人教版六年级数学下册教学设计 数学广角—鸽巢问题教案
2023最新-小学六年级下册数学《数学广角鸽巢问题》教案(最新4篇)
小学六年级下册数学《数学广角鸽巢问题》教案(最新4篇)身为一名到岗不久的老师,我们要有很强的课堂教学能力,通过教学反思可以很好地改正讲课缺点,怎样写教学反思才更能起到其作用呢?下面是小编精心为大家整理的4篇小学六年级下册数学《数学广角鸽巢问题》教案,可以帮助到您,就是牛牛范文小编最大的乐趣哦。
小学六年级下册数学《数学广角──鸽巢问题》教案篇一【教学内容】教材第110页第3题,练习二十五第8~13题。
【教学目标】1.进一步掌握三角形的特性及其三边、三角之间的关系,并能解决三角形相关问题。
2.进一步掌握轴对称和平移,能画一个图形的轴对称图形,能画平移后的图形,并能运用平移解决问题。
3.进一步掌握从不同的角度观察物体,能辨认、并画出从不同的角度观察到的物体的形状。
【重点难点】重、难点:解决三角形相关问题,画一个图形的轴对称图形。
【教学过程】一、复习三角形1.复习三角形的特性。
指名说一说三角形有什么特性,并举例说明三角形特性在现实生活中的应用。
2.复习三角形三边之间的关系。
指名说一说三角形三边有什么关系。
强调:三角形任意两边的和都大于第三边。
3.复习三角形的分类。
三角形可以分为哪几类?你是怎么分的?4.完成教材第110页的第3题。
二、复习轴对称、平移1.举例说明生活中常见的轴对称图形。
2.说说轴对称图形的特点。
3.平移。
三、复习观察物体在同一角度观察物体,最多能看到物体的几个面?四、课堂练习完成教材练习二十五第8~13题。
五、课堂小结我们这节课复习了什么内容?你有什么收获?六、同步训练教学至此,敬请选用《新领程》相关习题。
六年级数学下册《数学广角》教学反思篇二设计本节课时,我在准备上还是挺足的,特别在信息的收集上,花费了一定的心思。
用一节课来完成有关编码的内容,这样把重点就放在认识与编码两块内容上,一般老师就教学身份证号码,而对邮政编码少有涉及,往往是一笔带过,这样设计非常有道理。
但教材是怎样的呢?我也查阅了人教版教材,《数字与编码》是人教版教材五年级上册数学广角里内容,教材说明把这部分的内容分三节课教学,我个人认为,第一节课教学例1例2,主要是对一些编码如邮政编码和身份证号码的认识,第二课时教学如何进行编码,第三课时进行综合练习。
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。
教学“鸽巢问题”,教材安排了两个例题。
这节课教学内容是例1。
例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。
初步接触“鸽巢问题”对于学生来说,有一定的难度。
教学时,应放手让学生自主探索。
教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。
二、教学内容教材第68页例1及“做一做”第1、2题。
三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。
2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。
3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。
四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。
教学难点:初步理解“鸽巢原理”,能口头表达推理过程。
五、教学准备一副扑克牌、课件等。
六、教学过程(一)引入新知1.抢凳子游戏。
2.抽扑克牌游戏。
教师:这类问题在数学上称为鸽巢问题(板书)。
因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。
【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。
(二)探究新知1.教学例1。
(1)把3枝铅笔放进2个笔筒中。
想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。
六年级下册数学教案-《数学广角—鸽巢问题》(人教版)
在今天的教学中,我引导学生们探索了《数学广角—鸽巢问题》。通过这节课的教学,我有一些深刻的体会和反思。
首先,我发现学生们对于鸽巢问题的理解存在一定难度。他们刚开始接触这个概念时,很难理解为什么一定会出现至少一个集合中有超过一个物品的情况。为此,我采用了生活中的实例和图示来进行讲解,帮助学生逐步建立起对鸽巢原理的认识。在今后的教学中,我还需要继续关注学生的理解程度,及时调整教学方法,以便让他们更好地掌握这个概念。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“鸽巢问题在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-举例:如给定10个学生和9个座位,证明至少有一个座位上会有两个学生。
2.教学难点
-抽象概念的理解:难点在于帮助学生理解抽象的鸽巢原理,并将其与具体问题联系起来。
-逻辑推理的运用:难点在于指导学生如何运用逻辑推理来证明鸽巢原理的正确性,这对于逻辑思维能力的培养至关重要。
-实际问题的转换:难点在于将实际问题转化为鸽巢问题,需要学生具备较强的观察力和问题转化能力。
3.学习通过画图、列举和逻辑推理等方法,解决涉及鸽巢原理的相关问题。
4.完成本册教材中《数学广角》模块的相关练习题,巩固鸽巢问题的解答技巧。
二、核心素养目标
《数学广角—鸽巢问题》核心素养目标:
1.培养学生逻辑推理与数学思维能力,通过鸽巢问题的学习,使学生能够运用逻辑推理解决实际问题,提高数学抽象和推理能力。
2024年人教版数学六年级下册鸽巢问题教学设计推荐3篇
人教版数学六年级下册鸽巢问题教学设计推荐3篇〖人教版数学六年级下册鸽巢问题教学设计第【1】篇〗第五单元数学广角——鸽巢问题第一课时课题:鸽巢问题教学内容:教材第68-70页例1、例22,及“做一做”的第1题,及第71页练习十三的1-2题。
教学目标:1、知识与技能:理解“鸽巢问题”的特点,理解“鸽巢原理”的含义。
