人教版数学六年级下册鸽巢问题例1教学设计

合集下载

六年级下册数学教案- 数学广角——鸽巢问题(一)-人教新课标

六年级下册数学教案- 数学广角——鸽巢问题(一)-人教新课标

六年级下册数学教案:数学广角——鸽巢问题(一)-人教新课标教学目标:知识与技能:1. 理解鸽巢原理,并能运用其解决实际问题。

2. 培养学生的逻辑思维能力和数学推理能力。

过程与方法:1. 通过实际操作和观察,让学生体验和理解鸽巢原理。

2. 通过小组合作,培养学生的团队合作能力。

情感态度价值观:1. 培养学生对数学的兴趣和好奇心。

2. 培养学生的逻辑思维能力和数学推理能力。

教学重点:1. 理解鸽巢原理。

2. 能运用鸽巢原理解决实际问题。

教学难点:1. 理解鸽巢原理的应用范围。

2. 解决实际问题时,如何运用鸽巢原理。

教学准备:1. 教师准备:多媒体课件,教具。

2. 学生准备:学习用品。

教学过程:一、导入(5分钟)教师通过一个有趣的故事引入鸽巢原理,激发学生的兴趣。

二、新课导入(10分钟)1. 教师引导学生思考:如果有更多的鸽子,但巢的数量不变,会发生什么?2. 学生回答后,教师总结并引入鸽巢原理。

三、探索发现(10分钟)1. 教师引导学生进行实际操作,让学生亲身体验鸽巢原理。

2. 学生通过观察和思考,发现鸽巢原理。

四、巩固练习(10分钟)1. 教师出示一些实际问题,让学生运用鸽巢原理解决。

2. 学生通过练习,巩固对鸽巢原理的理解和应用。

五、拓展延伸(10分钟)1. 教师出示一些更复杂的问题,让学生尝试解决。

2. 学生通过思考和讨论,解决这些问题。

六、总结反思(5分钟)1. 教师引导学生总结本节课的学习内容。

2. 学生分享自己的学习心得。

教学评价:1. 学生对鸽巢原理的理解和应用。

2. 学生在解决问题时的逻辑思维能力和数学推理能力。

教学延伸:1. 让学生尝试用鸽巢原理解决生活中的实际问题。

2. 引导学生探索鸽巢原理在其他数学问题中的应用。

通过本节课的学习,学生能理解鸽巢原理,并能运用其解决实际问题。

同时,学生的逻辑思维能力和数学推理能力也得到了培养。

在以上的教案中,需要重点关注的是“探索发现”环节。

这个环节是学生对鸽巢原理进行深入理解和应用的关键步骤,通过实际操作和观察,学生可以亲身体验鸽巢原理,从而更好地理解其内涵和应用。

人教版数学六年级下册鸽巢问题教案3篇

人教版数学六年级下册鸽巢问题教案3篇

人教版数学六年级下册鸽巢问题教案3篇〖人教版数学六年级下册鸽巢问题教案第【1】篇〗一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。

教学“鸽巢问题”,教材安排了两个例题。

这节课教学内容是例1。

例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。

初步接触“鸽巢问题”对于学生来说,有一定的难度。

教学时,应放手让学生自主探索。

教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。

二、教学内容教材第68页例1及“做一做”第1、2题。

三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。

2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。

3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。

四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。

教学难点:初步理解“鸽巢原理”,能口头表达推理过程。

五、教学准备一副扑克牌、课件等。

六、教学过程(一)引入新知1.抢凳子游戏。

2.抽扑克牌游戏。

教师:这类问题在数学上称为鸽巢问题(板书)。

因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。

【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。

(二)探究新知1.教学例1。

(1)把3枝铅笔放进2个笔筒中。

想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。

人教版数学六年级下册鸽巢问题教案模板(推荐3篇)

人教版数学六年级下册鸽巢问题教案模板(推荐3篇)

人教版数学六年级下册鸽巢问题教案模板(推荐3篇)人教版数学六年级下册鸽巢问题教案模板【第1篇】第2课时教学内容教科书P69例2,完成教科书P71“练习十三”中第2、3、6题。

