六年级数学总复习主要知识点梳理(数与代数)
人教版-小学数学-六年级-数与代数-知识梳理
人教版小学数学六年级数与代数知识梳理一知识点一:整数1、整数的范围整数包括自然数和负整数,或者说整数由正整数、零、负整数组成。
(1)自然数自然数的意义:我们在数物体的时候,用来表示物体的个数0,1,2,3,4,5,…..叫做自然数。
自然数的个数是无限的,没有最大的自然数。
自然数的基本单位:任何非“0”的自然数都是假设干个“1”组成,所以“1”是自然数的基本单位。
1也是最小的一位数。
“0”的含义:“0”表示一个物体也没有,在计数中起占位作用,表示该数位上没有计数单位。
“0”还可以表示起点、分界点等。
“0”是最小的自然数。
自然数的两种意义:如果一个自然数用来表示物体的个数就叫基数;如果一个自然数用来表示物体排列的次序就叫序数。
〔2〕正数正数的定义以前学过的8、16、200……..这样的数叫做正数。
正数的写法和读法正数前面也可以加“+”号,例如:+8读作:正八。
“+”号一般可以省略不写。
〔2〕负数负数的定义像-1、-5、-132……这样的数叫做负数。
“一”叫负号。
负数的写法和读法负数前面加“一”号,例如:-15读作:负十五。
数字越大的负数反而越小。
“0”既不是正数,也不是负数。
〔4〕整数与自然数的联系及区别自然数全是整数,整数不全是自然数,还包括负整数。
2、整数的读法和写法数的分级按照我国的计数习惯,整数从个位起,每四个数位是一级。
个位、十位、百位、千位是个级,表示多少个一;万位、十万位、百万位、千万位是万级,表示多少个万位;亿位、十亿位、百亿位、千亿位是亿级,表示多少个亿。
计数单位整数、小数都是按照十进制写出的数,其中一〔个〕、十、百…….是整数的计数单位。
计数单位是按一定顺序排列的。
数位各个计数单位所占的位置叫数位。
如9357中的“5”在右起第二位,即“5”所在的数位是十位。
位数指一个数是由几个数字组成,是含有数位个数,如1234占有四个数位,就是四位数。
十进制计数法十进制是指满十进一,十个一进为十,十个十进位百,十个百进为千……每相邻两个计数单位间的进率都是“十”,这样的计数法叫做十进制计数法。
(完整版)六年级数学期末总复习数与代数知识点归纳及经典练习题
The shortest way to do many things is to only one thin 数与代数知识点一整数1、整数的定义:像-3,-2,-1,0,1,2……这样的数称为整数。
在整数中大于零的数称为正整数,小于零的数称为负整数。
正整数、零与负整数统称为整数。
2、整数的范围:除自然数外,整数还包括负整数。
但在小学阶段里,整数通常指的是自然数。
知识点二自然数1、自然数的定义:我们在数物体的时候,用来表示物体个数的0,1,2,3,……叫作自然数。
2、自然数的基本单位:任何非“0”的自然数都是由若干个“1”组成,所以“1”是自然数的基本单位。
3、“0”的含义:一个物体也没有,用“0”表示,但并不是说“0”只表示没有物体。
知识点三比较整数大小的方法知识点四整数的改写把大数改写成用“万”或“亿”作单位的数:一个比较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。
改写有两种情况:一种是把较大的多位数直接改写成用“万”或“亿”作单位的数,不满万、亿的尾数直接改写成小数;另一种是根据需要省略万位或亿位的尾数,把原来的多位数按照“四舍五入”法写成它的近似数。
知识点五倍数和因数1、倍数和因数的定义:自然数a(a≠0)乘自然数b(b≠0),所得的积c就是a和b的倍数,a和b就是c的因数。
2、倍数的特征:一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
因数的特征:一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
知识点六最大公因数、最小公倍数和互质数1、最大公因数的定义:几个数公有的因数,叫作这几个数的公因数;其中最大的一个,叫作这几个数的最大公因数。
2、最小公倍数的定义:几个数公有的倍数,叫作这几个数的公倍数,其中最小的一个,叫作这几个数的最小公倍数。
3、互质数:公因数只有1的两个数,叫作互质数。
知识点七 2、3、5倍数的特征2的倍数的特征:个位上是0、2、4、6、8 的数是2的倍数。
六年级下册总复习数与代数PPT课件
读出下面各数。
读作:五万一千七百 读作:九万三千二百
读作:八十九万零二百 读作:四百一十万六千四百
先填写单价,再计算。
课本 语文 数学
单价/(元/本)
(2)举例说说读、写整数和小数要注意什么,怎样比较整数和小 数的大小,怎样求一个数的近似数?
