2015年上海市徐汇区初三一模数学试卷
2015年上海市各区中考一模数学试题(全含答案)
2015年##市六区联考初三一模数学试卷〔满分150分,时间100分钟〕 2015.1一. 选择题〔本大题满分4×6=24分〕1. 如果把Rt ABC ∆的三边长度都扩大2倍,那么锐角A 的四个三角比的值〔 〕 A. 都扩大到原来的2倍; B. 都缩小到原来的12; C. 都没有变化; D. 都不能确定;2. 将抛物线2(1)y x =-向左平移2个单位,所得抛物线的表达式为〔 〕 A. 2(1)y x =+; B. 2(3)y x =-; C. 2(1)2y x =-+; D. 2(1)2y x =--;3. 一个小球被抛出后,如果距离地面的高度h 〔米〕和运行时间t 〔秒〕的函数解析式为25101h t t =-++,那么小球到达最高点时距离地面的高度是〔 〕A. 1米;B. 3米;C. 5米;D. 6米;4. 如图,已知AB ∥CD ∥EF ,:3:5AD AF =,12BE =,那么CE 的长等于〔 〕 A. 2; B. 4; C.245; D. 365; 5. 已知在△ABC 中,AB AC m ==,B α∠=,那么边BC 的长等于〔 〕A. 2sin m α⋅;B. 2cos m α⋅;C. 2tan m α⋅;D. 2cot m α⋅; 6. 如图,已知在梯形ABCD 中,AD ∥BC ,2BC AD =,如果对角线AC 与BD 相交于点O ,△AOB 、△BOC 、△COD 、△DOA 的面积分别记作1S 、2S 、3S 、4S ,那么下列结论中,不正确的是〔 〕A. 13S S =;B. 242S S =;C. 212S S =;D. 1324S S S S ⋅=⋅; 二. 填空题〔本大题满分4×12=48分〕 7. 已知34x y =,那么22x yx y-=+; 8. 计算:33()22a ab -+-=; 9. 已知线段4a cm =,9b cm =,那么线段a 、b 的比例中项等于cm 10. 二次函数2253y x x =--+的图像与y 轴的交点坐标为; 11. 在Rt ABC ∆中,90C ∠=︒,如果6AB =,2cos 3A =,那么AC =; 12. 如图,已知,D E 分别是△ABC 的边BC 和AC 上的点,2AE =,3CE =,要使DE ∥AB ,那么:BC CD 应等于;13. 如果抛物线2(3)5y a x =+-不经过第一象限,那么a 的取值X 围是; 14. 已知点G 是面积为227cm 的△ABC 的重心,那么△AGC 的面积等于;15. 如图,当小杰沿着坡度1:5i =的坡面由B 到A 直行走了26米时,小杰实际上升的高度AC =米〔结论可保留根号〕16. 已知二次函数的图像经过点(1,3),对称轴为直线1x =-,由此可知这个二次函数的图像一定经过除点(1,3)外的另一点,这点的坐标是;17. 已知不等臂跷跷板AB 长为3米,当AB 的一端点A 碰到地面时〔如图1〕,AB 与地面的夹角为30°;当AB 的另一端点B 碰到地面时〔如图2〕,AB 与地面的夹角的正弦值为13,那么跷跷板AB 的支撑点O 到地面的距离OH =米18. 把一个三角形绕其中一个顶点逆时针旋转并放大或缩小〔这个顶点不变〕,我们把这样的三角形运动称为三角形的T-变换,这个顶点称为T-变换中心,旋转角称为T-变换角,三角形与原三角形的对应边之比称为T-变换比;已知△ABC 在直角坐标平面内,点(0,1)A -,(3,2)B -,(0,2)C ,将△ABC 进行T-变换,T-变换中心为点A ,T-变换角为60°,T-变换比为23,那么经过T-变换后点C 所对应的点的坐标为;三. 解答题〔本大题满分10+10+10+10+12+12+14=78分〕19. 已知在直角坐标平面内,抛物线26y x bx =++经过x 轴上两点,A B ,点B 的坐标为(3,0),与y 轴相交于点C ;〔1〕求抛物线的表达式; 〔2〕求△ABC 的面积;20. 如图,已知在△ABC 中,AD 是边BC 上的中线,设BA a =,BC b =; 〔1〕求AD 〔用向量,a b 的式子表示〕〔2〕如果点E 在中线AD 上,求作BE 在,BA BC 方向上的分向量;〔不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的分向量〕21. 如图,某幢大楼的外墙边上竖直安装着一根旗杆CD ,小明在离旗杆下方大楼底部E 点24米的点A 处放置一台测角仪,测角仪的高度AB 为1.5米,并在点B 处测得旗杆下端C 的仰角为40°,上端D的仰角为45°,求旗杆CD 的长度;〔结果精确到0.1米,参考数据:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈〕22. 用含30°、45°、60°这三个特殊角的四个三角比与其组合可以表示某些实数,如:12可表示为1sin 30cos60tan 45sin 302=︒=︒=︒⋅︒=…;仿照上述材料,完成下列问题:〔1〕用含30°、45°、60°这三个特殊角的三角比或其组合表示32,即 填空:32====…; 〔2〕用含30°、45°、60°这三个特殊角的三角比,结合加、减、乘、除四种运算,设计一个等式,要求:等式中须含有这三个特殊角的三角比,上述四种运算都至少出现一次,且这个等式的结果等于1,即填空:1=23. 已知如图,D 是△ABC 的边AB 上一点,DE ∥BC ,交边AC 于点E ,延长DE 至点F ,使EF DE =,联结BF ,交边AC 于点G ,联结CF〔1〕求证:AE EGAC CG=; 〔2〕如果2CF FG FB =⋅,求证:CG CE BC DE ⋅=⋅24. 已知在平面直角坐标系xOy 中,二次函数2y ax bx =+的图像经过点(1,3)-和点(1,5)-; 〔1〕求这个二次函数的解析式;〔2〕将这个二次函数的图像向上平移,交y 轴于点C ,其纵坐标为m ,请用m 的代数式表示平移后函数图象顶点M 的坐标;〔3〕在第〔2〕小题的条件下,如果点P 的坐标为(2,3),CM 平分PCO ∠,求m 的值;25. 已知在矩形ABCD 中,P 是边AD 上的一动点,联结BP 、CP ,过点B 作射线交线段CP 的延长线于点E ,交边AD 于点M ,且使得ABE CBP ∠=∠,如果2AB =,5BC =,AP x =,PM y =; 〔1〕求y 关于x 的函数解析式,并写出它的定义域; 〔2〕当4AP =时,求EBP ∠的正切值;〔3〕如果△EBC 是以EBC ∠为底角的等腰三角形,求AP 的长;2015年##市六区联考初三一模数学试卷参考答案一. 选择题1. C2. A3. D4. C5. B6. B 二.填空题7.15 8. 1322a b -- 9. 6 10. (0,3) 11. 4 12. 5313. 3a <- 14. 9 15.26 16. (3,3)- 17.3518. (3,0)- 三. 解答题19.〔1〕256y x x =-+; 〔2〕(2,0)A ,(3,0)B ,(0,6)C ,3ABC S ∆=;20.〔1〕12b a -; 〔2〕略; 21. 3.84CD m ≈22.〔1〕sin 60︒,cos30︒,tan 45sin60︒⋅︒; 〔2〕(sin 30cos60)tan 45cot 45︒+︒⋅︒÷︒; 23. 略;24.〔1〕24y x x =-; 〔2〕(2,4)M m -; 〔3〕92m =;25.〔1〕4y x x =-〔25x <≤〕; 〔2〕3tan 4EBP ∠=; 〔3〕53+;崇明县2014学年第一学期教学质量调研测试卷九年级数学〔测试时间: 100分钟,满分:150分〕一、选择题〔本大题共6题,每题4分,满分24分〕1、已知52a b =,那么下列等式中,不一定正确的是………………………………〔 〕 <A>25a b = <B>52a b = <C>7a b += <D>72a b b += 2、在Rt ABC ∆中,90C ∠=︒,A ∠、B ∠、C ∠所对的边分别为a 、b 、c ,下列等式中不一定成立的是 ……………………………………………………………………〔 〕<A>tan b a B = <B>cos a c B = <C>sin ac A =<D>cos a b A =3、如果二次函数2y ax bx c =++的图像如图所示,那么下列判断中,不正确的是………〔 〕<A>0a ><B>0b ><C>0c <<D>240b ac ->4、将二次函数2x y =的图像向下平移1个单位,再向右平移1个单位后所得图像的函数表达式为…………………………………………………………………………〔 〕 <A>2(1)1y x =++<B>2(1)1y x =+-<C>2(1)1y x =-+<D>2(1)1y x =--5、下列说法正确的是……………………………………………………〔 〕<A> 相切两圆的连心线经过切点 <B> 长度相等的两条弧是等弧<C> 平分弦的直径垂直于弦<D> 相等的圆心角所对的弦相等6、如图,点D 、E 、F 、G 为ABC ∆两边上的点,且DE FG BC ∥∥,若DE 、FG 将ABC ∆的面积三等分,那么下列结论正确的是 ………………………………………〔 〕<A>14DE FG = <B>1DF EGFB GC== <C>ADFB<D>AD DB〔第3题图〕〔第6题图〕二、填空题〔本大题共12题,每题4分,满分48分〕7、已知点P 是线段AB 的黄金分割点()AP PB >,如果2AB =cm,那么线段AP =cm .8、如果两个相似三角形的面积比为1:4,那么它们的周长比为. 9、如果二次函数22(1)51y m x x m =-++-的图像经过原点,那么m =. 10、抛物线221y x =-在y 轴右侧的部分是〔填"上升〞或"下降〞〕.11、如果将抛物线23y x =平移,使平移后的抛物线顶点坐标为(2,2),那么平移后的抛物线的表达式为.12、已知抛物线2y x bx c =++经过点(0,5)A 、(4,5)B ,那么此抛物线的对称轴是.13、某飞机的飞行高度为1500m,从飞机上测得地面控制点的俯角为60°,此时飞机与这地面控制点的距离为m .14、已知正六边形的半径为2cm,那么这个正六边形的边心距为cm .15、如图,已知在ABC ∆中,90ACB ∠=︒,6AC =,点G 为重心,GH BC ⊥,垂足为点H ,那么GH =. 16、半径分别为8cm 与6cm 的1O 与2O 相交于A 、B 两点,圆心距O 1O 2的长为10cm,那么公共弦AB 的长为cm .17、如图,水库大坝的横截面是梯形,坝顶AD 宽5米,坝高10米,斜坡CD 的坡角为45︒,斜坡AB 的坡度1:1.5i =,那么坝底BC 的长度为米.18、如图,将边长为6cm 的正方形ABCD 折叠,使点D 落在AB 边的中点E 处,折痕为FH ,点C 落在Q处,EQ 与BC 交于点G ,那么EBG ∆的周长是cm .〔第15187题,19、〔本题满分10分〕计算:2014cos301(cot 45)sin 60︒-+-︒+︒20、〔本题满分10分,其中第<1>小题5分,第<2>小题5分〕已知:如图,□ABCD 中,E 是AD 中点,BE 交AC 于点F ,设BA a =、BC b =. 〔1〕用,a b 的线性组合表示FA ;〔2〕先化简,再直接在图中求作该向量:1151()()()2424a b a b a b -+-+++.21、〔本题满分10分,其中第<1>小题6分,第<2>小题4分〕ABC DEF G CFEDABC ABCDFGH QE如图,在Rt ABC ∆中,90C ∠=︒,点D 是BC 边上的一点,6CD =,3cos 5ADC ∠=,2tan 3B =.〔1〕求AC 和AB 的长;〔2〕求sin BAD ∠的值.22、〔本题满分10分,其中第<1>小题5分,第<2>小题5分〕 如图,轮船从港口A 出发,沿着南偏西15︒的方向航行了100海里到达B 处,再从B 处沿着北偏东75︒的方向航行200海里到达了C 处. 〔1〕求证:AC AB ⊥;〔2〕轮船沿着BC 方向继续航行去往港口D 处,已知港口D 位于港口A 的正东方向,求轮 船还需航行多少海里.23、〔本题满分12分,其中第<1>小题6分,第<2>小题6分〕如图,在梯形ABCD 中,AD BC ∥,AD AB =,2ABC C ∠=∠,E 与F 分别为边AD 与DC 上的两点,且有EBF C ∠=∠.(1)求证:::BE BF BD BC =;(2)当F 为DC 中点时,求:AE ED 的比值.24、〔本题满分12分,其中每小题各4分〕如图,已知抛物线258y x bx c =++经过直线112y x =-+与坐标轴的两个交点A 、B ,点C 为抛物线上的一点,且90ABC ∠=︒. 〔1〕求抛物线的解析式;〔2〕求点C 坐标; 〔3〕直线112y x =-+上是否存在点P ,使得BCP ∆与OAB ∆相似,若存在,请直接写出P 点的坐标;若不存在,请说明理由. 25、〔本题满分14分,其中第<1>小题5分,第<2>小题5分,已知在ABC ∆中,5AB AC ==,6BC =,O 为边AB 上一动点为半径的圆交BC 于点D ,设OB x =,DC y =. 〔1〕如图1,求y 关于x 的函数关系式与定义域;〔2〕当⊙O 与线段AC 有且只有一个交点时,求x 的取值X 〔3〕如图2,若⊙O 与边AC 交于点E 当DEC ∆与ABC ∆相似时,求x 的值.2014学年 DDABCEF北AB C东一. 选择题1. 将抛物线22y x =-向右平移一个单位,再向上平移2个单位后,抛物线的表达式为〔 〕 A. 22(1)2y x =--+;B. 22(1)2y x =---; C. 22(1)2y x =-++;D. 22(1)2y x =-+-;2. 如图,平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果:BE BC =2:3,那么下列各式错误的是〔 〕A.2BE EC =;B. 13EC AD =; C.23EF AE =;D. 23BF DF =; 3. 已知Rt △ABC 中,90C ∠=︒,CAB α∠=,7AC =,那么BC 为〔 〕 A. 7sin α;B. 7cos α;C. 7tan α;D. 7cot α;4. 如图,在四边形ABCD 中,AD ∥BC ,如果添加下列条件,不能使得△ABC ∽△DCA 成立的是〔 〕A. BAC ADC ∠=∠;B. B ACD ∠=∠;C. 2AC AD BC =⋅;D.DC ABAC BC=; 5. 已知二次函数222y ax x =-+〔0a >〕,那么它的图像一定不经过〔 〕 A. 第一象限;B. 第二象限;C. 第三象限;D. 第四象限;6. 如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,且DE ∥BC ,如果:1:4AE EC =, 那么:ADE BEC S S ∆∆=〔 〕A. 1:24;B. 1:20;C. 1:18;D. 1:16; 二. 填空题 7. 如果53a b =,那么a ba b -+的值等于; 8. 抛物线2(1)2y x =-+的顶点坐标是;9. 二次函数245y x x =--的图像的对称轴是直线; 10. 计算:cot30sin60︒-︒=;11. 在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为m ;12. 若点1(3,)A y -、2(0,)B y 是二次函数22(1)1y x =--图像上的两点,那么1y 与2y 的 大小关系是〔填12y y >,12y y =或12y y <〕;13. 如图,若1l ∥2l ∥3l ,如果6DE =,2EF =, 1.5BC =,那么AC =;14. 如图是拦水坝的横断面,斜坡AB 的高度为6米,斜面的坡比为1:2,则斜坡AB 的长为米〔保留根号〕;15. 如图,正方形ABCD 被分割成9个全等的小正方形,P 、Q 是其中两个小正方形的顶 点,设AB a =,AD b =,则向量PQ =〔用向量a 、b 来表示〕;16. 如图,△ABC 中,90BAC ∠=︒,G 点是△ABC 的重心,如果4AG =,那么BC 的长为;17. 如图,已知4tan 3O =,点P 在边OA 上,5OP =,点M 、N 在边OB 上,PM PN =, 如果2MN =,那么PM =;18. 如图,在△ABC 中,90ABC ∠=︒,6AB =,8BC =,点M 、N 分别在边AB 、BC上,沿直线MN 将△ABC 折叠,点B 落在点P 处,如果AP ∥BC 且4AP =,那么BN =;三. 解答题19. 已知二次函数2y ax bx c =++〔a 、b 、c 为常数,且0a ≠〕经过A 、B 、C 、D 四个点,其中横坐标x 与纵坐标y 的对应值如下表:A B CDx1- 0 13 y1-353〔1〕求二次函数解析式; 〔2〕求△ABD 的面积;20. 如图,在等腰梯形ABCD 中,AD ∥BC ,AB DC =,AC 与BD 交于点O ,:1:2AD BC =; 〔1〕设BA a =,BC b =,试用a ,b 表示BO ; 〔2〕先化简,再求作:3(2)2()2a b a b +-+〔直接作在原图中〕 21. 如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米处安置测角仪AB ,在A 处测得电线杆上C 处的仰角为23°,已知测角仪AB 的高为1.5米,求拉线CE 的长;[已知5sin 2313︒≈,12cos 2313︒≈,5tan 2312︒≈,结果保留根号] 22. 如图,MN 经过△ABC 的顶点A ,MN ∥BC ,AM AN =,MC 交AB 于D ,NB 交AC 于E ; 〔1〕求证:DE ∥BC ;〔2〕联结DE ,如果1DE =,3BC =,求MN 的长;23. 已知菱形ABCD 中,8AB =,点G 是对角线BD 上一点,CG 交BA 的延长线于点F ;〔1〕求证:2AG GE GF =⋅; 〔2〕如果12DG GB =,且AG BF ⊥,求cos F ; 24. 已知如图,抛物线21:4C y ax ax c =++的图像开口向上,与x 轴交于点A 、B 〔A 在B 的左边〕,与y 轴交于点C ,顶点为P ,2AB =,且OA OC =; 〔1〕求抛物线1C 的对称轴和函数解析式;〔2〕把抛物线1C 的图像先向右平移3个单位,再向下平移m 个单位得到抛物线2C ,记顶点为M ,并与y 轴交于点(0,1)F -,求抛物线2C 的函数解析式;〔3〕在〔2〕的基础上,点G 是y 轴上一点,当△APF 与△FMG 相似时,求点G 的坐标; 25. 如图,梯形ABCD 中,AD ∥BC ,对角线AC BC ⊥,9AD =,12AC =,16BC =,点E 是边BC 上的一个动点,EAF BAC ∠=∠,AF 交CD 于点F ,交BC 延长线于点G ,设BE x =; 〔1〕试用x 的代数式表示FC ; 〔2〕设FGy EF=,求y 关于x 的函数关系式,并写出定义域; 〔3〕当△AEG 是等腰三角形时,直接写出BE 的长; 参考答案1、A2、C3、C4、D5、C6、B7、148、〔1,2〕 9、x =2 10、32 11、15 12、12y y > 13、6 14、6515、16、12 171718、19、 20、 21、 22、 23、 24、 25、所以,BE =72014学年##市宝山区初三一模数学试卷一. 选择题〔24分〕1. 如图,在直角△ABC 中,90C ∠=︒,1BC =,2AC =下列判断正确的是〔 〕A. 30A ∠=︒;B. 45A ∠=︒;C. cot 2A =; D. tan 2A =; 2. 如图,△ABC 中,D 、E 分别为边AB 、AC 上的点,且DE ∥BC ,下列判断错误 的是〔 〕A. AD AE DB EC =;B.AD DE DB BC =;C. AD AE AB AC =;D.AD DE AB BC=; 3. 如果在两个圆中有两条相等的弦,那么〔 〕A. 这两条弦所对的圆心角相等;B. 这两条线弦所对的弧相等;C. 这两条弦都被与它垂直的半径平分;D. 这两条弦所对的弦心距相等;4. 已知非零向量a 、b 、c ,下列命题中是假命题的是〔 〕A. 如果2a b =,那么a ∥b ;B. 如果2a b =-,那么a ∥b ;C. 如果||||a b =,那么a ∥b ;D. 如果2a b =,2b c =,那么a ∥c ;5. 已知O 半径为3,M 为直线AB 上一点,若3MO =,则直线AB 与O 的位置关系为〔 〕A. 相切;B. 相交;C. 相切或相离;D. 相切或相交;6. 如图边长为3的等边△ABC 中,D 为AB 的三等分点〔12AD BD =〕,三角形边上的 动点E 从点A 出发,沿A C B →→的方向运动,到达点B 时停止,设点E 运动的路程为x ,2DE y =,则y 关于x 的函数图像大致为〔 〕A. B. C. D. 二. 填空题〔48分〕7. 线段b 是线段a 和c 的比例中项,若1a =,2b =,则c =;8. 两个相似三角形的相似比为2:3,则它们的面积比为;9. 已知两圆半径分别为3和7,圆心距为d ,若两圆相离,则d 的取值X 围是;10. 已知△ABC 的三边之比为2:3:4,若△DEF 与△ABC 相似,且△DEF 的最大边长为20,则△DEF 的周长为;11. 在△ABC 中,cot A =cos B =那么C ∠=; 12. B 在A 北偏东30°方向〔距A 〕2千米处,C 在B 的正东方向〔距B 〕2千米处,则C 和A 之间的距离为千米;13. 抛物线2(3)4y x =--+的对称轴是;14. 不经过第二象限的抛物线2y ax bx c =++的开口方向向;15. 已知点11(,)A x y 、22(,)B x y 为函数22(1)3y x =--+的图像上的两点,若121x x >>,则1y 2y ; 16. 如图,D 为等边△ABC 边BC 上一点,60ADE ∠=︒,交AC 于E ,若2BD =,3CD =,则CE =;17. 如图,O 的直径AB 垂直弦CD 于M ,且M 是半径OB 的中点,CD =则直径AB 的长为;18. 如图直角梯形ABCD 中,AD ∥BC ,2CD =,AB BC =,1AD =,动点M 、N 分别在AB 边和BC 的延长线运动,而且AM CN =,联结AC 交MN 于E ,MH ⊥AC 于H ,则EH =;三. 解答题〔78分〕19. 计算:2sin 602cot 30cos 602cos 45tan 60︒+︒-︒︒+︒; 20. 如图,已知M 、N 分别是平行四边形ABCD 边DC 、BC 的中点,射线AM 和射线BC 相交于E ,设AB a =,AD b =,试用a 、b 表示AN ,AE ;〔直接写出结果〕21. 已知一个二次函数的图像经过点(1,0)A 和点(0,6)B ,(4,6)C ,求这个抛物线的表达式 以与该抛物线的顶点坐标;22. 如图,D 为等边△ABC 边BC 上一点,DE ⊥AB 于E ,若:2:1BD CD =,DE =求AE ;23. 如图,P 为O 的直径MN 上一点,过P 作弦AC 、BD 使APM BPM ∠=∠,求证: PA PB =;24. 如图,正方形ABCD 中,〔1〕E 为边BC 的中点,AE 的垂直平分线分别交AB 、AE 、CD 于G 、F 、H ,求GF FH ; 〔2〕E 的位置改动为边BC 上一点,且BE k EC =,其他条件不变,求GF FH的值; 25. 〔1〕数学小组的单思稿同学认为形如的抛物线2y ax bx c =++,系数a 、b 、c 一旦确定,抛物线的形状、大小、位置就不会变化,所以称数a 、b 、c 为抛物线2y ax bx c =++ 的特征数,记作{,,}a b c ;请求出与y 轴交于点(0,3)C -的抛物线22y x x k =-+在单同学 眼中的特征数;〔2〕同数学小组的尤恪星同学喜欢将抛物线设成2()y a x m k =++的顶点式,因此坚持称 a 、m 、k 为抛物线的特征数,记作{,,}a m k ;请求出上述抛物线在尤同学眼中的特征数; 〔3〕同一个问题在上述两位同学眼中的特征数各不相同,为了让两人的研究保持一致,同组的董和谐将上述抛物线表述成:特征数为{,,}u v w 的抛物线沿平行于某轴方向平移某单位 后的图像,即此时的特征数{,,}u v w 无论按单思稿同学还是按尤恪星同学的理解做出的结果 是一样的,请你根据数学推理将董和谐的表述完整地写出来;〔4〕在直角坐标系XOY 中,上述〔1〕中的抛物线与x 轴交于A 、B 两点〔A 在B 的左 边〕,请直接写出△ABC 的重心坐标;26. 如图在△ABC 中,10AB BC ==,AC =D 为边AB 上一动点〔D 和A 、B不重合〕,过D 作DE ∥BC 交AC 于E ,并以DE 为边向BC 一侧作正方形DEFG ,设AD =x ,〔1〕请用x 的代数式表示正方形DEFG 的面积,并求出当边FG 落在BC 边上时的x 的值; 〔2〕设正方形DEFG 与△ABC 重合部分的面积为y ,求y 关于x 的函数与其定义域;〔3〕点D 在运动过程中,是否存在D 、G 、B 三点中的两点落在以第三点为圆心的圆上 的情况?若存在,请直接写出此时AD 的值,若不存在,则请说明理由;2014学年第一学期长宁区学习能力诊断卷初三数学 试卷〔时间100分钟 满分150分〕一. 选择题〔本大题共6题,每题4分,满分24分〕1.如果两个相似三角形的面积比是1:6,那么它们的相似比是〔 〕A .1:36 B.1:6 C . 1:3 D . 1: 6 2. 