使学生学会用此原理解决简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜想、实验、推理等活动的学习方法,渗透数形结合的思想。
3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
教学重难点:重点:引导学生把具体问题转化成“鸽巢问题”。
难点:找出“鸽巢问题”解决的窍门实行反复推理。
教学准备:课件。
教学过程:一.情境导入二、探究新知1.教学例1.(课件出例如题1情境图)思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。
为什么呢?“总有”和“至少”是什么意思?学生通过操作发现规律→理解关键词的含义→探究证明→理解“鸽巢问题”的学习过程来解决问题。
(1)操作发现规律:通过吧4支铅笔放进3个笔筒中,能够发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。
(2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。
(3)探究证明。
方法一:用“枚举法”证明。
方法二:用“分解法”证明。
把4分解成3个数。
由图可知,把4分解3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。
方法三:用“假设法”证明。
通过以上几种方法证明都能够发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。
(4)理解“鸽巢问题”像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。
在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描绘就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。
人教版六年级数学下《数学广角──鸽巢问题》教案
人教版六年级数学下《数学广角──鸽巢问题》教案一、教学目标1.让学生了解鸽巢问题的基本原理,理解鸽巢问题的概念。
2.培养学生运用鸽巢问题解决实际问题的能力,提高学生的思维能力和解题技巧。
3.激发学生对数学的兴趣,培养他们的数学思维和解决问题的能力。
二、教学内容1.鸽巢问题的基本概念和原理。
2.鸽巢问题的应用。
3.鸽巢问题的变体和拓展。
三、教学重点与难点•重点:鸽巢问题的基本概念和原理。
•难点:如何将鸽巢问题应用于实际问题中,解决相关问题。
四、教具和多媒体资源1.实物鸽巢和鸽子模型。
2.投影仪,用于展示鸽巢问题和实际应用案例。
3.教学PPT,用于讲解和演示。
五、教学方法1.激活学生的前知:回顾与鸽巢问题相关的数学知识,如抽屉原理等。
2.教学策略:讲解、示范、小组讨论、案例分析。
3.学生活动:分组讨论鸽巢问题的应用案例,并尝试解决问题。
六、教学过程1.导入:通过展示实物鸽巢和鸽子模型,引导学生观察并思考鸽巢与鸽子的关系,从而引入鸽巢问题的概念。
2.讲授新课:详细讲解鸽巢问题的基本概念和原理,包括抽屉原理的应用。
通过实例演示,让学生理解鸽巢问题的实际应用。
3.巩固练习:提供一些实际问题,让学生运用所学知识进行解答。
例如,如何通过鸽巢问题解决生活中的分配问题等。
4.归纳小结:总结本节课的学习内容,强调鸽巢问题的应用价值。
同时,鼓励学生将所学知识应用于实际生活中,解决实际问题。
七、评价与反馈1.设计评价策略:通过课堂小测验、课后作业等方式评价学生的学习效果。
同时,鼓励学生提出自己的问题和困惑,进行有针对性的指导和帮助。
2.为学生提供反馈:根据学生的表现,给予及时的反馈和建议,帮助学生改进学习方法。
同时,可以鼓励学生提出自己的问题和困惑,进行有针对性的指导和帮助。
八、教学反思本节课通过讲解、示范、小组讨论和案例分析等多种教学方法,使学生较好地理解了鸽巢问题的基本原理和应用。
但在讲解过程中,部分学生可能还存在一些困惑,需要在后续的教学中加强这一部分的讲解和练习。
六年级数学下册教案《 5 数学广角—鸽巢问题》人教版
六年级数学下册教案《 5 数学广角—鸽巢问题》人教版一. 教材分析《数学广角—鸽巢问题》是人教版六年级数学下册的一章内容。
本章主要让学生了解和掌握鸽巢问题的基本原理和解决方法。
通过本章的学习,学生能理解鸽巢问题的实质,学会运用分类讨论和逻辑推理的方法解决实际问题。
二. 学情分析六年级的学生已经具备了一定的逻辑思维能力和解决问题的能力。
他们在学习过程中,能够主动思考问题,通过合作交流,共同探讨问题的解决方法。
但是,对于鸽巢问题这种较为抽象的问题,部分学生可能存在理解上的困难,需要老师在教学过程中给予更多的引导和帮助。
三. 教学目标1.让学生了解和掌握鸽巢问题的基本原理和解决方法。
2.培养学生运用分类讨论和逻辑推理的方法解决实际问题的能力。
3.培养学生的团队协作能力和语言表达能力。
四. 教学重难点1.重点:让学生理解鸽巢问题的实质,学会运用分类讨论和逻辑推理的方法解决实际问题。
2.难点:对于复杂情况的鸽巢问题,如何引导学生进行正确的分类讨论和逻辑推理。
五. 教学方法1.情境教学法:通过生活实例引入鸽巢问题,让学生在实际情境中感受和理解问题。
2.引导发现法:引导学生发现问题,并通过合作交流,共同探讨问题的解决方法。
3.案例分析法:分析典型的鸽巢问题案例,让学生从中总结规律。
六. 教学准备1.准备相关的教学材料,如PPT、案例资料等。
2.准备足够的时间,让学生在课堂上充分思考和交流。
七. 教学过程1.导入(5分钟)通过一个生活实例,如扑克牌游戏,引入鸽巢问题。
让学生思考:如果有5张扑克牌,如何最快地找出其中的一个特定的牌?2.呈现(10分钟)呈现一系列的鸽巢问题,让学生观察和分析。
引导学生发现问题的共同特点,并尝试给出解决方法。
3.操练(10分钟)让学生分组讨论,每组选择一个鸽巢问题进行解决。
引导学生运用分类讨论和逻辑推理的方法,找出问题的解决策略。
4.巩固(10分钟)让学生汇报各自的解决方法,并进行交流和讨论。