写整数时,从高位到低位,一级一级地写,哪个数位上一 个单位也没有,就在那个数位上写“0”。
如:四千零三十万零六写作40300006
(2)举例说说读、写整数和小数要注意什么,怎样比较整数和 小数的大小,怎样求一个数的近似数?
【重点】整数(自然数)和小数的意义、组成和读写。 【难点】理解数的相关知识间的联系。
回顾一下,小学阶段我 们认识了哪些数? 它们又有怎样的特点?
你了解整数和小数的哪些知识?先自己整理,再与同学交流。
0,1,2 ,3,4… -1, -2,-3…
3×4=12,3和4
是自然数,也是整数。 是负数,负数都比0小。 是12的因数,12是3
235 1792 2个百 2个一
132 7215 2个一 2个百
3.26
0.542 230000
2个0.1 2个 0.001 2个十万
8.24
0.972 211587
2个0.1 2个 0.001 2个十万
说出下面各小数表示的意义。
0.6
0.25
0.08
0.145 0.017
0.6 把整数1平均分成10份,表示这样的6份。 0.25 把整数1平均分成100份,表示这样的25份。 0.08 把整数1平均分成100份,表示这样的8份。 0.145 把整数1平均分成1000份,表示这样的145份。 0.017 把整数1平均分成1000份,表示这样的17份。
苏教版六年级数学下册总复习知识点大全
只要在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。
小数末尾的0要省略。
例如:974800000=9.748亿,453200=45.32万。
10、把“万”改写成“一”作单位的数:只要先把“万”字去掉,然后再把小数点向右移动四位即可. 如:0.25万=2500 1.56万=1560011、近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数(四舍五入)来表示。
例如:1302490015 省略亿后面的尾数是13 亿。
例如:省略345900 万后面的尾数约是35 万。
注:四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。
省略4725097420 亿后面的尾数约是47 亿。
12、“保留”与“精确到”:把一个数保留整数(也可以说精确到个位)、保留一位小数(也可以说精确到十分位)、保留两位小数(也可以说精确到百分位)、保留三位小数(也可以说精确到千分位)……例如把8745603先改写成用“万”作单位的数,再省略“万”后面的尾数(精确到万位)8745603=874.5603万≈875万13、整数的大小比较:a、位数不同:位数多的数就大;例如:10000>9999b、位数相同:最高位的数大就大;例如:9000>8999c、最高位相同,就比下一位。
例如:9999>9899小数【有限小数、无限小数】1、小数的意义:把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……例如:0.1=1/10;0.03=3/100,0.007=7/10002小数的分类:纯小数:整数部分是零的小数。
例如:0.25 、0.368 都是纯小数。
带小数:整数部分不是零的小数。
(完整word版)六年级数学总复习知识点梳理
第一部分数与代数(一)数的认识知识点一:数的意义和分类自然数、整数、正数和负数、分数、百分数、小数知识点二:计数单位和数位1、计数单位:个、十、百……以及十分之一、百分之一、千分之一……都是计数单位。
“一”是基本单位,其他单位又叫做辅助单位。
2、十进制计数法3、数位:在计数时,计数单位要按照一定的顺序排列起来,它们所在的位置叫做数位。
4、数位顺序表知识点三:数的大小比较知识点四:数的性质1、分数的基本性质:分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。
2、小数的基本性质:小数的末尾添上0或者去掉0,小数的大小不变。
3、小数点位置移动引起小数大小变化的规律知识点五:因数、倍数、质数、合数1、因数和倍数已知a、b、c均为正整数,且a×b=c,那么c就是a和b的倍数,a和b就是c的因数。
倍数和因数是相互依存的。
一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它的本身;一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
一个数既是它自身的因数,又是它自身的倍数。
2、最大公因数和最小公倍数最大公因数:几个数公有的因数,叫做这几个数的公因数,其中最大的一个,叫做这几个数的最大公因数。
最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
3、质数和合数质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
最小的质数是2。
合数:一个数,如果除了1和它本身两个因数外还有别的因数,这样的数叫做合数。
最小的合数是4。
1既不是质数,也不是合数。
(二)数的运算知识点一:四则运算的意义1、加法的意义:把两个数合并成一个数的运算。
2、减法的意义:已知两个数的和与其中的一个加数,求另一个加数的运算。
