则当0>>a b 时,必有(A ) A +=-a b a b B +>-a b a b C a b a b +<- D a b a b +=+18向量a 与b 的数量积⋅a b =( C ). A a rj P b a ; B ⋅a rj P a b ; C a rj P a b ; D b rj P a b . 19非零向量,a b 满足0⋅=a b ,则有( C ).A a ∥b ;B =λa b (λ为实数);C ⊥a b ;D 0+=a b .20设a 与b 为非零向量,则0⨯=a b 是(A ).A a ∥b 的充要条件;B a ⊥b 的充要条件;C =a b 的充要条件;D a ∥b 的必要但不充分的条件.21设234,5=+-=-+a i j k b i j k ,则向量2=-c a b 在y 轴上的分向量是(B ).A 7B 7jC –1;D -9k22空间曲线的方程是( B ).A 惟一的;B 不惟一的;C 可能不惟一;D 不能确定.23方程组2222491x y z x ⎧++=⎪⎨=⎪⎩ 表示 ( B ). A 椭球面; B 1=x 平面上的椭圆;C 椭圆柱面;D 空间曲线在1=x 平面上的投影.24方程 220x y +=在空间直角坐标系下表示 (C ).A 坐标原点(0,0,0);B xoy 坐标面的原点)0,0(;C z 轴;D xoy 坐标面.25设空间直线的对称式方程为 012x y z ==则该直线必( A ). A 过原点且垂直于x 轴; B 过原点且垂直于y 轴;C 过原点且垂直于z 轴;D 过原点且平行于x 轴.26设空间三直线的方程分别为123321034:;:13;:2025327x t x y z x y z L L y t L x y z z t =⎧+-+=⎧++⎪===-+⎨⎨+-=--⎩⎪=+⎩, 则必有( D ).A 1L ∥2L ;B 1L ∥3L ;C 32L L ⊥;D 21L L ⊥.二、填空题1 平面的点法式方程是2、yoz 坐标面的曲线0),(=z y f 绕z 轴旋转生成的旋转曲面的方程是:3、 已知两点)5,0,4(A 与)3,1,7(B ,与向量AB 方向一致的单位向量0a = 。
1_第五章_空间解析几何与向量代数习题与答案
![1_第五章_空间解析几何与向量代数习题与答案](https://img.taocdn.com/s3/m/71942031b84ae45c3b358ce7.png)
解法 2.
在平面上任取一点 M (x, y, z) ,则 MM1
M1M
2
和
n1
{6,2,3} 共面,由三
x 4 y 1 z 2 向量共面的充要条件得 6 2 3 0 ,整理得所求平面方程
7 4 3
5、思路:用平面束。设过直线 l1 的平面束方程为 x 2y z 1 (2x y z 2) 0
二、1、1) a b 31 (1) 2 (2) (1) 3
2
ij k a b 3 1 2 5i j 7k
1 2 1
(2) (2a) 3b 6(a b) 18 , a 2b 2(a b) 10i 2 j 14k
即为所求单位向量。 3、 2
三、1、 (x 1)2 (y 3)2 (z 2)2 14
2、以(1,-2,-1)为球心,半径为 6 的球面
四、1、 3x 7 y 5z 4 0
2、1 (x 1) 1 ( y 1) 3(z 1) 0
3、 y 5 0
5
21
5、求直线
x x
y y
3z 0 z0
与平面
x
y
z
1
0
的夹角.
6、求下列直线与直线、直线与平面的位置关系
1)直线
x
2y 2x
y
z
z
7
7
与直线
x 1 2
y3 1
z; 1
2)直线 x 2 y 2 z 3 和平面 x+y+z=3.