教学目标1.经历“鸽巢原理”的探究过程,进一步了解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题。

2.经历从直观到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力,渗透模型思想。

3.在探究过程中,经历将具体数学问题数学化的过程,培养学生的模型思维。

教学重点掌握“鸽巢原理”的一般形式,会运用除法算式来解决实际问题。

教学难点对“把多于kn(k是正整数)个物体任意分放入n个空抽屉,总有一个抽屉里至少有(k+1)个物体”形成一般性理解。

教学准备课件。

教学过程一、复习导入,揭示课题课件出示教科书P69“做一做”第2题。

【学情预设】预设1:我们把4把椅子看成4个“鸽巢”,把5个人放进4个“鸽巢”中,总有1个“鸽巢”里至少有2个人,即总有一把椅子上至少坐2人。

预设2:我用算式表示:5÷4=1……1,1+1=2,所以总有一把椅子上至少坐2人。

师:同学们研究了物体数比盛放物体的工具数多1的情况,得出了总有一个盛放物体的工具里至少放有两个物体。

“鸽巢原理”真是这样吗今天我们继续来研究相关问题。

【设计意图】通过复习,帮助学生回忆例1学习的有关知识,并直接揭示课题,为新课学习作准备。

二、自主探究,建立模型1.课件出示教科书P69例2。

师:请你试着证明这个结论。

(学生用自己的方式证明。

)【学情预设】预设1:我随便放放看,一个抽屉1本,一个抽屉2本,一个抽屉4本。

可以证明总有一个抽屉里至少放进3本书。

预设2:我用假设法来思考,如果每个抽屉最多放2本,那么3个抽屉最多放6本,最后的1本书一定会放到3个抽屉中的任何一个,可以证明总有一个抽屉里至少放进3本书。

预设3:我用算式来证明:7÷3=2……1,2+1=3。

师:你能理解这道算式表示的意思吗?(板书算式:7÷3=2……1,2+1=3)【学情预设】指导学生规范表达:把7本书平均放进3个抽屉,每个抽屉里放2本,还剩一本。

第1课时鸽巢问题(1)-人教版六年级下册数学教案设计

第1课时鸽巢问题(1)-人教版六年级下册数学教案设计

第5单元数学广角—鸽巢问题第1课时鸽巢问题(1)【教学目标】1、知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。

使学生学会用此原理解决简单的实际问题。

2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。

3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。

【教学重难点】重点:引导学生把具体问题转化成“鸽巢问题”。

难点:找出“鸽巢问题”解决的窍门进行反复推理。

【教学过程】一、情境导入教师:同学们,你们在一些公共场所或旅游景点见过电脑算命吗?“电脑算命”看起来很深奥,只要你报出自己的出生年月日和性别,一按键,屏幕上就会出现所谓性格、命运的句子。

通过今天的学习,我们掌握了“鸽巢问题”之后,你就不难证明这种“电脑算命”是非常可笑和荒唐的,是不可相信的鬼把戏了。

(板书课题:鸽巢问题)教师:通过学习,你想解决哪些问题?根据学生回答,教师把学生提出的问题归结为:“鸽巢问题”是怎样的?这里的“鸽巢”是指什么?运用“鸽巢问题”能解决哪些问题?怎样运用“鸽巢问题”解决问题?二、探究新知:1.教学例1.(课件出示例题1情境图)思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。

为什么呢?“总有”和“至少”是什么意思?学生通过操作发现规律→理解关键词的含义→探究证明→认识“鸽巢问题”的学习过程来解决问题。

(1)操作发现规律:通过把4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1个笔筒里至少有2支铅笔。

(2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。

(3)探究证明。

方法一:用“枚举法”证明。

方法二:用“分解法”证明。

把4分解成3个数。

由图可知,把4分解成3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。

人教版数学六年级下册鸽巢问题教案模板3篇2024

人教版数学六年级下册鸽巢问题教案模板3篇2024

人教版数学六年级下册鸽巢问题教案模板3篇2024〖人教版数学六年级下册鸽巢问题教案模板第【1】篇〗《鸽巢问题(第1课时)》教学设计一、教学目标1.引导学生经历“鸽巢问题”的抽象过程,初步了解“鸽巢原理”并用其解决相关生活中的简单问题。

2.通过猜测、验证、观察、分析等数学活动,提高学生有根据有条理的进行思考和推理的能力。

3.经历从具体到抽象的探究过程,建立数学模型,培养“模型思想”。

4.灵活应用“鸽巢原理”,提高学生解决数学问题的能力和兴趣。

二、教学重点教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。

教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。

三、教学准备纸杯、吸管、多媒体课件。

四、教学过程(一)创设情境揭示课题多媒体演示“二桃杀三士”的成语故事【设计意图】通过问题引发学生思考,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。

(二)探索新知(1)初步感知。

把3个磁扣放到2个圆圈里,有哪些放法?(学生思考)师:“不管怎么放,总有一个圆圈里至少有2个磁扣”,这句话说得对吗?师:这句话里“总有”“至少”是什么意思?【设计意图】从学生喜欢的游戏入手,设置悬念,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。

教师:“总有一个圆圈里至少有2个磁扣”,这句话说得对吗?教师:这句话里“总有”“至少”是什么意思?【设计意图】此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。

通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个圆圈里至少有2个磁扣”这句话。

(2)逐步深入初建模型把4根吸管放到3个纸杯里,有哪些放法? 4人为一组动手试一试。

(学生思考—组内交流—汇报)【设计意图】通过操作,将抽象的结论具体化,学生得到了四种全部情况,从而获得了支持这个结论所有的实物图像表征,为后面的“说理”提供了有力的支撑。

六年级数学下册教案《5 数学广角——鸽巢问题》(人教版) (1)

六年级数学下册教案《5 数学广角——鸽巢问题》(人教版) (1)