3、整数乘法的意义:求几个相同加数的和的简便运算。
4、小数乘法的意义:小数乘整数与整数乘法的意义相同,也是求几个相同加数的和的简便运算;一个数乘小数求这个数的十分之几、百分之几……是多少。
六年级总复习知识点——数与代数专题
六年级总复习知识点——数与代数专题数与代数(一)数的认识1数的分类1.自然数:表示物体个数的0,1,2,3…都是自然数。
最小的自然数是0,没有最大的自然数,自然数有无限个。
2.正数和负数:正数和负数表示一对具有相反意义的量。
正号可以省略,负号不可省略。
0既不是正数也不是负数;负数<0<正数。
3.整数:负整数和自然数统称整数。
最小的一位数是1,不是0.4.小数:把整数“1”平均分成10份,100份,1000份······这样的一份或几份是0.1、0.01、0.001。
5.分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
表示其中一份的数就是分数单位。
6.百分数:表示一个数是另一个数的百分之几的数叫做百分数。
百分数也叫百分率或百分比。
[成数]几成就是十分之几,三成五:35%。
[折扣]几折就是十分之几,三五折:35%。
7.因数与倍数:(1)因数与倍数:因数和倍数是相互依存的,因数和倍数只针对非0自然数,如:1,2,3,…。
[因数的特征]一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
[倍数的特征]一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大公倍数。
[最大公因数](最大的小弟)[最小公倍数](最小的大哥)练一练:13和7的最大公因数是(),最小公倍数是();18和54的最大公因数是(),最小公倍数是();9和15的最大公因数是(),最小公倍数是();2A=2×2×3,B=2×3×5,那么A和B最大公因数是(),A和B最小公倍数是()。
3(2)2、3、5的倍数特征[2的倍数特征]个位上是0,2,4,6或8;[5的倍数特征]个位上是0或5;[3的倍数特征]各个数位上的数字之和是3的倍数;[既是2的倍数,又是5的倍数特征]个位是0;(3)奇数与偶数[含义]整数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
苏教小学六年级数学总复习知识点大全
用哪种方式计算,应让学生从自己的实际 出发,能口算则口算,需笔算才笔算,大 数目计算用计算器,只要估算就不算精确 结果。第89页第3题中,有的按运算顺序 计算,有的利用运算律简便计算,教材给 出了判断、选择的空间。例如,1/4 × 4 ÷ 1/84 × 4貌似能够简算,3/18 ÷ 7 + 1/7 × 5/13似乎不能简算,通过判断, 进一步提高计算能力。
第3页/共105页
㈡怎样复习数的认识?
⒈怎样组织学生“整理与反思”? 教材在“整理与反思”栏目里,先引导
学生回忆学过的数,然后讨论三个问题,进 一步清晰数的意义、性质与计算方法,沟通 各种形式的数的内在联系,优化知识结构。 回忆学过的数,要随时整理关于整数的知识, 如0、1、2、3……都是自然数,整数中有正 整数、负整数和0,正数都大于0、负数都小 于0等。
一、数与代数的复习
㈠分节复习,理清思路 1.第一领域,数与代数领域主要教学数与式的 知识,重点是数和式的概念、运算以及实际应 用。安排了数的认识、数的运算、式与方程、 正比例与反比例四节,把常见的量与探索规律 分散在上面四节的“练习与实践”栏目中。 2.数的认识复习整数、小数、分数、百分数的 意义和计数方法,以及这些数的内在联系;小 数的性质、分数的基本性质,分数与除法的关 系,各种形式数的相互改写;有关倍数和因数 的知识,数的实际应用。
第7页/共105页
表示整数和小数都应用十进制计数法, 在讨论题(1)里应该联系具体的整数和 小数,复习计数单位和数位的知识,理 解相邻计数单位间的进率都是10;还要 分析整数和小数的组成,体会十进制计 数法,正确掌握读数方法(数位顺序表)。
第8页/共105页
讨论题(2)要联系实例进行比较,如把 1吨煤平均分成5份,用去其中的1份,用 去了这些煤的1/5,是1/5吨。如果用百 分数来表示,只能是用去了这些煤的20%, 不能说用去了20%吨。百分数只表示一个 数是另一个数的百分之几,也就是只表 示两个数的比,不表示具体的数量。这 既是百分数与分数的联系,也是它们的 区别。
六年级数学总复习主要知识点梳理(数与代数)
学习必备欢迎下载六年级数学总复习主要知识点(数与代数部分)总复习主要知识点(数与代数部分)第一章数和数的运算一概念(一)整数1 、整数的意义自然数和0都是整数。
像-1,-2,-3……这样的数也叫整数。
2 、自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4、数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除整数a除以整数b(b ≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠0)整除,a就叫做b 的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
六年级数学总复习知识点梳理