5数学广角——鸽巢问题(教案)-六年级下册数学人教版
5 数学广角——鸽巢问题(教案)六年级下册数学人教版作为一名经验丰富的教师,我深知教学的重要性,下面我将根据您给的“数学广角——鸽巢问题(教案)六年级下册数学人教版”,以第一人称,详细描述我的教学内容、教学目标、教学难点与重点、教具与学具准备、教学过程、板书设计、作业设计以及课后反思和拓展延伸。
一、教学内容本节课的教学内容来自于人教版六年级下册数学教材的第107页,主要包括了“鸽巢问题”的相关知识。
在这个问题中,学生会了解到,在一定条件下,鸽子放置在鸽巢中的方式,以及如何利用鸽巢问题解决实际问题。
二、教学目标通过本节课的学习,我希望学生能够掌握鸽巢问题的基本概念和解决方法,能够将所学的知识应用到实际问题中,提高解决问题的能力。
三、教学难点与重点本节课的重点是让学生理解并掌握鸽巢问题的解决方法,难点则是如何让学生将所学的知识应用到实际问题中。
四、教具与学具准备为了更好地进行教学,我准备了多媒体教具和一些实际的例子,以便更好地解释和展示鸽巢问题。
五、教学过程1. 实践情景引入:我给学生展示了一个实际的例子,例如:“一个班级有30名学生,有20个座位,如何安排这些学生坐下来?”让学生思考并讨论。
2. 讲解概念:然后我引入了“鸽巢问题”的概念,讲解了鸽巢问题的定义和解决方法。
3. 例题讲解:我给学生讲解了一些典型的鸽巢问题题目,让学生了解并掌握解题方法。
4. 随堂练习:我给出了一些随堂练习题,让学生即时巩固所学知识。
5. 应用拓展:我让学生分组讨论,如何将鸽巢问题应用到实际问题中,并给出了一些实际问题的案例。
六、板书设计我在黑板上设计了简洁明了的板书,列出了鸽巢问题的定义、解决方法和实际应用。
七、作业设计我布置了一道实际的鸽巢问题题目,让学生课后思考并解答。
题目如下:假设一个房间里有5个鸽巢,现在有6只鸽子,如何将这些鸽子放入鸽巢中,使得每个鸽巢至少有1只鸽子?八、课后反思及拓展延伸课后,我进行了反思,认为学生们在课堂上掌握了鸽巢问题的基本知识,但在将知识应用到实际问题中,仍需加强。
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】教学内容审定人教版六年级下册数学《 数学广角《鸽巢问题》,也就是原实验教材 抽屉原理》。
设计理念鸽巢问题》既鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确提出来的,因此,也称为狄利克雷原理。
首先,用具体的操作,将抽象变为直观。
“总有一个筒至少放进2支笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。
怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”;二在操作中理解“平均分”是保证“至少”的最好方法。
通过操作,最直观地呈现“总有一个筒至少放进2支笔”这种现象,让学生理解这句话。
其次,充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。
学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生去认识,而是创造条件,让学生自己去探索,发现。
所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。
再者,适当把握教学要求。
我们的教学不同奥数,因此在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“鸽巢”和“物体”。
教材分析鸽巢问题》这是一类与“存在性”有关的问题,如任意13名学生,一定存在两名学生,他们在同一个月过生日。
在这类问题中,只需要确定某个物体《 或某个人)的存在就可以了,并不需要指出是哪个物体 或哪个人),也不需要说明通过什么方式把这个存在的物体 或人)找出来。
这类问题依据的理论,我们称之为“鸽巢问题”。
通过第一个例题教学,介绍了较简单的“鸽巢问题”:只要物体数比鸽巢数多,总有一个鸽巢至少放进2个物体。
它意图让学生发现这样的一种存在现象:不管怎样放,总有一个筒至少放进2支笔。
呈现两种思维方法:一是枚举法,罗列了摆放的所有情况。
六年级数学下册教案-5数学广角—鸽巢问题-人教版
六年级数学下册教案5 数学广角—鸽巢问题人教版作为一名经验丰富的教师,我深知教学的重要性。
在教学过程中,我始终以学生的需求和兴趣为出发点,注重启发式教学,培养学生的创新精神和实践能力。
下面是我根据教学内容和要求,为六年级数学下册编写的教案。
一、教学内容本节课的教学内容为人教版六年级数学下册的《数学广角—鸽巢问题》。
该章节主要介绍了鸽巢问题的基本概念、原理和解决方法。
通过学习,学生能够理解鸽巢问题的实质,掌握解决鸽巢问题的基本方法,并能够运用到实际问题中。
二、教学目标1. 知识与技能:使学生了解鸽巢问题的基本概念,理解鸽巢问题的实质,掌握解决鸽巢问题的基本方法。
2. 过程与方法:通过自主学习、合作探究的方式,培养学生解决实际问题的能力。
3. 情感、态度与价值观:激发学生学习数学的兴趣,培养学生的创新精神和实践能力。
三、教学难点与重点1. 教学难点:理解鸽巢问题的实质,掌握解决鸽巢问题的基本方法。
2. 教学重点:培养学生解决实际问题的能力。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:笔记本、文具、练习题。
五、教学过程1. 导入新课:通过一个实际问题,引出鸽巢问题的概念,激发学生的学习兴趣。
2. 自主学习:让学生自主阅读教材,了解鸽巢问题的基本概念和原理。
3. 合作探究:学生分组讨论,探讨解决鸽巢问题的方法,教师巡回指导。
4. 例题讲解:讲解教材中的典型例题,引导学生掌握解决鸽巢问题的方法。
5. 随堂练习:设计一些练习题,让学生当场练习,巩固所学知识。
六、板书设计1. 鸽巢问题的定义2. 鸽巢问题的实质3. 解决鸽巢问题的方法七、作业设计1. 请用一句话概括鸽巢问题的实质。
2. 举例说明如何解决一个鸽巢问题。
八、课后反思及拓展延伸2. 拓展延伸:鼓励学生运用所学知识解决实际问题,开展相关的实践活动。