在Rt △ABC 中,已知∠C =90°,AC =3,BC =4,那么∠A 的余弦值等于〔 〕A .35B . 45C . 34D . 433. 如图,点A 、B 、C 、D 、E 、F 、G 、H 、K 都是7×8方格纸中的格点,为使△DE M ∽△ABC 〔点D 和点A 对应,点B 和E 对应〕,则点M 对应是F 、G 、H 、K 四点中的〔 〕A . FB . GC . KD . H第3题图4. 已知两圆半径分别是3和4,若两圆内切,则两圆的圆心距为〔 〕A . 1或7B . 1C . 7D . 25. 抛物线22212,2,2y x y x y x ==-=共有的性质是〔 〕 A . 开口向下; B . 对称轴是y 轴C . 都有最低点D . y 的值随x 的增大而减小6. 如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动的过程中速度不变,则以点B 为圆心,线段B P 长为半径的圆的面积S 与点P 的运动时间t 之间的函数图象大致为图中的< >A .B .C .D .二. 填空题〔本大题共12题,每题4分,满分48分〕7. 已知线段a =2c m,c =8c m,则线段a 、c 的比例中项是_________c m.8. 计算:3()3a b a --=_________.9. 已知⊙P 在直角坐标平面内,它的半径是5,圆心P 〔-3,4〕,则坐标原点O 与⊙P 的位置位置关系是_________.10. 如果圆心O 到直线l 的距离等于⊙O 的半径,那么直线l 和⊙O 的公共点有________个.11. 抛物线23(1)2y x =--+的顶点坐标是________.12.抛物线223y x =-向左移动3个单位后所得抛物线解析式是________.13. 已知二次函数227y x x =+-的一个函数值是8,那么对应自变量x 的值是_________.14. 已知二次函数2(1)2y ax a x =-+-,当x >1时,y 的值随x 的增大而增大,当x <1时,y 的值随x 的增大而减小,则实数a 的值为_________.15. 某企业今年第一月新产品的研发资金为100万元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂今年第三月新品研发资金y 〔元〕关于x 的函数关系式为y =_________.16. 如图所示,铁路的路基横断面都是等腰梯形,斜坡AB 的坡度为3,斜坡AB 的水平宽度BE =33m ,则斜坡AB =_________m.17. 如图,已知AD 是△ABC 的中线,G 是△ABC 的重心,联结BG 并延长交AC 于点E ,联结DE ,则S △ABC :S △GED 的值为_________.18. 如图,正方形ABCD 绕点A 逆时针旋转,得到正方形'''AB C D .当两个正方形重叠部分的面积是原正方形面积的14时,1sin '2B AD ∠ _________. 第16题图 第17题图 第18题图三. <本大题共7题,满分78分>19.〔本题满分10分〕计算:201(sin 30)(2015tan 45).sin 60cos60o o o o --+-- 20. 〔本题满分10分〕 如图,已知O 为△ABC 内的一点,点D 、E 分别在边AB 、AC 上,且11,.34AD AE DB AC ==设,,OB m OC n ==试用m 、n 表示DE .21. 〔本题满分10分〕如图,AB 是⊙O 的弦,点C 、D 在弦AB 上,且AD =BC ,联结OC 、OD .求证:△OCD 是等腰三角形.22. 〔本题满分10分〕如图,在△ABC 中,AD 是BC 上的高,点G 在AD 上,过点G 作BC 的平行线分别与AB 、AC 交于P 、Q 两点,过点P 作PE ⊥BC 于点E ,过点Q 作QF ⊥BC 于点F . 设AD =80,BC =120,当四边形PEFQ 为正方形时,试求正方形的边长.23. 〔本题满分12分〕如图,A 、B 两地之间有一座山,汽车原来从A 地到B 地须经C地沿折线A -C -B 行驶,现开通隧道后,汽车直接沿直线AB 行驶.已知AC =120千米,∠A =30°,∠B =135°,则隧道开通后,汽车从A地到B 地比原来少走多少千米?〔结果保留根号〕24. 〔本题满分12分〕如图,已知平面直角坐标平面上的△ABC ,AC =CB ,∠ACB =90°,且A 〔-1,0〕,B 〔m,n 〕C 〔3,0〕,若抛物线23y ax bx =+-经过A 、C 两点.(1) 求a 、b 的值(2) 将抛物线向上平移若干个单位得到的新抛物线恰好经过点B ,求新抛物线的解析式.(3) 设〔2〕中的新抛物线的顶点为P 点,Q 为新抛物线上P 点至B 点之间一点,以点Q 为圆心画圆,当⊙Q 与x 轴和直线BC 都相切时,联结PQ 、BQ ,求四边形ABQP 的面积.25. 〔本题满分14分〕如图,已知△ABC 是等边三角形,AB =4,D 是AC 边上一动点〔不与A 、C 重合〕,EF 垂直平分BD ,分别交AB 、BC 于点E 、F ,设CD =x ,AE =y .(1) 求证:△AED ∽△CDF ;(2) 求y 关于x 的函数关系式,并写出定义域;(3) 过点D 作DH ⊥AB ,垂足为点H ,当EH =1时,求线段CD 的长.F E D2014学年嘉定区九年级第一次质量调研数学试卷〔满分150分,考试时间100分钟〕考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:〔本大题共6题,每小题4分,满分24分〕[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.]1.对于抛物线2)2(-=x y ,下列说法正确的是〔▲〕〔A 〕顶点坐标是)0,2(;〔B 〕顶点坐标是)2,0(;〔C 〕顶点坐标是)0,2(-;〔D 〕顶点坐标是)2,0(-.2.已知二次函数bx ax y +=2的图像如图1所示,那么a 、b 的符号为〔▲〕〔A 〕0>a ,0>b ;〔B 〕0<a ,0>b ;〔C 〕0>a ,0<b ;〔D 〕0<a ,0<b .3.在Rt △ABC 中,︒=∠90C ,a 、b 、c 分别是A ∠、B ∠、C ∠的对边,下列等式中正确的是〔▲〕〔A 〕c a A =cos ;〔B 〕b c B =sin ;〔C 〕b a B =tan ;〔D 〕a b A =cot . 4.如图2,已知AB ∥CD ,AD 与BC 相交于点O , 2:1:=DO AO ,那么下列式子正确的是〔▲〕 〔A 〕2:1:=BC BO ;〔B 〕1:2:=AB CD ;〔C 〕2:1:=BC CO ;〔D 〕1:3:=DO AD . 5.已知非零向量a 、b 和c ,下列条件中,不能判定a ∥b 的是〔▲〕〔A 〕a =b 2-;〔B 〕c a =,c b 3=;〔C 〕c b a =+2,c b a -=-;〔D=.6.在△ABC 中,︒=∠90C ,cm AC 3=,cm BC 4=.以点A 为圆心,图1 AB C DO图2半径为cm 3的圆记作圆A ,以点B 为圆心,半径为cm 4的圆记作圆B ,则圆A 与圆B 的位置关系是〔▲〕〔A 〕外离;〔B 〕外切;〔C 〕相交;〔D 〕内切.二、填空题:〔本大题共12题,每小题4分,满分48分〕7.如果函数2)1(x a y -=是二次函数,那么a 的取值X 围是 ▲ .8.在平面直角坐标系中,如果把抛物线22+=x y 向上平移2个单位,那么所得抛物线的表达式为 ▲ .9.已知抛物线122-+=x x y 的对称轴为l ,如果点)0,3(-M 与点N 关于这条对称轴l 对称,那么点N 的坐标是 ▲ .10.请写出一个经过点)1,0(,且在对称轴右侧部分是下降的抛物线的表达式,这条抛物线的表达式可以是 ▲ .11.已知线段b 是线段a 、c 的比例中项,且1=a ,4=c ,那么=b ▲ .12.如果两个相似三角形的周长比为2:1,那么它们的对应中线的比为 ▲ .13.如图3,已知在平行四边形ABCD 中,点E 在边BC 上,射线AE 交DC 的延长线于点F ,2=AB ,EC BE 3=,那么DF 的长为 ▲ . 14.在△ABC 中,︒=∠90C ,1312sin =A ,12=BC ,那么=AC ▲ . 15.小杰在楼上点A 处看到楼下点B 处的小丽的俯角是︒36,那么点B 处的小丽看点A 处的小杰的仰角是 ▲ 度.16.正九边形的中心角等于 ▲ 度.17.如图4,AB 、AC 都是圆O 的弦,AB OM ⊥,AC ON ⊥,垂足分别为点M 、N ,如果6=BC ,那么=MN ▲ .18.在△ABC 中,9=AB ,5=AC ,AD 是BAC ∠的平分线交BC 于点D 〔如图5〕,△ABD 沿直线AD翻折后,点B 落到点1B 处,如果BAC DC B ∠=∠211,那么=BD ▲ . 三、解答题:〔本大题共7题,满分78分〕19.〔本题满分10分〕 计算:︒-+︒⋅︒+︒-45cos 21260tan 30cot 2130sin 1. N M O C B A 图4D F A B C D 图520.〔本题满分10分〕已知二次函数)0(22≠+-=m n x mx y 的图像经过点)1,2(-和)2,1(-,求这个二次函数的解析式,并求出它的图像的顶点坐标和对称轴.21.〔本题满分10分,每小题各5分〕如图6,已知AB 是圆O 的直径,10=AB ,弦CD 与AB 相交于点N ,︒=∠30ANC ,3:2:=AN ON ,CD OM ⊥,垂足为点M . 〔1〕求OM 的长;〔2〕求弦CD 的长. 22.〔本题满分10分,每小题各5分〕 如图7,某地下车库的入口处有斜坡AB ,它的坡度为2:1=i ,斜坡AB度为AH 〔BC AH ⊥〕,为了让行车更安全,现将斜坡的坡角改造为︒14〔图中的︒=∠14ACB 〕. 〔1〕求车库的高度AH ;〔2〕求点B 与点C 之间的距离〔结果精确到1米〕. 〔参考数据:24.014sin =︒,97.014cos =︒,25.014tan =︒,01.414cot =︒〕 23.〔本题满分12分,每小题各6分〕已知:如图8,在△ABC 中,点D 在边BC 上,且DAG BAC ∠=∠,BAD CDG ∠=∠.〔1〕求证:AC AG AB AD =; 〔2〕当BC GC ⊥时,求证:︒=∠90BAC .24.〔本题满分12分,每小题各4分〕如图9,在平面直角坐标系xoy 中,点A 坐标为)0,8(,点B 在y 轴的正半轴上,且34cot =∠OAB ,抛物线c bx x y ++-=241经过A 、B 两点. 〔1〕求b 、c 的值;〔2〕过点B 作OB CB ⊥,交这个抛物线于点C ,以点C为圆心,CB 为半径长的圆记作圆C ,以点A 为圆心,r为半径长的圆记作圆A .若圆C 与圆A 外切,求r 的值;〔3〕若点D 在这个抛物线上,△AOB 的面积是△OBD 面积的8倍,求点D 的坐标. 25.〔本题满分14分,其中第〔1〕小题4分,第〔2〕小题5分,第〔3〕小题5分〕已知在△ABC 中,8==AC AB ,4=BC ,点P 是边AC 上的一个动点,ABC APD ∠=∠,AD ∥BC ,联结DC .图8 B 图6 A BC H图7〔1〕如图10,如果DC ∥AB ,求AP 的长;〔2〕如图11,如果直线DC 与边BA 的延长线交于点E ,设x AP =,y AE =,求y 关于x 的函数解析式,并写出它的定义域;〔3〕如图12,如果直线DC 与边BA 的反向延长线交于点F ,联结BP ,当△CPD 与△CBF 相似时,试判断线段BP 与线段CF 的数量关系,并说明你的理由.2014学年奉贤区调研测试 九年级数学2015.01 〔满分150分,考试时间100分钟〕 一、选择题:〔本大题共6题,每题4分,满分24分〕[每小题只有一个正确选项,在答题纸的相应题号的选项上用2 B 铅笔填涂] 1.已知y x 23=,那么下列等式一定成立的是〔▲〕 A .3,2==y x ;B .23=y x ;C .32=y x ;D .023=+y x . 2.在Rt △ABC 中,∠ACB =90°,BC =1,AC =2,则下列结论正确的是〔▲〕A .sin A =32;B .tan A =12; C .cos B =32; D .tan B =3. 3.抛物线221x y -=的图象向右平移2个单位长度后所得新的抛物线的顶点坐标为〔▲〕 A .<0,-2> ;B . <0,2>;C .<-2,0>;D .<2,0>.4.在直角坐标平面中,M 〔2,0〕,圆M 的半径为4 ,那么点P 〔-2,3〕与圆M 的位置关系是〔▲〕A .点P 在圆内;B .点P 在圆上;C .点P 在圆外;D .不能确定.5.一斜坡长为10米,高度为1米,那么坡比为〔▲〕A .1:3;B .1:31;C .1:10;D .1:1010. 6.在同圆或等圆中,下列说法错误的是〔▲〕A .相等弦所对的弧相等;B .相等弦所对的圆心角相等;C .相等圆心角所对的弧相等;D .相等圆心角所对的弦相等.二、填空题:〔本大题共12题,每题4分,满分48分〕[请将结果直接填入答题纸的相应位置]7.若→a 与→e 方向相反且长度为3,那么→a =▲→e ;8.若α为锐角,已知cos α=21,那么tan α=▲; 9.△ABC 中,∠C =90°,G 为其重心,若CG =2,那么AB =▲; 10.一个矩形的周长为16,设其一边的长为x ,面积为S ,则S 关于x 的函数解析式是▲;A B C DP 图12 F AB C D P 图10 B A C D P图11 E <第15题图>11.如果抛物线12-+=mx x y 的顶点横坐标为1,那么m 的值为▲; 12.正n 边形的边长与半径的夹角为75°,那么n=▲; 13.相邻两边长的比值是黄金分割数的矩形,叫做黄金矩形,从外形上看,它最具美感,现在想要制作一X"黄金矩形〞的贺年卡,如果较长的一条边长等于20厘米,那么相邻一条边长等于▲厘米;14.已知抛物线经过点<5,-3>,其对称轴为直线x =4,则抛物线一定经过另一点的坐标是▲;15.如图,P 为平行四边形ABCD 边AD 上一点,E 、F 分别为PB 、PC 的中点,若△PEF 的面积为3,那么△PDC 与△PAB 的面积和等于▲;16.已知圆A 与圆B 内切,AB =10,圆A 半径为4,那么圆B 的半径为▲;17.已知抛物线2)1(2++=x a y 过〔0,y 1〕、〔3,y 2〕,若y 1> y 2,那么a 的取值X 围是▲;18.已知在△ABC 中,∠C=90o ,AC=3,BC=4.在平面内将△ABC 绕B 点旋转,点A 落到A ’,点C 落到C ’,若旋转后点C 的对应点C ’和点A 、点B 正好在同一直线上,那么∠A ’AC ’的正切值等于▲;三、解答题:〔本大题共7题,满分78分〕19.〔本题满分10分〕计算:︒-︒-︒︒60cot 2345tan 60sin 230sin 2 20.〔本题满分10分,第〔1〕小题满分7分,第〔2〕小题满分3分〕一个弓形桥洞截面示意图如图所示,圆心为O ,弦AB 是水底线,OC ⊥AB ,AB =24m ,sin ∠COB =1312,DE 是水位线,DE ∥AB . 〔1〕当水位线DE =304m 时,求此时的水深;〔2〕若水位线以一定的速度下降,当水深8m 时,求此时∠ACD 的余切值.21.〔本题满分10分,每小题满分各5分〕如图,在△ABC 中,AB=AC =12,DC =4,过点C 作CE ∥AB 交BD 的延长线于点E ,→→→→==b BC a AB ,,〔1〕求→BE 〔用向量a 、b 的式子表示〕;<2〕求作向量→→+AC BD 21〔不要求写作法,但要指出所 作图中表示结论的向量〕. 22.〔本题满分10分〕在某反潜演习中,我军舰A 测得潜艇C 的俯角为300,位于军舰A 正上方2000米的反潜直升机B 测得潜艇C 的俯角为680,试根据以上数据求出潜艇C 离开海平面的下潜深度.〔结果保留整数.参考数据:sin680≈0.9,cos680≈0.4,tan680≈2.5,3≈1.7>23.〔本题满分12分,每小题满分各6分〕 如图,在四边形ABCD 中,∠B =∠ACD ,过D 作AC ∥DE 交BC 的延长线于点E ,且2CD AC DE =⋅第20题图 B 第22题图B 第21题图 A D EC B A。
2015年上海市徐汇区高三一模数学试卷(文科含答案WORD)
2014学年第一学期徐汇区学习能力诊断卷高三数学(文科)一.填空题 1. 已知3sin 5θ=-,则cos 2θ= ; 【答案】7252. 若实数x ,y 满足4xy =,则224x y +的最小值 ; 【答案】163. 设i 是虚数单位,复数z 满足(2)5i z +⋅=,则||z = ;4. 函数2()2f x x =-(0x <)的反函数1()f x -= ;【答案】(2)x >-5. 若抛物线22y px =的焦点与双曲线2213y x -=的右焦点重合,则该抛物线的准线方程 为 ; 【答案】2x =-6. 若正四棱柱1111ABCD A BC D -的底面边长为2,高为4,则异面直线1BD 与AD 所成角的大小是 ;(结果用反三角函数值表示)【答案】7. 已知无穷等比数列{}n a 的各项和为1,则首项1a 的取值范围为 ; 【答案】(0,1)(1,2)8. 若全集U R =,不等式11111x x+>-的解集为A ,则U C A = ;【答案】[1,0]-9. 设数列{}n a 的前n 项和为n S ,若11a =,11122n n S a ++=(*n N ∈),则{}n a 的通项公 式为 ; 【答案】13n -10. 已知圆22:(1)(1)2C x y -+-=,方向向量(1,1)d =的直线l 过点(0,4)P ,则圆C 上的点到直线l 的距离的最大值为 ;【答案】11. 如图:在梯形ABCD 中,AD ∥BC 且12AD BC =,AC 与BD 相交于O ,设A B a =, AD b =,用a ,b 表示BO ,则BO = ;【答案】2233a b -+ 12. 已知函数()2sin(2)6f x x π=+,将()y f x =的图像向左平移ϕ(0ϕπ<<)个单位后得到函数()y g x =的图像,若()y g x =的图像上各最高点到点(0,3)的距离的最小值 为1,则ϕ的值为 ; 【答案】6π 13. 在平面直角坐标系中,对于函数()y f x =的图像上不重合的两点A ,B ,若A ,B 关 于原点对称,则称点对(,)A B 是函数()y f x =的一组“奇点对”(规定(,)A B 与(,)B A 是相同的“奇点对”),函数24(0)12(0)2x x x x x -+>⎧⎪⎨+<⎪⎩的“奇点对”的组数是 ;【答案】214. 设集合1234{(,,,)|{1,0,1},1,2,3,4}i A x x x x x i =∈-=,则集合A 中满足条件“12341||||||||3x x x x ≤+++≤”的元素个数为 ; 【答案】64二.选择题15.若1+是关于x 的实系数一元二次方程20x bx c ++=的一个复数根,则( ) A. 2,3b c =-=; B. 2,1b c ==-; C. 2,1b c =-=-; D. 2,3b c ==; 【答案】A16. 已知直线l 和平面α,无论直线l 和平面α具有怎样的位置关系,在平面α内总存在一条直线与直线l ( )A. 相交;B. 平行;C. 垂直;D. 异面; 【答案】C17. 若函数()log ()a f x x b =+的图像如图所示(其中,a b 为常数),则函数()xg x a b =+ 的大致图像是( )A. B. C. D. 【答案】D18. 某电商“双十一”期间用电子支付系统进行商品买卖,全部商品共有n 类(*n N ∈),分别编号为1,2,…,n ,买家共有m 名(*m N ∈,m n <),分别编号为,1,2,…,m ,若1,0,ij i j a i j ⎧=⎨⎩第名买家购买第类商品第名买家不购买第类商品,1i m ≤≤,1j n ≤≤,则同时购买第1类和第2类商品的人数是( )A. 1112121222......m m a a a a a a +++++++;B. 1121112222......m m a a a a a a +++++++;C. 1112212212...m m a a a a a a +++;D. 1121122212...m m a a a a a a +++; 【答案】C三.解答题19. 已知函数()sin()4f x A x π=+,x R ∈,且53()122f π=; (1)求A 的值;(2)若3()()2f f θθ+-=,(0,)2πθ∈,求3()4f πθ-;【答案】(1(2)420. 已知函数()22xxf x k -=+⋅(k R ∈); (1)若函数()f x 为奇函数,求k 的值;(2)若函数()f x 在(,2]-∞上为减函数,求k 的取值范围; 【答案】(1)1k =-;(2)16k ≥21. 如图所示,某传动装置由两个陀螺1T ,2T 组成,陀螺之间没有滑动,每个陀螺都由具有 公共轴的圆锥和圆柱两个部分构成,每个圆柱的底面半径和高都是相应圆锥底面半径的13, 且1T ,2T 的轴相互垂直,它们相接触的直线与2T 的轴所成角2arctan 3θ=,若陀螺2T 中圆 锥的底面半径为r (0r >);(1)求陀螺2T 的体积;(2)当陀螺2T 转动一圈时,陀螺1T 中圆锥底面圆周上一点P 转动到点1P ,求P 与1P 之间的距离;【答案】(1)32954r π;(222. 已知椭圆2214x y γ+=:的右焦点为F ,左顶点为R ,点(2,1)A ,(2,1)B -,O 为坐标原点;(1)若P 是椭圆γ上任意一点,OP mOA nOB =+,求22m n +的值; (2)设Q 是椭圆γ上任意一点,(,0)S t ,(2,5)t ∈,求QS QR ⋅的取值范围;(3)过F 作斜率为k 的直线l 交椭圆γ于,C D 两点,交y 轴于点E ,若1EC CF λ=,2ED DF λ=,试探究12λλ+是否为定值,说明理由;【答案】(1)12;(2)2(1)[,0]3t +-;(3)为定值8-23. 已知有穷数列{}n a 各项均不相等,将{}n a 的项从大到小重新排序后相应的项数构成新数列{}n p ,称{}n p 为{}n a 的“序数列”,例如数列:123,,a a a 满足132a a a >>,则其序数 列{}n p 为1,3,2;(1)若,x y R +∈,2x y +=且x y ≠,写出数列:1,xy ,222x y +的序数列并说明理由;(2)求证:有穷数列{}n a 的序数列{}n p 为等差数列的充要条件是有穷数列{}n a 为单调数列;(3)若项数不少于5项的有穷数列{}n b 、{}n c 的通项公式分别是3()5nn b n =⋅(*n N ∈),2n c n tn =-+(*n N ∈),且{}n b 的序数列与{}n c 的序数列相同,求实数t 的取值范围; 【答案】(1)2212x y xy +>>,序数列为3,1,2; (2)略; (3)45t <<;。
2015上海数学各区一模试题归类