六年级数学总复习知识点梳理第一部分数与代数一、数的认识1.数的意义和分类数可以分为自然数、整数、正数和负数、分数、百分数和小数。
它们各自有不同的意义和用途。
2.计数单位和数位计数单位包括个、十、百等,以及十分之一、百分之一、千分之一等。
这些单位按一定顺序排列形成数位,是计数的基础。
3.数的大小比较我们可以通过比较数的大小来进行排序和比较大小。
这需要掌握一些比较大小的方法和规则。
4.数的性质分数和小数都有一些基本性质。
例如,分数的分子和分母同时乘或除以相同的数时,分数的大小不变。
而小数的末尾添上或去掉一些数时,小数的大小也不会改变。
5.因数、倍数、质数和合数因数和倍数是相互依存的。
一个数的因数个数是有限的,而倍数的个数是无限的。
最小的质数是2,而最小的合数是4.我们还需要掌握最大公因数和最小公倍数的求法。
二、数的运算1.四则运算的意义四则运算包括加法、减法、乘法和除法。
加法的意义是将两个数合并成一个数,减法的意义是已知两个数的和与其中一个加数,求另一个加数。
整数乘法的意义是求几个相同加数的和,小数乘法和分数乘法的意义也类似。
除法的意义是已知两个因数的积和其中一个因数,求另一个因数。
2.四则运算的法则我们需要掌握四则运算的法则和规则,例如加法和乘法满足交换律和结合律,而减法和除法则不满足交换律和结合律。
在进行运算时,还需要注意数的正负性和小数点的位置等问题。
整数加减法、小数加减法、分数加减法、整数乘法、分数乘法、整数除法、小数除法和分数除法是数学中的基本运算。
四则混合运算中,加法和减法为第一级运算,乘法和除法为第二级运算。
在没有括号的算式中,同一级运算从左往右依次计算;有两级运算时,先做第二级运算再做第一级运算。
在有括号的算式中,要先算小括号里面,再算中括号里面的,最后算大括号里面的。
运用定律可以使计算更简便,如加法交换律、加法结合律、乘法交换律、乘法结合律和乘法分配律等。
通过运算可以解决实际问题。
苏教版六年级数学下册全册知识清单知识归纳总复习
习”后面是几就读作几。
0是最小的自然数,但0不是最小的一位数,最小的一位数是1。
易错点:误认为75.075读作七十五点七十五。
要注意读小数部分时一定要从高位起,依次读出每个数位上的数字,即使是连续的几个0,也要一一读出来。
小数的计数单位是0.1,0.01,0.001…是十进制分数的另一种表现形式。
正、负数表示两种具有相反意义的量。
小数部分·的整数部分,余数就是带分数的分数部分的分子,原分母不变。
③整数化成假分数的方法:把整数化成假分数,用指定的分母作分母,用分母和整数的乘积作分子。
④带分数化成假分数的方法:把带分数化成假分数,用原来的分母作分母,用分母和整数的乘积再加上原来的分子作分子。
(2)判断一个分数能否化成有限小数的方法。
a.要看这个分数是不是最简分数。
b.如果是最简分数,就要看其分母中含有哪些质因数。
如果分母中只含有质因数2和5,这个分数就能化成有限小数;如果分母中含有2和5以外的其他质因数,这个分数就不能化成有限小数。
(3)分数、小数与百分数之间的互化。
四、常见的量1. 常见的计量单位及其进率。
(1)质量单位及其进率。
①常见的质量单位有吨.........、.千克..、.克.。
. ②1吨=1000千克 1千克=1000克 (2)时间单位及其进率。
①时间单位有世纪.......、.年.、.月.、.日.、.时.、.分.、.秒.,.季度..、.星.期等。
...②日、时、分、秒等时间单位的关系。
③1世纪=100年 1日=24时 1时=60分 1分=60秒 1星期=7日④平年、闰年的判断方法。
根据公历年份判断........,.一般情况下.....,.整百、整千的年份是.........400...的倍数...,.其他年份是.....4.的倍数的都是闰年........,.反之则是平年。
.......(3)人民币的单位及其进率。
①人民币的单位有元........、.角.、.分.。
(最新)小学数学西师版六年级下册总复习整理的知识点
总复习(数与代数概念部分)一、数的意义:1、整数:像—3、—2、—1、0、1、2、3……这样的数统称为整数。
整数的个数是无限的。
没有最小的整数,也没有最大的整数,自然数是整数的一部分。
2、自然数:用来表示物体个数的数。
像1、2、3、4、5……叫做自然数。
一个物体也没有用0表示。
自然数的个数是无限的,最小的自然数是0,没有最大的自然数。
3、小数:把整数“1”平均分成10份、100份、1000份……这样的一分或几份的数是十分之几、百分之几、千分之几……可以用小数表示。
4、小数的分类:(1)纯小数和带小数:整数部分是o的小数叫做纯小数,整数部分不是o的小数叫做带小数。
(2)有限小数和无限小数:小数部分的位数是有限的小数叫做有限小数;小数部分的位数是无限的小数叫做无限小数。
(3)循环小数:一个小数,从小数部分的某一位起一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。
(4)循环节:一个循环小数的小数部分,依次不断重复出现的数字叫做这个小数的循环节。
(5)纯循环小数和混循环小数:循环节从小数部分第一位开始的,叫做纯循环小数;循环节不是从第一位开始的,叫做混循环小数。
5、计数单位:个、十、百、千·····以及十分之一、百分之一、千分之一·····都是计数单位。