六年级数学下册教案《5 数学广角——鸽巢问题》(人教版)
一、教学目标
1.理解鸽巢问题的基本概念。

2.掌握解决鸽巢问题的基本方法。

3.培养学生的逻辑思维能力和解决问题的能力。

二、教学重点和难点
重点:
1.理解鸽巢问题的定义。

2.学会应用鸽巢问题解决实际问题。

难点:
1.运用鸽巢问题解决复杂问题。

2.将鸽巢问题与实际情境结合。

三、教学内容
本节课将重点介绍鸽巢问题的基本概念和解决方法。

四、教学过程
1. 导入(5分钟)
讲师通过一个生动的小故事或例子引入鸽巢问题,激发学生的学习兴趣。

2. 学习(20分钟)
1.讲解鸽巢问题的定义和基本概念。

2.示范解决一些简单的鸽巢问题,引导学生思考求解方法。

3. 练习(15分钟)
组织学生进行一些练习题,巩固所学知识。

4. 拓展(10分钟)
引导学生思考如何将鸽巢问题应用到实际生活中,讨论一些相关的案例。

5. 总结(5分钟)
对本节课学习的内容进行总结,并强调重点和难点。

五、教学反馈
布置一些作业题目,检查学生对鸽巢问题的理解和应用能力。

六、教学资源
1.课本《数学广角》第5课内容。

2.黑板、粉笔、教具等。

七、教学评价
根据学生在课堂上的表现和作业情况进行评价,及时调整教学方法,提高教学效果。

以上就是本节课的教学计划,希望能够帮助学生更好地理解和掌握鸽巢问题,提升数学能力。

人教版数学六年级下册鸽巢问题教学设计推荐3篇

人教版数学六年级下册鸽巢问题教学设计推荐3篇

人教版数学六年级下册鸽巢问题教学设计推荐3篇〖人教版数学六年级下册鸽巢问题教学设计第【1】篇〗一、教学内容:教科书第68页例1。

二、教学目标:(一)知识与技能:通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。

(二)过程与方法:结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过立思考与合作交流等活动提高解决实际问题的能力。

(三)情感态度和价值观:在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。

三、教学重难点教学重点:经历鸽巢问题的探究过程,初步了解鸽巢原理,会用鸽巢原理解决简单的实际问题。

教学难点:通过操作发展学生的类推能力,形成比较抽象的数学思维。

四、教学准备:多媒体课件。

五、教学过程(一)候课阅读分享:同学们,大家好,课前老师让大家收集了有关“鸽巢问题”的阅读资料,现在就某某同学的阅读在这候课的几分钟内与大家分享一下。

(二)激情导课好,咱们班人数已到齐,从今天开始,我们学习第五单元鸽巢问题,这节课通过数学活动我们来了解鸽巢原理,学会简单的鸽巢原理分析方法。

你准备好了吗?好,我们现在开始上课。

(三)导学1、请同学们先来看例1。

把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2只铅笔。

请你再把题读一次,这是为什么呢?要想解决这个问题,我们首先要理解,总有一个笔筒里至少有2支铅笔这句话。

我们再思考这一句话中,总有和至少是什么意思?对总有就是一定的意思。

至少就是最少的意思至少有两支铅笔,就是说最少有两支铅笔。

或者是说,铅笔的支数要大于或等于两支。

那你能现在说说,总有一个笔筒里至少有两支铅笔这句话的意思了吗?对,这句话就是说,一定有一个笔筒里最少有两支铅笔,或者是说一定有一个笔筒里的铅笔数是大于或等于两支的。

你说对了吗?课前老师已经让大家完成前置性作业,就“4支铅笔放进3个笔筒中有几种摆法呢?”这儿老师收集到了各组组长整理出的大家的各种摆法,我们一起来看一看吧!方法一:用“枚举法”证明。

《鸽巢问题(第1课时)》(教案)六年级下册数学人教版

《鸽巢问题(第1课时)》(教案)六年级下册数学人教版

《鸽巢问题(第1课时)》(教案)六年级下册数学人教版《鸽巢问题(第1课时)》教案一、教学内容1. 理解鸽巢问题的概念,掌握其基本性质。

2. 学会运用鸽巢原理解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学目标1. 了解并掌握鸽巢问题的基本概念和性质。

2. 能够运用鸽巢原理解决实际问题。

3. 提高自己的逻辑思维能力和解决问题的能力。

三、教学难点与重点本节课的重点是让学生理解并掌握鸽巢问题的基本概念和性质,以及如何运用鸽巢原理解决实际问题。

难点在于如何引导学生理解并运用鸽巢原理。

四、教具与学具准备为了让大家更好地理解鸽巢问题,我准备了一些教具和学具,包括黑板、粉笔、PPT、鸽巢模型等。

五、教学过程1. 实践情景引入:请大家想象一下,如果我们有一个鸽巢,里面有若干个鸽子,我们要如何确定鸽子的数量呢?2. 讲解鸽巢问题的概念:通过引入的实践情景,我会向大家讲解鸽巢问题的基本概念和性质。

