挠度计算.ppt
合集下载
挠度预拱度的计算

• 《桥规》规定:对于钢筋混凝土及预应力 混凝土梁桥,用汽车荷载(不计冲击力) 计算的上部结构跨中最大竖向挠度,不应 超过l/600。 • 如果已知某钢筋混凝土简支梁的跨中最大 静活载弯矩为M,则该构件在短期荷载作用 下挠度为:
3.5 挠度、预拱度的计算
3.5 挠度、预拱度的计算 Nhomakorabea3.5 挠度、预拱度的计算
• 对于一般小跨径的钢筋混凝土梁桥,当恒 载和静活载所计算的挠度不超过l/1600时, 可以不设预拱度。 • 活载挠度虽然是临时出现的,但是随着活 载的移动,挠度大小发生变化,在最不利 的荷载位置夏,挠度达到最大值,一旦活 载驶离桥梁,挠度就会消失。因此在桥梁 设计中需要验算活载挠度来体现结构的刚 度特性。
3.5 挠度、预拱度的计算
• 桥梁变形过大,给人以不安全感,不但导致行车 困难,而且容易使桥面铺装层和结构的辅助设备 遭到损坏,严重者危及桥梁安全,必须计算梁的 变形,以确保结构具有足够的刚度。 • 桥梁挠度产生的原因:恒载挠度和活载挠度。 • 恒载:包括长期预应力、混凝土徐变和收缩作是 恒久存在的,其产生的挠度与持续时间相关。恒 载挠度可以通过施工时预设的反向挠度(预拱度) 来加以抵消,桥梁预拱度一般取等于全部恒载和 一半静活载所产生的竖向挠度值,使竣工后的桥 梁达到理想的线型。
梁的挠度及转角(1)

A2= mL/6EI B2= - mL/3EI
yc2 = mL2/16EI
力的分解法----各横截面的位移或转角等 于每项荷载独立作用时在同位置产生的挠 度和转角代数和。
A= A1+ A2= FL2/16EI + mL/6EI
B= B1+ B2= - FL2/16EI - mL/3EI
yc= yc1 + yc2 = FL3/48EI +mL2/16EI
2)M(x)是连续函数。
3)梁的变形是在线弹性小变形范围内。
4)
0
x
5.EXANPEL y
例5-1:求悬臂梁B截面的转角和B截面挠度, 设 :梁长为L,EI = 常数 。
Ax
F ①求约束反力 YA=F mA= FL
x
B ②列弯矩方程 M(x)=Fx-FL
③列挠曲线近似微分方程
yM (x)F(Lx) EI EI
1. 叠加原理的适用范围 2.叠加原理
1)力的分解法-2)梁的分段法--
1. 叠加原理的适用范围
在材料的线弹性范围内,梁的小变形且纵向变形忽略不计的条件下,梁的 挠度和转角与作用在梁上的荷载成线性关系.
2.叠加原理—
1)梁在几项荷载同时作用下某一横截面 的挠度和转角,可等于每一项荷载单独作 用下该截面的挠度和转角的叠加.
1.弯曲变形的弊与利 2.挠曲线(deflection curve) 3.挠度和转角方程(equation of deflection and slope) 4.弯曲位移的符号规则
1.弯曲变形的弊与利
Fp
Fp
q
2Fp
❖❖❖使利设结用计构变成的形弯使的曲用物形功理以能条达受件到到求减影弯震象曲,,静减严不少重定动时问载会题荷破。。坏。
yc2 = mL2/16EI
力的分解法----各横截面的位移或转角等 于每项荷载独立作用时在同位置产生的挠 度和转角代数和。
A= A1+ A2= FL2/16EI + mL/6EI
B= B1+ B2= - FL2/16EI - mL/3EI
yc= yc1 + yc2 = FL3/48EI +mL2/16EI
2)M(x)是连续函数。
3)梁的变形是在线弹性小变形范围内。
4)
0
x
5.EXANPEL y
例5-1:求悬臂梁B截面的转角和B截面挠度, 设 :梁长为L,EI = 常数 。
Ax
F ①求约束反力 YA=F mA= FL
x
B ②列弯矩方程 M(x)=Fx-FL
③列挠曲线近似微分方程
yM (x)F(Lx) EI EI
1. 叠加原理的适用范围 2.叠加原理
1)力的分解法-2)梁的分段法--
1. 叠加原理的适用范围
在材料的线弹性范围内,梁的小变形且纵向变形忽略不计的条件下,梁的 挠度和转角与作用在梁上的荷载成线性关系.
2.叠加原理—
1)梁在几项荷载同时作用下某一横截面 的挠度和转角,可等于每一项荷载单独作 用下该截面的挠度和转角的叠加.
1.弯曲变形的弊与利 2.挠曲线(deflection curve) 3.挠度和转角方程(equation of deflection and slope) 4.弯曲位移的符号规则
1.弯曲变形的弊与利
Fp
Fp
q
2Fp
❖❖❖使利设结用计构变成的形弯使的曲用物形功理以能条达受件到到求减影弯震象曲,,静减严不少重定动时问载会题荷破。。坏。
材料力学梁的挠度和刚度计算课件