专转本高等数学向量代数和空间解析几何随堂练习题含答案
![专转本高等数学向量代数和空间解析几何随堂练习题含答案](https://img.taocdn.com/s3/m/617d70e2af45b307e87197dd.png)
D 、两个点。
⎧ 2 y2 z2
⎪ 19、⎨
x
4
9
1在空间直角坐标系里表示(
);
⎪⎩ x 1
A、一个点;
B 、平面 x 1 ; C 、椭圆 y2 z2 1 49
D 、椭圆面。
⎧ F (x, y, z) 0
20、空间曲线 ⎨ ⎩
其方程表示式(
G(x, y, z)
);
A、是惟一的; B 、不是惟一的; C 、很难判断双方惟一; D 、应该有两种。
为
;半径 R 为
;
25、 yoz 平面上曲线 y z2 绕 z 轴旋转一周的旋转曲面方程为
;绕 y 轴
旋转一周的旋转曲面方程为
;
26、 x2 0, x2 y2 0, x2 y2 z2 0 和 xyz 0 在空间直角坐标系里分别表示
为
;
;
;
;
5
三、计算题
1、 设向量 a 3i k b 2i 4 j k
17、求过原点且垂直于平面1 : x y z 7 0 及 2 : x 2 y 12z 5 0
的平面方程。
18、求过点(1, 3, 4)且垂直于平面1 : z 0 及 2 : 2x 3y z 1的平面方
程。
19、在通过直线 L :
x 1 y 1 z 3 的所有平面中找出一个平面,使它与
2
C 、 ax 1bx, ay 2by , az 3bz (1 2 3 );
D 、 1axbx 2ayby 3azbz 0;
15、单位向量的坐标在数值上就是(
);
A、向量的方向角;
B 、向量的方向余弦;
C 、下向量所在直线的方向数;
D 、向量的模。
第四章 解析几何与向量代数(厦门理工作业答案)
![第四章 解析几何与向量代数(厦门理工作业答案)](https://img.taocdn.com/s3/m/c2fc6a3e87c24028915fc37b.png)
高等数学练习题 第四章 空间解析几何与向量代数 系 专业 班 姓名 学号4.1 向量及其线性运算(1)一.选择题1.定点)1,3,2(--A 与)1,3,2(-B 对称的坐标面为 [ C ] (A )xOy 坐标面 (B )yOz 坐标面 (C )zOx 坐标面 (D )y 轴对称 2.两点)2,2,1(A 与)1,0,1(-B 的距离为 [ B ] (A )1 (B )3 (C )13 (D )4 3.非零向量 a 和b ,若满足| a –b |=| a | + |b | ,则 [ C ] (A )a , b 方向相同 (B )a , b 互相垂直 (C )a , b 方向相反 (D )a , b 平行4.已知向量 a = }1,5,3{-, b ={2 ,2 ,3 },则2a –3b 为 [ C ] (A ){0,12,11} (B ){16,12,3} (C ){11,4,0-} (D ){11,14,4} 二.填空题:1.求出点)5,3,4(-A 到坐标y 2.一个向量的终点在点)7,1,2(-B 它在坐标轴上的投影顺次是4, 4- 和 7,这个向量的起点A 三.解下列各题:1.求向量a =21M M 的模、方向余弦和方向角。
已知M 1(1,2,4 ) , M 2(3 ,0 ,2 )。
解:)1,2,1(1221--=-==OM OM M M a 2121=++=∴cos x a α==-12,cos y a β==-22,cos z a γ==12 所以方向角为 3,43,32πγπβπα===2.求向量a =→→→+-k j i 532的模,并用单位向量 a o 表达向量a 。
解: (=+=22a ∴=038a a3.设向量r 的模是4,它与轴u 的夹角是60o , 求r 在轴u 上的投影。
解: ()cos u r r •ϕ=⋅=⨯=1422所以r 在轴u 上的投影为2。
4.证明以三点A(4 ,1 ,9) , B(10 ,1- ,6) ,C(2 ,4 ,3) 为顶点的三角形是等腰直角三角形 解: )3,2,6(--=-=OA OB AB )6,3,2(--=-=OA OC AC )3,5,8(--=-=OB OC BC2792564,79436==++==++==∴所以以三点A(4 ,1 ,9) , B(10 ,1- ,6) ,C(2 ,4 ,3) 为顶点的三角形是等腰直角三角形高等数学练习题 第四章 空间解析几何与向量代数 系 专业 班 姓名 学号4.1 数量积 向量积 (2)一.选择题1.判断向量→a =→→→++k j i 23和→b =→→-j i 32位置是 [ B ] (A )平行 (B )垂直 (C ) 相交 (D )以上都不是。
试题集:向量代数与空间解析几何
![试题集:向量代数与空间解析几何](https://img.taocdn.com/s3/m/a7c7199e2dc58bd63186bceb19e8b8f67d1cef58.png)
1.在三维空间中,向量a⃗=(1,2,3)与向量b⃗⃗=(4,5,6)的点积是多少?o A. 32o B. 24o C. 35o D. 30参考答案: A解析: 向量a⃗与向量b⃗⃗的点积计算为1∗4+2∗5+3∗6=32。