重点和难点解析在上述教案中,有几个关键的细节是我需要重点关注的。
导入新课环节的设计是我认为非常关键的一步。
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】教学内容:人教版小学数学六年级下册教材第68~69页。
教材分析:鸽巢问题又称抽屉原理或鞋盒原理,它是组合数学中最简单也是最基本的原理之一,从这个原理出发,可以得出许多有趣的结果。
这部分教材通过几个直观的例子,借助实际操作,向学生介绍了“鸽巢问题”。
学生在理解这一数学方法的基础上,对一些简单的实际问题“模型化”,会用“鸽巢问题”解决问题,促进逻辑推理能力的发展。
学情分析:“鸽巢问题”的理论本身并不复杂,对于学生来说是很容易的。
但“鸽巢问题”的应用却是千变万化的,尤其是“鸽巢问题”的逆用,学生对进行逆向思维的思考可能会感到困难,也缺乏思考的方向,很难找到切入点。
设计理念:在教学中,让学生经历将具体问题“数学化”的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,这是《标准》的重要要求,也是本课的编排意图和价值取向。
教学目标:1、知识与技能:通过操作、观察、比较、推理等活动,初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题。
2、过程与方法:在鸽巢原理的探究过程中,使学生逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养学生的模型思想。
3、情感态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学生解决问题的能力和兴趣。
教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。
教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。
教学准备:多媒体课件、微视频、合作探究作业纸。
教学过程:一、谈话引入:1、谈话:你们知道“料事如神”这个词是什么意思吗?今天老师也能做到“料事如神”,你们信不信?现在老师任意点13位同学,我就可以肯定,至少有2个同学的生日在同一个月。
你们信吗?2、验证:学生报出生月份。
根据所报的月份,统计13人中生日在同一个月的学生人数。
六年级数学下册教案《5 数学广角——鸽巢问题》-人教版
六年级数学下册教案《5 数学广角——鸽巢问题》-人教版一. 教材分析《数学广角——鸽巢问题》是人教版六年级数学下册的一章内容。
本章主要让学生了解和掌握鸽巢问题的基本概念和解决方法,培养学生运用数学知识解决实际问题的能力。
本章内容与现实生活紧密相连,能够激发学生的学习兴趣,提高学生运用数学知识解决实际问题的能力。
二. 学情分析六年级的学生已经具备了一定的逻辑思维能力和解决问题的能力,但是对于鸽巢问题这种比较抽象的问题可能还有一定的困难。
因此,在教学过程中,教师需要通过生动的例子和实际问题,引导学生理解和掌握鸽巢问题的解决方法。
三. 教学目标1.让学生了解和掌握鸽巢问题的基本概念和解决方法。
2.培养学生运用数学知识解决实际问题的能力。
3.培养学生合作交流的能力。
四. 教学重难点1.鸽巢问题的基本概念和解决方法。
2.如何运用数学知识解决实际问题。
五. 教学方法1.情境教学法:通过生动的例子和实际问题,引导学生理解和掌握鸽巢问题的解决方法。
2.小组合作学习:培养学生合作交流的能力。
3.实践操作:让学生在实际操作中理解和掌握鸽巢问题的解决方法。
六. 教学准备1.教学课件:包括鸽巢问题的实例和实际问题。
2.教学素材:包括鸽巢问题的图片和实际问题的数据。
3.学生活动材料:包括纸张、笔等。
七. 教学过程1.导入(5分钟)教师通过一个生动的例子,如“5只鸽子停在3个鸽巢里,每个鸽巢至少有一只鸽子”,引导学生思考和讨论,引出本节课的主题——鸽巢问题。
2.呈现(10分钟)教师通过课件展示鸽巢问题的实例和实际问题,让学生初步了解和感知鸽巢问题的解决方法。
3.操练(10分钟)教师引导学生通过小组合作学习,解决呈现的鸽巢问题。
教师在过程中给予学生必要的指导和帮助。
4.巩固(10分钟)教师通过PPT展示一些巩固题,让学生独立完成。
教师在过程中给予学生必要的指导和帮助。
5.拓展(10分钟)教师通过出示一些拓展题,让学生小组合作交流,进一步理解和掌握鸽巢问题的解决方法。
小学六年级下册数学《数学广角鸽巢问题》教案优秀4篇
小学六年级下册数学《数学广角鸽巢问题》教案优秀4篇小学六年级下册数学《数学广角──鸽巢问题》教案篇一教学目标:通过复习练习,进一步掌握分数、百分数、小数的互化的方法。
进一步掌握分数、小数等有关性质。
教学重点、难点:分数、百分数、小数的互化的方法。
分数、小数等有关性质。
教学设计:一、复习小数、分数、百分数、成数、折扣等互化表格出示:给出其中一种,要求转化成另外几种数。
学生独立完成后,指名交流,说明转化方法。
0.35 1/4 140% 六成五八折二、分数、小数有关性质及其关系出示:12÷( )=3/4=( ):36=( )/12=( )%学生独立填写。
交流:你是怎样填写的?填写时从哪开始思考?运用了哪些知识?三、巩固练习1、第86页第12题独立完成,说明填写方法。
引导学生发现:第1小题:后面的数总比前面大,越来越接近1.第2小题:后面的数总比前面小,越来越接近02、第86页第一叁、14题读题理解要求。
再按要求完成。
四、补充练习填空题1. 有一个小数,由8个自然数单位,5个十分之一和22个千分之一组成,这个数写作( ),读作( ),它的计数单位是( )。
2. 六亿零六十万零六十写作( ),改写成用“万”作单位是( ),省略万后面的尾数是( ),精确到亿位是( )。
3. 两个相邻的自然数,它们的差是( )。
一个自然数既不是质数又不是合数,与它相邻的两个自然数是( )和( )。
4.如果a+1=b,那么它们的最小公倍数是( ),最大公因数是( )。
5. 把0.625的小数点向左移动两位是( ),它缩小了( )倍。