2015 上海数学各区一模试题归类第一部分 选择题一、 二次函数1. (徐汇)将抛物线22y x =-向右平移一个单位,再向上平移2个单位后,抛物线的表达式为( )A. 22(1)2y x =--+;B. 22(1)2y x =---;C. 22(1)2y x =-++;D. 22(1)2y x =-+-;2. (徐汇)已知二次函数222y ax x =-+(0a >),那么它的图像一定不经过( )A. 第一象限;B. 第二象限;C. 第三象限;D. 第四象限;3. (六区)将抛物线2(1)y x =-向左平移2个单位,所得抛物线的表达式为( )A. 2(1)y x =+;B. 2(3)y x =-;C. 2(1)2y x =-+;D. 2(1)2y x =--;4. (六区)一个小球被抛出后,如果距离地面的高度h (米)和运行时间t (秒)的函数解析式为25101h t t =-++,那么小球到达最高点时距离地面的高度是( )A. 1米;B. 3米;C. 5米;D. 6米;5. (崇明)如果二次函数2y ax bx c =++的图像如图1-1-1,那么下列判断中,不正确的是( )A. 0a >B. 0b >C. 0c <D. 240b ac ->6. (崇明)将二次函数2x y =的图像向下平移1个单位,再向右平移1个单位后所得图像的函数 表达式为( )A. 2(1)1y x =++B. 2(1)1y x =+-C. 2(1)1y x =-+D. 2(1)1y x =--7. (长宁)抛物线22212,2,2y x y x y x ==-=共有的性质是( ) A. 开口向下; B. 对称轴是y 轴 C. 都有最低点 D. y 的值随x 的增大而减小8. (嘉定)对于抛物线2)2(-=x y ,下列说法正确的是( )A. 顶点坐标是)0,2(;B. 顶点坐标是)2,0(;C. 顶点坐标是)0,2(-;D. 顶点坐标是)2,0(-.9. (嘉定)已知二次函数bx ax y +=2的图像如图1-1-2所示,那么a 、b 的符号为( )A. 0>a ,0>b ;B. 0<a ,0>b ;C. 0>a ,0<b ;D. 0<a ,0<b .1-1-1 y x O O xy 1-1-2O x yO x y O x y O x y 10.(奉贤)抛物线221x y -=的图象向右平移2个单位长度后所得新的抛物线的顶点坐标为( ) A .(0,-2) ; B . (0,2); C .(-2,0); D .(2,0).11.(虹口)已知点,均在抛物线上,下列说法中,正确的是( )A .若,则;B .若,则;C .若,则;D .若,则.12.(虹口)二次函数(a 为常数)的图像如图1-1-3所示,则的取值范围为( )A . ;B .;C . ;D ..13.(金山)抛物线122+=x y 的顶点坐标是( )A. )1,2(;B. )1,0(;C. )0,1(;D. )2,1(. 14.(金山)已知反比例函数)0(≠=a xa y ,当0 x 时,它的图像y 随x 的增大而减小,那么二次函数 ax ax y -=2 的图像只可能是( )A. B. C. D.15.(闸北)在下列y 关于x 的函数中,一定是二次函数的是 ( ) A. 2x y =; B. 21xy =; C. 2kx y =; D. x k y 2=. 16.(普陀)如果二次函数2y ax bx c =++(0a ≠)的图像如图1-1-4,那么() A. 0a <,0b >,0c >; B. 0a >,0b <,0c >;C. 0a >,0b <,0c <;D. 0a >,0b >,0c <;二、 比例线段1.(徐汇) 如图1-2-1,平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果:BE BC =2:3,那么下列各式错误的是( )A. 2BE EC =;B. 13EC AD =;C. 23EF AE =;D. 23BF DF =; 2. (六区)如图1-2-2,已知AB ∥CD ∥EF ,:3:5AD AF =,12BE =,那么CE 的长等于( ) A. 2; B. 4; C. 24; D. 365;FA CB E1-2-1 1-2-3B C D E y x O 1-1-4yx O3. (崇明)已知52a b =,那么下列等式中,不一定正确的是 ( ) A. 25a b = B. 52a b = C. 7a b += D. 72a b b += 4. (宝山)如图1-2-3,△ABC 中,D 、E 分别为边AB 、AC 上的点,且DE ∥BC ,下列判断错误 的是( )A. AD AE DB EC =;B. AD DE DB BC =;C. AD AE AB AC =;D. AD DE AB BC=; 5. (嘉定)如图1-2-4,已知AB ∥CD ,AD 与BC 相交于点O , 2:1:=DO AO ,那么下列式子正确的是( )A. 2:1:=BC BO ;B. 1:2:=AB CD ;C. 2:1:=BC CO ;D. 1:3:=DO AD .6. (奉贤)已知y x 23=,那么下列等式一定成立的是( )A .3,2==y x ;B .23=y x ;C .32=y x ; D .023=+y x . 7. (闸北)如果点G 是△ABC 的重心,联结AG 并延长,交对边BC 于点D ,那么AG ︰AD 是( )A. 2︰3 ;B. 1︰2;C. 1︰3 ;D. 3︰4. 8. (闸北)已知点D 、E 分别在△ABC 的边AB 、AC 上,下列给出的条件中,不能判定DE ∥B C 的是( )A. BD ︰AB = CE ︰AC ;B. DE ︰BC = AB ︰AD ;C. AB ︰AC = AD ︰A E ;D. AD ︰DB = AE ︰EC .9. (普陀)如图1-2-5,直线1l ∥2l ∥3l ,两直线AC 和DF 与1l ,2l ,3l 分别相交于点A 、B 、C 和 点D 、 E 、F ,下列各式中,不一定成立的是( )A. AB DE BC EF =;B. AB DE AC DF =;C. AD BE BE CF =;D. EF BC FD CA=;三、 相似三角形1. (徐汇)如图1-3-1,在四边形ABCD 中,AD ∥BC ,如果添加下列条件,不能使得△ABC ∽△DCA 成立的是( )A B C D O 1-2-4 1-2-5 F E D C B A l 1l lA. BAC ADC ∠=∠;B. B ACD ∠=∠;C. 2AC AD BC =⋅;D. DC AB AC BC =; 2. (徐汇)如图1-3-2,在△ABC 中,D 、E 分别是AB 、AC 上的点,且DE ∥BC , 如果:1:4AE EC =,那么:ADE BEC S S ∆∆=( )A. 1:24;B. 1:20;C. 1:18;D. 1:16;3. (六区)如图1-3-3,已知在梯形ABCD 中,AD ∥BC ,2BC AD =,如果对角线AC 与BD 相交 于点O ,△AOB 、△BOC 、△COD 、△DOA 的面积分别记作1S 、2S 、3S 、4S ,那么下列结论 中,不正确的是( )A. 13S S =;B. 242S S =;C. 212S S =;D. 1324S S S S ⋅=⋅;4. (崇明)如图1-3-4 ,点D 、E 、F 、G 为ABC ∆两边上的点,且DE FG BC ∥∥,若DE 、FG 将ABC∆的面积三等分,那么下列结论正确的是( )A. 14DE FG =B. 1DF EG FB GC ==C. 32AD FB =+D. 22AD DB = 5. (长宁)如果两个相似三角形的面积比是1:6,那么它们的相似比是( )A .1:36 B.1:6 C. 1:3 D. 1: 66. (长宁)如图1-3-5,点A 、B 、C 、D 、E 、F 、G 、H 、K 都是7×8方格纸中的格点,为使△DE M ∽△ABC (点D 和点A 对应,点B 和E 对应),则点M 对应是F 、G 、H 、K 四点中的( )A. FB. GC. KD. H7. (虹口)如图1-3-6,∠BAD =∠CAE ,添加下列一个条件后,仍不能确定△ABC ∽△ADE 的是( )A .∠B =∠D ; B .∠C =∠AED ; C .; D ..8. (虹口)如图1-3-7,在△ABC 中,D 、E 分别是边AB 、BC 上的点,且DE ∥AC ,若,则的值为( )A .;B .;C .;D ..9. (金山)已知ABC ∆∽DEF ∆,点A 、B 、C 对应点分别是D 、E 、F ,4:9:=DE AB ,那么1-3-1 A C B D A B C D E 1-3-2 1-3-3 S 3S 4S 2S 1O A C B D 1-3-4 A B C D E F G 1-3-5 A B C E D 1-3-6 AB C E D 1-3-7 ODEF ABC S S ∆∆:等于( )A. 3:2;B. 9:4;C. 16:81;D. 81:16.10.(闸北)如图1-3-8,小明晚上由路灯A 下的点B 处走到点C 处时,测得自身影子CD 的长为1米. 他继续往前走3米到达点E 处(即CE =3米),测得自己影子EF 的长为2米.已知小明的身高是1.5米,那么路灯A 的高度AB 是( )A. 4.5米;B. 6米;C. 7.2米;D. 8米.11.(普陀)用一个2倍放大镜照一个△ABC ,下面说法中错误的是( )A. △ABC 放大后,是原来的2倍;B. △ABC 放大后,各边长是原来的2倍;C. △ABC 放大后,周长是原来的2倍;D. △ABC 放大后,面积是原来的4倍;四、 直角三角形锐角比1. (徐汇)已知Rt △ABC 中,90C ∠=︒,CAB α∠=,7AC =,那么BC 为( ) A. 7sin α; B. 7cos α; C. 7tan α; D. 7cot α;2. (六区)如果把Rt ABC ∆的三边长度都扩大2倍,那么锐角A 的四个三角比的值( )A. 都扩大到原来的2倍;B. 都缩小到原来的12; C. 都没有变化; D. 都不能确定;3. (六区)已知在△ABC 中,AB AC m ==,B α∠=,那么边BC 的长等于( )A. 2sin m α⋅;B. 2cos m α⋅;C. 2tan m α⋅;D. 2cot m α⋅; 4. (崇明)在Rt ABC ∆中,90C ∠=︒,A ∠、B ∠、C ∠所对的边分别为a 、b 、c ,下列等式中不一定 成立的是( )A. tan b a B =B. cos a c B =C. sin ac A = D. cos a b A =5. (宝山)如图1-4-1,在直角△ABC 中,90C ∠=︒,1BC =,2AC =)A. 30A ∠=︒;B. 45A ∠=︒;C. 2cot 2A =;D. 2tan 2A =;1-4-11-3-8 AD6. (长宁)在Rt △ABC 中,已知∠C =90°,AC =3,BC =4,那么∠A 的余弦值等于( )A .35 B. 45 C. 34 D. 437. (嘉定)在Rt △ABC 中,︒=∠90C ,a 、b 、c 分别是A ∠、B ∠、C ∠的对边,下列等式中正确的是( )A. c a A =cos ;B. b c B =sin ;C. b a B =tan ;D. ab A =cot . 8. (奉贤)在Rt △ABC 中,∠ACB =90°,BC =1,AC =2,则下列结论正确的是( ) A .sin A =32; B .tan A =12; C .cos B =32; D .tan B =3. 9. (奉贤)一斜坡长为10米,高度为1米,那么坡比为( )A .1:3;B .1:31; C .1:10; D .1:1010. 10.(虹口)在Rt △ABC 中,,AC=5,BC=13,那么的值是( )A . ;B .;C .;D ..11.(金山)在ABC Rt ∆中, ︒=∠90C ,3,5==BC AB ,那么A sin 的值等于( )A. 43;B. 34;C. 53;D. 54. 12.(闸北)在直角△ABC 中,∠C =90°,∠A 、∠B 与∠C 的对边分别是a 、b 和c ,那么下列关系中, 正确的是( )A. cos A =c a ;B. tan A =a b ;C. sin A =c a ;D. cot A =ba . 13.(普陀)在Rt △ABC 中,已知90ACB ∠=︒,1BC =,2AB =,那么下列结论正确的是( )A. 3sin 2A =; B. 1tan 2A =; C. 3cos 2B =; D. 3cot 3B =;五、 平面向量1. (宝山)已知非零向量a 、b 、c ,下列命题中是假命题的是( )A. 如果2a b =,那么a ∥b ;B. 如果2a b =-,那么a ∥b ;C. 如果||||a b =,那么a ∥b ;D. 如果2a b =,2b c =,那么a ∥c ; 2. (嘉定)已知非零向量a 、b 和c ,下列条件中,不能判定a ∥b 的是( )A. a =b 2-;B. c a =,c b 3=;C. c b a =+2,c b a -=-;D. b a =.3. (虹口)如果,,且,那么与是( )A .与是相等向量;B .与是平行向量;C .与方向相同,长度不同;D .与方向相反,长度相同.4. (闸北)下列有关向量的等式中,不一定成立的是( )A. AB =-BA ;B. ︱AB ︱=︱BA ︱;C. AB +BC =AC ;D. ︱AB +BC ︱=︱AB ︱+︱BC |.5. (普陀)下列判断错误的是( )A. 00a =;B. 如果12a b =(b 为非零向量),那么a ∥b ; C. 设e 为单位向量,那么||1e =; D. 如果||||a b =,那么a b =或a b =-;六、 圆1. (崇明)下列说法正确的是 ( )A. 相切两圆的连心线经过切点B. 长度相等的两条弧是等弧C. 平分弦的直径垂直于弦D. 相等的圆心角所对的弦相等2. (宝山)如果在两个圆中有两条相等的弦,那么( )A. 这两条弦所对的圆心角相等;B. 这两条线弦所对的弧相等;C. 这两条弦都被与它垂直的半径平分;D. 这两条弦所对的弦心距相等;3. (宝山)已知圆O 半径为3,M 为直线AB 上一点,若3MO =,则直线AB 与圆O 的位置关系 为( )A. 相切;B. 相交;C. 相切或相离;D. 相切或相交;4. (长宁)已知两圆半径分别是3和4,若两圆内切,则两圆的圆心距为( )A. 1或7B. 1C. 7D. 25. (嘉定)在△ABC 中,︒=∠90C ,cm AC 3=,cm BC 4=.以点A 为圆心,半径为cm 3的圆记作 圆A ,以点B 为圆心,半径为cm 4的圆记作圆B ,则圆A 与圆B 的位置关系是( )A. 外离;B. 外切;C. 相交;D. 内切.6. (奉贤)在直角坐标平面中,M (2,0),圆M 的半径为4 ,点P (-2,3)与圆M 的位置关系是( )A .点P 在圆内;B .点P 在圆上;C .点P 在圆外;D .不能确定.7. (奉贤)在同圆或等圆中,下列说法错误的是( )A .相等弦所对的弧相等;B .相等弦所对的圆心角相等;C .相等圆心角所对的弧相等;D .相等圆心角所对的弦相等.8. (金山)正多边形的中心角是36º,那么这个正多边形的边数是( )A. 10;B. 8;C. 6;D. 5.9. (金山)已知⊙M 与⊙N 的半径分别为1和5,若两圆相切,那么这两圆的圆心距MN 的长等于( )A. 4;B. 6;C. 4或5;D. 4或610.(普陀)下列命题中,正确的个数是( )(1)三点确定一个圆; (2)平分弦的直径垂直于弦;(3)相等的圆心角所对的弧相等; (4)正五边形是轴对称图形;A. 1个;B. 2个;C. 3个;D. 4个;七、 综合1. (宝山)如图1-7-1边长为3的等边△ABC 中,D 为AB 的三等分点(12AD BD =),三角形边上的 动点E 从点A 出发,沿A C B →→的方向运动,到达点B 时停止,设点E 运动的路程为x ,2DE y =,则y 关于x 的函数图像大致为( )A. B. C. D. 2. (长宁)如图1-7-2,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动的 过程中速度不变,则以点B 为圆心,线段BP 长为半径的圆的面积S 与点P 的运动时间t 之间的函数图 象大致为图中的( )A. B. C. D.第二部分 填空题一、 二次函数1. (徐汇)抛物线2(1)2y x =-+的顶点坐标是 ;2. (徐汇)二次函数245y x x =--的图像的对称轴是直线 ;3. (徐汇)若点1(3,)A y -、2(0,)B y 是二次函数22(1)1y x =--图像上的两点,那么1y 与2y 的 大小关系是 (填12y y >,12y y =或12y y <);4. (六区)二次函数2253y x x =--+的图像与y 轴的交点坐标为 ;5. (六区)如果抛物线2(3)5y a x =+-不经过第一象限,那么a 的取值范围是 ;6. (六区)已知二次函数的图像经过点(1,3),对称轴为直线1x =-,由此可知这个二次函数的图像一 1-7-1A B C DE 1-7-2定经过除点(1,3)外的另一点,这点的坐标是 ; 7. (崇明)如果二次函数22(1)51y m x x m =-++-的图像经过原点,那么m = ;8. (崇明)抛物线221y x =-在y 轴右侧的部分是 (填“上升”或“下降”);9. (崇明)如果将抛物线23y x =平移,使平移后的抛物线顶点坐标为(2,2),那么平移后的抛物线的表达 式为 ;10.(崇明)已知抛物线2y x bx c =++经过点(0,5)A 、(4,5)B ,那么此抛物线的对称轴是 ;11.(宝山)抛物线2(3)4y x =--+的对称轴是 ;12.(宝山)不经过第二象限的抛物线2y ax bx c =++的开口方向向 ;13.(宝山)已知点11(,)A x y 、22(,)B x y 为函数22(1)3y x =--+的图像上的两点,若121x x >>, 则1y 2y ;14.(长宁)抛物线23(1)2y x =--+的顶点坐标是________;15.(长宁)抛物线223y x =-向左移动3个单位后所得抛物线解析式是________;16.(长宁)已知二次函数227y x x =+-的一个函数值是8,那么对应自变量x 的值是_________.17.(长宁)已知二次函数2(1)2y ax a x =-+-,当x >1时,y 的值随x 的增大而增大,当x <1时,y 的值 随x 的增大而减小,则实数a 的值为_________.18.(长宁)某企业今年第一月新产品的研发资金为100万元,以后每月新产品的研发资金与上月相比增长 率都是x ,则该厂今年第三月新品研发资金y (元)关于x 的函数关系式为y =_________.19.(嘉定)如果函数2)1(x a y -=是二次函数,那么a 的取值范围是 ;20.(嘉定)在平面直角坐标系中,如果把抛物线22+=x y 向上平移2个单位,那么所得抛物线的 表达式为 .21.(嘉定)已知抛物线122-+=x x y 的对称轴为l ,如果点)0,3(-M 与点N 关于这条对称轴l 对称, 那么点N 的坐标是 .22.(嘉定)请写出一个经过点)1,0(,且在对称轴右侧部分是下降的抛物线的表达式,这条抛物线的 表达式可以是 .23.(奉贤)一个矩形的周长为16,设其一边的长为x ,面积为S ,则S 关于x 的函数解析式是 ;24.(奉贤)如果抛物线12-+=mx x y 的顶点横坐标为1,那么m 的值为 ;25.(奉贤)已知抛物线经过点(5,-3),其对称轴为直线x =4,则抛物线一定经过另一点的坐标是 ;26.(奉贤)已知抛物线2)1(2++=x a y 过(0,y 1)、(3,y 2),若y 1> y 2,那么a 的取值范围是 ;27.(虹口)抛物线与y 轴交点的坐标为 .28.(虹口)抛物线向左平移2个单位得到的抛物线表达式为 .29.(虹口)若抛物线的对称轴是直线,则 .30.(虹口)请你写出一个..b 的值,使得函数,在时,y 的值随着x 的值增大而增大,则b 可以是 ▲ .31.(金山)将抛物线11-22+=)(x y 向上平移3个单位,那么平移后得到的抛物线的解析式是 32.(闸北)如果抛物线2)1(x m y -=的开口向上,那么m 的取值范围是 .33.(闸北)将抛物线5)3(2+--=x y 向下平移6个单位,所得到的抛物线的顶点坐标为 .34.(闸北)已知抛物线经过A (0,-3)、B (2,-3)、C (4,5),判断点D (-2,5)是否在该抛物线 上.你的结论是: (填“是”或“否”).35.(普陀)二次函数223y x x =--的图像与y 轴的交点坐标是 ;36.(普陀)如果将抛物线22y x =-平移,使顶点移到点(3,1)P -的位置,那么所得新抛物线的表达式 是 ;37.(普陀)用一根长50厘米的铁丝,把它弯成一个矩形框,设矩形框的一边长为x 厘米,面积为y 平 方厘米,写出y 关于x 的函数解析式: ;二、 比例线段1. (徐汇)如果53a b =,那么a b a b-+的值等于 ; 2. (徐汇)如图2-2-1,若1l ∥2l ∥3l ,如果6DE =,2EF =, 1.5BC =,那么AC = ;3. (徐汇)如图2-2-2,△ABC 中,90BAC ∠=︒,G 点是△ABC 的重心,如果4AG =,那么BC 的长为 ;4. (六区)已知4y =,那么22x y x y-=+; 5. (六区)已知线段4a cm =,9b cm =,那么线段a 、b 的比例中项等于cm ;6. (六区)如图2-2-3,已知,D E 分别是△ABC 的边BC 和AC 上的点,2AE =,3CE =, 2-2-2 2-2-3要使DE ∥AB ,那么:BC CD 应等于 ;7. (六区)已知点G 是面积为227cm 的△ABC 的重心,那么△AGC 的面积等于 ;8. (崇明)已知点P 是线段AB 的黄金分割点()AP PB >,如果2AB =cm ,那么线段AP = cm ; 9. (崇明)如图2-2-4,已知在ABC ∆中,90ACB ∠=︒,6AC =,点G 为重心,GH BC ⊥,垂足为点H , 那么GH = 10.(宝山)线段b 是线段a 和c 的比例中项,若1a =,2b =,则c = ; 11.(长宁)已知线段a =2c m ,c =8c m ,则线段a 、c 的比例中项是_________c m ;12.(嘉定)已知线段b 是线段a 、c 的比例中项,且1=a ,4=c ,那么=b . 13.(奉贤)△ABC 中,∠C =90°,G 为其重心,若CG =2,那么AB = ;14.(奉贤)相邻两边长的比值是黄金分割数的矩形,叫做黄金矩形,从外形上看,它最具美感,现在要制 作一张“黄金矩形”的贺年卡,如果较长的一条边长等于20厘米,那么相邻一条边长等于 厘米; 15.(虹口)若,则 .16.(虹口)如图2-2-5,已知AB ∥CD ∥EF ,它们依次交直线、于点A 、D 、F 和点B 、C 、E ,如果 AD =6,DF =3,BC =5,那么BE = . 17.(金山)已知23x y =,那么=+-y x yx ; 18.(金山)如图2-2-6,已知ABC ∆中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,若4=AD ,2=BD ,3=DE ,那么=BC19.(闸北)已知y x =25,则yyx -的值是 . 20.(闸北)如果点P 是线段AB 的黄金分割点,且AP >PB ,那么APBP的比值是 . 21.(闸北)如图2-2-7,在平行四边形ABC D 中,点E 在BC 边上,且CE ︰BC =2︰3,AC 与DE 相交于 点F ,若S △AFD =9,则S △EFC = .2-2-4 ABCH G·2-2-5B AC D EF2-2-6BCDE2-2-7A B CEF 2-2-822.(普陀)已知:5:2x y =,那么():x y y += ;23.(普陀)如图2-2-8,在△ABC 中,DE ∥BC ,DE 与边AB 相交于点D ,与边AC 相交于点E , 如果3AD =,4BD =,2AE =,那么AC = ;24.(普陀)已知线段MN 的长为2厘米,点P 是线段MN 的黄金分割点,那么较长的线段MP 的长 是 厘米;三、 相似三角形1 . (徐汇)在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为 m ;2. (崇明)如果两个相似三角形的面积比为1:4,那么它们的周长比为 ;3. (宝山)两个相似三角形的相似比为2:3,则它们的面积比为 ;4. (宝山)已知△ABC 的三边之比为2:3:4,若△DEF 与△ABC 相似,且△DEF 的最大边长为20, 则△DEF 的周长为 ;5. (宝山)如图2-3-1,D 为等边△ABC 边BC 上一点,60ADE ∠=︒,交AC 于E ,若2BD =,3CD =, 则CE = ;6. (长宁)如图2-3-2,已知AD 是△ABC 的中线,G 是△ABC 的重心,联结BG 并延长交AC 于点E ,联 结DE ,则S △ABC :S △GED 的值为_________.7. (嘉定)如果两个相似三角形的周长比为2:1,那么它们的对应中线的比为 .8. (嘉定)如图2-3-3,已知在平行四边形ABCD 中,点E 在边BC 上,射线AE 交DC 的延长线于F ,2=AB ,EC BE 3=,那么DF 的长为 .9. (奉贤)如图2-3-4,P 为平行四边形ABCD 边AD 上一点,E 、F 分别为PB 、PC 的中点,若△PEF 的 面积为3,那么△PDC 与△P AB 的面积和等于 ;10.(虹口)如图2-3-5,在Rt △ABC 中,∠C=90°,点G 是△ABC 的重心,如果AC=, AG =2, 那么AB= .11.(虹口)如图2-3-6,如果△ABC 与△DEF 都是正方形网格中的格点三角形(顶点在格点上), 那么 的值为 .C 2-3-5D A B G 2-3-4 2-3-1 B DE 2-3-2 GED C B A A C DE 2-3-3C A B2-3-6E DF C A B D F G2-3-712.(闸北)如图2-3-7,正方形DEFG 内接于Rt △ABC ,∠C =90°,AE =4,BF =9 ,则tan A = . 13.(闸北)如图2-3-8,梯形ABCD 中,AD //BC ,AB =DC ,点P 是AD 边上一点,联结PB 、PC ,且PD AP AB ⋅=2,则图中有 对相似三角形.14.(普陀)我们定义:如果一个图形上的点A '、B '、...、P '和另一个图形上的点A 、B 、...、P 分别 对应,且满足:(1)直线AA '、BB '、...、PP '都经过同一点O ;(2)...OA OB OP k OA OB OP'''====, 那么这两个图形叫做位似图形,点O 叫做位似中心,k 叫做位似比,如图2-3-9,在平面直角坐标系中, △ABC 和△A B C '''是以坐标原点O 为位似中心的位似图形,且OB BB '=,如果点5(,3)2A ,那么点A '的坐标为 ;四、直角三角形锐角比1. (徐汇)计算:cot30sin60︒-︒= ;2. (徐汇)如图2-4-1是拦水坝的横断面,斜坡AB 的高度为6米,斜面的坡比为1:2, 则斜坡AB 的长为 米(保留根号);3. (徐汇)如图2-4-2,已知4tan 3O =,点P 在边OA 上,5OP =,点M 、N 在边OB 上,PM PN =, 如果2MN =,那么PM = ;4. (六区)在Rt ABC ∆中,90C ∠=︒,如果6AB =,2cos 3A =,那么AC = ; 5. (六区)如图2-4-3,当小杰沿着坡度1:5i =的坡面由B 到A 直行走了26米时,小杰实际上升的高度i = 1:2BDAEC2-4-1NPA M2-4-22-4-3ACB2-3-8ABDP2-3-9AC = 米(结论可保留根号)6. (六区)已知不等臂跷跷板AB 长为3米,当AB 的一端点A 碰到地面时(如图2-4-4),AB 与地面的夹角为30°;当AB 的另一端点B 碰到地面时(如图2),AB 与地面的夹角的正弦值为13,那么跷跷板AB 的支撑点O 到地面的距离OH = 米7. (崇明)某飞机的飞行高度为1500m ,从飞机上测得地面控制点的俯角为60°,此时飞机与这地面控制 点的距离为 m .8. (崇明)如图2-4-5,水库大坝的横截面是梯形,坝顶AD 宽5米,坝高10米,斜坡CD 的坡角为45︒, 斜坡AB 的坡度1:1.5i =,那么坝底BC 的长度为 米.9. (宝山)在△ABC 中,3cot 3A =,3cos 2B =,那么C ∠= ; 10.