2.向量v⃗=(3,4)的模长是多少?o A. 5o B. 7o C. 12o D. 25参考答案: A解析: 向量v⃗的模长计算为√32+42=5。
3.向量a⃗=(1,2,3)与向量b⃗⃗=(4,5,6)的叉积结果是什么?o A. (3,−6,3)o B. (−3,6,−3)o C. (3,−6,−3)o D. (−3,6,3)参考答案: B解析: 向量a⃗与向量b⃗⃗的叉积计算为(2∗6−3∗5,3∗4−1∗6,1∗5−2∗4)=(−3,6,−3)。
4.向量a⃗=(1,2,3)与向量b⃗⃗=(4,5,6)的向量积的模长是多少?o A. 7o B. 14o C. 21o D. 42参考答案: A解析: 向量a⃗与向量b⃗⃗的叉积模长计算为√(−3)2+62+(−3)2=7。
5.向量a⃗=(1,2,3)与向量b⃗⃗=(4,5,6)的夹角余弦值是多少?o A. 0.9746o B. 0.9971o C. 0.9899o D. 0.9659参考答案: A解析: 向量a⃗与向量b⃗⃗的夹角余弦值计算为a⃗⃗⋅b⃗⃗|a⃗⃗||b⃗⃗|=√14√77≈0.9746。
6.向量a⃗=(1,2,3)与向量b⃗⃗=(4,5,6)是否共线?o A. 是o B. 不是o C. 无法确定o D. 以上都不对参考答案: B解析: 向量a⃗与向量b⃗⃗的分量不成比例,因此它们不共线。
7.向量a⃗=(1,2,3)与向量b⃗⃗=(4,5,6)是否正交?o A. 是o B. 不是o C. 无法确定o D. 以上都不对参考答案: B解析: 向量a⃗与向量b⃗⃗的点积不为0,因此它们不正交。
8.向量a⃗=(1,2,3)与向量b⃗⃗=(4,5,6)的向量积是否垂直于这两个向量?o A. 是o B. 不是o C. 无法确定o D. 以上都不对参考答案: A解析: 向量积的结果向量总是垂直于构成叉积的两个向量。
高等数学第八章练习题及答案
![高等数学第八章练习题及答案](https://img.taocdn.com/s3/m/c676e9563186bceb18e8bb31.png)
第八章 空间解析几何与向量代数自测题A一、填空1. 已知空间三点(1,2,0)A 、(1,3,2)B -、(2,3,1)C ,则cos BAC ∠=AB 在AC上的投影为;三角形的面积ABC S ∆=2;同时垂直于向量AB 与AC的单位向量为1,4,3)±--. 2. xOy 面上的曲线2y x =绕y 轴旋转一周所得旋转曲面方程为22y x z =+.3. 在平面解析几何中2y x =表示抛物线_图形,在空间解析几何中表示_抛物柱面_图形.4. 球面0242222=++-++z y x z y x 的球心坐标为(1,2,1)--.5. 曲线22291x y z x z ⎧++=⎨+=⎩在xOy 面上的投影为22228x x y z ⎧-+=⎨=⎩.6.曲面z =被曲面2220x y x +-=所截下的部分在xOy 面上的投影为22200x x y z ⎧-+≤⎨=⎩.7. 过点A (3,0,1)-且与平面375120x y z -+-=平行的平面方程为37540x y z -+-=.8. 点A (3,0,1)-到平面2230x y z -+-=的距离为23. 9. 直线531123-=++=-z k y k x 与直线22531-+=+=-k z y x 相互垂直,则k =34. 二、解答题1. 求过点)2,1,4(1M ,)1,5,3(2--M ,且垂直于07326=++-z y x 的平面. 解:由已知可知,已知平面的法向量为0(6,2,3)n =-,取所求平面的法向量为120743(6,3,10)623ij kn M M n =⨯=--=--,所以所求平面方程为 6(4)3(1)10(2)0x y z -+---=,即631070x y z +--=.2. 求通过直线13213x y z +-==-与点A (3,0,1)的平面方程. 解:由已知可知,直线过点(0,1,3)P -,方向向量为(2,1,3)s =-,取所求平面的法向量 312(1,13,5)213ij kn PA s =⨯=-=---,所以所求平面方程为3135(1)0x y z ----=,即 13520x y z --+=.3. 求直线2432-=-=-z y x 与平面062=-++z y x 的交点及夹角余弦. 解:直线的参数是方程为2,3,42x t y t z t =+=+=+,代入平面方程得1t =-,所以交点坐标为(1,2,2),5sin |cos(,)|,cos 66s ns n s n ϕϕ⋅====. 4. 求过点A (3,0,1)且与直线13213x y z +-==-垂直相交的直线方程. 解:设垂足坐标为000(,,)P x y z ,则由已知条件得00013213x y z +-==-, 0002(3)3(1)0AP s x y z ⋅=--+-=,解得11339(,,)71414P --,取所求直线方向向量为AP ,所以所求直线的方程为3122132571414x y z --==--,即31441325x y z --==--. B1. 求点A (3,0,1)到直线13213x y z +-==-的距离; 解:由已知可知,直线过点(0,1,3)P -,方向向量为(2,1,3)s =-,所以19514AP s d s ⨯==. 