6、如果一个小数的小数点向右移动一位后比原来大了32.4,那么原来这个小数是( )7. 五个连续自然数的和是200,这五个自然数分别是( )、( )、( )、( )、( )。
8.最大的一位纯小数比最大的两位纯小数小( );最小的两位纯小数比最小的三位纯小数大( )。
9.两个数的积是70,一个因数扩大100倍,另一个因数缩小10倍,积是( )。
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】一、教学三维目标1.知识与技能目标:初步理解鸽巢原理;2.过程与方法目标:经历鸽巢原理的的探究过程,培养学生的模型思想;3.情感态度与价值观目标:感受数学的魅力,提高学习数学的兴趣。
二、教学重点经历探究过程,初步了解鸽巢原理;三、教学难点理解鸽巢原理;四、教学过程1.游戏引入教师提问:你们玩过“抢椅子”的游戏吗?谁能说说游戏规则呢?学生回答后,组织学生进行几次“抢椅子”的游戏。
请学生注意观察,提问:一个简单的游戏里,蕴含着什么数学知识呢?顺势引入课题。
2.讲授新知活动一:初步认识鸽巢原理出示例1:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。
提问:你得到了什么数学信息?至少和总有是什么意思?总结:总有就是一定存在的意思,至少表示最低限度,有最少的意思。
再提问:这句话对吗?组织小组活动,进行验证。
总结:学生探究出两种方法,方法一是枚举法,将可能的情况都列出进行观察;方法二是假设法。
两种方法都能验证这句话是正确的。
在此基础上,教师把铅笔换成鸽子,笔筒换成鸽笼,介绍鸽巢问题。
活动二:探究一般形式出示例2:把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。
提问:这句话对吗?为什么?组织小组活动,进行探究。
总结:用枚举法和假设法都能证明这句话是对的,教师利用除法算式7÷3=21,引导理解用“平均分”的思维来理解假设法。
追问:如果有8本书会怎样?10本呢?组织同桌交流,指名学生回答。
学生回答时继续用除法表示,最后提问:观察算式,你发现了什么?师生总结:观察3个算式,发现至少放的本数是商+1,而不是商+余数。
引出鸽巢问题又叫抽屉问题。
3.巩固练习完成做一做4.课堂小结教师提问:你有什么收获?学生回答后教师总结完善。
5.布置作业课后习题1、2题,将今天学到的整理成数学日记人教版数学六年级下册鸽巢问题优秀教案【第2篇】《鸽巢问题》就是以前奥数的教学内容《抽屉原理》,兴趣是学习最好的老师。
六年级下册数学教案《5《数学广角—鸽巢问题》人教版
六年级下册数学教案《5《数学广角—鸽巢问题》人教版一、教案背景本节课将围绕数学广角中的鸽巢问题展开教学。
鸽巢问题是数学中一个经典的组合数学问题,通过这个问题的讲解,可以帮助学生理解组合数学的基本概念。
二、教学目标1.理解鸽巢问题的基本概念。
2.能够运用组合数学的知识解决实际问题。
3.培养学生的逻辑思维和数学建模能力。
三、教学重点1.理解鸽巢问题的描述。
2.运用组合数学的方法求解相关问题。
四、教学内容1. 什么是鸽巢问题鸽巢问题是指有n个鸽子和m个巢,如果n个鸽子全部进入m个巢,必然有至少一个巢内有超过一个鸽子。
这个问题可以通过组合数学的方法进行求解。
2. 解决鸽巢问题具体解决鸽巢问题的方法是采用反证法。
假设所有的m个巢中都只有一个鸽子,那么至少需要m个巢。
但是鸽子的数量大于m,所以必然存在至少一个巢内有超过一个鸽子。
五、教学过程1.引入问题:老师给出一个生活中的例子,引出鸽巢问题。
2.学生思考:让学生思考如果有5只鸽子和3个巢,是否存在至少一个巢有两只鸽子。
3.学生讨论:学生们在小组内讨论并给出自己的答案。
4.知识梳理:老师讲解鸽巢问题的解决方法,引导学生理解反证法的应用。
5.练习:布置一些练习题让学生巩固所学知识。
6.总结:对本节课的内容进行总结,强调鸽巢问题的重要性和实际应用。
六、教学反馈1.在课堂中观察学生对鸽巢问题的理解情况。
2.收集学生的练习作业并进行评价,及时纠正学生的错误。
七、拓展延伸1.鸽巢问题的变形:让学生尝试解决更复杂的鸽巢问题,如n个鸽子和m个巢的情况。
2.探究组合数学的其他应用:带领学生探索组合数学在其他领域的应用,如排列组合问题等。
通过本节课的学习,相信学生们能够更好地理解鸽巢问题的精髓,并将组合数学的方法运用到实际问题中去,为他们的数学学习打下坚实的基础。
六年级下册数学教学设计《:5 数学广角——鸽巢问题(》人教版)
六年级下册数学教学设计《:5 数学广角——鸽巢问题(》人教版)一. 教材分析《数学广角——鸽巢问题》是人教版六年级下册的一章内容。
本章主要让学生了解和掌握鸽巢问题的基本原理和解决方法。
通过本章的学习,学生能理解鸽巢问题的实质,学会用集合论的观点分析和解决问题。
本节课是本章的第一节,主要介绍鸽巢问题的概念和基本解决方法。
二. 学情分析六年级的学生已经具备了一定的逻辑思维能力和问题解决能力。
他们对于新知识充满好奇,善于发现和提出问题。
但是,由于年龄和认知水平的限制,他们在理解抽象概念和复杂问题时还存在一定的困难。
因此,在教学过程中,教师需要通过生动形象的教学手段,帮助学生理解和掌握知识。
三. 教学目标1.让学生了解和理解鸽巢问题的概念和实质。
2.让学生学会用集合论的观点分析和解决问题。
3.培养学生的逻辑思维能力和问题解决能力。
四. 教学重难点1.鸽巢问题的概念和实质。
2.用集合论的观点分析和解决问题。
五. 教学方法1.情境教学法:通过生活实例引入鸽巢问题,让学生在具体的情境中感受和理解问题。
2.问题驱动法:引导学生提出问题,并自主探究问题的解决方法。
3.合作学习法:鼓励学生之间相互讨论和交流,共同解决问题。
4.讲解法:教师对重点知识和难点知识进行讲解,帮助学生理解和掌握。
六. 教学准备1.准备相关的生活实例和问题,用于导入和呈现。
2.准备PPT,用于展示和讲解。
3.准备练习题,用于巩固和拓展。
七. 教学过程1.导入(5分钟)通过一个生活实例引入鸽巢问题,让学生思考和讨论:如果有5只鸽子要放在3个鸽巢里,那么至少有一个鸽巢里有2只或以上的鸽子吗?让学生感受和理解鸽巢问题。
2.呈现(15分钟)呈现鸽巢问题的定义和实质,用PPT展示相关的图片和例子,让学生理解和掌握鸽巢问题的基本概念。