(宝山)B 在A 北偏东30°方向(距A )2千米处,C 在B 的正东方向(距B )2千米处,则C 和A 之间的距离为 千米;11.(长宁)如图2-4-6所示,铁路的路基横断面都是等腰梯形,斜坡AB 的坡度为1:3,斜坡AB 的水平 宽度BE =33m ,则斜坡AB =_________m. 12.(嘉定)在△ABC 中,︒=∠90C ,1312sin =A ,12=BC ,那么=AC . 13.(嘉定)小杰在楼上点A 处看到楼下点B 处的小丽的俯角是︒36,那么点B 处的小丽看点A 处的小杰 的仰角是 度. 14.(奉贤)若α为锐角,已知cos α=21,那么tan α= ; 15.(虹口)在以O 为坐标原点的直角坐标平面内有一点A (2,4),如果AO 与x 轴正半轴的夹角为, 那么= .16.(虹口)如图2-4-7,在△ABC 中,AD ⊥BC ,sin B =,BC =13,AD =12,则tan C 的值 . 17.(金山)在ABC Rt ∆中,︒=∠90C ,如果4:3:=BC AC ,那么A cos 的值为 18.(金山)如图2-4-8,斜坡AB 的坡度3:1=i ,该斜坡的水平距离=AC 6米,那么斜坡AB 的长2-4-4BAHO BAHO2-4-5DAB C2-4-6C2-4-7DBA等于 米19.(金山)如图2-4-9,在ABC Rt ∆中,︒=∠90ACB ,CD ⊥AB ,CD =4,A cos =32,那么BC = 20.(闸北)如果α是锐角,且tanα =cot20°,那么α= 度. 21.(闸北)计算:2sin60°+tan45°= .22.(闸北)如果一段斜坡的坡角是30°,那么这段斜坡的坡度是 .(请写成1︰m 的形式). 23.(普陀)在地面上离旗杆20米处的地方用测角仪器测得旗杆顶端的仰角为α,如果测角仪的高为 1.5米,那么旗杆的高为 米(用含α的三角比表示);五、 平面向量1. (徐汇)如图2-5-1,正方形ABCD 被分割成9个全等的小正方形, P 、Q 是其中两个小正方形的 顶点,设AB a =,AD b =,则向量PQ = (用向量a 、b 来表示);2. (六区)计算:33()22a ab -+-= ; 3. (长宁)计算:3()3a b a --=_________;4. (奉贤)若→a 与→e 方向相反且长度为3,那么→a = →e ;5. (虹口)如图2-5-2,在△ABC 中,DE ∥BC , BD=2AD ,设,,用向量、表示 向量DE = .6. (金山)计算:()+-b a 22________313=⎪⎭⎫⎝⎛-b a ;7. (金山)如图2-5-3, 在ABC ∆中,BE AD 、分别是边AC BC 、上的中线,BE AD 、相交于点G .设=AB a →,=AD b → ,那么=BE (用 a →、b →的 式子表示) 8. (普陀)计算:523()3a ab --= ;2-5-1BA BCDE2-5-22-4-8C 2-4-9B2-5-3DB六、 综合题(第18题)1. (徐汇)如图2-6-1,在△ABC 中,90ABC ∠=︒,6AB =,8BC =,点M 、N 分别在边AB 、BC上,沿直线MN 将△ABC 折叠,点B 落在点P 处,如果AP ∥BC 且4AP =,那BN = ;2. (六区)把一个三角形绕其中一个顶点逆时针旋转并放大或缩小(这个顶点不变),我们把这样的三角形运动称为三角形的T-变换,这个顶点称为T-变换中心,旋转角称为T-变换角,三角形与原三角形的对应边之比称为T-变换比;已知△ABC 在直角坐标平面内,点(0,1)A -,(3,2)B -,(0,2)C ,将△ABC 进行T-变换,T-变换中心为点A ,T-变换角为60°,T-变换比为23,那么经过T-变换后点C 所对应的点的坐标为 ;3. (崇明)如图2-6-2,将边长为6cm 的正方形ABCD 折叠,使点D 落在AB 边的中点E 处,折痕为FH , 点C 落在Q 处,EQ 与BC 交于点G ,那么EBG ∆的周长是 cm4. (宝山)如图2-6-3直角梯形ABCD 中,AD ∥BC ,2CD =,AB BC =,1AD =,动点M 、N 分 别在AB 边和BC 的延长线运动,而且AM CN =,联结AC 交MN 于E ,MH ⊥AC 于H ,则EH = ;5. (长宁)如图2-6-4,正方形ABCD 绕点A 逆时针旋转,得到正方形'''AB C D .当两个正方形重叠部分 的面积是原正方形面积的14时,1sin '2B AD ∠ _________. 6. (嘉定)在△ABC 中,9=AB ,5=AC ,AD 是BAC ∠的平分线交BC 于点D (如图2-6-5), △ABD 沿直线AD 翻折后,点B 落到点1B 处,如果BAC DC B ∠=∠211,那么=BD . 7. (奉贤)已知在△ABC 中,∠C=90o ,AC=3,BC=4.在平面内将△ABC 绕B 点旋转,点A 落到A ’,2-6-1PBA CMN2-6-2ABCDFG H QE2-6-3EDBC MH2-6-4D 'C 'B 'DCBAABCD2-6-5C2-6-6ABFE点C 落到C ’,若旋转后点C 的对应点C ’和点A 、点B 正好在同一直线上,那么∠A ’AC ’的正切值 等于 ;8. (虹口)如图2-6-6,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,联结DE ,F 为线段DE 上一点,且∠AFE =∠B .若AB =5,AD =8,AE =4,则AF 的长为 .9. (金山)如图2-6-7,在ABC Rt ∆中,︒=∠90C ,4=AC ,3=BC .将ABC ∆绕着点C 旋转︒90, 点A 、B 的对应点分别是D 、E ,那么ADE ∠tan 的值为10. (闸北)如图2-6-8,在Rt △ABC 中,∠C =90°,点D 在边AB 上,线段D C 绕点D 逆时针旋转, 端点C 恰巧落在边AC 上的点E 处.如果m DB AD =,n ECAE=.那么m 与n 满足的关系式是: m = (用含n 的代数式表示m ).11.(普陀)如图2-6-9,已知△ABC 中,AB AC =,tan 2B =,AD ⊥BC 于点D ,G 是△ABC 的 重心,将△ABC 绕着重心G 旋转,得到△111A B C ,并且点1B 在直线AD 上,联结1CC ,那么11tan CC B 的值等于 ;七、圆与正多边形1. (崇明)已知正六边形的半径为2cm ,那么这个正六边形的边心距为 cm ;2. (崇明)半径分别为8cm 与6cm 的1O 与2O 相交于A 、B 两点,圆心距O 1O 2的长为10cm , 那么公共弦AB 的长为 cm ;3. (宝山)已知两圆半径分别为3和7,圆心距为d ,若两圆相离,则d 的取值范围是 ;4. (宝山)如图2-7-1,圆O 的直径AB 垂直弦CD 于M ,且M 是半径OB 的中点,6CD =径AB 的长为 ;2-7-1MOB CD N MO C BA2-7-22-7-3OAB2-6-7B C ABD E C2-6-82-7-42-6-95. (长宁)已知⊙P 在直角坐标平面内,它的半径是5,圆心P (-3,4),则坐标原点O 与⊙P 的位置位置 关系是_________.6. (长宁)如果圆心O 到直线l 的距离等于⊙O 的半径,那么直线l 和⊙O 的公共点有________个.7. (嘉定)正九边形的中心角等于 度;8. (嘉定)如图2-7-2,AB 、AC 都是圆O 的弦,AB OM ⊥,AC ON ⊥,垂足分别为点M 、N , 如果6=BC ,那么=MN .9. (奉贤)正n 边形的边长与半径的夹角为75°,那么n= ;10.(奉贤)已知圆A 与圆B 内切,AB =10,圆A 半径为4,那么圆B 的半径为 ; 11.(金山)已知⊙O 的半径为5,点A 在⊙O 外,那么线段OA 的的取值范围是 12.(金山)如图2-7-3,已知直线AB 与⊙O 相交于A 、B 两点, 30=∠OAB ,半径2=OA , 那么弦AB =_________13.(金山)已知⊙A 与⊙B 的半径分别为3和2,若两圆相交,那么这两圆的圆心距AB 的取值 范围是14.(普陀)正八边形的中心角为 ;15.(普陀)如图2-7-4,已知圆O 的半径为5,圆O 的一条弦AB 长为8,那么以3为半径的同心圆与 弦AB 位置关系是 ;第三部分 基础解答题一、 二次函数1. (徐汇)已知二次函数2y ax bx c =++(a 、b 、c 为常数,且0a ≠)经过A 、B 、C 、D 四个点, 其中横坐标x 与纵坐标y 的对应值如下表: (1)求二次函数解析式; (2)求△ABD 的面积;2. (六区)已知在直角坐标平面内,抛物线26y x bx =++经过x 轴上两点,A B ,点B 的坐标为(3,0), 与y 轴相交于点C ; (1)求抛物线的表达式;(2)求△ABC 的面积;3. (宝山)已知一个二次函数的图像经过点(1,0)A 和点(0,6)B ,(4,6)C ,求这个抛物线的表达式 以及该抛物线的顶点坐标;4. (嘉定)已知二次函数)0(22≠+-=m n x mx y 的图像经过点)1,2(-和)2,1(-,求这个二次函数的 解析式,并求出它的图像的顶点坐标和对称轴.5. (虹口)(1)求该二次函数的解析式;(2)用配方法求出该二次函数图像的顶点坐标和对称轴.6. (金山)抛物线2(0)y ax bx c a =++≠向右平移2个单位得到抛物线1)3(2--=x a y ,且平移后的抛物线经过点)12(,A . (1)求平移后抛物线的解析式;(2)设原抛物线与y 轴的交点为B ,顶点为P , 平移后抛物线的对称轴与x 轴交于点M , 求BPM ∆的面积.xyO7. (闸北)已知二次函数c bx x y ++-=22的图像经过点A (0,4)和B (1,-2).(1)求此函数的解析式;并运用配方法,将此抛物线解析式化为y =a (x +m )2+k 的形式; (2)写出该抛物线顶点C 的坐标,并求出△CAO 的面积.8. (普陀)如图,已知二次函数的图像与x 轴交于点(1,0)A 和点B ,与y 轴交于点(0,6)C ,对称轴为 直线2x =,求二次函数解析式并写出图像最低点坐标二、 比例线段1. (徐汇)MN 经过△ABC 的顶点A ,MN ∥BC ,AM AN =,MC 交AB 于D ,NB 交AC 于E ; (1)求证:DE ∥BC ;(2)联结DE ,如果1DE =,3BC =,求MN 的长;三、 相似三角形1. (徐汇)已知菱形ABCD 中,8AB =,点G 是对角线BD 上一点,CG 交BA 的延长线于点F ;(1)求证:2AG GE GF =⋅; (2)如果12DG GB =,且AG BF ⊥,求cos F ;2. (六区)已知如图,D 是△ABC 的边AB 上一点,DE ∥BC ,交边AC 于点E ,延长DE 至点F , 使EF DE =,联结BF ,交边AC 于点G ,联结CF (1)求证:AE EGAC CG=; (2)如果2CF FG FB =⋅,求证:CG CE BC DE ⋅=⋅3. (崇明)如图,在梯形ABCD 中,AD BC ∥,AD AB =,2ABC C ∠=∠,E 与F 分别为边AD 与DC 上的两点,且有EBF C ∠=∠.(1)求证:::BE BF BD BC =;(2)当F 为DC 中点时,求:AE ED 的比值.4. (宝山)如图,D 为等边△ABC 边BC 上一点,DE ⊥AB 于E ,若:2:1BD CD =,DE =23AE ;DABCEF5. (宝山)如图,正方形ABCD 中,(1)E 为边BC 的中点,AE 的垂直平分线分别交AB 、AE 、CD 于G 、F 、H ,求GFFH; (2)E 的位置改动为边BC 上一点,且BE k EC =,其他条件不变,求GFFH的值;6. (长宁)如图,在△ABC 中,AD 是BC 上的高,点G 在AD 上,过点G 作BC 的平行线分别与AB 、 AC 交于P 、Q 两点,过点P 作PE ⊥BC 于点E ,过点Q 作QF ⊥BC 于点F . 设AD =80,BC =120,当四 边形PEFQ 为正方形时,试求正方形的边长.7. (嘉定)已知:如图,在△ABC 中,点D 在边BC 上,且DAG BAC ∠=∠,BAD CDG ∠=∠. (1)求证:ACAGAB AD =; (2)当BC GC ⊥时,求证:︒=∠90BAC .8. (奉贤)如图,在四边形ABCD 中,∠B =∠ACD ,过D 作AC ∥DE 交BC 的延长线于点E ,且2CD AC DE =⋅FEDG C A E D BF1 2 G C A E FB(1)求证:∠DAC =∠DCE ;(2)若DE AC AD AB AD ⋅+⋅=2,求证:∠ACD =90o .9. (虹口)如图,在△ABC 中,点D 在边AC 上,AE 分别交线段BD 、边BC 于点F 、G ,∠1=∠2, .求证:.10.(虹口)如图,在Rt △CAB 与Rt △CEF 中,∠ACB=∠FCE=90°,∠CAB=∠CFE ,AC 与EF 相交于 点G ,BC =15,AC=20.(1)求证:∠CEF =∠CAF ; (2)若AE =7,求AF 的长.11.(金山)如图,ABC ∆中,PC 平分ACB ∠,PC PB = (1)求证:APC ∆∽ACB ∆;(2)若2=AP ,6=PC ,求AC 的长.ADE CBABCP12.(闸北)如图,已知等腰梯形ABCD 中,AD ∥BC ,AD =1,BC =3, AB =CD =2,点E 在BC 边上, AE 与BD 交于点F ,∠BAE =∠DBC , (1)求证:△ABE ∽△BCD ;(2)求tan ∠DBC 的值; (3)求线段BF 的长.13.(普陀)如图,已知在△ABC 中,90ACB ︒∠=,点D 在边BC 上,CE AB ⊥,CF AD ⊥,E 、F 分别是垂足(1)求证:2AC AF AD =⋅(2)联结EF ,求证:AE DB AD EF ⋅=⋅四、 直角三角形锐角比1. (徐汇)如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线 杆6米处安置测角仪AB ,在A 处测得电线杆上C 处的仰角为23°,已知测角仪AB 的高为1.5米, 求拉线CE 的长; 【已知5sin 2313︒≈,12cos 2313︒≈,5tan 2312︒≈,结果保留根号】2. (六区)如图,某幢大楼的外墙边上竖直安装着一根旗杆CD ,小明在离旗杆下方大楼底部E 点24米 的点A 处放置一台测角仪,测角仪的高度AB 为1.5米,并在点B 处测得旗杆下端C 的仰角为40°, 上端D 的仰角为45°,求旗杆CD 的长度;(结果精确到0.1米,参考数据:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈)图8A BCDF3. (崇明)计算:2014cos301(cot 45)sin 60︒-+-︒+︒4. (六区)用含30°、45°、60°这三个特殊角的四个三角比及其组合可以表示某些实数,如:12可表示为1sin 30cos60tan 45sin 302=︒=︒=︒⋅︒=…;仿照上述材料,完成下列问题: (1)用含30°、45°、60°这三个特殊角的三角比或其组合表示32,即填空:32= = = =…; (2)用含30°、45°、60°这三个特殊角的三角比,结合加、减、乘、除四种运算,设计一个等式,要求:等式中须含有这三个特殊角的三角比,上述四种运算都至少出现一次,且这个等式的结果等于1,即填空:1=5. (崇明)如图,在Rt ABC ∆中,90C ∠=︒,点D 是BC 边上的一点,6CD =,3cos 5ADC ∠=,2tan 3B =.(1)求AC 和AB 的长; (2)求sin BAD ∠的值.6. (崇明)如图,轮船从港口A 出发,沿着南偏西15︒的方向航行了100海里到达B 处,再从B 处沿着北 偏东75︒的方向航行200海里到达了C 处. (1)求证:AC AB ⊥;(2)轮船沿着BC 方向继续航行去往港口D 处,已知港口D 位于港口A 的正东方向,求轮 船还需航行多少海里.DA BC北AB C东。
2015年上海市初中毕业统一学业考试最新数学模拟试卷
2015年上海市初中毕业统一学业考试最新数学模拟试卷一、选择题(每小题4分,共24分)A .155°B .145°C .110°D .35°3.下列标志中,可以看作是轴对称图形的是( )(A ) (B ) (C ) (D ) 4.如图,在 平行四边形ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F , 则EF ︰FC 等于( )(A )3︰2 (B )3︰1 (C )1︰1 (D )1︰25.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成 绩如下表所示:如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权. 根据四人各自的平均成绩,公司将录取(A )甲 (B )乙 (C )丙 (D )丁B6.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.二、填空题(每小题4分,共48分)7.分解因式:2x2﹣8= .8.在函数中,自变量x的取值范围是_________.9.数学小组五名同学在一次测试中的数学成绩分别为98,96,97,100,99,则该小组五名同学该次测试数学成绩的方差为_________.10.现有一圆心角为120°,半径为9cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则围成的圆锥的高为_________cm.11.如图所示,以边长为2的等边△ABO的顶点O为坐标原点,点B在x轴上,则经过点A 的反比例函数的表达式为_________.12.不等式组的解集为________.13.观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是_________.14.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点B′处,则BE的长为_________.15.从﹣1,1,2这三个数字中,随机抽取一个数,记为a,那么,使关于x的一次函数y=2x+a 的图象与x轴、y轴围成的三角形的面积为,且使关于x的不等式组有解的概率为_________.16.如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为________.17.如图,双曲线y=经过Rt△BOC斜边上的点A,且满足=,与BC交于点D,S△BOD=21,求k= .18.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是。
年徐汇区初三数学一模试卷及答案
2016学年第一学期徐汇区学习能力诊断卷及答案初三数学 试卷 2017.1(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一.选择题(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的】 1.如果y x 32=,那么下列各式中正确的是( B )(A)32=y x ; (B)3=-y x x ; (C )35=+y y x ; (D)52=+y x x . 2.如果一斜坡的坡比是4.2:1,那么该斜坡坡角的余弦值是( D ) (A)512; (B )125; (C )135; (D)1312. 3.如果将某一抛物线向右平移2个单位,再向上平移2个单位后所得新抛物线的表达式是2)1(2-=x y ,那么原抛物线的表达式是( C )(A)2)3(22--=x y ; (B)2)3(22+-=x y ; (C)2)1(22-+=x y ; (D )2)1(22++=x y .4.在ABC ∆中,点E D 、分别在边AC AB 、上,联结DE ,那么下列条件中不能判断ADE ∆和ABC ∆相似的是( D )(A)BC DE //; (B )B AED ∠=∠;(C)AC AB AD AE =; (D) BCACDE AE =. 5.一飞机从距离地面3000米的高空测得一地面监测点的俯角是︒60,那么此时飞机与监测点的距离是( C )(A )6000米; (B)31000米; (C )32000米; (D )33000米.6.已知二次函数3422-+-=x x y ,如果y 随x 的增大而减小,那么x 的取值范围是( A ) (A )1≥x ;ﻩ (B)0≥x ﻩ; (C )1-≥x ; (D)2-≥x .二.填空题(本大题共12题,每题4分,满分48分)7.已知线段9=a ,4=c ,如果线段b 是c a 、的比例中项,那么=b __6___.8.点C 是线段AB 延长线上的点,已知AB a =,B C =b ,那么=AC __b a-__.9.如图1,EF CD AB ////,如果2=AC ,5.5=AE ,3=DF ,那么=BD __712__. 10.如果两个相似三角形的对应中线比是2:3,那么它们的周长比是__2:3___. 11.如果点P 是线段AB 的黄金分割点)(BP AP >,那么请你写出一个关于线段、、BP APAB 之间的数量关系的等式,你的结论是:__ AB BP AP ⋅=2__(答案不唯一).12.在ABC Rt ∆中,︒=∠90ACB ,AB CD ⊥,垂足为D ,如果4=CD ,3=BD ,那么A ∠的正弦值是___53___. 13.正方形ABCD 的边长为3,点E 在边CD 的延长线上,联结BE 交边AD 于F ,如果1=DE ,那么=AF ___49___.14.已知抛物线ax ax y 42-=与x 轴交于点B A 、,顶点C 的纵坐标是2-,那么=a ___21___. 15.如图2,矩形ABCD 的四个顶点正好落在四条平行线上,并且从上到下每两条平行线间的距离都是1,如果4:3:=BC AB ,那么AB 的长是___473___. 16.在梯形ABCD 中,BC AD //,BD AC 、相交于O ,如果ACD BOC ∆∆、的面积分别是9和4,那么梯形ABCD 的面积是___16___. 17.在ABC Rt ∆中,︒=∠90ABC ,5=AC ,3=BC ,CD 是ACB ∠的平分线,将ABC ∆沿直线CD 翻折,点A 落在点E 处,那么AE 的长是___52___.18.如图3,在□ABCD 中,3:2:=BC AB ,点F E 、分别在边BC CD 、上,点E 是边CD的中点,BF CF 2=,︒=∠120A ,过点A 分别作DF AQ BE AP ⊥⊥、,垂足分别为Q P 、,那么AQAP的值是___13392___.图3F ABCDE 图2AB C DA B C DEF图1三.(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分) 19.(本题满分10分)计算:130cos 45tan 45cot 30cot 60sin 2-︒︒+︒-︒-︒.解:原式123113232-+--⨯= 232133-++-=332--=20.(本题共2小题,每题5分,满分10分)将抛物线442+-=x x y 沿y 轴向下平移9个单位,所得新抛物线与x 轴正半轴交于 点B ,与y 轴交于点C ,顶点为D . 求:(1)点D C B 、、坐标; (2)BCD ∆的面积.解:(1)由题意,得新抛物线的解析式为542--=x x y ,∴可得)5,0(-C 、)9,2(-D ;令0=y ,得0542=--x x ,解得11-=x 、52=x ; ∴点B 坐标是)0,5(.(2)过点D 作y DA ⊥轴,垂足为A .∴ADC BOC AOBD BCD S S S S ∆∆∆--=梯形552142219)52(21⨯⨯-⨯⨯-⨯+⨯=15=.21.(本题共2小题,每题5分,满分10分)如图4,已知梯形ABCD 中,BC AD //,4=AB ,3=AD ,AC AB ⊥,AC 平分DCB ∠,过点D 作AB DE //,分别交BC AC 、于E F 、,设AB a =,=b.求:(1)向量(用向量a 、b 表示); (2)B tan 的值.解:(1)∵BC AD //∴ACB DAC ∠=∠;又AC 平分DCB ∠∴ACB DCA ∠=∠;∴DCA DAC ∠=∠;∴DC AD =;∵AB DE //,AC AB ⊥,可得AC DE ⊥; ∴CF AF =;∴CE BE =.∵BC AD //,AB DE //,∴四边形ABED 是平行四边形; ∴AB DE =;∴=a=,=b 2121=;∴b a21+=.(2)∵ACB DCF ∠=∠,︒=∠=∠90BAC DFC ;∴DFC ∆∽BAC ∆;∴21==CA CF BC DC ; 又3==AD CD ,解得6=BC ; 在BAC Rt ∆中,︒=∠90BAC , ∴52462222=-=-=AB BC AC ;∴25452tan ===AB AC B .图4ABC DE F22.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分)如图5,一艘海轮位于小岛C 的南偏东︒60方向、距离小岛120海里的A 处,该海轮从A 处沿正北方向航行一段距离后,到达位于小岛C 北偏东︒45方向的B 处.