3. 例题讲解:我会给大家讲解一些典型的鸽巢问题例题,让大家通过例题理解并掌握鸽巢原理。

4. 随堂练习:在讲解完例题后,我会给大家一些随堂练习题,让大家运用所学知识解决实际问题。

5. 鸽巢原理的应用:通过一些实际问题,让大家学会运用鸽巢原理解决问题。

六、板书设计板书设计如下:鸽巢问题1. 概念与性质2. 鸽巢原理3. 应用与实例七、作业设计作业题目:1. 请用一句话概括鸽巢问题的定义。

2. 请用一句话概括鸽巢原理。

3. 请举例说明如何运用鸽巢原理解决实际问题。

答案:1. 鸽巢问题是指在一定条件下,确定鸽子数量的问题。

3. 举例:假设一个班级有30个学生,如果有31个学生,那么至少有两个学生坐在同一个座位上。

八、课后反思及拓展延伸通过本节课的学习,我希望大家能够理解并掌握鸽巢问题的基本概念和性质,以及如何运用鸽巢原理解决实际问题。

在课后,大家可以尝试解决一些更复杂的问题,也可以和同学互相交流心得和经验,共同提高。

2024年人教版数学六年级下册鸽巢问题说课稿推荐3篇

2024年人教版数学六年级下册鸽巢问题说课稿推荐3篇

人教版数学六年级下册鸽巢问题说课稿推荐3篇〖人教版数学六年级下册鸽巢问题说课稿第【1】篇〗说教学目标:1、引导学生经历鸽巢原理的探究过程,初步了解鸽巢原理,会运用鸽巢原理解决一些简单的实际问题。

2、通过操作、观察、比较、列举、假设、推理等活动发展学生的类推能力,形成比较抽象的数学思维。

3、使学生经历将具体问题“数学化”的过程,初步形成模型思想。

说教学重点:经历鸽巢原理的探究过程,初步了解鸽巢原理。

说教学难点:理解鸽巢原理,并对一些简单的实际问题加以模型化。

说教学过程:一、创设情境、导入新课1、师:同学们,你们玩过扑克牌吗?这里有一副牌,拿掉大小王后还剩52张,5位同学随意抽一张牌,猜一猜:至少有几张牌的花色是一样的?(指名回答)2、师:大家猜对了吗?其实这里面藏着一个非常有趣的数学问题,叫做“鸽巢问题”。

今天我们就一起来研究它。

二、合作探究、发现规律师:研究一个数学问题,我们通常从简单一点的情况开始入手研究。

请看大屏幕。

(生齐读题目)1、教学例1:把4支铅笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。

(1)理解“总有”、“至少”的含义。

(PPT)总有:一定有至少:最少师:这个结论正确吗?我们要动手来验证一下。

(2)同学们的课桌上都有一张作业纸,请同桌两人合作探究:把4支铅笔放进3个笔筒里,有几种不同的摆法探究之前,老师有几个要求。

(一生读要求)(3)汇报展示方法,证明结论。

(展示两张作品,其中一张是重复摆的。

)第一张作品:谁看懂他是怎么摆的?(一生汇报,发现重复的摆法)第二张作品:他是怎么摆的?这4种摆法有没有重复的?还有其他的摆法吗?说板书:(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)师:我们要证明的是总有一个笔筒里至少有2支铅笔,这4种摆法都满足要求吗?(指名汇报:第一种摆法中哪个笔筒满足要求?只要发现有一个笔筒里至少有2支铅笔就行了。

)总结:把4支铅笔放进3个笔筒中一共只有四种情况,在每一种情况中,都一定有一个笔筒中至少有2支铅笔。

5 数学广角——鸽巢问题(一等奖创新教案)-六年级下册数学人教版 1

5 数学广角——鸽巢问题(一等奖创新教案)-六年级下册数学人教版 1

5 数学广角——鸽巢问题(一等奖创新教案)-六年级下册数学人教版1《鸽巢问题》教学设计教学目标:1、通过猜测、验证、观察、分析等数学活动,经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢原理”解决简单的实际问题。

渗透“建模”思想。

2.经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。

3.通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。

教学重点:经历“鸽巢问题”的探究过程,初步了解“鸽巢原理”。

教学难点:理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。

教具准备:课件扑克练习篇教学过程:(一)游戏引入谈话导入:教师:看到课题你想知道什么?板书课题。

咱们的学习先从一个有趣的“魔术”开始。

出示一副扑克牌,取出大王和小王,还剩下52张牌,下面请5位同学上来,每人随意抽一张,让我来猜一猜,至少有2张牌是同一花色的,我猜的对吗?拿到同一花色的同学站到一起。

教师:这个魔术里蕴含鸽巢原理。

扑克牌的数量较多,研究起来有点麻烦,怎么办呢?数学家陈省身说过,数学的本质在于化复杂为简单。

板书:化繁为简。

我们就来研究数量较少的同类问题。

(二)探索新知.一、教学例1。

师:把4支铅笔放到3个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔?大家觉得这个结论对吗?1、小组合作:(课件)请4人为一组怎么证明这个结论?2、教师:收集不同的表示情况。

展示画图表示四种结果。

师:还有其它的放法吗?生:没有了。

师:看来,不管怎么放,总有一个笔筒里铅笔的支数是最多的,同学们能找出来吗?在这几种不同的放法中,装得最多的那个笔筒里要么装有4支铅笔,要么装有3支,要么装有2支,还有装得更少的情况吗?生:没有。