3.操练(15分钟)让学生分组讨论和解决问题:如果有8只鸽子要放在4个鸽巢里,那么至少有一个鸽巢里有3只或以上的鸽子吗?每组给出解答,并在班上分享。
小学六年级下册数学《数学广角──鸽巢问题》教案范文五篇[修改版]
是时代的见证,真理的火炬,记忆的生命,生活的老师和古人的使者。
下面是小编给大家准备的小学六年级下册《数学广角──鸽巢问题》教案,供大家阅读。
小学六年级下册数学《数学广角──鸽巢问题》教案范文一教学目标1.在操作、观察、比较的过程中初步了解抽屉原理,并运用抽屉原理的知识解决简单的实际问题。
重点难点经历抽屉原理的探究过程,并对抽屉原理的问题模式化学生笔记(教师点拨) 学案内容一、知识回顾:(2分钟)二、学生:(15分钟)(1)自学例1把4枝铅笔放进3个文具盒中,可以怎么放?有几种情况?(1) 学生思考各种放法。
(2) 第一种放法:第二种放法:第三种放法:第四种放法:教学过程:5÷2=2……1 (至少放3本)7÷2=3……1 (至少放4本)9÷2=4……1 (至少放5本)1、提出问题。
不管怎么放,总有一个文具盒里至少放进( )铅笔。
为什么?如果每个文具盒只放( )铅笔,最多放( )枝,剩下( )枝还要放进其中的一个文具盒,所以至少有( )铅笔放进同一个文具盒。
(1) 说一说你有什么体会。
二自学例21、把5本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几体书?2、摆一摆,有几种放法。
不难得出,不管怎么放总有一个抽屉至少放进( )本书。
3、说一说你的思维过程。
如果每个抽屉放( )本书,共放了( )本书。
剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书。
如果一共有7本书会怎样呢?9本呢?4. 你能用算式表示以上过程吗?你有什么发现?总结:先平均分配,再把余数进行分配,得出的就是一个抽屉至少放进的本数。
三、小组合作交流(8分钟)四、教师评价释疑。
(10分钟)五、当堂检测(5分钟)1. 做一做。
(1)7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。
为什么?(2) 说出想法。
如果每个鸽舍只飞进( )鸽子,最多飞回( )鸽子,剩下( )鸽子还要飞进其中的一个鸽舍或分别飞进其中的两个鸽舍。
(新人教版)六年级数学下册第五单元数学广角——鸽巢问题教案
(新人教版)六年级数学下册第五单元数学广角——鸽巢问题教案一. 教材分析新人教版六年级数学下册第五单元“数学广角——鸽巢问题”主要让学生了解和掌握鸽巢问题的基本概念和解决方法。
通过本节课的学习,使学生能够运用鸽巢问题解决一些简单的实际问题,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析六年级的学生已经具备了一定的数学基础,对于问题的解决有一定的思路和方法。
但在解决实际问题时,还需要引导学生将问题抽象成数学模型,运用数学方法进行解决。
三. 教学目标1.让学生了解和掌握鸽巢问题的基本概念和解决方法。
2.培养学生运用鸽巢问题解决实际问题的能力。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.重点:了解和掌握鸽巢问题的基本概念和解决方法。
2.难点:如何引导学生将实际问题抽象成数学模型,运用鸽巢问题进行解决。
五. 教学方法1.情境教学法:通过生活实例引入鸽巢问题,让学生在实际情境中感受和理解问题。
2.启发式教学法:引导学生主动思考,发现问题,归纳总结解决方法。
3.小组合作学习:培养学生团队合作精神,共同解决问题。
六. 教学准备1.准备相关的生活实例和问题,用于导入和巩固环节。
2.准备课件,用于呈现和讲解鸽巢问题的解决方法。
3.准备练习题,用于课后巩固和拓展。
七. 教学过程1.导入(5分钟)通过一个生活实例引入鸽巢问题,如:假设一个班级有30名学生,如果有40个座位,那么至少有一个座位上会有2个或以上的学生。
让学生思考并解释原因。
2.呈现(10分钟)利用课件呈现鸽巢问题的基本概念和解决方法,如:对于n个鸽子,m个巢穴,当n>=m时,至少有一个巢穴上有2个或以上的鸽子。
3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,运用鸽巢问题进行解决。
如:一个篮子可以放4个苹果,如果有5个苹果,那么至少有一个苹果在篮子里。
4.巩固(10分钟)让学生独立完成一些类似的练习题,巩固对鸽巢问题的理解和运用。
人教版数学六年级下册鸽巢问题教案(推荐3篇)
人教版数学六年级下册鸽巢问题教案(推荐3篇)人教版数学六年级下册鸽巢问题教案【第1篇】《鸽巢问题(第1课时)》教学设计一、教学目标1.引导学生经历“鸽巢问题”的抽象过程,初步了解“鸽巢原理”并用其解决相关生活中的简单问题。
2.通过猜测、验证、观察、分析等数学活动,提高学生有根据有条理的进行思考和推理的能力。
3.经历从具体到抽象的探究过程,建立数学模型,培养“模型思想”。
4.灵活应用“鸽巢原理”,提高学生解决数学问题的能力和兴趣。
二、教学重点教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。
教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。
三、教学准备纸杯、吸管、多媒体课件。
四、教学过程(一)创设情境 揭示课题多媒体演示“二桃杀三士”的成语故事【设计意图】通过问题引发学生思考,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。
(二)探索新知(1)初步感知。
把3个磁扣放到2个圆圈里,有哪些放法?(学生思考)师:“不管怎么放,总有一个圆圈里至少有2个磁扣”,这句话说得对吗?师:这句话里“总有” “至少”是什么意思?【设计意图】从学生喜欢的游戏入手,设置悬念,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。