6、数位:各个计数单位所占的位置叫做数位。
7、十进制计数法:“十进制计数法”是世界各国最常用的一种计数方法。
它的特点是每相邻的两个计数单位之间的进率都是“十”就是10个较低的计数单位可以进成一个较高的计数单位(既通常说的“逢十进一”),这种以“十”为基础进位的计数方法,叫做十进制计数法。
8、整数和小数数位顺序表:9、分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
(1)分数单位:把单位“1”平均分成若干份,表示这样的一份的数就是这个分数的分数单位。
新课标小学六年级数学上册知识点总结及复习要点
新课标小学六年级数学上册知识点总结及复习要点一、数与代数(一)分数与百分数1分数的性质定义:分数表示部分与整体的关系,其值由分子和分母共同决定。
性质:分子相同时,分母越大,分数越小;分母相同时,分子越大,分数越大。
此外,分数还有等值性质,即分子、分母可以同时乘以或除以同一个非零数,分数值不变。
例子:比较分数3/4和6/8。
虽然它们的分子和分母都不同,但通过等值性质,我们可以发现3/4=6/8,因为它们都可以简化为3/4。
2分数的运算加减法则:同分母的分数相加减,分母不变,分子相加减;异分母的分数相加减,先通分,再按同分母分数相加减的法则进行计算。
乘除法则:分数乘以整数,分母不变,分子乘以整数;分数乘分数,用分子乘分子,分母乘分母;分数除以整数(0除外),等于分数乘以这个整数的倒数;分数除以分数,等于被除数乘以除数的倒数。
例子:计算1/2 + 1/3。
首先通分,得到3/6 + 2/6 = 5/6。
3百分数的理解与应用定义:百分数是表示一个数是另一个数的百分之几的数,也叫百分率或百分比。
性质:百分数可以方便地用于比较不同量纲的数据,如比较不同产品的合格率、增长率等。
转换:百分数可以方便地转换为小数和分数,反之亦然。
例如,25%等于0.25或1/4。
例子:某班有50名学生,其中40名通过了数学考试。
求该班的通过率。
根据百分数的定义,通过率= (通过的学生数/ 总学生数) ×100% = (40 / 50) ×100% = 80%。
(二)整数与小数1整数的性质定义:整数是包括正整数、零和负整数的数集。
运算:整数可以进行加、减、乘、除等基本运算,遵循相应的运算法则。
例子:计算3 + 5 - 2 = 6。
2小数的性质定义:小数是表示分数的一种形式,由整数部分和小数部分组成。
性质:小数可以表示分数和非整数的有理数,具有十进制的特点。
运算:小数可以进行加、减、乘、除等基本运算,需要注意小数点对齐和进位或退位。
北师大六年级上册数学期末复习全册单元知识点总结
北师大六年级上册数学期末复习全册单元知识点总结一、概要亲爱的同学们,时光飞逝转眼间我们即将迎来本学期的期末复习阶段。
在六年级上册的数学学习中,我们掌握了大量的数学知识与技能,跨越了数与代数、空间与几何等多个领域。
今天让我们一起回顾一下本学期所学的重要知识点,为即将到来的期末考试做好充分的准备。
首先我们回顾了数的运算,掌握了整数、小数和分数的计算方法和运算规律。
在此基础上,我们还学习了百分数的概念及运用,初步了解了百分数在生活中的实际意义。
代数部分我们学习了代数式的概念和基本运算,还通过解决实际问题,学会了列方程解应用题的方法。
接下来是几何知识的学习,我们学习了平面图形的特征以及如何计算其面积和周长。
此外我们还探索了三维图形,初步了解了体积的概念和计算方法。
在实际生活中,这些知识可以帮助我们理解和计算各种图形的空间大小。
此外我们还学习了统计与概率的相关知识,通过收集、整理和分析数据,我们学会了用统计图表来展示数据,并初步了解了概率在生活中的应用。
1. 简述六年级上册数学课程的重要性六年级上册数学课程,可以说是相当重要的一学期课程呢。
我们都知道,数学是门基础学科,打牢基础才能走得远。
而对于六年级的学生来说,这学期的数学学习不仅是对之前数学知识的巩固和深化,更是为将来的数学学习打下坚实的基础。
这个阶段的学习,关乎到学生对数学知识的理解和掌握程度,也关系到他们在升学考试中的表现。
所以啊同学们一定要重视六年级上册的数学课程,努力学习为未来的学习之路打下坚实的基础哦!2. 强调期末复习的意义和目的转眼间本学期已经过去大半,马上就要迎来期末大考。
这时正是同学们进行最后冲刺的关键时期,要想在数学这门学科上取得好成绩,扎实的复习工作可是必不可少的。
期末复习不仅是对我们本学期学习成果的检验,更是查漏补缺、巩固提升的好机会。
咱们得清楚,学习就像跑马拉松,复习阶段就像是最后的冲刺阶段,跑得越快离终点就越近。
大家得明白一个道理,复习不仅仅是为了应对考试,更重要的是帮助我们理解和掌握数学知识。
小学数学六年级上册知识点归纳
小学六年级上册总复习1. 数与代数一、 分数乘法1. 分数乘法的意义(1) 分数乘整数的意义:与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
(2) 一个数乘分数的意义:就是求这个数的几分之几是多少2. 分数乘法的计算方法。
(1) 分数乘整数的计算方法:分数乘整数,用分数的分子与整数相乘的积作分子,分母不变。
(2) 分数乘分数的计算方法:分数乘分数,用分子相乘的积作分子,分母相乘的积做分母。
二、 倒数的认识1. 倒数的意义乘积是1的两个数互为倒数。