师:这几种放法如果用一句话概括可以怎样说?生:装得最多的笔筒里至少装2支。

师:装得最多的那个笔筒一定是第一个吗?生:不一定,哪个笔筒都有可能。

生:不管哪个笔筒,总有一个笔筒里至少装2支。

六年级下册数学教案《第1课时鸽巢问题 》人教版

六年级下册数学教案《第1课时鸽巢问题 》人教版

六年级下册数学教案《第1课时鸽巢问题》人教版一. 教材分析人教版六年级下册数学教案《第1课时鸽巢问题》主要让学生理解并掌握鸽巢问题的原理及解决方法。

通过生活中的实例,引导学生感受鸽巢问题,培养学生的逻辑思维能力和解决实际问题的能力。

二. 学情分析六年级的学生已经具备一定的数学基础,对于问题解决有一定的方法论。

但学生在解决实际问题时,往往不能将所学知识与生活实际相联系,因此需要教师在教学中注重培养学生将理论知识应用于解决实际问题的能力。

三. 教学目标1.让学生了解并理解鸽巢问题的概念及解决方法。

2.培养学生运用数学知识解决实际问题的能力。

3.培养学生的逻辑思维能力和团队协作能力。

四. 教学重难点1.掌握鸽巢问题的解决方法。

2.将理论知识应用于解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入鸽巢问题,让学生感受并理解问题。

2.小组讨论法:引导学生分组讨论,共同探讨解决方法。

3.实践操作法:让学生动手操作,巩固所学知识。

六. 教学准备1.教学课件:鸽巢问题的相关实例及解决方法。

2.练习题:针对本节课内容设计的练习题。

3.小组讨论材料:纸张、笔等。

七. 教学过程1.导入(5分钟)教师通过一个生活实例引入鸽巢问题,如:“假设有一个班级有20名学生,有一天老师要给这20名学生发放奖品,奖品只有10个,如何公平地发放奖品?”让学生思考并讨论。

2.呈现(10分钟)教师展示课件,呈现几个鸽巢问题的实例,如:“有5只鸽子,需要准备几个鸽巢才能让每只鸽子都有地方栖息?”引导学生观察并思考。

3.操练(15分钟)教师引导学生分组讨论,每组选择一个实例,共同探讨解决方法。

学生在讨论过程中,教师巡回指导,解答学生的疑问。

4.巩固(10分钟)教师请各小组代表分享他们的解决方法,并对解决方法进行讲解。

其他学生倾听并给予评价,教师总结评价。

5.拓展(10分钟)教师出示一些拓展题,让学生独立思考或小组合作解决,如:“如果有10只鸽子,需要准备几个鸽巢?”6.小结(5分钟)教师引导学生总结本节课所学内容,让学生明确鸽巢问题的解决方法及应用。

数学人教版六年级下册鸽巢问题(例1、例2)说课及教学设计

数学人教版六年级下册鸽巢问题(例1、例2)说课及教学设计

《数学广角——鸽巢问题》说课稿伊宁市第十小学李芸一、说教材:本单元共有三个例题,例1、例2的内容,教材通过几个直观例子,借助实际操作向学生介绍鸽巢问题。

例3则是在学生理解鸽巢问题这一数学方法的基础上,会用这一原理解决简单的实际问题。

今天我讲的是例1和例2的内容,主要经历鸽巢问题的探究过程,重在引导学生通过实际操作发现、总结规律,这一内容为后面进一步学习鸽巢问题及利用这一原理解决问题做了有力的铺垫。

因此,这节课在本单元起着引领指航的重要作用。

二、说教学内容:本课时的教学内容为例1和例2。

例1介绍了较简单的“鸽巢问题”:只要鸽子数比鸽巢数多,总有一个鸽巢里至少放进2只鸽子。

它意图让学生发现这样的一种存在现象:不管怎样放,总有一个笔筒里至少放进2支铅笔。

例1呈现的是2种思维方法:一是枚举法,罗列了摆放的所有情况。

二是假设法,用平均分的方法直接考虑“至少”的情况。

通过例1两个层次的探究,让学生理解“平均分”的方法能保证“至少”的情况,能用这种方法在简单的具体问题中解释证明。

例2在例1的基础上说明:只要鸽子数比鸽巢数多,总有一个鸽巢里至少放进(商+1)个物体。

三、说教学目标:根据《数学课程标准》和教材内容,我确定本节课学习目标如下:知识与技能:初步了解鸽巢问题,会用鸽巢问题解决简单的实际问题。

过程与方法:经历鸽巢问题的探究过程,通过摆一摆、分一分等实践操作,发现、归纳、总结原理。

情感态度与价值观:通过鸽巢问题的灵活应用,感受数学的魅力。

教学重点:经历鸽巢问题的探究过程,发现、总结并理解鸽巢问题。

教学难点:理解鸽巢问题中“至少”的含义。

四、说教法、学法:教法上本节课主要采用了设疑激趣法、讲授法、实践操作法。

学法上学生主要采用了自主、合作、探究式的学习方式。

五、说教学流程:(一)、游戏激趣,初步体验。

今天在学习新课之前,老师先和大家玩一个“猜一猜”游戏。

(下面有3只鸽子,2个鸽巢,让3只鸽子回到家,学生帮鸽子找家,老师猜)通过游戏让学生初步的感知生活中的“鸽巢问题”。

六年级下册数学教学设计-5《鸽巢原理例1、例2》人教新课标

六年级下册数学教学设计-5《鸽巢原理例1、例2》人教新课标

六年级下册数学教学设计5《鸽巢原理例1、例2》人教新课标在教学设计中,我以六年级下册《鸽巢原理例1、例2》为例,详细描述了教学内容、教学目标、教学难点与重点、教具与学具准备、教学过程、板书设计、作业设计以及课后反思和拓展延伸。