教师:“总有一个圆圈里至少有2个磁扣”,这句话说得对吗?教师:这句话里“总有” “至少”是什么意思?【设计意图】此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。
通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个圆圈里至少有2个磁扣”这句话。
(2)逐步深入 初建模型把4根吸管放到3个纸杯里,有哪些放法? 4人为一组动手试一试。
(学生思考—组内交流—汇报)【设计意图】通过操作,将抽象的结论具体化,学生得到了四种全部情况,从而获得了支持这个结论所有的实物图像表征,为后面的“说理”提供了有力的支撑。
六年级数学下册教案《5 数学广角——鸽巢问题》34-人教版
六年级数学下册教案《5 数学广角——鸽巢问题》34-人教版一. 教材分析《数学广角——鸽巢问题》是人教版六年级数学下册的一节课。
本节课主要让学生理解并掌握鸽巢问题的原理及应用,培养学生的逻辑思维能力和解决实际问题的能力。
通过本节课的学习,学生能够了解鸽巢问题的基本概念,掌握用列举法证明鸽巢问题的方法,并能够运用鸽巢问题解决生活中的实际问题。
二. 学情分析六年级的学生已经具备了一定的数学基础,对于图形的认识和简单的逻辑推理已经有了一定的掌握。
但是,对于鸽巢问题这种比较抽象的数学问题,可能还比较陌生。
因此,在教学过程中,教师需要引导学生通过实际例子去理解鸽巢问题的本质,逐步培养学生解决这类问题的能力。
三. 教学目标1.知识与技能:让学生了解并掌握鸽巢问题的原理及应用,能够运用列举法证明鸽巢问题。
2.过程与方法:通过探究、合作、交流的方式,培养学生解决实际问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,提高学生分析问题、解决问题的能力。
四. 教学重难点1.重点:让学生理解并掌握鸽巢问题的原理及应用。
2.难点:如何引导学生用列举法证明鸽巢问题,并能够运用到实际问题中。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等多种教学方法,引导学生通过实际例子去理解鸽巢问题的本质,培养学生的逻辑思维能力和解决实际问题的能力。
六. 教学准备1.教师准备:准备好相关的教学案例、实例,以及用于证明鸽巢问题的列举法。
2.学生准备:学生需要预习相关的内容,了解鸽巢问题的基本概念。
七. 教学过程1.导入(5分钟)教师通过一个简单的实例引入鸽巢问题,让学生初步了解鸽巢问题的基本概念。
2.呈现(15分钟)教师呈现一些具体的鸽巢问题,让学生尝试解决。
在解决问题的过程中,引导学生发现并总结鸽巢问题的规律。
3.操练(10分钟)教师给出一些练习题,让学生独立完成。
通过练习,让学生进一步巩固对鸽巢问题的理解。
4.巩固(5分钟)教师引导学生通过小组合作的方式,共同解决一些复杂的鸽巢问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学广角—鸽巢问题》教学设计
数学广角—鸽巢问题
例1:本例描述“抽屉原理”的最简单的情况。
着重探讨为什么这样的结论是成立的。
教材呈现了两种思考方法:第一种方法是用操作的方法,罗列所有的方法,通过完全归纳的方法看到在这四种情况都是满足结论的;还可以是说理的方式,先放3支,在每个笔筒里放1支,这时剩下1支。
剩下的1支不管放入哪一个笔筒中,这时都会有一个笔筒里有2支铅笔。
这种方法比第一种方法更为抽象,更具有一般性。
通过本例的教学,使学生感知这类问题的基本结构,掌握两种思考的方法──枚举和假设,理解问题中关键词语“总有”和“至少”的含义,形成对“抽屉原理”的初步认识。
例2:本例描述“抽屉原理”更为一般的形式,即“把多于(是正整数)个物体任意分放进个空抽屉里,那么一定有一个抽屉中放进了至少(+1)个物体”。
教材首先探究把7本书放进3个抽屉里,总有一个抽屉里至少放进3本书的情形。
当数据变得越来越大时,如果还用完全归纳的方法把所有的情形罗列出来的话,对于学生来说是有困难的。
这时需要学生用到“反证法”这样一种思想,即如果所有的抽屉最多放2本,那么3个抽屉里最多放6本书,可是题目中是7本书,还剩1本书,怎么办?这就使学生明白只要放到任意一个抽屉里即可,总有一个抽屉里至少放进3本书。
通过这样的方式,实际上学生是在经历“反证法”的这样一个过程。
在具体编排这道例题的时候,在数据上进行了一个很细微的调整。
在过去,由于数据的问题,学生会得到不太正确的推论,比如说如果是两个抽屉的话,最后得到的余数总是1,那么学生很容易得到一个错误的结论:总有一个抽屉里放进“商+余数”本书(因为余数正好是1)。
而实际上,这里的结论应该是“商+1”本书,所以教材在这里呈现了8除以3余2的情况,这时候余数是2,可是最后的结论还是“把8本书放进3个抽屉里,总有一个抽屉至少放进了3本书”。
通过这样的数据方面的调整,可以让学生得到一个更加正确的推论。
例3:跟之前教材的编排是一样的,是抽屉原理的一个逆向的应用。
要解决这个问题,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”。
这样,就可以把“摸球问题”转化为“抽屉问题”。
教材通过学生的对话,指出了可以通过先猜测再验证的方法来解决问题,也反映了学生在解决这个问题时可能会遇到的困难。
很多学生误以为要摸5
次才可以摸出球,这可以让学生通过实验来验证。
1、知识与技能
知道什么是“鸽巢问题”并掌握解决“鸽巢问题”的方法。
2、过程与方法
通过探究“鸽巢问题”的解决过程,掌握数形结合的学习思想。
3、情感态度和价值观通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,培养学生独立思考问题的能力。
把具体问题转化成“鸽巢问题”并总结“鸽巢问题”解决的方法。
多媒体课件
一、情景引入(课件展示)
我给大家变一个“魔术”:一副扑克牌,抽掉大小王之后还有52张牌,现在你们5个人每人随意抽一张,我知道至少有两张牌是同花色的,你相信我吗?
二、导入新课
例1、把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。
为什么呢?“总有”和“至少”是什么意思?