1的倒数是1,0没有倒数2. 求倒数的方法求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置三、 分数除法1. 分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算2. 分数除法的计算方法(1) 分数除以整数(0除外),等于分数乘整数的倒数(2) 一个数除以分数,等于这个数乘分数的倒数。
即甲数除以乙数(0除外),等于甲数乘乙数的倒数。
四、 分数乘、除法应用题1. 分数乘法应用题的解题规律:单位“1”已知,用乘法计算。
(1) 求一个数的几分之几是多少的应用题的解题规律:一个数(单位“1”的量)⨯分率(几几)=部分量(与几分之几相对应的量)。
(2) 求比一个数多(或少)几分之几的数是多少的应用题的解题规律:一个数(单位“1”) ⨯(1几几±) (3) 求一个数的a b 与这个数的cd 的和(或差)是多少的应用题的解题规律:一个数(单位“1”的量)⨯(a b cd ±) 2. 分数除法应用题:单位“1”未知,用方程或者除法计算。
(1) 已知一个数的几分之几是多少,求这个数的应用题的解题规律:一,用方程解:根据“一个数(单位“1”) ⨯ 分率几几=部分量”列方程解答。
二、用算术方法解:即用部分量÷相对应的分率(几几)=一个数(单位“1”)(2) 求甲数比乙数多(或少)几分之几的的应用题的解题规律:(甲—乙)÷乙或(乙—甲)÷乙3. 分数乘、除法应用题的对比(1) 单位“1”已知,用乘法(2) 单位“1”未知,用方程解或用除法解答。
六年级数学知识点归纳总结人教版
六年级数学知识点归纳总结人教版
六年级数学知识点归纳总结(人教版)
一、数与代数
1. 数的认识
* 整数、小数、分数、百分数等基本概念及其性质
* 正数、负数、零的概念及其关系
* 数的读写方法
* 数的四则运算(加、减、乘、除)
* 分数和小数的互化
2. 数的运算
* 四则运算的意义、运算法则和运算定律
* 简便计算的方法
* 运算顺序
3. 式与方程
* 用字母表示数,用含有字母的式子表示简单的数量关系和计算公式* 解简易方程的方法
4. 正比例和反比例
* 正比例、反比例的概念及其性质
* 正比例关系图象的特征
* 求解正比例和反比例的问题
二、空间与图形
1. 图形的认识
* 线和角的基本概念及性质(直线、射线、线段、角的度量)* 相交线和平行线的概念及其性质
* 三角形、四边形、圆等基本图形及其性质
2. 图形的测量
* 周长、面积、体积等基本测量概念及其计算方法
* 圆的周长和面积计算公式
3. 图形的运动
* 平移、旋转的概念及其性质
* 平移和旋转的作图方法
三、统计与概率
1. 统计初步知识
* 统计表和统计图的概念及其制作方法
* 数据的整理和表示方法(平均数、中位数、众数等)
2. 概率初步知识
* 确定性和随机现象的概念及其关系
* 可能性的大小(概率)的概念及计算方法
* 简单概率模型的应用
四、综合与实践
1. 有趣的数学图形
2. 密铺的奥秘
3. 互联网的普及率。
小学六年级数学总复习资料(含答案)
小学六年级数学总复习资料(含答案)小学六年级数学总复资料(完整版含答案)简介本文档是小学六年级数学总复资料的完整版,包含了各个重要知识点的复内容和对应的答案。
该资料旨在帮助学生巩固数学知识、提高解题能力。
目录1. 数与代数- 整数运算- 分数与小数- 简便运算法- 代数式- 方程与不等式2. 几何与图形- 基本图形与线段- 平行线与垂直线- 直角与等腰三角形- 面积与周长3. 数据与概率- 数据的收集与整理- 图形的绘制和解读- 概率与事件复资料1. 数与代数整数运算- 加法、减法、乘法和除法的运算法则- 带括号的整数运算分数与小数- 分数与小数的互化- 分数的运算- 小数的运算简便运算法- 乘法口诀与除法口诀- 快速计算技巧代数式- 字母代数式的理解与运算- 代数式与算式之间的关系方程与不等式- 一元一次方程与不等式的解法- 实际问题的方程与不等式2. 几何与图形基本图形与线段- 点、线、线段与射线的认识- 角的分类与测量平行线与垂直线- 平行线与垂直线的定义与性质- 平行线与垂直线的判断与构造直角与等腰三角形- 直角三角形的构造、性质和计算- 等腰三角形的构造、性质和计算面积与周长- 长方形、正方形和三角形的面积计算- 图形的相似性与比例3. 数据与概率数据的收集与整理- 数据的调查与记录- 制作数据表、图表和统计图图形的绘制和解读- 直方图、折线图和饼图的绘制与解读- 利用图表进行数据分析概率与事件- 理解概率的概念与基本原理- 事件的可能性与概率的计算答案1. 数与代数整数运算答案:[整数运算答案]分数与小数答案:[分数与小数答案]简便运算法答案:[简便运算法答案]代数式答案:[代数式答案]方程与不等式答案:[方程与不等式答案]2. 几何与图形基本图形与线段答案:[基本图形与线段答案]平行线与垂直线答案:[平行线与垂直线答案]直角与等腰三角形答案:[直角与等腰三角形答案]面积与周长答案:[面积与周长答案]3. 数据与概率数据的收集与整理答案:[数据的收集与整理答案]图形的绘制和解读答案:[图形的绘制和解读答案]概率与事件答案:[概率与事件答案]以上是小学六年级数学总复习资料的完整版,希望对学生们的复习有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习必备欢迎下载六年级数学总复习主要知识点(数与代数部分)用2、10。