一、教学内容:本节课的教学内容选自人教新课标六年级下册数学教材,主要涉及鸽巢原理的应用。

具体包括两个例题:例1是关于将一些物品放入鸽巢中的问题,例2是关于将一些人分配到不同组别的问题。

通过这两个例题,学生可以理解并掌握鸽巢原理的基本概念和应用方法。

二、教学目标:本节课的教学目标有三个:一是让学生理解鸽巢原理的概念,二是培养学生运用鸽巢原理解决实际问题的能力,三是培养学生的逻辑思维和解决问题的能力。

三、教学难点与重点:本节课的重点是让学生掌握鸽巢原理的基本概念和应用方法。

难点是让学生能够灵活运用鸽巢原理解决实际问题。

四、教具与学具准备:为了更好地进行教学,我准备了一些教具和学具,包括黑板、粉笔、多媒体教具以及一些与鸽巢原理相关的图片和实例。

五、教学过程:1. 引入:我通过展示一些图片,如一群鸽子停在巢上,引发学生对鸽巢原理的思考。

2. 讲解:我详细讲解鸽巢原理的概念和应用方法,通过例1和例2的讲解,让学生理解并掌握鸽巢原理的基本原理。

3. 练习:我设计了一些随堂练习题,让学生运用鸽巢原理解决问题,巩固所学知识。

六、板书设计:我在黑板上用粉笔写下鸽巢原理的定义和例题的解题步骤,以便学生跟随和复习。

七、作业设计:我布置了一道有关鸽巢原理的应用题,要求学生独立解决并写出解题过程。

作业题目如下:例题:假设有一个班级有30名学生,现在要将这些学生分配到5个小组中,每个小组至少要有1名学生。

请运用鸽巢原理,找出所有可能的分配方案。

答案:方案1:1个小组有10名学生,其余4个小组各有5名学生;方案2:2个小组有6名学生,其余3个小组各有4名学生;方案3:3个小组有5名学生,其余2个小组各有4名学生;方案4:4个小组有4名学生,另1个小组有6名学生;方案5:5个小组各有3名学生。

六年级下册数学教案-数学广角—鸽巢问题教案-人教新版 (1)

六年级下册数学教案-数学广角—鸽巢问题教案-人教新版 (1)

标题:六年级下册数学教案-数学广角—鸽巢问题教案-人教新版一、教学目标1. 让学生理解鸽巢问题的概念,能够运用鸽巢原理解决实际问题。

2. 培养学生的逻辑思维能力和抽象思维能力。

3. 培养学生运用数学语言表达问题和解决问题的能力。

二、教学内容1. 鸽巢问题的概念2. 鸽巢原理的应用3. 鸽巢问题的实际应用三、教学重点与难点1. 教学重点:鸽巢问题的概念和鸽巢原理的应用。

2. 教学难点:鸽巢问题的实际应用。

四、教学方法1. 讲授法:讲解鸽巢问题的概念和鸽巢原理。

2. 案例分析法:分析鸽巢问题的实际应用。

3. 小组讨论法:分组讨论,共同解决实际问题。

五、教学过程1. 导入:通过生活中的实例,引出鸽巢问题的概念。

2. 新课讲解:讲解鸽巢问题的概念和鸽巢原理。

3. 案例分析:分析鸽巢问题的实际应用。

4. 小组讨论:分组讨论,共同解决实际问题。

5. 总结:总结鸽巢问题的概念和鸽巢原理,以及在实际中的应用。

六、作业布置1. 课后习题:布置与鸽巢问题相关的习题,巩固所学知识。

2. 实际应用:让学生运用鸽巢原理解决生活中的实际问题。

七、教学反思1. 反思教学过程中的优点和不足,及时调整教学方法。

2. 关注学生的学习情况,及时解决学生在学习中遇到的问题。

3. 总结教学经验,提高教学质量。

八、教学评价1. 评价学生的学习效果,了解学生对鸽巢问题的掌握程度。

2. 收集学生的反馈意见,及时调整教学方法和教学内容。

九、教学资源1. 教材:人教版六年级下册数学教材。

2. 辅导资料:与鸽巢问题相关的习题和案例。

十、教学建议1. 在教学中注重学生的参与,鼓励学生积极思考,提出问题。

2. 注重培养学生的逻辑思维能力和抽象思维能力。

3. 在实际应用中,引导学生运用鸽巢原理解决实际问题。

通过本节课的学习,学生能够理解鸽巢问题的概念,掌握鸽巢原理的应用,培养逻辑思维能力和抽象思维能力,提高运用数学语言表达问题和解决问题的能力。

需要重点关注的细节是“教学过程”。

人教版数学六年级下册鸽巢问题教案范文(推荐3篇)

人教版数学六年级下册鸽巢问题教案范文(推荐3篇)