2. 判定直线113:213x y z l +-==-与直线2152:342x y z l -++==-是否相交,如果相交,求出交点,如果异面,求出两条异面直线间的距离;解:由已知可知,直线1l 过点1(0,1,3)P -,方向向量为1(2,1,3)s =-,直线2l 过点1(1,5,2)P--,方向向量为2(3,4,2)s =-,因为1212145[ ]2131170342PP s s --=-=-≠-,所以两直线异面,距离 121212[ ]117390PP s s d s s ==⨯;3. 求点(1,1,3)A 关于平面0x y z ++=对称的点.解:过点(1,1,3)A 且与平面垂直的直线方程为点113x y z -=-=-,所以垂足为224(,,)333P --,设对称点为(,,)M x y z ,则2AM AP =,即555(1,1,3)2(,,)333x y z ---=---,所以771(,,)333M ---.4. 求直线2432-=-=-z y x 在平面062=-++z y x 上的投影直线及直线关于平面对称的直线方程;解:由已知可知,直线0l 的参数式方程为2,3,42x t y t z t =+=+=+,代入平面方程可得1t =-,所以交点为1(1,2,2)P ,过点(2,3,4)P 且与已知平面垂直的直线2l 方程为22,3,4x t y t z t =+=+=+,垂足为211319(,,)366P ,所以已知直线0l 在平面上的投影直线为122217366x y z ---==-,即12247x z y --=-=-, 设点(2,3,4)P 关于已知平面的对称点为3P ,则322PP PP =,解得3447(,,)333P -,所以已知直线关于平面对称的直线方程为122721333x y z ---==--,即12272x y z --==---. 5. 求直线1321x y z +==--绕z 轴旋转一周所得旋转曲面方程.解:设所求曲面上任一点(,,)P x y z 是由直线上的点1111(,,)P x y z 绕z 轴旋转得来,则22221111111,,321x y x y x y z z z ++=+===--,消去111,,x y z 得22252840x y z z +-+=.。
高等数学(同济五版)第七章-空间解析几何与向量代数-练习题册
![高等数学(同济五版)第七章-空间解析几何与向量代数-练习题册](https://img.taocdn.com/s3/m/466af8b4700abb68a982fbb4.png)
第七章 空 间 解 析 几 何第 一 节 作 业一、选择题(单选):1. 点M(2,-3,1)关于xoy 平面的对称点是:(A )(-2,3,1); (B )(-2,-3,-1); (C )(2,-3,-1); (D )(-2,-3,1) 答:( ) 2. 点M(4,-3,5)到x 轴距离为:(A ).54)(;54)(;5)3()(;5)3(4222222222+++-+-+D C B答:( ) 二、在yoz 面上求与A (3,1,2),B(4,-2,-2)和C(0,5,1)等距离的点。
第 二 节 作 业设.32,,.2,v u c b a c b a v c b a u ρρρρρρρρρρρρρ-+-=++=表示试用第 三 节 作 业一、选择题(单选):已知两点:),0,3,1()2,2,2(2121的三个方向余弦为则和M M M M.22,21,21)(.22,21,21)(;22,21,21)(;22,21,21)(-------D C B A 答:( ) 二、试解下列各题:1. 一向量的终点为B (2,-1,7),它在x 轴,y 轴,z 轴上的投影依次为4,-4,4,求这向量的起点A 的坐标。
.{}.6,7,6.3.34.45,42,353.2的单位向量求平行于向量轴上的分向量上的投影及在轴在求向量设-=-+=-+=-+=++=a y x p n m a k j i p k j i n k j i m ρρρρρρρρρρρρρρρρρ第 四 节 作 业一、选择题(单选):)()()()(:.1D C B A b a ρρρρρρρρρρ上的投影为在向量 答:( ).//)(;)(;)(;//)(:0,.2的必要但不充分条件的充要条件的充要条件的充要条件是则为非零向量与设b a D b a C b a B b a A b a b a ρρρρρρρρρρρρ=⊥=⋅ 答:( ).6321)(;14321)(;14321)(;6321)(:,321,,.3222222=++=++=++=++++====D C B A c b a s c b a 的长度为则两两垂直向量ρρρρρρρ答:( )二、试解下列各题:{}{}.,),3,1,3()1,3,3(),2,1,1(.4.,,4,1,2,2,5,3.3.,5,4,3,,2,85,3),(.13221321321321同时垂直的单位向量求与和已知的关系与求轴垂直与设求向量的数量积分别为与三向量设设M M M M M M M z b a b a x k j a k i a j i a k x j x i x x b a -+=-=+=+=+=++=-+===μλμλπρρρρρρρρρρρρρρρρρρρρ..,3,3.7.)