3353942)211例1它12学习必备欢迎下载总复习主要知识点(数与代数部分)第一章数和数的运算一概念(一)整数1、整数的意义自然数和0都是整数。
像-1,-2,-3……这样的数也叫整数。
2、自然数我们在数物体的时候,来表示物体个数的1,,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3、计数单位一(个)十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是。
这样的计数法叫做十进制计数法。
4、数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
如果数a能被数b(b≠0)整除,a就叫做b 的倍数,b就叫做a的约数(或a的因数)倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
的倍数有:、6、9、12……其中最小的倍数是3,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:、30、405都能被5整除。
一个数的各位上的数的和能被整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也是偶数。
自然数按能否被整除的特征可分为奇数和偶数。
一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数,100以内的质数有:、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如4、6、8、9、12都是合数。
1不是质数也不是合数,自然数除了外,不是质数就是合数。
如果把自然数按其约数的个数的不同分类,可分为质数、合数和。
每个合数都可以写成几个质数相乘的形式。
其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5叫做15的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例如把28分解质因数28=2×2×7几个数公有的约数,叫做这几个数的公约数。
其中最大的一个,叫做这几个数的最大公约数,如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。
其中,1、2、3、6是12和18的公约数,6是它们的最大公约数。
公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:1和任何自然数互质。
相邻的两个自然数互质。
两个不同的质数互质。
当合数不是质数的倍数时,这个合数和这个质数互质。
例如:15和7互质,14和7不互质。
两个合数的公约数只有时,这两个合数互质。
如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
如果两个数是互质数,们的最大公约数就是。
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如的倍数有2、4、6、8、10、12、14、16、18……3的倍数有3、6、9、12、15、18……其中6、610这11(学习必备欢迎下载12、……是2、3的公倍数,是它们的最小公倍数。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。
(二)小数1小数的意义把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……在小数里,每相邻两个计数单位之间的进率都是10。
小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是。
2小数的分类纯小数:整数部分是零的小数,叫做纯小数。
例如:0.25、0.368都是纯小数。
带小数:整数部分不是零的小数,叫做带小数。
例如:3.25、5.26都是带小数。
有限小数:小数部分的数位是有限的小数,叫做有限小数。
例如:41.7、25.3、0.23都是有限小数。
无限小数:小数部分的数位是无限的小数,叫做无限小数。
例如:4.33……3.1415926……无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,样的小数叫做无限不循环小数。
例如:∏循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。
例如:3.555……0.0333……12.109109……一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。
例如:3.99……的循环节是“9”,0.5454……的循环节是“54”。
纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。
例如:3.111……0.5656……混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。