(1)求该海轮从A 处到B 处的航行过程中与小岛C 之间的最短距离(结果保留根号); (2) 如果该海轮以每小时20海里的速度从B 处沿BC 方向行驶,求它从B 处到达小岛C 的航行时间(结果精确到0.1小时).(参考数据:41.12≈,73.13≈).解:(1)过点C 作AB CD ⊥,垂足为D .由题意,得︒=∠30ACD ;在ACD Rt ∆中,︒=∠90ADC ,∴ACCDACD =∠cos ; ∴3602312030cos =⨯=︒⋅=AC CD (海里). (2)在BCD Rt ∆中,︒=∠90BDC ,︒=∠45DCA ,∴BCCDBCD =∠cos ;∴4.14644.2606602236045cos =⨯≈==︒=CD BC (海里);∴3.732.7204.146≈=÷(小时).答:该海轮从A 处到B 处的航行过程中与小岛C 之间的最短距离是360海里;它从B 处到达小岛C 的航行时间约为3.7小时.23.(本题共2小题,第(1)小题4分,第(2)小题8分,满分12分)如图6,已知ABC ∆中,点D 在边BC 上,B DAB ∠=∠,点E 在边AC 上,满足 CE AD CD AE ⋅=⋅.(1)求证:AB DE //; (2)如果点F 是DE 延长线上一点,且BD 是DF 和AB 的比例中项,联结AF .求证:AF DF =.23.证明:(1)∵CE AD CD AE ⋅=⋅,∴CDADCE AE =; ∵B DAB ∠=∠,∴BD AD =;∴CD BD CE AE =; ∴AB DE //.(2)∵BD 是DF 和AB 的比例中项,∴AB DF BD ⋅=2; 又BD AD =,∴AB DF AD ⋅=2;∴ADABDF AD =; ∵AB DE //,∴BAD ADF ∠=∠; ∴ADF ∆∽DBA ∆; ∴1==BD AD DF AF ; ∴AF DF =.图6ABCD E24.(本题共3小题,每题4分,满分12分)如图7,已知抛物线32++-=bx x y 与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C ,且OC OB =,点D 是抛物线的顶点,直线AC 和BD 交于点E .(1)求点D 的坐标;(2)联结BC CD 、,求DBC ∠的余切值;(3)设点M 在线段CA 延长线上,如果EBM ∆和ABC ∆相似,求点M 的坐标.解:(1)∵抛物线32++-=bx x y 与y 轴交于点C ,∴;又抛物线32++-=bx x y 与x 轴交于点A 和点B (点A 在点B 的左侧), ∵OC OB =;∴)0,3(B ; ∴0339=++-b ,解得2=b ; ∴322++-=x x y ;∴)4,1(D .(2)∵OC OB =,∴︒=∠=∠45OBC OCB ;∵)3,0(C ,)4,1(D ,∴︒=∠45DCy ; ∴︒=︒⨯-︒=∠90452180DCB ; ∴3223cot ===∠DC BC DBC . (3)由322++-=x x y ,可得)0,1(-A .在AOC ∆和BCD ∆中,3==CDBCAO CO , ︒=∠=∠90DCB AOC ,∴AOC ∆∽BCD ∆,∴CBD ACO ∠=∠; 又CBD E OCB ACO ACB ∠+∠=∠+∠=∠,∴︒=∠=∠45OCB E ;当EBM ∆和ABC ∆相似时,已可知CBA E ∠=∠;又点M 在线段CA 延长线上,EBA ACB ∠=∠,∴可得ACB EMB ∠=∠; ∴23==BC MB ;由题意,得直线AC 的表达式为33+=x y ;设)33,(+x x M .∴18)33()3(22=++-x x ,解得561-=x ,02=x (舍去); ∴点M 的坐标是)53,56(--.25.(本题满分14分)如图8,已知ABC ∆中,3==AC AB ,2=BC ,点D 是边AB 上的动点,过点D 作BC DE //,交边AC 于点E ,点Q 是线段DE 上的点,且DQ QE 2=,联结BQ 并延长,交边AC 于点P .设x BD =,y AP =.(1)求y 关于x 的函数解析式及定义域; (4分) (2)当PEQ ∆是等腰三角形时,求BD 的长; (4分) (3)联结CQ ,当CQB ∠和CBD ∠互补时,求x 的值. (6分)解:(1)过点D 作AC DF //.交BP 于点F .∴21==QE DQ PE DF ;又BC DE //,∴1==ABACBD EC ; ∴x BD EC ==;y x PE --=3;∵AC DF //,∴ABBDAP DF =;即323x y y x =--, ∴3239+-=x xy ;定义域为:30<<x . (2)∵BC DE //,∴PEQ ∆∽PBC ∆;∴当PEQ ∆是等腰三角形时,PBC ∆也是等腰三角形;︒1当BC PB =时,ABC ∆∽PBC ∆;∴AC CP BC ⋅=2;即)3(34y -=,解得35=y ,∴353239=+-x x ,解得1912==x BD ;图8QPDBAC E B AC备用图QPDBAC EF︒2当2==BC PC 时,1==y AP ;∴13239=+-x x ,56==x BD ;︒3当PB PC =时,点P 与点A 重合,不合题意.(3)∵BC DE //,∴︒=∠+∠180CBD BDQ ;又CQB ∠和CBD ∠互补,∴︒=∠+∠180CBD CQB ;∴BDQ CQB ∠=∠;∵CE BD =,∴四边形BCED 是等腰梯形;∴CED BDE ∠=∠;∴CED CQB ∠=∠; 又CED ECQ CQB DQB ∠+∠=∠+∠,∴ECQ DQB ∠=∠; ∴BDQ ∆∽QEC ∆;∴EC DQ QE BD =:即222x DQ =,∴2x DQ =,23x DE =; ∵BC DE //,∴AB ADBC DE =;即33223x x -=; 解得 7324254-=x .。
2016届上海徐汇区初三数学一模试卷加答案(完美word版)
2015学年第一学期徐汇区学习能力诊断卷初三数学 试卷 2016.1(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一.选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】 1.下列两个图形一定相似的是(A )两个菱形; (B )两个矩形; (C )两个正方形; (D )两个等腰梯形. 2.如图1,如果EF CD AB ////,那么下列结论正确的是(A )EF CD AE AC =; (B )DF CEBD AC =; (C )CD AB CE AC =; (D ) CEBD DF AC =. 3.将抛物线2)1(22-+=x y 向右平移2个单位,再向上平移2个单位后所得新抛物线的 表达式是(A )2)3(2+=x y ;(B )2)3(+=x y ;(C )2)1(-=x y ;(D )2)1(2-=x y . 4.点G 是ABC ∆的重心,如果5==AC AB ,8=BC ,那么AG 的长是 (A )1; (B )2 ; (C )3; (D ) 4.5.如果从甲船看乙船,乙船在甲船的北偏东︒30方向,那么从乙船看甲船,甲船在乙船的 (A )南偏西︒30方向; (B )南偏西︒60方向; (C )南偏东︒30方向; (D )南偏东︒60方向.6.如图2,梯形ABCD 中,BC AD //,︒=∠90BAC ,AC AB =,点E 是边AB 上一 点,︒=∠45ECD ,那么下列结论错误的是(A )ECB AED ∠=∠; (B )ACE ADE ∠=∠ ; (C )AD BE 2=; (D ) CE BC 2=.二.填空题(本大题共12题,每题4分,满分48分)7.计算:=+-+b a b a2131)32(2__▲___.8.如果32=b a ,那么=+-ba ab __▲___. 9.已知二次函数122-=x y ,如果y 随x 的增大而增大,那么x 的取值范围是__▲___. 10.如果两个相似三角形的面积比是9:4,那么它们对应高的比是__▲___.A BC DEF图1图2A BCDE11.如图3所示,一皮带轮的坡比是4.2:1,如果将货物从地面用皮带轮送到离地10米高的平台,那么该货物经过的路程是__▲___米.12.已知点)4,1(M 在抛物线142+-=ax ax y 上,如果点N 和点M 关于该抛物线的对称 轴对称,那么点N 的坐标是__▲___. 13.点D 在ABC ∆的边AB 上,3=AC ,4=AB ,B ACD ∠=∠,那么AD 的长是_▲_. 14.如图4,在□ABCD 中,6=AB ,4=AD ,BAD ∠的平分线AE 分别交BD 、CD于F 、E ,那么=BFDF__▲___. 15.如图5,在ABC ∆中,BC AH ⊥于H ,正方形DEFG 内接于ABC ∆,点E D 、分别在边AC AB 、上,点F G 、在边BC 上,如果20=BC ,正方形DEFG 的面积为 25,那么AH 的长是__▲___.16.如图6,在ABC Rt ∆中,︒=∠90ACB ,AB CD ⊥,垂足为D ,43tan =∠ACD ,5=AB ,那么CD 的长是__▲___.17.如图7,在梯形ABCD 中,BC AD //,AD BC 2=,点E 是CD 的中点,AC 与BE交于点F ,那么ABF ∆和CEF ∆的面积比是__▲___.18.如图8,在ABC Rt ∆中,︒=∠90BAC ,3=AB ,53cos =B ,将ABC ∆绕着点A 旋转得ADE ∆,点B 的对应点D 落在边BC 上,联结CE ,那么CE 的长是_▲_.三.(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分) 19.(本题满分10分)计算:︒︒+︒︒-︒60cos 45cot 30cos 30tan 245sin 4.20.(本题满分10分)抛物线c x x y +-=22经过点)1,2(.(1)求抛物线的顶点坐标; (5分)(2)将抛物线c x x y +-=22沿y 轴向下平移后,所得新抛物线与x 轴交于B A 、两 点,如果2=AB ,求新抛物线的表达式. (5分)ABCDEF G H 图5 A B CD图6 ABC D E F 图7 ABC D E图8 图3如图9,在ABC ∆中,点E D 、分别在边AC AB 、上,43=AB AD ,3=AE ,1=CE ,6=BC .(1)求DE 的长; (5分)(2)过点D 作AC DF //交BC 于F ,设AB a =,=b,求向量(用向量a 、b 表示). (5分)22.(本题满分10分)如图10,热气球在离地面800米的A 处,在A 处测得一大楼楼顶C 的俯角是︒30,热气球沿着水平方向向此大楼飞行400米后到达B 处,从B 处再次测得此大楼楼顶C 的俯角是︒45,求该大楼CD 的高度. 参考数据:41.12≈,73.13≈.23.(本题满分12分)如图11,在ACB ∆中,BC AC =,点D 在边AC 上,BD AB =,ED BE =,且ABD CBE ∠=∠,DE 与CB 交于点F .求证:(1)BE AD BD ⋅=2; (6分)(2)DF BC BF CD ⋅=⋅. (6分)ABCDE 图9ABCDE F 图11如图12,在AOB Rt ∆中,︒=∠90AOB ,已知点)1,1(--A ,点B 在第二象限,22=OB ,抛物线c bx x y ++=253经过点A 和B . (1)求点B 的坐标; (3分)(2)求抛物线c bx x y ++=253的对称轴; (3分) (3)如果该抛物线的对称轴分别和边BO AO 、的延长线交于点D C 、,设点E 在直线AB 上,当BOE ∆和BCD ∆相似时,直接写出点E 的坐标.(6分)25.(本题满分14分)如图13,四边形ABCD 中,︒=∠60C ,5==AD AB ,8==CD CB ,点Q P 、分别是边BC AD 、上的动点,AQ 和BP 交于点E ,且BAD BEQ ∠-︒=∠2190,设P A 、两点的距离为x .(1)求BEQ ∠的正切值; (4分) (2)设y PEAE=,求y 关于x 的函数解析式及定义域; (5分) (3)当AEP ∆是等腰三角形时,求Q B 、两点的距离. (5分)DB AC QPE图132015学年第一学期徐汇区初三年级数学学科 期终学习能力诊断卷参考答案和评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.C ; 2.B ; 3.D ; 4.B ; 5.A ; 6.D . 二.填空题:(本大题共12题,满分48分)7.b a 213311+; 8.51; 9.0≥x ; 10.3:2; 11.26; 12.)4,3(; 13.49; 14.32; 15.320; 16.512; 17.1:6; 18.524.三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19. 解:原式21123332224+⨯⨯-⨯=;……………………………………………(5分)2122+-=;……………………………………………………………(3分) 122+=.…………………………………………………………………(2分) 20.解:(1)由题意,得144=+-c ,解得1=c ;…………………………………(1分)∴抛物线的解析式为122+-=x x y ;……………………………………(1分)即2)1(-=x y ;……………………………………………………………(1分) ∴顶点坐标是)0,1(.………………………………………………………(2分) (2)设平移后的抛物线解析式是n x x y -+-=122;………………………(1分)∴ 该抛物线的对称轴是直线1=x ;………………………………………(1分) 又2=AB ,由抛物线的对称性可得)0,0(A 、)0,2(B ;………………(1分) ∴01=-n ,解得1=n ;…………………………………………………(1分) ∴新抛物线的表达式是x x y 22-=.……………………………………(1分)21.解:(1)∵3=AE ,1=CE ,∴43=AC AE ;……………………………………(1分)又43=AB AD ,∴ABADAC AE =; …………………………………………(1分) ∴BC DE //.∴ ABADBC DE =……………………………………………(1分)即436=DE ,解得29=DE .……………………………………………(2分)(2)∵AC DF //,∴ABBDAC DF =;……………………………………………(1分) 又43=AB AD ,∴41=AC DF ,即AC DF 41=;……………………………(2分) ∵b a+=,∴b a 4141+=. ……………………………………(2分)22.解: 分别延长DC AB 、交于点E . ……………………………………………(1分)∵AB 与地面平行,DC 与地面垂直,∴AB DE ⊥,∴︒=∠90E . …(1分)在CEB Rt ∆中,︒=∠45EBC ,∴︒=∠45ECB ,∴BE EC =;……(1分) 设x CE =,则x BE =,400+=x AE . ………………………………(1分) 在AEC Rt ∆中,︒=∠90E ,∴AEECCAE =∠tan ; ……………………(1分) 即40030tan +=︒x x,解得)13(200+=x ;…………………………(2分)即546)173.1(200)13(200=+⨯≈+=CE (米) ;……………………(2分) ∴254546800=-=CD (米); ……………………………………………(1分) 答: 大楼CD 的高度254米. 23.证明:(1)∵BC AC =,∴ABC A ∠=∠; ……………………………………(1分) ∵ED BE =,∴DBE BDE ∠=∠;…………………………………(1分)∵ABD CBE ∠=∠,∴CBD ABD CBD CBE ∠+∠=∠+∠, 即ABC DBE ∠=∠,∴A BDE ∠=∠;∴BED ∆∽BCA ∆ ;……(1分) ∵BD AB =,∴BDA A ∠=∠;∴ABC BDA ∠=∠;又A A ∠=∠,∴ABD ∆∽BCA ∆;…………………………………(1分) ∴BED ∆∽ADB ∆ ;……………………………………………………(1分) ∴BEBD BD AD =,即BE AD BD ⋅=2.…………………………………(1分) (2)∵ABD ∆∽BCA ∆,∴C ABD ∠=∠;………………………………(1分) 又ABD CBE ∠=∠,∴C CBE ∠=∠;……………………………(1分)∴BE AC //,∴EFDFBE DC =;…………………………………………(1分) ∵BED ∆∽BCA ∆,∴C E ∠=∠,1==ABBDBC BE ;………………(1分)∴CBE E ∠=∠,∴EF BF =;………………………………………(1分)又BC BE =,∴BFDFBC DC =;…………………………………………(1分) 即DF BC BF CD ⋅=⋅.24.解:(1)分别过点B A 、作y 轴的垂线,垂足分别是D C 、.可得ACO ∆∽ODB ∆,∴OAOBAC OD OC BD ==;∵)1,1(--A ,∴2=OA ; ∴2,2==OD BD ;∴)2,2(-B …………………………………………(3分)(2)由题意,可得⎪⎪⎩⎪⎪⎨⎧=+--=+-;22512;153c b c b ……………………………………………(1分) 解得⎪⎪⎩⎪⎪⎨⎧-=-=;514;56c b ……………………………………………………………(1分) ∴51456532--=x x y ; ∴对称轴是直线1=x .……………………………………………………(1分) (3)点)0,34(-E 或)58,54(--E .…………………………………………(各3分)25.解:(1)联结BD AC 、交于点O .…………………………………………………(1分)∴AD AB =,∴BAD BAD ABD ADB ∠-︒=∠-︒=∠=∠21902180,又BAD BEQ ∠-︒=∠2190,∴ADB BEQ ∠=∠; ∵AD AB =,CD CB =,∴BD AC ⊥,DO BO =; ∵︒=∠60BCD ,∴BCD ∆是等边三角形,∴8==BC BD ; 在AOD Rt ∆中,︒=∠90AOD ,∴3452222=-=-=DO AD AO ,∴43tan ==∠DO AO ADO ; ∴43tan =∠BEQ . ………………………………………………………(3分)(2)如图,联结BD 交AQ 于F .∵ADB BEQ AEP ∠=∠=∠,DAF EAP ∠=∠, ∴AEP ∆∽ADF ∆,∴DFADPE AE =;…………………(1分) ∵ABD ADB BEQ ∠=∠=∠,AFB BFE ∠=∠; ∴BFE ∆∽AFB ∆ ;∴BAF FBE ∠=∠;∴PBD ∆∽FAB ∆ ;∴BDPDAB BF =; 即855x BF -=,得8525x BF -=;∴85398xBF DF +=-=;…(2分) ∴39540+=x y ,定义域是50<≤x .…………………………………(2分)DB ACQ PE F(3)如图,联结BD 交AQ 于F .∵AEP ∆∽ADF ∆,当AEP ∆是等腰三角形时; ∴ADF ∆也是等腰三角形. 分情况讨论:︒1 当AD AF =时,0=BQ ,但此时点E Q B 、、重合,BEQ ∠不存在,不合题意,舍去;……………………………………(1分)︒2 当DF AF =时,解得4825〈=DF ,此时AF 与边BC 没有交点(即点Q 不在边BC 上),不合题意,舍去;…………………………………(2分)︒3 当5==AD DF 时,得3=BF ,此时1=y ,∴51=x ,符合题意; 联结AC 交BD 于O ,过点Q 作BF QG ⊥于G ;可得3tan =∠BFQ , 因此,解得339-=BQ ,即Q B 、两点的距离是339-.…(2分)综合︒1、︒2、︒3,当AEP ∆是等腰三角形时,Q B 、两点的距离是339-.古今名言敏而好学,不耻下问——孔子业精于勤,荒于嬉;行成于思,毁于随——韩愈 兴于《诗》,立于礼,成于乐——孔子 己所不欲,勿施于人——孔子 读书破万卷,下笔如有神——杜甫 读书有三到,谓心到,眼到,口到——朱熹 立身以立学为先,立学以读书为本——欧阳修 读万卷书,行万里路——刘彝黑发不知勤学早,白首方悔读书迟——颜真卿 书卷多情似故人,晨昏忧乐每相亲——于谦DB ACQ PEF书犹药也,善读之可以医愚——刘向莫等闲,白了少年头,空悲切——岳飞发奋识遍天下字,立志读尽人间书——苏轼鸟欲高飞先振翅,人求上进先读书——李苦禅立志宜思真品格,读书须尽苦功夫——阮元非淡泊无以明志,非宁静无以致远——诸葛亮熟读唐诗三百首,不会作诗也会吟——孙洙《唐诗三百首序》书到用时方恨少,事非经过不知难——陆游问渠那得清如许,为有源头活水来——朱熹旧书不厌百回读,熟读精思子自知——苏轼书痴者文必工,艺痴者技必良——蒲松龄声明访问者可将本资料提供的内容用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律的规定,不得侵犯本文档及相关权利人的合法权利。
上海市2015年初中毕业统一学业考试数学试题(附答案)
上海市2015年初中毕业统一学业考试数学(本试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题共24分)一、选择题(本大题共6小题,每小题4分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列实数中,是有理数的为()A.B.C.πD.0答案:D 【解析】本题考查有理数的概念,难度较小.整数与分数统称有理数,0是整数,所以有理数为D,故选D.2.当a>0时,下列关于幂的运算正确的是()A.a0=1 B.a-1=-a C.(-a)2=-a2D.答案:A 【解析】本题考查幂的相关运算,解题关键在于理解相关运算法则,难度较小.a0=1(a≠0),;;(-a)2=a2;,所以正确的只有A,故选A.3.下列y关于x的函数中,是正比例函数的为()A.y=x2B.C.D.答案:C 【解析】本题考查正比例函数的概念,难度较小.A选项中,y是关于x的二次函数;B选项中,y是关于x的反比例函数;C选项中,y是关于x的正比例函数;D选项中,y是关于x的一次函数,故选C.4.如果一个正多边形的中心角为72°,那么这个正多边形的边数是()A.4 B.5 C.6 D.7答案:B 【解析】本题考查正多边形中角的相关计算,难度较小.360°÷72°=5,所以此多边形为正五边形,故选B.5.下列各统计量中,表示一组数据波动程度的量是()A.平均数B.众数C.方差D.频率答案:C 【解析】本题考查统计量的特征,难度较小.平均数、众数是表示数据集中趋势的统计量,方差是衡量一组数据的波动程度的量,频率是表示数据出现次数的统计量,故选C.6.如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D.要使四边形OACB为菱形,还需添加一个条件,这个条件可以是()A.AD=BDB.OD=CDC.∠CAD=∠CBDD.∠OCA=∠OCB答案:B 【解析】本题考查菱形的判定条件、圆中的相关概念及性质,难度较小.若使四边形为菱形,只需要证明两条对角线互相垂直平分即可.此题的条件中已有OC⊥AB,根据圆的性质可以证明AD=BD,只要添加的条件能够证明CD=OD即可,故选B.【易错分析】由于对菱形的判定方法掌握不准确而错选A,C,D.第Ⅱ卷(非选择题共126分)二、填空题(本大题共12小题,每小题4分,共48分.请把答案填在题中的横线上)7.计算:|-2|+2=________.答案:4 【解析】本题考查有理数的计算,解题的关键在于绝对值的化简,难度较小.原式=2+2=4.8.方程的解是________.答案:2 【解析】本题考查含二次根式的方程的解法,难度较小.两边平方化为整式方程3x-2=4,解得x=2,经检验x=2是方程的解.9.如果分式有意义,那么x的取值范围是________.答案:x≠-3 【解析】本题考查分式有意义的条件,难度较小.分式有意义的条件是分母不为0,所以x+3≠0,解得x≠-3.10.如果关于x的一元二次方程x2+4x-m=0没有实数根,那么m的取值范围是__________.答案:m<-4 【解析】本题考查一元二次方程根的讨论,难度较小.一元二次方程没有实数根,则Δ=b2-4ac=42+4m<0,解得m<-4.11.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是,如果某一温度的摄氏度数是25℃,那么它的华氏度数是________℉.答案:77 【解析】本题考查华氏温度与摄氏温度的换算,根据两者间的函数关系式代入计算即可,难度较小.把x=25代入函数解析式计算即可,.12.如果将抛物线y=x2+2x-1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是________.答案:y=x2+2x+3 【解析】本题考查二次函数的图象的平移,难度较小.解题的关键在于确定二次函数与y轴交点的纵坐标,两个函数交点纵坐标的差即为平移的距离.原抛物线与y轴的交点为(0,-1),新交点坐标为(0,3),相差4个点,所以需要将原抛物线向上平移4个单位,所得到的关系式为y=x2+2x-1+4=x2+2x+3.13.