学生动手操作:
方法一:把各种情况都摆出来。
(列举法)
方法二:把4分解成3个数。
(分解法)
例1提出的问题就是“鸽巢问题”,4支铅笔就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。
这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。
例2、把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少有3本书。
为什么呢?
如果有8本书会怎样呢?10本书呢?
方法一:把7本书放进3个抽屉里,共有8种情况,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多那个数最小是3,即总有1个抽屉至少放进3本书。
方法二:如果每个抽屉最多放2本,那么3个抽屉最多放6本,可是题目要求放7本,那么剩下的那本书要放在3个抽屉中的其中一个中。
所以7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。
8÷3=2余2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本;放进其中一个抽屉里,这个抽屉就变成4本。
因此把8本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。
10÷3=3余1本,把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。
问题:你是这样想的吗?你有什么发现?
例3、盒子里有同样大小的红球和篮球各4个,要想摸出的球一定有2个同色的,至少要摸出几个球?
思考:只摸2个球就能保证这2个球同色吗?当摸出的这两个球正好是一红一蓝时就不能同色。
解:把红、蓝两种颜色看作两个“鸽巢”,因为3÷2=2余下1,所以摸出3个球时,至少有2个是同色的。
结论:只要摸出的球数比它们的颜色种数多1,就能保证有两个球同色。
三、即时练习
1、5只鸽子飞进了3只笼子,总有一只鸽笼至少飞进了2只鸽子,为什么?
解:3只鸽子分别飞入3只笼子中,剩下的2只分别放入其中2只鸽笼中,那么这两只鸽笼中都有2只鸽子;剩下的2只放入其中一只鸽笼里,那么这只鸽笼就有3只鸽子。
所以5只鸽子飞进了3只笼子,总有一只鸽笼至少飞进了2只鸽子。
2、你理解上面扑克魔术的道理了吗?
解:扑克牌有4种花色,看做4个“鸽巢”,5个人每人抽一张,抽了5张,看做5只“鸽子”;问题就转化为“5只鸽子飞入4个鸽巢,总有一个鸽巢飞入了2只鸽子”。
4只鸽子分别飞入4个鸽巢中,剩下的1只飞入其中一个鸽巢,那么总有一个鸽巢飞入了2只鸽子。
3、11只鸽子飞进了4只鸽笼,总有一只鸽笼至少飞入了3只鸽子,为什么?
解:11÷4=2余3只,分别放进其中3只鸽笼中,使其中3只鸽笼都变成3只;放进
其中2只鸽笼里,这两只鸽笼中一只鸽笼变成4只鸽子,另一只鸽笼里变成了3只鸽子;放进其中一个鸽笼里,这个鸽笼利就变成了5只鸽子。
所以11只鸽子飞进了4只鸽笼,总有一只鸽笼至少飞入了3只鸽子。
4、5人坐4把椅子,总有一把椅子上至少坐2人,为什么?
解:5÷4=1余下1人,这个人坐在其中一个椅子上,那么这把椅子上坐了2个人。
所以5人坐4把椅子,总有一把椅子上至少坐2人。
5、向东小学六年级共有367名学生,其中六(2)班有49名学生。
(1)六年级里至少有2个人的生日是同一天。
(2)六(2)班中至少有5人是同一个月出生的。
他们说的对吗?为什么?
解:(1)一年最多366天。
假设367个学生中366个学生的生日在不同的一天:367÷366=1余1个学生,可以看做鸽巢问题,所以六年级里至少有2个人的生日在同一天。
(2)一年有12个月。
假设49个学生的生日分别在不同的月份:49÷12=4余1人,看做鸽巢问题,所以六(2)班中至少有5人是同一个月出生的。
所以他们的说法正确。
6、把红、黄、蓝、白四种颜色的球各10个放到一个袋子里。
至少取多少个球,可以保证取到两个颜色相同的球?
解:看作鸽巢问题,5÷4=1余1,至少取5个球,就能保证取到两个颜色相同的球。
拓展思考
把红、蓝、黄3种颜色的筷子各3根混在一起,如果让你闭上眼睛,每次最少拿出几根才能保证一定有2根同色的筷子?如果要保证有2双筷子呢?
解:把红、黄、蓝看作3个鸽巢:4÷3=1余1,每次至少拿出4根能保证一定有2根同色的筷子。
保证有2双筷子:一次拿出5根时,因为每种颜色各有3根,当一种颜色的筷子拿了3根,其余2种颜色的筷子各拿1根,这时不能保证有2双筷子;一次拿出6根时,有以下情况:
这时能保证至少有2双筷子。
所以至少拿出6根能保证有2双筷子。
习题巩固
1、随意找13位老师,他们中至少有2个人的属相相同,为什么?
解:一共有12个属相。
13÷12=1余1,所以他们中至少有2个人属相相同。
2、张叔叔参加飞镖比赛,投了5镖,成绩是41环。
张叔叔至少有一镖不低于9环。
为什么?
解:当5镖全部低于9环时,成绩最多是5×8=40环,而张叔叔得了41环,那么其中一环必定要大于8环,即至少有一镖不低于9环。
3、给一个正方体木块的6个面分别涂上蓝、黄两种颜色。
不论怎么涂至少有3个面涂的颜色相同,为什么?
解:蓝(黄)色涂1个面时,黄(蓝)色涂5个面;蓝(黄)色涂2个面时,黄(蓝)色涂4个面;蓝(黄)色涂3个面时,黄(蓝)色涂3个面。
所以不论怎么涂至少有3个面涂的颜色相同。
4、任意给出3个不同的自然数,其中一定有2个数的和是偶数,为什么?
解:已知:偶数与偶数的和是偶数,奇数与奇数的和是偶数,自然数分为偶数、奇数。
那么找出3个自然数只有两种情况:两个偶数,一个奇数;一个偶数,两个奇数。
这两种情况都满足有2个数的和是偶数。
本课小结
1、把具体问题转化成“鸽巢问题”。
2、总结“鸽巢问题”解决的方法。
略。