3.1222……0.03333……写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。
如果循环节只有一个数字,就只在它的上面点一个点。
例如:3.777……简写作0.5302302……简写作。
(三)分数1分数的意义把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“”平均分成多少份;分数线上面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2分数的分类真分数:分子比分母小的分数叫做真分数。
真分数小于1。
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。
假分数大于或等于。
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
3约分和通分把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。
分子分母是互质数的分数,叫做最简分数。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(四)百分数表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。
百分数表示的两个数量间的关系,而不是表示一种数量,所以不带单位名称。
二方法(一)数的读法和写法1.整数的读法:从高位到低位,一级一级地读。
读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。
每一级末尾的都不读出来,其它数位连续有几个0都只读一个零。
3000600(读成“三百万六百”或“三百万零六百”都对2.整数的写法:略)(二)数的改写一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。
有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
1.准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。
改写后的数是原数的准确数。
例如把1254300000改写成以万做单位的数是125430万;改写成以亿做单位的数12.543亿。
2.近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表:把2()能通先先1原3.0")学习必备欢迎下载示。
例如:1302490015省略亿后面的尾数是13亿。
3.四舍五入法:要省略的尾数的最高位上的数是4或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。
例如:省略345900万后面的尾数约是35万。
省略4725097420亿后面的尾数约是47亿。
4.大小比较1.比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,看下一位,哪一位上的数大那个数就大。
2.比较小数的大小:先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……3.比较分数的大小分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。
分数的分母和分子都不相同的,先通分,再比较两个数的大小。
(三)数的互化1.小数化成分数:原来有几位小数,就在1的后面写几个零作分母,原来的小数去掉小数点作分子,能约分的要约分。
2.分数化成小数:用分母去除分子。
能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留两位小数。
3.一个最简分数,如果分母中除了和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。
4.小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。
5.百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
6.分数化成百分数:通常先把分数化成小数除不尽时,通常保留三位小数,再把小数化成百分数。
7.百分数化成小数:先把百分数改写成分数,约分的要约成最简分数。
(四)数的整除1.把一个合数分解质因数,常用短除法。
先用能整除这个合数的质数去除一直除到商是质数为止,再把除数和商写成连乘的形式。
2.求几个数的最大公约数的方法是:用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。
3.求几个数的最小公倍数的方法是:用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。
(五)约分和通分约分的方法:用分子和分母的公约数(除外)去除分子、分母;通常要除到得出最简分数为止。
通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
三性质和规律(一)商不变的规律商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。