某校学生会倡议双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加首次活动的概率是________.答案:【解析】本题考查概率的计算,难度较小.从50位同学中随机抽取7位同学,小杰被抽到的概率是.14.已知某校学生“科技创新社团”成员的年龄与人数情况如下表所示:那么“科技创新社团”成员年龄的中位数是________岁.答案:14 【解析】本题考查中位数的确定,难度较小.中位数为一组数据从小到大排列位于最中间的一个数或两个数的平均数,”科技创新社团”共有53人,位于最中间的是第27人,年龄位于第27位的是14岁,所以成员年龄的中位数是14岁.15.如图,已知在△ABC中,D,E分别是边AB,边AC的中点,,那么向量用向量m,n表示为________.答案:【解析】本题考查用向量表示线段,难度中等.向量与向量的方向不同,所以D点的方向应为负,点D处于的中点,所以向量的起点是,点E处于的中点,所以向量的终点是,所以向量用向量m,n表示为.16.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=________度.答案:22.5°【解析】本题考查正方形的性质及三角形全等的判定,难度中等.因为EF ⊥AC于点E,所以∠AEF=∠ADF=90°,因为AE=AD,AF=AF,所以△AEF≌△ADF,所以∠DAF=∠EAF.因为∠DAC=45°,所以∠DAF=22.5°.17.在矩形ABCD中,AB=5,BC=12,点A在⊙B上,如果⊙D与⊙B相交,且点B 在⊙D内,那么⊙D的半径长可以等于________(只需写出一个符合要求的数).答案:14(答案不唯一,任意大于13且小于18的数均可)【解析】本题考查圆与圆,点与圆的位置关系,难度较大.由于⊙B过点A,所以⊙B的半径为5,由勾股定理得BD=13,DE=18.由于⊙D与⊙B相交,且点B在⊙D内,所以⊙D的半径r满足13<r<18.18.已知在△ABC中,AB=AC=8,∠BAC=30°,将△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处,延长线段AD,交原△ABC的边BC的延长线于点E,那么线段DE的长等于________.答案:【解析】本题考查三角形中长度的相关计算,难度中等.作DF⊥CE于点F,由题意知∠BAC=∠DAC=30°,因为AB=AC,所以∠B=∠ACB=∠ACD=75°,所以∠ECD=30°,所以∠E=45°,△ACE∽△CDE,设EF=DF=x,则,,CD=2x.所以,所以,解得,所以.三、解答题(本大题共7小题,共78分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分10分)先化简,再求值:,其中.答案:(本小题满分10分)本题考查分式的化简求值,难度较小.解:.当时,.20.(本小题满分10分)解不等式组:并把解集在数轴上表示出来.答案:(本小题满分10分)本题考查一元一次不等式组的解法及在数轴上表示不等式组的解集,难度较小.解:由4x>2x-6得x>-3.由得x≤2,∴原不等式组的解集是-3<x≤2.21.(本小题满分10分)已知:如图:在平面直角坐标系xOy中,正比例函数的图象经过点A,点A的纵坐标为4,反比例函数的图象也经过点A,第一象限内的点B在这个反比例函数的图象上,过点B作BC∥x轴,交y轴于点C,且AC=AB.求:(1)这个反比例函数的解析式;(2)直线AB的表达式.答案:(本小题满分10分)本题考查一次函数与反比例函数的应用,涉及数形结合思想及线段垂直平分线的性质,难度中等.解:(1)∵正比例函数的图象经过点A,点A的纵坐标为4,∴点A的坐标是(3,4).∵反比例函数的图象经过点A,∴m=12,∴反比例函数的解析式为.(2)∵AC=AB,∴点A在线段BC的中垂线上,∵BC∥x轴,点C在y轴上,点A的坐标是(3,4),∴点B的横坐标为6.∵点B在反比例函数的图象上,∴点B的坐标是(6,2).设直线AB的表达式为y=kx+b,∴∴直线AB的表达式为.22.(本小题满分10分)如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼.已知点A到MN的距离为15米,BA的延长线与MN相交于点D,且∠BDN=30°,假设汽车在高架道路上行驶时,周围39米以内会受到噪音的影响.(1)过点A作MN的垂线,垂足为点H.如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排居民楼,那么此时汽车与点H的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板.当汽车行驶到点Q时,它与这一排居民楼的距离QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到1米)(参考数据:)答案:(本小题满分10分)本题考查通过解直角三角形解决实际问题,解题的关键在于根据题意确定需要求解的直有三角形,难度中等.解:(1)连接AP,由题意得AH⊥MN,AH=15,AP=39.在Rt△APH中,由勾股定理得PH=36.答:此时汽车与点H的距离为36米.(2)由题意可知,PQ段高架道路旁需要安装隔音板,QC⊥AB,∠QDC=30°,QC=39.在Rt△DCQ中,DQ=2QC=78.在Rt△ADH中,.∴PQ=PH-DH+DQ≈114-15×1.7=88.5≈89.答:高架道路旁安装的隔音板至少需要89米长.23.(本小题满分12分)已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,连接DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:BD·CE=CD·DE.答案:(本小题满分12分)本题考查平行四边形的性质及三角形相似的判定及性质,难度中等.证明:(1)∵OE=OB,∴∠OBE=∠OEB.∵平行四边形ABCD的对角线相交于点O,∴OB=OD.∴OE=OD,∴∠ODE=∠OED,在△BDE中,∵∠OBE+∠OEB+∠OED+∠ODE=180°,∴∠BED=90°,即DE⊥BE.(2)∵OE⊥CD,∴∠CDE+∠DEO=90°.又∵∠CEO+∠DEO=90°,∴∠CDE=∠CEO.∵∠OBE=∠OEB,∴∠OBE=∠CDE.∵∠BED=∠DEC,∴△DBE∽△CDE,∴,∴BD·CE=CD·DE.24.(本小题满分12分)已知在平面直角坐标系xOy中(如图),抛物线y=ax2-4与x轴的负半轴相交于点A,与y轴相交于点B,,点P在抛物线上,线段AP与y轴的正半轴相交于点C,线段BP与x轴相交于点D,设点P的横坐标为m.(1)求这条抛物线的表达式;(2)用含m的代数式表示线段CO的长;(3)当时,求∠PAD的正弦值.答案:(本小题满分12分)本题考查二次函数,相似三角形,三角函数的综合应用,解题关键在于根据题意确定相似三角形,难度较大.解:(1)由抛物线y=ax2-4与y轴相交于点B,得点B的坐标为(0,-4).∵点A在x轴的负半轴上,,∴点A的坐标为(-2,0).∵抛物线y=ax2-4与x轴相交于点A,∴a=1,∴这条抛物线的表达式为y=x2-4.(2)∵点P在抛物线上,它的横坐标为m,∴点P的坐标为(m,m2-4).由题意,得点P在第一象限内,因此m>0,m2-4>0.过点P作PH⊥x轴,垂足为点H.∵CO∥PH,∴,∴,解得CO=2m-4.(3)过点P作PG⊥y轴,垂足为点G.∵OD∥PG,∴,∴,即,在Rt△ODC中,∵,∴,解得m=3或m=1(舍去),∴CO=2.在Rt△AOC中,,∴,即∠PAD的正弦值为.25.(本小题满分14分)已知:如图,AB是半圆O的直径,弦CD∥AB,动点P,Q分别在线段OC,CD上,且DQ=OP,AP的延长线与射线OQ相交于点E,与弦CD相交于点F(点F与点C,D不重合),AB=20,.设OP=x,△CPF的面积为y.(1)求证:AP=OQ;(2)求y关于x的函数解析式,并写出它的定义域;(3)当△OPE是直角三角形时,求线段OP的长.答案:(本小题满分14分)本题考查圆与全等三角形,相似三角形,三角函数,直角三角形的判定及性质,涉及分类讨论,数形结合等多种思想方法,难度较大.解:(1)证明:连接OD.∵CD∥AB,∴∠C=∠AOP.∵OC=OD,∴∠C=∠D,∴∠AOP=∠D.又∵AO=OD,OP=DQ,∴△AOP≌△ODQ,∴AP=OQ.(2)∵CD∥AB,∴∠CFP=∠A.∵△AOP≌△ODQ,∴∠A=∠DOQ,∴∠CFP=∠DOQ.又∵∠C=∠D,∴△CFP∽△DOQ,∴.过点O作OH⊥CD,垂足为点H.∵,,∴CH=8,OH=6,CD=16.∴,∵CP=10-x,∴,∴所求函数的解析式为,即,定义域为.(3)∵CD∥AB,∴∠EOA=∠DQO.又∵∠A=∠DOQ,∴∠AEO=∠D≠90°.∴当△OPE是直角三角形时,只可能是∠POE=90°或∠OPE=90°.①∠POE=90°时,在Rt△OCQ中,,∴.∵CD=16,∴.∵,∴不合题意,舍去.②当∠OPE=90°时,得∠DQO=∠OPA=90°,∴点O为CD的中点,∴.综上所述,当△OPE是直角三角形时,线段OP的长是8.综评:本套试卷难度适中,知识覆盖面广,覆盖数与代数,空间与图形,统计与概率,综合与实践四大领域,能正确反映课程标准对考生“四基”“四能”的考查要求,试题多数为常规题,从而让不同的考生都能获得比较满意的成绩,个别试题具有一定的难度,用于区分不同层次考生对数学知识的掌握程度,具有较好的区分度.本卷中的特色题:反映函数与方程思想的题有第11,25题;反映数形结合思想的题有第15,16,17,21,22,24,25题;反映分类讨论思想的题有第25题;与实际生活联系紧密的试题有第11,13,14,22题;较难的题有第18,24,25题.。
上海市徐汇区2015年中考一模(即期末)数学试卷及答案
徐汇区2015年数学一模一. 选择题1. 将抛物线22y x =-向右平移一个单位,再向上平移2个单位后,抛物线的表达式为( ) A. 22(1)2y x =--+; B. 22(1)2y x =---; C. 22(1)2y x =-++; D. 22(1)2y x =-+-;2. 如图,平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果:BE BC =2:3,那么下列各式错误的是( )A.2BE EC =; B. 13EC AD =; C.23EF AE =; D. 23BF DF =;3. 已知Rt △ABC 中,90C ∠=︒,CAB α∠=,7AC =,那么BC 为( ) A. 7sin α; B. 7cos α; C. 7tan α; D. 7cot α;4. 如图,在四边形ABCD 中,AD ∥BC ,如果添加下列条件,不能使得△ABC ∽△D C A 成立的是( )A. BAC ADC ∠=∠;B. B ACD ∠=∠;C. 2AC AD BC =⋅; D.DC ABAC BC=; 5. 已知二次函数222y ax x =-+(0a >),那么它的图像一定不经过( ) A. 第一象限; B. 第二象限; C. 第三象限; D. 第四象限; 6. 如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,且DE ∥BC ,如果:1:4AE EC =, 那么:ADE BEC S S ∆∆=( )A. 1:24;B. 1:20;C. 1:18;D. 1:16;二. 填空题7. 如果53a b =,那么a b a b-+的值等于 ; 8. 抛物线2(1)2y x =-+的顶点坐标是 ;9. 二次函数245y x x =--的图像的对称轴是直线 ; 10. 计算:cot 30sin 60︒-︒= ;11. 在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为 m ;12. 若点1(3,)A y -、2(0,)B y 是二次函数22(1)1y x =--图像上的两点,那么1y 与2y 的 大小关系是 (填12y y >,12y y =或12y y <);13. 如图,若1l ∥2l ∥3l ,如果6DE =,2EF =, 1.5BC =,那么AC = ;14. 如图是拦水坝的横断面,斜坡AB 的高度为6米,斜面的坡比为1:2,则斜坡AB 的长为 米(保留根号);15. 如图,正方形ABCD 被分割成9个全等的小正方形,P 、Q 是其中两个小正方形的顶 点,设AB a =,AD b =,则向量PQ = (用向量a 、b 来表示); 16. 如图,△ABC 中,90BAC ∠=︒,G 点是△ABC 的重心,如果4AG =,那么BC 的长为 ;17. 如图,已知4tan 3O =,点P 在边OA 上,5OP =,点M 、N 在边OB 上,PM PN =, 如果2MN =,那么PM = ;18. 如图,在△ABC 中,90ABC ∠=︒,6AB =,8BC =,点M 、N 分别在边AB 、BC上,沿直线MN 将△ABC 折叠,点B 落在点P 处,如果AP ∥BC 且4AP =,那么BN = ;三. 解答题19. 已知二次函数2y ax bx c =++(a 、b 、c 为常数,且0a ≠)经过A 、B 、C 、D 四个点,其中横坐标x 与纵坐标y 的对应值如下表:(1(2)求△ABD 的面积;20. 如图,在等腰梯形ABCD 中,AD ∥BC ,AB DC =,AC 与BD 交于点O ,:1:2AD BC =;(1)设BA a =uu r r ,BC b =u u u r r ,试用a r ,b r 表示BO uu u r ;(2)先化简,再求作:3(2)2()2a b a b +-+r rr r (直接作在原图中)21. 如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米处安置测角仪AB ,在A 处测得电线杆上C 处的仰角为23°,已知测角仪AB 的高为1.5米,求拉线CE 的长; 【已知5sin 2313︒≈,12cos 2313︒≈,5tan 2312︒≈,结果保留根号】22. 如图,MN 经过△ABC 的顶点A ,MN ∥BC ,AM AN =,MC 交AB 于D ,NB 交AC 于E ;(1)求证:DE ∥BC ;(2)联结DE ,如果1DE =,3BC =,求MN 的长;23. 已知菱形ABCD 中,8AB =,点G 是对角线BD 上一点,CG 交BA 的延长线于点F ; (1)求证:2AG GE GF =⋅; (2)如果12DG GB =,且AG BF ⊥,求cos F ;24. 已知如图,抛物线21:4C y ax ax c =++的图像开口向上,与x 轴交于点A 、B (A 在B 的左边),与y 轴交于点C ,顶点为P ,2AB =,且OA OC =; (1)求抛物线1C 的对称轴和函数解析式;(2)把抛物线1C 的图像先向右平移3个单位,再向下平移m 个单位得到抛物线2C ,记顶点为M ,并与y 轴交于点(0,1)F -,求抛物线2C 的函数解析式;(3)在(2)的基础上,点G 是y 轴上一点,当△APF 与△FMG 相似时,求点G 的坐标;25. 如图,梯形ABCD 中,AD ∥BC ,对角线AC BC ⊥,9AD =,12AC =,16BC =,点E是边BC 上的一个动点,EAF BAC ∠=∠,AF 交CD 于点F ,交BC 延长线于点G ,设B E x =;(1)试用x 的代数式表示FC ; (2)设FGy EF=,求y 关于x 的函数关系式,并写出定义域; (3)当△AEG 是等腰三角形时,直接写出BE 的长;参考答案1、A2、C3、C4、D5、C6、B7、14 8、(1,2) 9、x =2 10 11、15 12、12y y 13、6 14、 15、16、12 17 18、19、20、21、22、23、24、25、所以,BE =7。
上海中考数学一模2015年25题汇编(含答案)
K 満分H分*茎中第(1)小・4拳・0时・55分)(1)矩形AJ3CD 中.ZABCF90Sm = io.\ AF±(T.且点F恳线敕CE的申点kAAE = AC-10.Rl^CBE 中・taiWECB -豆亡=寺./K 口TJJ? - 2710.R T ACBE中,GF«CF• lanZBCB* 寸岂(2)■/ ZABC = ZC*BE = 90a, ^LAGH二Z仇沪.fJG HE AH HC中形ABCD 中*AD HC,(1分》(1分)(1分〉(1分〉(1廿)<1知(I炉2015年上海一模25题集锦1、(2015年一模黄浦25题)25.在矩形ABCD中,= BC = 6.对谢线AC.交于点O,点疋在AB延长线上,联结CE, AF丄CE t分别交线段CE、边BC、对角线*D于点F、G. H(点F不与点C\ E重合};(D当点F是线段CE的中点时.求GF的长;(2〉设BE = x, OH = y.求y关于兀的函数解析式,并写出它的定义域;(3) f flH=BG时山丹=人0昇・5+了 = 6*即;二丫 "斛縛工二3.2' gGH=HG 时MD=AH・过点A作从f丄DH・垂足为H.5 * yRtACBE中^cosZADK = 2•二—j— =3 6 5将"粧晋代入⑴解密忑=£3* ^GH = BHBt.DH-AH- A点H ftAD ®fi平分线上. 此时点F与点C 3tf二書(舍)嫌上所迷BE的K<3或#.2、(2015年一模徐汇25题).如图,梯形ABCD中,AD // BC ,对角线AC _ BC , AD =9 ,AC =12, BC =16,点E是边BC上的一个动点,-EAF - BAC , AF交CD于点F ,交BC 延长线于点G,设BE = x ;(1)试用x的代数式表示FC ;(2)设FGEF-y,求y关于x的函数关系式,并写出定义域;BE的长;[来源学科网]25 (1分) (2分)(1分)BGE3^\DFco\GAl :7当A是等農三角形若,&\DF 也为等腰三角形动点(D 和A 、B所以,BE = 7二不重合),过 D 作DE // BC 交AC 于E ,并以DE 为边向BC 一侧作正方形 DEFG ,设AD = x3( 2015年一模宝山26题).如图在△ ABC 中,AB=BC=10,AC =牛、5,D 为边AB 上一(3) = = t ZG = Zl AD当AF = DF 时,点F 为CD 中点3 Cl = DI0 <16林理得、V100作AH £ DF 于",易得DH m"丸 EEAiUM':.^CAr = ^tiAE* AB UL … 20 A-■ ■—r J » 1■AC - r e 12 ~ rcf C- -A5由弘I HEs 川Ci'得,搜1 £卜'5山报:,^Ai'E二90AF AC 123LI ~ H< ~16~ 斗3 15 25 CF -A =—、 -V -——5 22 当 Al )二w 时, CF =3/. Cl = —A = 6 ? A 5=10(1) 请用X的代数式表示正方形DEFG的面积,并求出当边FG落在BC边上时的x的值;(2) 设正方形DEFG与厶ABC重合部分的面积为y,求y关于x的函数及其定义域;(3) 点D在运动过程中,是否存在D、G、B三点中的两点落在以第三点为圆心的圆上的情况?若存在,请直接写出此时AD的值,若不存在,则请说明理由;4、( 2015年一模崇明25题)(本题满分14分,其中第(1)小题5分,第(2)小题5分,第(3)小题4 分)已知在ABC中,AB =AC =5,BC =6,O为边AB上一动点(不与A、B重合),以0为圆心0B为半径的圆交BC于点D,设OB =x,DC =y .(1)如图1,求y关于x的函数关系式及定义域;(2)当O 0与线段AC有且只有一个交点时,求x的取值范围;(3)如图2,若O O与边AC交于点E (有两个交点时取靠近当DEC与ABC相似时,求x的值.25, Hfd)如图1联站「AB 亚片GGB H QD代= XODB:.or>//A.c* BO_Bp.王-些'' 5 ' 6「* BD- gjr-"I■工+ 6((KX5)(2)如團氛肖与线段A匚有且只育一亍交点时①®0与播2梱切时作OH_LAC.HK丄AGAM丄BC垂圧井劃为H^K y M,JS^OH#BK.AM=4— -BC・AM-A「FK' - —1g-_'r.BK■習3也-0H…丽-賦C的交点),联结DE ,C(备用图ir C1分1分B(备用图•(图£}(2> A ftGO 内,〔不SQO 内时内:.OB>OA”"”*>■5 一 x•">4•rc 不在£50内 /-OB<AB1分,\y<X<5炀匕当工二器或号VY5时◎。
2015年上海市徐汇区中考数学一模试卷
2015年上海市徐汇区中考数学一模试卷参考答案与试题解析一、选择题(共6小题,每小题6分,满分36分)1.(6分)(2015•徐汇区一模)将抛物线y=﹣2x2向右平移一个单位,再向上平移2个单位后,抛物线的表达式为()A.y=﹣2(x﹣1)2+2 B.y=﹣2(x﹣1)2﹣2C.y=﹣2(x+1)2+2 D.y=﹣2(x+1)2﹣2【考点】:函数及其相关概念M411二次函数的的图象、性质M442【难易度】:容易题.【分析】:抛物线y=﹣2x2的顶点坐标为(0,0),点(0,0)向右平移一个单位,再向上平移2个单位后得到对应点的坐标为(1,2),所以平移后抛物线的表达式为y=﹣2(x﹣1)2+2.【解答】:答案A.【点评】:本题考查了二次函数的图象与几何变换,难度不大,熟知函数平移“上加下减,左加右减”的法则是解答此题的关键.2.(6分)(2015•徐汇区一模)如图,▱ABCD中,E是边BC上的点,AE交BD于点F,如果BE:BC=2:3,那么下列各式错误的是()A.=2 B.=C.=D.=【考点】:平行线分线段成比例定理M33I平行四边形(包括矩形、菱形、正方形)的判定与性质M344【难易度】:容易题【分析】:由平行四边形的性质及平行线分线段成比例逐项判断有.因为BE:BC=2:3,所以==2,故A正确;因为四边形ABCD为平行四边形,所以AD∥BC,AD=BC,则==,故B正确;因为AD∥BE,所以===,故C不正确;所以===,故D正确;【解答】:答案C.【点评】:本题主要考查平行四边形的性质及平行线分线段成比例,是中考常见的考点,难度不大,熟知平行线分线段所得线段对应成比例是解答本题的关键.3.(6分)(2015•徐汇区一模)已知Rt△ABC中,∠C=90°,∠CAB=α,AC=7,那么BC 为()A.7sinαB.7cosαC.7tanαD.7cotα【考点】:锐角的三角比的概念(正切、余切、正弦、余弦)M361解直角三角形M364【难易度】:容易题【分析】:由题意画出图形,因为Rt△ABC中,∠C=90°,∠CAB=α,AC=7,所以tanα==,则BC=tanα.【解答】:答案C.【点评】:本题考查锐角三角函数的定义及其运用,是中考的常规题目,难度不大,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.4.(6分)(2015•徐汇区一模)如图,在四边形ABCD中,AD∥BC,如果添加下列条件,不能使得△ABC∽△DCA成立的是()A.∠BAC=∠ADC B.∠B=∠ACD C.AC2=AD•BC D.=【考点】:平行四边形(包括矩形、菱形、正方形)的判定与性质M344相似三角形性质、判定M33M;【难易度】:容易题【分析】:由题意,因为AD∥BC,所以∠DAC=∠BCA,则当∠BAC=∠ADC时,△ABC∽△DCA;当∠B=∠ACD时,△ABC∽△DCA;当=,即AC2=AD•BC时,△ABC∽△DCA;当=时,不能判断△ABC∽△DCA.【解答】:答案D.【点评】:本题考查了相似三角形的性质与判定,属于基础题,是中考考查的热点,难度不大,需要熟记:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.5.(6分)(2015•徐汇区一模)已知二次函数y=ax2﹣2x+2(a>0),那么它的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【考点】:二次函数的的图象、性质M442【难易度】:中等题【分析】:因为二次函数y=ax2﹣2x+2(a>0)的对称轴为直线x=﹣=﹣=>0,所以其顶点坐标在第一或四象限,又当x=0时,y=2,所以抛物线一定经过第二象限,则此函数的图象一定不经过第三象限.【解答】:答案C.【点评】:本题考查了二次函数的图像与性质,是中考必考的内容,难度适中,熟知二次函数的对称轴方程是解答此题的关键.6.(6分)(2015•徐汇区一模)如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,如果AE:EC=1:4,那么S△ADE:S△EBC=()A.1:24 B.1:20 C.1:18 D.1:16【考点】:相似三角形性质、判定M33M【难易度】:较难题【分析】:因为=,所以=,则S△ABE=S△EBC,又DE∥BC,所以==,则=,所以S△BDE=4S△ADE,又S△BDE=S△ABE﹣S△ADE,而4S△ADE=S△EBC﹣S△ADE,所以=,【解答】:答案B.【点评】:本题考查了平行线分线段成比例的性质以及三角形的面积,难度较大,熟知相似三角形的面积比等于相似比的平方、同高三角形的面积比即为底的比是解答本题的关键.二、填空题(共11小题,每小题4分,满分44分)7.(4分)(2015•徐汇区一模)如果=,那么的值等于.【考点】:比例的性质M33H【难易度】:容易题【分析】:由=,得a=.则===,【解答】:答案为:.【点评】:本题考查了比例的性质,难度不大,用a表示出b是解答本题的关键.8.(4分)(2015•徐汇区一模)抛物线y=(x﹣1)2+2的顶点坐标是.【考点】:二次函数的的图象、性质M442【难易度】:容易题【分析】:因为y=(x﹣1)2+2是抛物线的顶点式,则根据顶点式的坐标特点可知,顶点坐标为(1,2).【解答】:答案为:(1,2)【点评】:本题考查了二次函数的顶点坐标,难度不大,本题给的函数是顶点式,则根据抛物线y=a(x﹣h)2+k的顶点坐标为(h,k)可直接得出答案.9.(4分)(2015•徐汇区一模)二次函数y=x2﹣4x﹣5的图象的对称轴是直线.【考点】:二次函数的的图象、性质M442【难易度】:容易题【分析】:根据二次函数的对称轴公式得,二次函数y=x2﹣4x﹣5的对称轴为直线x=﹣=﹣=2,即直线x=2.【解答】:答案为:x=2.【点评】:本题考查了抛物线对称轴的计算,难度不大,根据对称轴对称轴的计算公式可直接得出答案.10.(4分)(2015•徐汇区一模)计算:cos30°﹣sin60°=.【考点】:特殊角的锐角三角比值M362【难易度】:容易题【分析】:根据特殊三角函数值,则原式=﹣=0。