()()(,2,3,32.6.,0,,.5的面积求已知和求已知求为单位向量且满足已知OAB k j k i c b a c b b a j i c k j i b k j i a a c c b b a c b a c b a ∆+=+=⋅⨯+⨯+-=+-=+-=⋅+⋅+⋅=++ρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρ第 五 节 作 业选择题(单选):1. 在xoy 面上的曲线4x 2-9y 2=36绕x 轴旋转一周,所得曲面方程为:(A )4(x 2+z 2)-9y 2=36; (B) 4(x 2+z 2)-9(y 2+z 2)=36(C)4X2-9(y2+z2)=36; (D) 4x2-9y2=36.答:()2. 方程y2+z2-4x+8=0表示:(A)单叶双曲面;(B)双叶双曲面;(C)锥面;(D)旋转抛物面。
高数B(下册)空间解析几何与向量代数习题精选
![高数B(下册)空间解析几何与向量代数习题精选](https://img.taocdn.com/s3/m/ecedd5df28ea81c758f57876.png)
=
12 = 4。 3
13、 求与平面 π : x + y − 3 z + 1 = 0 平行且相距为 3 的平面方程。 [解]:设 p ( x, y, z ) 为平面上一点,它与已知平面的距离为 3,由平面外一点到平面的距离公式知:
x + y − 3z + 1
1 + 1 + ( −3 )
2 2 2
= 3 ⇒ x + y − 3 z + 1 = 11 ⇒ x + y − 3 z + 1 = ± 11 ,故所求的平面方程为
1 1 1 sh = × × 6 × −3 × 2 = 6 。 3 3 2
16、 求过点 P (1, 2,3) 且与直线 ⎨
⎧ x − 2 y + 3z − 6 = 0 平行的直线方程。 ⎩3 x + y − 2 z + 4 = 0 �
[解]:设所求的直线为 l ,其方向向量为 s ,已知直线的方向向量取为
34 ⎧ ⎪ x = − 7 + 3t ⎪ 15 ⎪ 参数式方程为 ⎨ y = − + t 其中 t 为参数。 7 ⎪ ⎪ z = −t ⎪ ⎩
18、 求直线 ⎨
⎧ x− y =6 x −1 y − 2 z − 5 与直线 = = 的夹角。 1 −2 1 ⎩2 y − z = 3
( )
9、 求过 y 轴与点 M ( −3,1, 2 ) 的平面方程。 [解]:设所求平面为 π ,法向量为 n ,因为平面过 y 轴,故 n ⊥ j ,又 OM = {−3,1, 2} 在 π 上,
�
�
�
���� �
� � i j � ���� � � � ���� � 所以 n ⊥ OM ⇒ 取 n = j × OM = {0,1, 0} × {−3,1, 2} = 0 1 −3 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间解析几何与矢量代数小练习
一 填空题 5’x9=45分
1、 平行于向量)6,7,6(-=a 的单位向量为______________.
2、 设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模_________________, 方向余弦_________________和方向角_________________
3、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.
4、方程0242222=++-++z y x z y x 表示______________曲面.
5、方程22x y z +=表示______________曲面.
6、222x y z +=表示______________曲面.
7、 在空间解析几何中2x y =表示______________图形.
二 计算题 11’x5=55分
1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.
2、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程.
3、求过点(1,2,3)且平行于直线
5
1132-=-=z y x 的直线方程.
4、求过点(2,0,-3)且与直线⎩
⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方
5、已知:k i OA 3+=,k j OB 3+=,求OAB ∆的面积。
参考答案
一 填空题
1、⎩
⎨⎧⎭⎬⎫-±116,117,116 2、21M M =2,21cos ,22cos ,21cos ==-
=γβα,3,43,32πγπβπα===
3、14)2()3()1(222=++-+-z y x
4、以(1,-2,-1)为球心,半径为6的球面
5、旋转抛物面
6、 圆锥面
7、 抛物柱面
二 计算题
1、04573=-+-z y x
2、029=--z y
3、5
31221-=-=-z y x 4、065111416=---z y x
5 219==
∆S。