人教版数学六年级下册鸽巢问题教案范文(推荐3篇)人教版数学六年级下册鸽巢问题教案范文【第1篇】《鸽巢问题》教学设计教学内容:教材第68-69页例1、例2。

教学目标:1、了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。

使学生用此原理解决简单的实际问题。

2、经历探究“鸽巢原理”的学习过程,体验观察、猜测、验证、推理等活动的学习方法,渗透数形结合的思想。

3、通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。

教学重点:引导学生把具体问题转化成“鸽巢问题”。

教学难点:找出“鸽巢问题”的解决窍门进行反复推理。

教学准备:课件、扑克、小棒、杯子。

教学过程:一、导入师:(出示刘谦照片)同学们认识他吗?最近刘老师也学会了一个魔术,想看我表演吗?请5个同学配合我一下。

一副牌,取出大小王,还剩52张,你们5人每人随意抽一张,我知道至少有2张牌是同花色的。

相信吗?(展示验证,引导初步理解至少)这5个同学是不是我的托呢?再来5名试试!(学生尝试猜,猜后引导理解至少的重要性)师:其实,刚刚的魔术蕴含了一个数学知识--“鸽巢问题”。

今天我们就一起来研究这一类问题。

(板书课题:鸽巢问题)二、探索新知1、板书:鸽(鸽就是鸽子)巢(知道是什么吗?--鸽子的窝)为了方便研究,我们用小棒代替鸽子,用杯子代替巢。

(板书小棒、杯子)2、思考:把4根小棒放进3个杯子里,可以怎样放?一共有几种方法?小组合作摆一摆,注意要有序摆放,小组长要记录好!3、汇报:预设 a.4 0 0 b.3 1 0 c.2 2 0 d.2 1 14、师:同学们看,(引导看每种摆法,圈出2根和2根以上的)无论怎样摆放,总有一个杯子里至少有两根小棒。

(出示发现,齐读)“总有”和“至少”是什么意思?(预设:“总有”一定有、肯定有;“至少”最少。

)5、如果是把5根小棒放进4个杯子里呢?猜一猜,会有怎样的结论呢?(学生猜测:总有一个杯子里至少有2根小棒。

2024年人教版数学六年级下册鸽巢问题优秀教案3篇

2024年人教版数学六年级下册鸽巢问题优秀教案3篇

人教版数学六年级下册鸽巢问题优秀教案3篇〖人教版数学六年级下册鸽巢问题优秀教案第【1】篇〗一、教学三维目标1.知识与技能目标:初步理解鸽巢原理;2.过程与方法目标:经历鸽巢原理的的探究过程,培养学生的模型思想;3.情感态度与价值观目标:感受数学的魅力,提高学习数学的兴趣。

二、教学重点经历探究过程,初步了解鸽巢原理;三、教学难点理解鸽巢原理;四、教学过程1.游戏引入教师提问:你们玩过“抢椅子”的游戏吗?谁能说说游戏规则呢?学生回答后,组织学生进行几次“抢椅子”的游戏。

请学生注意观察,提问:一个简单的游戏里,蕴含着什么数学知识呢?顺势引入课题。

2.讲授新知活动一:初步认识鸽巢原理出示例1:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。

提问:你得到了什么数学信息?至少和总有是什么意思?总结:总有就是一定存在的意思,至少表示最低限度,有最少的意思。

再提问:这句话对吗?组织小组活动,进行验证。

总结:学生探究出两种方法,方法一是枚举法,将可能的情况都列出进行观察;方法二是假设法。

两种方法都能验证这句话是正确的。

在此基础上,教师把铅笔换成鸽子,笔筒换成鸽笼,介绍鸽巢问题。

活动二:探究一般形式出示例2:把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。

提问:这句话对吗?为什么?组织小组活动,进行探究。

总结:用枚举法和假设法都能证明这句话是对的,教师利用除法算式7÷3=21,引导理解用“平均分”的思维来理解假设法。

追问:如果有8本书会怎样?10本呢?组织同桌交流,指名学生回答。

学生回答时继续用除法表示,最后提问:观察算式,你发现了什么?师生总结:观察3个算式,发现至少放的本数是商+1,而不是商+余数。

引出鸽巢问题又叫抽屉问题。

3.巩固练习完成做一做4.课堂小结教师提问:你有什么收获?学生回答后教师总结完善。

5.布置作业课后习题1、2题,将今天学到的整理成数学日记〖人教版数学六年级下册鸽巢问题优秀教案第【2】篇〗《鸽巢问题》教学设计教学目标:1、引导学生经历鸽巢原理的探究过程,初步了解鸽巢原理,会运用鸽巢原理解决一些简单的实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鸽巢问题教学设计
湖北省襄阳市长征路小学胡建勇人教版六年级下册数学《鸽巢问题》,也就是原实验教材《抽屉原理》。

设计理念
《鸽巢问题》既鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确提出来的,因此,也称为狄利克雷原理。

首先,用具体的操作,将抽象变为直观。

“总有一个筒至少放进2 支笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。

怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”二;在操作中理解“平均分”是保证“至少”的最好方法。