2015年上海市中考数学试卷及答案(Word版)
2015年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1. 下列实数中,是有理数的为( )A .B ;C .π;D .0.2. 当0a >时,下列关于幂的运算正确的是( )A .01a =;B .1a a -=-;C .()22a a -=-; D .. 3. 下列y 关于x 的函数中,是正比例函数的为( )A .2y x =;B .2y x =;C .2x y =;D ..4. 如果一个正多边形的中心角为72°,那么这个正多边形的边数是( )A .4;B .5;C .6;D .7.5. 下列各统计量中,表示一组数据波动程度的量是( )A .平均数;B .众数;C .方差;D .频率.6. 如图,已知在⊙O 中,AB 是弦,半径OC AB ⊥,垂足为点D ,要使四边形OACB 为菱形,还需要添加一个条件,这个条件可以是( )A .AD BD =;B .OD CD =;C .CAD CBD ∠=∠; D .OCA OCB ∠=∠.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7. 计算:22-+= .8. 方程322x -=的解是 .9. 如果分式23x x +有意义,那么x 的取值范围是 . 10.如果关于x 的一元二次方程240x x m +-=没有实数根,那么m 的取值范围是 .11.同一温度的华氏度数()y F 及摄氏度数()x C 之间的函数关系是.如果某一温度的摄氏度数是25C,那么它的华氏度数是F.12.如果将抛物线221=+-向上平移,使它经过点A(0,3),那么所得新抛物y x x线的表达式是.13.某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加此次活动的概率是.14.已知某校学生“科技创新社团”成员的年龄及人数情况如下表所示:1112131415年龄(岁)人数55161512那么“科技创新社团”成员年龄的中位数是岁.15.如图,已知在△ABC中,D、E分别是边AB、边AC的中点,AB m=,=,AC n 那么向量DE用向量m、n表示为.16.已知E是正方形ABCD的对角线AC上一点,AE AD=,过点E作AC的垂线,交边CD于点F,那么FAD∠=度.17.在矩形ABCD 中,5AB =,12BC =,点A 在⊙B 上.如果⊙D 及⊙B 相交,且点B在⊙D 内,那么⊙D 的半径长可以等于 .(只需写出一个符号要求的数)18.已知在△ABC 中,8AB AC ==,30BAC ∠=.将△ABC 绕点A 旋转,使点B 落在原△ABC 的点C 处,此时点C 落在点D 处.延长线段AD ,交原△ABC 的边BC 的延长线于点E ,那么线段DE 的长等于.三、解答题:(本大题共7题,满分78分)19.(本题满分10分) 先化简,再求值:2214422x x x x x x x -÷-++++,其中1x =.20.(本题满分10分)解不等式组:,并把解集在数轴上表示出来.图 321.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分) 已知,如图,在平面直角坐标系xOy 中,正比例函数的图像经过点A ,点A 的纵坐标为4,反比例函数的图像也经过点A ,第一象限内的点B 在这个反比例函数的图像上,过点B 作BC ∥x 轴,交y 轴于点C ,且AC AB .求:(1)这个反比例函数的解析式;(2)直线AB 的表达式.22.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼.已知点A到MN的距离为15米,BA的延长线及MN相交于点D,且30∠=,BDN假设汽车在高速道路上行驶时,周围39米以内会受到噪音的影响.(1)过点A作MN的垂线,垂足为点H.如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排的居民楼,那么此时汽车及点H的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点Q时,它及这一排居民楼的距离QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到13 1.7)图4图23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)已知:如图,平行四边形ABCD 的对角线相交于点O ,点E 在边BC 的延长线上,且OE OB =,联结DE .(1)求证:DE BE ⊥;(2)如果OE CD ⊥,求证:BD CE CD DE ⋅=⋅.24.(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)已知在平面直角坐标系xOy 中(如图),抛物线24y ax =-及x 轴的负半轴相交于点A ,及y 轴相交于点B ,25AB =P 在抛物线上,线段AP 及y 轴的正半轴相交于点C ,线段BP 及x 轴相交于点D .设点P 的横坐标为m .(1)求这条抛物线的解析式;(2)用含m的代数式表示线段CO的长度;(3)当时,求PAD的正弦值.图7 备用图25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB 是半圆O 的直径,弦CD ∥AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线及射线OQ 相交于点E ,及弦CD 相交于点F (点F 及点C 、D 不重合),20AB =,.设OP x =,△CPF 的面积为y .(1)求证:AP OQ =;(2)求y 关于x 的函数关系式,并写出它的定义域;(3)当△OPE 是直角三角形时,求线段OP 的长.2015年上海市初中毕业统一学业考试数学试卷参考答案一、 选择题1、D ;2、A ;3、C ;4、B ;5、C ;6、B二、 填空题7、4; 8、2; 9、3x ≠- ; 10、4m <- ; 11、77; 12、223y x x =++ ; 13、750; 14、14; 15、 ; 16、22.5; 17、14等(大于13且小于18 的数);18、4.三、 解答题19.解:原式2221=(2)2x x x x x x +-⋅-++当1x =时,原式1=20.解:由426x x >-,得3x >-由 ,得2x ≤∴ 原不等式组的解集是32x -<≤.x21.解:(1)∵正比例函数的图像经过点A ,点A 的纵坐标为4,∴ ∴3x = ∴点A 的坐标是(3,4)∵反比例函数的图像经过点A ,∴ ,12m =∴反比例函数的解析式为(2)∵AC AB =,∴点A 在线段BC 的中垂线上.∵BC x ∥轴,点C 在y 轴上,点A 的坐标是(3,4),∴点B 的横坐标为6.∵点B 在反比例函数的图像上,∴点B 的坐标是(6,2).设直线AB 的表达式为y kx b =+ ,将点A 、B 代入表达式得:解得∴直线AB 的表达式为.22.解:(1)联结AP .由题意得 ,15(),39()AH MN AH m AP m ⊥==.在Rt APH ∆中,得36()PH m =.答:此时汽车及点H 的距离为36米. (2)由题意可知,PQ 段高架道路旁需要安装隔音板,QC AB ⊥,30,39()QDC QC m ∠=︒=.在Rt DCQ ∆中,278()DQ QC m ==.在Rt ADH ∆中,cot 30)DH AH m =⋅︒=,∴11415 1.788.589()PQ PH DH DQ m =-+≈-⨯=≈.答:高架道路旁安装的隔音板至少需要89米长.23.证明:(1)∵,OE OB OBE OEB =∠=∠.∵平行四边形ABCD 的对角线相交于点O ,∴OB OD =.∴OE OD =. ∴ODE OED ∠=∠.在BDE ∆中,∵180,OBE OEB OED ODE ∠+∠+∠+∠=︒∴090,OEB ED BED ∠+∠=∠=︒ 即DE BE ⊥.(2)∵OE CD ⊥,∵90CDE DEO ∠+∠=︒.又∵90,.CEO DEO CDE CEO ∠+∠=︒∴∠=∠,.OBE OEB OBE CDE ∠=∠∴∠=∠在DBE ∆和CDE ∆中:∴.DBE CDE ∆∆∽ ∴ ∴ BD CE CD DE ⋅=⋅24.(1)由抛物线24=-及y轴相交于点B,得点B的坐标为(0,-4)y ax∵点A在x轴的负半轴上,AB=∴点A的坐标为(-2,0)∵抛物线24=-及x轴相交于点A,∴1y axa=∴这条抛物线的表达式为24=-y x(2)∵点P在抛物线上,它的横坐标为m,∴点P的坐标为2(,4)m m-由题意,得点P在第一象限内,因此2>->0,40m m过点P作PH⊥x轴,垂足为H∵CO∥PH,∴∴,解得24CO m=-(3)过点P作PG⊥y轴,垂足为点G∵OD∥PG,∴∴,即在Rt△ODC中,∵∴,解得3m=-(舍去)。
全套2015年初中数学中考模拟试卷+答案+答题卡
2015年中考模拟试卷 数学卷考生须知:1. 本试卷分试题卷和答题卷两部分。
满分120分,考试时间100分钟。
2. 答题时,应该在答题卷指定位置内写明校名,姓名和准考证号。
3. 所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应。
4. 考试结束后,上交试题卷和答题卷。
一.仔细选一选(本小题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个正确的,请把正确选项前的字母填在答题卷中相应的格子内,注意可以用多种不同的方法来选取正确答案。
1. 下列计算正确的是( )A .-2+∣-2∣=0 B. 02÷3=0 C. 248= D.2÷3³13=2 2.抛掷三枚均匀的硬帀,三枚都是同一面朝上的概率是 ( )(原创) A.12 B. 23 C. 14 D. 132的相反数的倒数的积是( )(原创)A .4- B. 16- C. -4.化简22x y y x x y+--的结果( )(原创) A. x y -- B. y x - C. x y - D. x y +5. Rt △ABC 中,斜边AB =4,∠B =060,将△ABC 绕点B 旋转060,顶点C 运动的路线长是( ) A.3π B. π C. 23π D. 43π6.在△ABC ∣1cos 2C -∣=0,且∠B ,∠C 都是锐角,则∠A 的度数是 ( )(改编自05年中考第10题)A. 015 B. 060 C. 075 D. 0307.点P 在第三象限内,P 到X 轴的距离与到y 轴的距离之比为2:1P 的坐标为 ( )(改编自08年中考第3题)A .(1,2)- B. (2,1)-- C. (1,2)-- D. (1,2)-8.要在边长为16米的正方形草坪上安装喷水龙头,使整个草坪都能喷洒到水,假设每个喷水龙头的喷洒范围都是半径为6米的圆面,则需要安装这种喷水龙头的个数最少是 ( )A.3B.4C.5D.69.已知方程32530a a a -+=三个根分别为1a ,2a ,3a ,则计算123()a a a ++213()a a a ++312()a a a +的值( )(原创)A .5- B.6 C. 6- D.310.如图,钝角等腰三角形AOB ,EFG 的顶点O ,B ,E 在x 轴上,A ,F 在函数0)y x =〉图像上,且AE 垂直X 轴于点E ,∠ABO =∠FGE =0120,则F 点的坐标为( )(原创)A. 11(,)22B. 1)C. 3(,22 D. 1(22二.认真填一填(本题有6个小题,每小题4分,共24分) 11.因式分解:2(2)8a b ab +- =____12平坦的草地上有A ,B ,C 三个小球,若已知A 球与B 球相距3米,A 球与C 球相距1米,则B 球与C 球的距离可能的范围为____13. 函数y =x 的取值范围____14. 如图,正三角形ABC 内接于圆O ,AD ⊥BC 于点D 交圆于点E ,动点P 在优 弧BAC 上,且不与点B ,点C 重合,则∠BPE 等于 ____(原创)15. 已知如图,平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点C ,点D 的坐标分别为 (0,4),(5,0),12OC OA =,点P 在BC 边上运动(不与B ,C 重合),当△ODP 是腰长为5的等腰三角形时,点P 的坐标为____ (改编自09年片月考卷第18题)16. 点P (a,-a )在曲线y 上,则点P 叫做曲线y 上的一个不动点,那么若曲线25y x x k =++不存在这样的不动点,则k 的取值范围是___(原创) 三.全面答一答(本题有8小题,共66分)17.(本小题满分6分)若关于x 的方程2233x m x x -=--无解,求m 的值 18. (本小题满分6分) 学校操场上有一块如图所示三角形空地,量得AB =AC =10米,∠B =022.5,学校打算种上草皮,并预定 53.610⨯平方厘米草皮,请你通过计算说明草皮是否够用。
徐汇区初三数学-一模
2015学年第一学期徐汇学习能力诊断卷初三数学 试卷(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一.选择题(本大题共6题,每题4分,满分24分)…【下列各题的四个选项中,有且只有一个选项是正确的】 1.下列两个图形一定相似的是(A )两个菱形; (B )两个矩形; (C )两个正方形; (D )两个等腰梯形. 2.如图1,如果EF CD AB ////,那么下列结论正确的是(A )EF CD AE AC =; (B )DF CEBD AC =; (C )CD AB CE AC =; (D ) CEBD DF AC =. 3.将抛物线2)1(22-+=x y 向右平移2个单位,再向上平移2个单位后所得新抛物线的 表达式是(A )2)3(2+=x y ;(B )2)3(+=x y ;(C )2)1(-=x y ;(D )2)1(2-=x y .,4.点G 是ABC ∆的重心,如果5==AC AB ,8=BC ,那么AG 的长是(A )1; (B )2 ; (C )3; (D ) 4.5.如果从甲船看乙船,乙船在甲船的北偏东︒30方向,那么从乙船看甲船,甲船在乙船的 (A )南偏西︒30方向; (B )南偏西︒60方向; (C )南偏东︒30方向; (D )南偏东︒60方向.6.如图2,梯形ABCD 中,BC AD //,︒=∠90BAC ,AC AB =,点E 是边AB 上一 点,︒=∠45ECD ,那么下列结论错误的是(A )ECB AED ∠=∠; (B )ACE ADE ∠=∠ ; (C )AD BE 2=; (D ) CE BC 2=.二.填空题(本大题共12题,每题4分,满分48分)7.计算:=+-+b a b a2131)32(2__▲___.8.如果32=b a ,那么=+-ba ab __▲___. ]A BCD ~F图1图2, BCD《9.已知二次函数122-=x y ,如果y 随x 的增大而增大,那么x 的取值范围是__▲___. 10.如果两个相似三角形的面积比是9:4,那么它们对应高的比是__▲___. 11.如图3所示,一皮带轮的坡比是4.2:1,如果将货物从地面用皮带轮送到离地10米高的平台,那么该货物经过的路程是__▲___米. 12.已知点)4,1(M 在抛物线142+-=ax ax y 上,如果点N 和点M 关于该抛物线的对称轴对称,那么点N 的坐标是__▲___.(13.点D 在ABC ∆的边AB 上,3=AC ,4=AB ,B ACD ∠=∠,那么AD 的长是_▲_. 14.如图4,在□ABCD 中,6=AB ,4=AD ,BAD ∠的平分线AE 分别交BD 、CD于F 、E ,那么=BFDF__▲___. 15.如图5,在ABC ∆中,BC AH ⊥于H ,正方形DEFG 内接于ABC ∆,点E D 、分别在边AC AB 、上,点F G 、在边BC 上,如果20=BC ,正方形DEFG 的面积为 25,那么AH 的长是__▲___.16.如图6,在ABC Rt ∆中,︒=∠90ACB ,AB CD ⊥,垂足为D ,43tan =∠ACD ,5=AB ,那么CD 的长是__▲___.17.如图7,在梯形ABCD 中,BC AD //,AD BC 2=,点E 是CD 的中点,AC 与BE》交于点F ,那么ABF ∆和CEF ∆的面积比是__▲___.18.如图8,在ABC Rt ∆中,︒=∠90BAC ,3=AB ,53cos =B ,将ABC ∆绕着点A 旋转得ADE ∆,点B 的对应点D 落在边BC 上,联结CE ,那么CE 的长是_▲_.三.(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;( 满分78分)19.(本题满分10分)计算:︒︒+︒︒-︒60cos 45cot 30cos 30tan 245sin 4.20.(本题满分10分)抛物线c x x y +-=22经过点)1,2(.|BCD<F G H& A B CD图6 ABC $E F图7 ABC DE图8 图3(1)求抛物线的顶点坐标; (5分) ¥(2)将抛物线c x x y +-=22沿y 轴向下平移后,所得新抛物线与x 轴交于B A 、两点,如果2=AB ,求新抛物线的表达式. (5分) 21.(本题满分10分)如图9,在ABC ∆中,点E D 、分别在边AC AB 、上,43=AB AD ,3=AE ,1=CE ,6=BC .(1)求DE 的长; (5分)(2)过点D 作AC DF //交BC 于F ,设AB a =,=b,求向量(用向量a 、b 表示). (5分)22.(本题满分10分) ]如图10,热气球在离地面800米的A 处,在A 处测得一大楼楼顶C 的俯角是︒30,热气球沿着水平方向向此大楼飞行400米后到达B 处,从B 处再次测得此大楼楼顶C 的俯角是︒45,求该大楼CD 的高度.参考数据:41.12≈,73.13≈.}23.(本题满分12分)如图11,在ACB ∆中,BC AC =,点D 在边AC 上,BD AB =,ED BE =,且ABD CBE ∠=∠,DE 与CB 交于点F .求证:(1)BE AD BD ⋅=2; (6分)(2)DF BC BF CD ⋅=⋅. (6分)A;CD E~ABCD E F 图11')24.(本题满分12分)如图12,在AOB Rt ∆中,︒=∠90AOB ,已知点)1,1(--A ,点B 在第二象限,22=OB ,抛物线c bx x y ++=253经过点A 和B . (1)求点B 的坐标; (3分)(2)求抛物线c bx x y ++=253的对称轴; (3分) (3)如果该抛物线的对称轴分别和边BO AO 、的延长线交于点D C 、,设点E 在直线AB 上,当BOE ∆和BCD ∆相似时,直接写出点E 的坐标.(6分)(25.(本题满分14分)如图13,四边形ABCD 中,︒=∠60C ,5==AD AB ,8==CD CB ,点Q P 、分别是边BC AD 、上的动点,AQ 和BP 交于点E ,且BAD BEQ ∠-︒=∠2190,设P A 、两点的距离为x . '(1)求BEQ ∠的正切值; (4分) (2)设y PEAE=,求y 关于x 的函数解析式及定义域; (5分)(3)当AEP ∆是等腰三角形时,求Q B 、两点的距离. (5分) |:2015学年第一学期徐汇区初三年级数学学科 期终学习能力诊断卷参考答案和评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.C ; 2.B ; 3.D ; 4.B ; 5.A ; 6.D . 二.填空题:(本大题共12题,满分48分)、7.b a 213311+; 8.51; 9.0≥x ; 10.3:2; 11.26; 12.)4,3(;13.49; 14.32; 15.320; 16.512; 17.1:6; 18.524.三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19. 解:原式21123332224+⨯⨯-⨯=;……………………………………………(5分)2122+-=;……………………………………………………………(3分) 122+=.…………………………………………………………………(2分) 20.解:(1)由题意,得144=+-c ,解得1=c ;…………………………………(1分)∴抛物线的解析式为122+-=x x y ;……………………………………(1分)/DB AC QPE图13即2)1(-=x y ;……………………………………………………………(1分) ∴顶点坐标是)0,1(.………………………………………………………(2分)(2)设平移后的抛物线解析式是n x x y -+-=122;………………………(1分)∴ 该抛物线的对称轴是直线1=x ;………………………………………(1分) 又2=AB ,由抛物线的对称性可得)0,0(A 、)0,2(B ;………………(1分) ∴01=-n ,解得1=n ;…………………………………………………(1分) ∴新抛物线的表达式是x x y 22-=.……………………………………(1分)21.解:(1)∵3=AE ,1=CE ,∴43=AC AE ;……………………………………(1分)|又43=AB AD ,∴ABADAC AE =; …………………………………………(1分) ∴BC DE //.∴ ABADBC DE =……………………………………………(1分) 即436=DE ,解得29=DE .……………………………………………(2分)(2)∵AC DF //,∴ABBDAC DF =;……………………………………………(1分) 又43=AB AD ,∴41=AC DF ,即AC DF 41=;……………………………(2分) ∵b a+=,∴b a 4141+=. ……………………………………(2分)22.解: 分别延长DC AB 、交于点E . ……………………………………………(1分)∵AB 与地面平行,DC 与地面垂直,∴AB DE ⊥,∴︒=∠90E . …(1分) ,在CEB Rt ∆中,︒=∠45EBC ,∴︒=∠45ECB ,∴BE EC =;……(1分)设x CE =,则x BE =,400+=x AE . ………………………………(1分) 在AEC Rt ∆中,︒=∠90E ,∴AEECCAE =∠tan ; ……………………(1分) 即40030tan +=︒x x,解得)13(200+=x ;…………………………(2分)即546)173.1(200)13(200=+⨯≈+=CE (米) ;……………………(2分) ∴254546800=-=CD (米); ……………………………………………(1分) 答: 大楼CD 的高度254米. 23.证明:(1)∵BC AC =,∴ABC A ∠=∠; ……………………………………(1分)#∵ED BE =,∴DBE BDE ∠=∠;…………………………………(1分)∵ABD CBE ∠=∠,∴CBD ABD CBD CBE ∠+∠=∠+∠,即ABC DBE ∠=∠,∴A BDE ∠=∠;∴BED ∆∽BCA ∆ ;……(1分) ∵BD AB =,∴BDA A ∠=∠;∴ABC BDA ∠=∠;又A A ∠=∠,∴ABD ∆∽BCA ∆;…………………………………(1分) ∴BED ∆∽ADB ∆ ;……………………………………………………(1分)∴BEBDBD AD =,即BE AD BD ⋅=2.…………………………………(1分) (2)∵ABD ∆∽BCA ∆,∴C ABD ∠=∠;………………………………(1分);又ABD CBE ∠=∠,∴C CBE ∠=∠;……………………………(1分)∴BE AC //,∴EFDFBE DC =;…………………………………………(1分) ∵BED ∆∽BCA ∆,∴C E ∠=∠,1==ABBDBC BE ;………………(1分)∴CBE E ∠=∠,∴EF BF =;………………………………………(1分)又BC BE =,∴BFDFBC DC =;…………………………………………(1分) 即DF BC BF CD ⋅=⋅.24.解:(1)分别过点B A 、作y 轴的垂线,垂足分别是D C 、.可得ACO ∆∽ODB ∆,∴OAOBAC OD OC BD ==;∵)1,1(--A ,∴2=OA ; (∴2,2==OD BD ;∴)2,2(-B …………………………………………(3分)(2)由题意,可得⎪⎪⎩⎪⎪⎨⎧=+--=+-;22512;153c b c b ……………………………………………(1分) 解得⎪⎪⎩⎪⎪⎨⎧-=-=;514;56c b ……………………………………………………………(1分) ∴51456532--=x x y ; ∴对称轴是直线1=x .……………………………………………………(1分) (3)点)0,34(-E 或)58,54(--E .…………………………………………(各3分)25.解:(1)联结BD AC 、交于点O .…………………………………………………(1分)@∴AD AB =,∴BAD BAD ABD ADB ∠-︒=∠-︒=∠=∠21902180,又BAD BEQ ∠-︒=∠2190,∴ADB BEQ ∠=∠; ∵AD AB =,CD CB =,∴BD AC ⊥,DO BO =; ∵︒=∠60BCD ,∴BCD ∆是等边三角形,∴8==BC BD ; 在AOD Rt ∆中,︒=∠90AOD ,∴3452222=-=-=DO AD AO ,∴43tan ==∠DO AO ADO ; ∴43tan =∠BEQ . ………………………………………………………(3分)(2)如图,联结BD 交AQ 于F .∵ADB BEQ AEP ∠=∠=∠,DAF EAP ∠=∠, ∴AEP ∆∽ADF ∆,∴DFADPE AE =;…………………(1分) ∵ABD ADB BEQ ∠=∠=∠,AFB BFE ∠=∠; ∴BFE ∆∽AFB ∆ ;∴BAF FBE ∠=∠;∴PBD ∆∽FAB ∆ ;∴BDPDAB BF =; 即855x BF -=,得8525x BF -=;∴85398x BF DF +=-=;…(2分) ∴39540+=x y ,定义域是50<≤x .…………………………………(2分)(3)如图,联结BD 交AQ 于F .∵AEP ∆∽ADF ∆,当AEP ∆是等腰三角形时; ∴ADF ∆也是等腰三角形. 分情况讨论:︒1 当AD AF =时,0=BQ ,但此时点E Q B 、、重合,BEQ ∠不存在,不合题意,舍去;……………………………………(1分)︒2 当DF AF =时,解得4825〈=DF ,此时AF 与边BC 没有交点(即点Q 不在边BC 上),不合题意,舍去;…………………………………(2分)︒3 当5==AD DF 时,得3=BF ,此时1=y ,∴51=x ,符合题意; 联结AC 交BD 于O ,过点Q 作BF QG ⊥于G ;可得3tan =∠BFQ ,D:ACQPEFDB ACQ PE F因此,解得339-=BQ ,即Q B 、两点的距离是339-.…(2分)综合︒1、︒2、︒3,当AEP ∆是等腰三角形时,Q B 、两点的距离是339-.。
2015年中考数学真题试卷及答案(上海卷)
D CBAO2015年中考数学真题试卷及答案(上海卷)数学一、选择题:(每题4分,共24分)1、下列实数中,是有理数的为………………………………………………………………( ) A 、; B 、; C 、π; D 、0.2、当a >0时,下列关于幂的运算正确的是………………………………………………( ) A 、a 0=1; B 、a -1=-a ; C 、(-a)2=-a 2; D 、. 3、下列y 关于x 的函数中,是正比例函数的为…………………………………………( ) A 、y =x 2; B 、y =; C 、y =; D 、y =. 4、如果一个正多边形的中心角为72°,那么这个正多边形的边数是……………………( ) A 、4; B 、5; C 、6; D 、7.5、下列各统计量中,表示一组数据波动程度的量是……………………………………( ) A 、平均数; B 、众数; C 、方差; D 、频率.6、如图,已知在⊙O 中,AB 是弦,半径OC ⊥AB ,垂足为点D ,要使四边形OACB 为菱形,还需要添加一个条件,这个条件可以是………………………………………………( ) A 、AD =BD ; B 、OD =CD ; C 、∠CAD =∠CBD ; D 、∠OCA =∠OCB .二、填空题:(每题4分,共48分) 7、计算:_______.8、方程的解是_______________. 9、如果分式有意义,那么x 的取值范围是____________. 10、如果关于x 的一元二次方程x 2+4x -m =0没有实数根,那么m 的取值范围是________. 11、同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y =x +32.如果某一温度的摄氏度数是25℃,那么它的华氏度数是________℉.12、如果将抛物线y =x 2+2x -1向上平移,使它经过点A(0,3),那么所得新抛物线的表达2342211aa=x 22x 21+x =+-22223=-x 32+x x59式是_______________.13、某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加首次活动的概率是__________.14、已知某校学生“科技创新社团”成员的年龄与人数情况如下表所示:那么“科技创新社团”成员年龄的中位数是_______岁。
2015年上海市中考数学试卷和答案
2015年上海市初中毕业统一学业考试数学试卷一、选择题:(每题4分,共24分) 1、下列实数中,是有理数的为………………………………………………………………( ) A 、2; B 、34; C 、π; D 、0.2、当a >0时,下列关于幂的运算正确的是………………………………………………( ) A 、a 0=1; B 、a -1=-a ; C 、(-a )2=-a 2; D 、2211aa=. 3、下列y 关于x 的函数中,是正比例函数的为…………………………………………( ) A 、y =x 2; B 、y =x 2; C 、y =2x ; D 、y =21+x . 4、如果一个正多边形的中心角为72°,那么这个正多边形的边数是……………………( )A 、4;B 、5;C 、6;D 、7.5、下列各统计量中,表示一组数据波动程度的量是……………………………………( ) A 、平均数; B 、众数; C 、方差; D 、频率.6、如图,已知在⊙O 中,AB 是弦,半径OC ⊥AB ,垂足为点D ,要使四边形OACB 为菱形,还需要添加一个条件,这个条件可以是………………………………………………( ) A 、AD =BD ; B 、OD =CD ;C 、∠CAD =∠CBD ; D 、∠OCA =∠OCB .二、填空题:(每题4分,共48分) 7、计算:=+-22_______.8、方程223=-x 的解是_______________. 9、如果分式32+x x有意义,那么x 的取值范围是____________. 10、如果关于x 的一元二次方程x 2+4x -m =0没有实数根,那么m 的取值范围是________. 11、同一温度的华氏度数y (℉)与摄氏度数x (℃)之间的函数关系是y =59x +32.如果某一温度的摄氏度数是25℃,那么它的华氏度数是________℉.12、如果将抛物线y =x 2+2x -1向上平移,使它经过点A (0,3),那么所得新抛物线的表达式是_______________.13、某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加首次活动的概率是__________.14那么“科技创新社团”成员年龄的中位数是_______岁.15、如图,已知在△ABC 中,D 、E 分别是边AB 、边AC 的中点,D CBAOEDA=,=,那么向量用向量、表示为______________.16、已知E 是正方形ABCD 的对角线AC 上一点,AE =AD ,过点E 作AC 的垂线,交边CD 于点F ,那么∠FAD =________度.17、在矩形ABCD 中,AB =5,BC =12,点A 在⊙B 上.如果⊙D 与⊙B 相交,且点B 在⊙D 内,那么⊙D 的半径长可以等于___________.(只需写出一个符合要求的数)18、已知在△ABC 中,AB =AC =8,∠BAC =30°.将△ABC 绕点A 旋转,使点B 落在原△ABC 的点C 处,此时点C 落在点D 处.延长线段AD ,交原△ABC 的边BC 的延长线于点E ,那么线段DE 的长等于___________.三、解答题19、(本题满分10分)先化简,再求值:2124422+--+÷++x x x x x x x ,其中12-=x .20、(本题满分10分)解不等式组:⎪⎩⎪⎨⎧+≤-->9131624x x x x ,并把解集在数轴上表示出来.21、(本题满分10分,第(1)小题满分4分,第(2)小题满分6分) 已知:如图,在平面直角坐标系xOy 中,正比例函数y =34x 的图像经过点A ,点A 的纵坐标为4,反比例函数y =xm的图像也经过点A ,第一象限内的点B 在这个反比例函数的图像上,过点B 作BC ∥x 轴,交y 轴于点C ,且AC =AB .y求:(1)这个反比例函数的解析式; (2)直线AB 的表达式.22、(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图,MN 表示一段笔直的高架道路,线段AB 表示高架道路旁的一排居民楼.已知点A 到MN 的距离为15米,BA 的延长线与MN 相交于点D ,且∠BDN =30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音的影响.(1)过点A 作MN 的垂线,垂足为点H .如果汽车沿着从M 到N 的方向在MN 上行驶,当汽车到达点P 处时,噪音开始影响这一排的居民楼,那么此时汽车与点H 的距离为多少米? (2)降低噪音的一种方法是在高架道路旁安装隔音板.当汽车行驶到点Q 时,它与这一排居民楼的距离QC 为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到1米) (参考数据:3≈1.7)23、(本题满分12分,每小题满分各6分) 已知:如图,平行四边形ABCD 的对角线相交于点O ,点E 在边BC 的延长线上,且OE =OB ,联结DE .(1)求证:DE ⊥BE ; (2)如果OE ⊥CD ,求证:BD ·CE =CD ·DE .OEDBA24、(本题满分12分,每小题满分各4分)已知在平面直角坐标系xOy 中(如图),抛物线y =ax 2-4与x 轴的负半轴相交于点A ,与y 轴相交于点B ,AB =25.点P 在抛物线上,线段AP 与y 轴的正半轴交于点C ,线段BP 与x 轴相交于点D .设点P 的横坐标为m . (1)求这条抛物线的解析式;(2)用含m 的代数式表示线段CO 的长; (3)当tan ∠ODC =23时,求∠PAD 的正弦值.25、(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB 是半圆O 的直径,弦CD ∥AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ =OP ,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),AB =20,cos ∠AOC =54.设OP =x ,△CPF 的面积为y . (1)求证:AP =OQ ;(2)求y 关于x 的函数关系式,并写出它的定义域; (3)当△OPE 是直角三角形时,求线段OP 的长.Q F EDCDC。
徐汇区中考数学二模试卷及答案
果列表如下:
体重(千克)
频数
频率
40— 45
44
45— 50
66
50— 55
84
55— 60
86
60— 65
72
65— 70
48
7.计算: 4a3b2 2ab __▲___. 8.计算: 2m(m 3) __▲___. 9.方程 2x 1 3 0的解是 __▲ ___. 10.如果将抛物线 y (x 2)2 1向左平移 1个单位后经过点 A(1, m) ,那么 m 的值是▲ _. 11.点 E 是 ABC 的重心, AB a , AC b,那么 BE _▲ _(用 a 、b 表示). 12.建筑公司修建一条 400 米长的道路,开工后每天比原计划多修 10 米, 结果提前 2 天完
2015 学年第二学期徐汇区学习能力诊断卷 初三年级数学学科
(时间 100 分钟 满分 150 分)
考生注意∶
1.本试卷含三个大题,共 25 题;答题时,考生务必按答题要求在答题纸 规定的位置上作答,在草稿纸、本试卷上答题一律无效;
2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应 位置上写出证明或计算的主要步骤.
程 y(米)与时间 t (秒)之间的函数关系(如图 3),那么这次越野 跑的全程为▲米.
18.如图 4,在 ABC 中, CAB 90 , AB 6 , AC 4 , CD 是 ABC 的
中线,将 ABC 沿直线 CD 翻折,点 B 是点 B 的对应点, 点 E 是线段
上海中考数学一模2015年25题汇编(含答案)
K 満分H分*茎中第(1)小・4拳・0时・55分)(1)矩形AJ3CD 中.ZABCF90Sm = io.\ AF±(T.且点F恳线敕CE的申点kAAE = AC-10.Rl^CBE 中・taiWECB -豆亡=寺./K 口TJJ? - 2710.R T ACBE中,GF«CF• lanZBCB* 寸岂(2)■/ ZABC = ZC*BE = 90a, ^LAGH二Z仇沪.fJG HE AH HC中形ABCD 中*AD HC,(1分》(1分)(1分〉(1分〉(1廿)<1知(I炉2015年上海一模25题集锦1、(2015年一模黄浦25题)25.在矩形ABCD中,= BC = 6.对谢线AC.交于点O,点疋在AB延长线上,联结CE, AF丄CE t分别交线段CE、边BC、对角线*D于点F、G. H(点F不与点C\ E重合};(D当点F是线段CE的中点时.求GF的长;(2〉设BE = x, OH = y.求y关于兀的函数解析式,并写出它的定义域;(3) f flH=BG时山丹=人0昇・5+了 = 6*即;二丫 "斛縛工二3.2' gGH=HG 时MD=AH・过点A作从f丄DH・垂足为H.5 * yRtACBE中^cosZADK = 2•二—j— =3 6 5将"粧晋代入⑴解密忑=£3* ^GH = BHBt.DH-AH- A点H ftAD ®fi平分线上. 此时点F与点C 3tf二書(舍)嫌上所迷BE的K<3或#.2、(2015年一模徐汇25题).如图,梯形ABCD中,AD // BC ,对角线AC _ BC , AD =9 ,AC =12, BC =16,点E是边BC上的一个动点,-EAF - BAC , AF交CD于点F ,交BC 延长线于点G,设BE = x ;(1)试用x的代数式表示FC ;(2)设FGEF-y,求y关于x的函数关系式,并写出定义域;BE的长;[来源学科网]25 (1分) (2分)(1分)BGE3^\DFco\GAl :7当A是等農三角形若,&\DF 也为等腰三角形动点(D 和A 、B所以,BE = 7二不重合),过 D 作DE // BC 交AC 于E ,并以DE 为边向BC 一侧作正方形 DEFG ,设AD = x3( 2015年一模宝山26题).如图在△ ABC 中,AB=BC=10,AC =牛、5,D 为边AB 上一(3) = = t ZG = Zl AD当AF = DF 时,点F 为CD 中点3 Cl = DI0 <16林理得、V100作AH £ DF 于",易得DH m"丸 EEAiUM':.^CAr = ^tiAE* AB UL … 20 A-■ ■—r J » 1■AC - r e 12 ~ rcf C- -A5由弘I HEs 川Ci'得,搜1 £卜'5山报:,^Ai'E二90AF AC 123LI ~ H< ~16~ 斗3 15 25 CF -A =—、 -V -——5 22 当 Al )二w 时, CF =3/. Cl = —A = 6 ? A 5=10(1) 请用X的代数式表示正方形DEFG的面积,并求出当边FG落在BC边上时的x的值;(2) 设正方形DEFG与厶ABC重合部分的面积为y,求y关于x的函数及其定义域;(3) 点D在运动过程中,是否存在D、G、B三点中的两点落在以第三点为圆心的圆上的情况?若存在,请直接写出此时AD的值,若不存在,则请说明理由;4、( 2015年一模崇明25题)(本题满分14分,其中第(1)小题5分,第(2)小题5分,第(3)小题4 分)已知在ABC中,AB =AC =5,BC =6,O为边AB上一动点(不与A、B重合),以0为圆心0B为半径的圆交BC于点D,设OB =x,DC =y .(1)如图1,求y关于x的函数关系式及定义域;(2)当O 0与线段AC有且只有一个交点时,求x的取值范围;(3)如图2,若O O与边AC交于点E (有两个交点时取靠近当DEC与ABC相似时,求x的值.25, Hfd)如图1联站「AB 亚片GGB H QD代= XODB:.or>//A.c* BO_Bp.王-些'' 5 ' 6「* BD- gjr-"I■工+ 6((KX5)(2)如團氛肖与线段A匚有且只育一亍交点时①®0与播2梱切时作OH_LAC.HK丄AGAM丄BC垂圧井劃为H^K y M,JS^OH#BK.AM=4— -BC・AM-A「FK' - —1g-_'r.BK■習3也-0H…丽-賦C的交点),联结DE ,C(备用图ir C1分1分B(备用图•(图£}(2> A ftGO 内,〔不SQO 内时内:.OB>OA”"”*>■5 一 x•">4•rc 不在£50内 /-OB<AB1分,\y<X<5炀匕当工二器或号VY5时◎。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
峰行数学
19. 已知二次函数 y ax 2 bx c ( a 、 b 、 c 为常数,且 a 0 )经过 A 、 B 、 C 、 D 四 个点,其中横坐标 x 与纵坐标 y 的对应值如下表:
A
B
C
1
D
x
y
(1)求二次函数解析式; (2)求△ ABD 的面积;
1 1
0 3
3 3
5
20. 如图 ,在 等腰 梯形 ABCD 中 , AD ∥ BC , AB DC , AC 与 BD 交 于点 O ,
AD : BC 1: 2 ; (1)设 BA a , BC b ,试用 a , b 表示 BO ; 3 (2)先化简,再求作: (2a b) 2( a b) (直接作在原图中) 2
B. 1: 20 ;
二. 填空题 7. 如果
a b ab ,那么 的值等于 5 3 ab
谭峰
;
资料整理
FunshineMaths
2
峰行数学
; ;
8. 抛物线 y ( x 1) 2 的顶点坐标是 9. 二次函数 y x 2 4 x 5 的图像的对称轴是直线 10. 计算: cot 30 sin 60 ;
13. 如图,若 l1 ∥ l2 ∥ l3 ,如果 DE 6 , EF 2 , BC 1.5 ,那么 AC
14. 如图是拦水坝的横断面,斜坡 AB 的高度为 6 米,斜面的坡比为1: 2 ,则斜坡 AB 的长 为 米(保留根号);
15. 如图,正方形 ABCD 被分割成 9 个全等的小正方形, P 、 Q 是其中两个小正方形的顶 点,设 AB a , AD b ,则向量 PQ
;
如果 MN 2 ,那么 PM
18. 如图, 在△ ABC 中,ABC 90 ,AB 6 ,BC 8 , 点 M 、N 分别在边 AB 、BC 上,沿直线 MN 将△ ABC 折叠,点 B 落在点 P 处,如果 AP ∥ BC 且 AP 4 ,那么
BN
;
资料整理
谭峰
FunshineMaths
FG y ,求 y 关于 x 的函数关系式,并写出定义域; EF
(3)当△ AEG 是等腰三角形时,直接写出 BE 的长;
资料整理
谭峰
FunshineMaths
峰行数学
2015 年上海市徐汇区初三一模数学试卷参考答案
一. 选择题 1. A; 二. 填空题 7. 2. C; 3. C; 4. D; 5. C; 6. B;
2
(2) S 6 ; (2)原式 a
2 1 a b; 3 3
1 b ,图略; 2
21. CE
8 3 ; 3
(2) MN 3 ; (2) cos F
2
22.(1)略; 23.(1)略;
3 ; 2
(2) y ( x 1) 2 ;
2
24.(1)对称轴: x 2 , y x 4 x 3 ; (3) (0,1) 或 (0, 0) ; 25.(1) FC
)
D. 7 cot ;
4. 如图, 在四边形 ABCD 中,AD ∥ BC , 如果添加下列条件, 不能使得△ ABC ∽△ DCA 成立的是( ) B. B ACD ; D.
A. BAC ADC ; C. AC 2 AD BC ;
2
DC AB ; AC BC
) D. 第四象限;
25. 如图, 梯形 ABCD 中,AD ∥ BC , 对角线 AC BC ,AD 9 ,AC 12 ,BC 16 , 点 E 是边 BC 上的一个动点,EAF BAC ,AF 交 CD 于点 F , 交 BC 延长线于点 G , 设 BE x ; (1)试用 x 的代数式表示 FC ; (2)设
2
2015.1
)
2. 如图,平行四边形 ABCD 中, E 是边 BC 上的点, AE 交 BD 于点 F ,如果 BE : BC
2 : 3 ,那么下列各式错误的是(
A.
) B.
BE 2; EC EF 2 ; AE 3
EC 1 ; AD 3 BF 2 ; DF 3
C.
D.
3. 已知 Rt△ ABC 中, C 90 , CAB , AC 7 ,那么 BC 为( A. 7 sin ; B. 7 cos ; C. 7 tan ;
资料整理
谭峰
FunshineMaths
交 AC 于 E ;
峰行数学
22. 如图,MN 经过△ ABC 的顶点 A ,MN ∥ BC , AM AN ,MC 交 AB 于 D , NB
(1)求证: DE ∥ BC ; (2)联结 DE ,如果 DE 1 , BC 3 ,求 MN 的长;
23. 已知菱形 ABCD 中,AB 8 , 点 G 是对角线 BD 上一点,CG 交 BA 的延长线于点 F ; (1)求证: AG GE GF ; (2)如果 DG
FunshineMaths
峰行数学
2015 年上海市徐汇区初三一模数学试卷
(满分 150 分,考试时间 100 分钟) 一. 选择题 1. 将抛物线 y 2 x 向右平移一个单位, 再向上平移 2 个单位后, 抛物线的表达式为 ( A. y 2( x 1) 2 2 ; C. y 2( x 1) 2 2 ; B. y 2( x 1) 2 2 ; D. y 2( x 1) 2 2 ;
3 x; 5
(2) y
3x (0 x 16) ; 100 4 x
( 3)
25 、 10 、 7 ; 2
资料整理
谭峰
1 ; 4
8. (1, 2) ; 14. 6 5 ;
9. x 2 ;
10.
3 ; 2
11. 13. 6 ; 三. 解答题
15. a
1 3
2 b; 3
16. 12 ;
17.
17 ;
18.
13 ; 2
19.(1) y x 3x 3 ; 20.(1) BO
(1)求抛物线 C1 的对称轴和函数解析式; (2)把抛物线 C1 的图像先向右平移 3 个单位,再向下平移 m 个单位得到抛物线 C2 ,记顶 点为 M ,并与 y 轴交于点 F (0, 1) ,求抛物线 C2 的函数解析式; (3)在(2)的基础上,点 G 是 y 轴上一点,当△ APF 与△ FMG 相似时,求点 G 的坐 标;
21. 如图,在电线杆上的 C 处引拉线 CE 、 CF 固定电线杆,拉线 CE 和地面成 60°角,在 离电线杆 6 米处安置测角仪 AB , 在 A 处测得电线杆上 C 处的仰角为 23°, 已知测角仪 AB 的高为 1.5 米,求拉线 CE 的长; 【已知 sin 23
5 12 5 , cos 23 , tan 23 ,结果保留根号】 13 13 12
2
1 GB ,且 AG BF ,求 cos F ; 2
资料整理
谭峰
FunshineMaths
峰行数学
24. 已知如图,抛物线 C1 : y ax 2 4ax c 的图像开口向上,与 x 轴交于点 A 、 B ( A 在
B 的左边) ,与 y 轴交于点 C ,顶点为 P , AB 2 ,且 OA OC ;
(用向量 a 、 b 来表示);
16. 如图,△ ABC 中, BAC 90 ,G 点是△ ABC 的重心,如果 AG 4 ,那么 BC 的 长为 ;
17. 如图, 已知 tan O
4 , 点 P 在边 OA 上,OP 5 , 点 M 、N 在边 OB 上,PM PN , 3
11. 在某一时刻,测得一根高为1.8m 的竹竿的影长为 3m ,同时测得一根旗杆的影长为
25m ,那么这根旗杆的高度为
m;
12. 若点 A( 3, y1 ) 、 B (0, y2 ) 是二次函数 y 2( x 1) 2 1 图像上的两点,那么 y1 与 y2 的 大小关系是 (填 y1 y2 , y1 y2 或 y1 y2 ); ;
5. 已知二次函数 y ax 2 x 2 ( a 0 ),那么它的图像一定不经过( A. 第一象限; B. 第二象限; C. 第三象限;
6. 如图, 在△ ABC 中, D、 E 分别是 AB 、AC 上的点, 且 DE ∥ BC , 如果 AE : EC 1: 4 , 那么 S ADE : S BEC ( A. 1: 24 ; ) C. 1:18 ; D. 1:16 ;