通过操作,最直观地呈现“总有一个筒至少放进2 支笔”这种现象,让学生理解这句话。

其次,充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。

学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生去认识,而是创造条件,让学生自己去探索,发现。

所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明” 的过程,逐步提高学生的逻辑思维能力。

再者,适当把握教学要求。

我们的教学不同奥数,因此在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“鸽巢”和“物体”。

教材分析
《鸽巢问题》这是一类与“存在性”有关的问题,如任意13 名学生,一定存在两名学生,他们在同一个月过生日。

在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。

这类问题依据的理论,我们称之为“鸽巢问题”。

通过第一个例题教学,介绍了较简单的“鸽巢问题”:只要物体数比鸽巢数多,总有一个鸽巢至少放进2 个物体。

它意图让学生发现这样的一种存在现象:不管怎样放,总有一个筒至少放进2 支笔。

呈现两种思维方法:一是枚举法,罗列了摆放的所有情况。

二是假设法,用平均分的方法直接考虑“至少”的情况。

通过前一个例题的两个层次的探究,让学生理解“平均分”的方法能保证“至少”的情况,能用这种方法在简单的具体问题中解释证明。

学情分析
可能有一部分学生已经了解了鸽巢问题,他们在具体分得过程中,都在运用平均分的方法,也能就一个具体的问题得出结论。

但是这些学生中大多数只“知其然,不知其所以然”,为什么平均分能保证“至少”的情况,他们并不理解。

还有部分学生完全没有接触,所以他们
可能会认为至少的情况就应该是“1。


一、教学目标
(一)知识与技能通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。

(二)过程与方法结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。

(三)情感态度和价值观
在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。

二、教学重难点
教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。

教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。

三、教学准备
多媒体课件。

四、教学过程
(一)游戏引入
出示一副扑克牌。

教师:今天老师要给大家表演一个“魔术”。

取出大王和小王,还剩下52 张牌,下面请5 位同学上来,每人随意抽一张,不管怎么抽,至少有2 张牌是同花色的。

同学们相信吗?
5位同学上台,抽牌,亮牌,统计。

教师:这类问题在数学上称为鸽巢问题(板书)。

因为52 张扑克牌数量较大,为了方便研究,我们先来研究几个数量较小的同类问题。

【设计意图】从学生喜欢的“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。

(二)探索新知
1.教学例1。

(1)教师:把3支铅笔放到2 个铅笔盒里,有哪些放法?请同桌二人为一组动手试一试。

教师:谁来说一说结果?
预设:一个放3支,另一个不放;一个放2 支,另一个放1 支。

(教师根据学生回答在黑板上画图表示两种结果)
教师:“不管怎么放,总有一个铅笔盒里至少有2 支铅笔”,这句话说得对吗?教师:这句话
里“总有”是什么意思?
预设:一定有。

教师:这句话里“至少有2 支”是什么意思?
预设:最少有2 支,不少于2 支,包括2 支及2 支以上。

【设计意图】把教材中例1 的“笔筒”改为“铅笔盒”,便于学生准备学具。

且用画图和数的分解来表示上述问题的结果,更直观。

通过对“总有” “至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个铅笔盒里至少有2支铅笔”这句话。

(2)教师:把4 支铅笔放到3 个铅笔盒里,有哪些放法?请4人为一组动手试一试。

教师:谁来说一说结果?
学生:可以放(4,0,0);(3,1,0);(2,2,0);(2,1,1)。

(教师根据学生回答在黑板上画图表示四种结果)
引导学生仿照上例得出“不管怎么放,总有一个铅笔盒里至少有 2 支铅笔”。

假设法(反证法):
教师:前面我们是通过动手操作得出这一结论的,想一想,能不能找到一种更为直接的方法得到这个结论呢?小组讨论一下。

学生进行组内交流,再汇报,教师进行总结:如果每个盒子里放1 支铅笔,最多放3 支,剩下的1 支不管放进哪一个盒子里,总有一个盒子里至少有2支铅笔。

首先通过平均分,余下1支,不管放在哪个盒子里,一定会出现“总有一个盒子里至少有2 支铅笔”。

这就是平均分的方法。

【设计意图】从另一方面入手,逐步引入假设法来说理,从实际操作上升为理论水平,进一步加深理解。

教师:把5 支铅笔放到4 个铅笔盒里呢?
引导学生分析“如果每个盒子里放1 支铅笔,最多放4 支,剩下的1 支不管放进哪一个盒子里,总有一个盒子里至少有2 支铅笔。

首先通过平均分,余下1支,不管放在哪个盒子里,一定会出现“总有一个盒子里至少有2 支铅笔”。

教师:把6 支铅笔放到5 个铅笔盒里呢?把7 支铅笔放到6 个铅笔盒里呢?把10支铅笔放到9个铅笔盒里呢?把100支铅笔放到99个铅笔盒里呢?•…你发现了什么?
引导学生得出“只要铅笔数比铅笔盒数多1,总有一个盒子里至少有2支铅笔”。

教师:上面
各个问题,我们都采用了什么方法?
引导学生通过观察比较得出“平均分”的方法。

【设计意图】让学生自己通过观察比较得出“平均分”的方法,将解题经验上升为理论水平,进一步强化方法、理清思路。

(3)教师:现在我们回过头来揭示本节课开头的魔术的结果,你能来说一说这个魔术的道理吗?
引导学生分析“如果4 人选中了4 种不同的花色,剩下的1 人不管选那种花色,总会和其他4人里的一人相同。

总有一种花色,至少有2 人选”。

【设计意图】回到课开头提出的问题,揭示悬念,满足学生的好奇心,让学生认识到数学的应用价值。

(4)练习教材第68页“做一做”第1 题(进一步练习“平均分”的方法)。

5 只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2 只鸽子。

为什么?
(三)巩固练习
1 .5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了
2 只鸽子。

为什么?
2.你理解上面扑克牌魔术的道理了吗?
(四)课堂小结
教师:通过这节课的学习,你有哪些新的收获呢?。

相关文档
最新文档