桥梁刚度
桥梁刚度反映了桥梁结构抵抗变形的能力。刚度计算可以帮助工程师了解桥梁在不同载荷作用下的变形情况,从 而优化结构设计,提高桥梁的承载能力和稳定性。
梁的挠度和刚度在房屋建筑中的应用
房屋挠度
在房屋建筑中,挠度对建筑物的安全 性和稳定性具有重要影响。通过计算 和分析挠度,可以确保建筑物在使用 过程中不会发生过大的弯曲和变形, 从而保证居住者的安全。
泊松比与挠度
泊松比是衡量材料横向变形能力的 参数。泊松比越大,梁在受到压力 时横向变形越大,导致挠度增加。
剪切模量与刚度
剪切模量反映了材料抵抗剪切应力 的能力。剪切模量大的材料具有较 大的刚度,能够更好地抵抗变形。
材料的弹性模量对挠度和刚度的影响
01
弹性模量与挠度
弹性模量是衡量材料抵抗弹性变形能力的参数。弹性模量越大,梁在受
03
梁的挠度计算方法
挠度的计算公式
挠度计算公式:$y = frac{Fl^4}{48EI}$
$I$:梁的惯性矩 $E$:材料的弹性模量
$F$:施加在梁上的力 $l$:梁的长度
挠度的计算步骤
确定施加在梁上的力 $F$和梁的长度$l$。
将已知数值代入挠度 计算公式进行计算。
确定材料的弹性模量 $E$和梁的惯性矩$I$ 。
材料的泊松比对挠度和刚度的影响
泊松比与横向变形
泊松比描述了材料在受到压力时横向变形的程度。泊松比 越大,横向变形越明显,这可能对梁的挠度和刚度产生影 响。
泊松比与交叉应力
在分析梁的挠度和刚度时,需要考虑由于泊松比引起的交 叉应力效应。这种效应会影响梁的剪切力和弯矩分布,从 而影响挠度和刚度。
泊松比与材料非线性的考虑
梁的刚度定义
刚度
桥梁刚度反映了桥梁结构抵抗变形的能力。刚度计算可以帮助工程师了解桥梁在不同载荷作用下的变形情况,从 而优化结构设计,提高桥梁的承载能力和稳定性。
梁的挠度和刚度在房屋建筑中的应用
房屋挠度
在房屋建筑中,挠度对建筑物的安全 性和稳定性具有重要影响。通过计算 和分析挠度,可以确保建筑物在使用 过程中不会发生过大的弯曲和变形, 从而保证居住者的安全。
泊松比与挠度
泊松比是衡量材料横向变形能力的 参数。泊松比越大,梁在受到压力 时横向变形越大,导致挠度增加。
剪切模量与刚度
剪切模量反映了材料抵抗剪切应力 的能力。剪切模量大的材料具有较 大的刚度,能够更好地抵抗变形。
材料的弹性模量对挠度和刚度的影响
01
弹性模量与挠度
弹性模量是衡量材料抵抗弹性变形能力的参数。弹性模量越大,梁在受
03
梁的挠度计算方法
挠度的计算公式
挠度计算公式:$y = frac{Fl^4}{48EI}$
$I$:梁的惯性矩 $E$:材料的弹性模量
$F$:施加在梁上的力 $l$:梁的长度
挠度的计算步骤
确定施加在梁上的力 $F$和梁的长度$l$。
将已知数值代入挠度 计算公式进行计算。
确定材料的弹性模量 $E$和梁的惯性矩$I$ 。
材料的泊松比对挠度和刚度的影响
泊松比与横向变形
泊松比描述了材料在受到压力时横向变形的程度。泊松比 越大,横向变形越明显,这可能对梁的挠度和刚度产生影 响。
泊松比与交叉应力
在分析梁的挠度和刚度时,需要考虑由于泊松比引起的交 叉应力效应。这种效应会影响梁的剪切力和弯矩分布,从 而影响挠度和刚度。
泊松比与材料非线性的考虑
梁的刚度定义
刚度
挠度计算ppt课件

要求
f ≤[f]
表 11.1 受弯构件的挠度限值 [ f ]
构件类型 吊车梁:手动吊车
电动吊车
挠度限值(以计算跨度 l0 计算)
l0/500 l0/600
屋盖、楼盖及楼梯构件:
当 l0≤7m 时
l0/200(l0/250)
当 7m≤l0≤9m 时
l0/250(l0/300)
当 l0 > 9m 时
l0/300(l0/400)
第十章 变形和裂缝宽度的计算
§ 10.3 钢筋混凝土受弯构件的挠度验算
10.3.1 挠度控制的目的和要求 目的
1、保证结构的使用功能要求。结构构件产生过大的变形将影响 甚至丧失其使用功能,如支承精密仪器设备的梁板结构挠度 过大,将难以使仪器保持水平;屋面结构挠度过大会造成积 水而产生渗漏;吊车梁和桥梁的过大变形会妨碍吊车和车辆 的正常运行等。
Pl
3 0
EI
5 Ml02 48 EI
1 Ml02 12 EI
f
f
S
M EI
l02
Sf l02
fM
EI
EI M
f
M EI f
截面抗弯刚度EI 体现了截面抵抗弯曲变形的能力,同时也反映
了截面弯矩与曲率之间的物理关系。
对于弹性均质材料截面,EI为常数,M-f 关系为直线。 3 10.3 受弯构件的挠度验算
几何关系 物理关系 平衡关系
fe s M
y Ey EI
8 10.3 受弯构件的挠度验算
第十章 变形和、物理关系:
es
ss
Es
,
ec
sc Ec
3、平衡关系:根据裂缝截面的应力分布
M s C h0 s c h0 b h0
(方案)梁的挠度和转角.ppt

2、分段列出梁的弯矩方程
y
x
F
x A
a
C
B
b
x
L
FBy
FAy
AC段 (0 x a)
BC段 (a x L)
Fb M1(x) FAx L x,
EI1"
Fb L
x,
Fb M 2 (x) L x F (x a),
EI2 "
Fb L
x
F(x
a),
演示课件
第八章 弯曲变形 /三、计算弯曲变形的两种方法
边界条件
积分常数2n个=2n个
连续条件
演示课件
第八章 弯曲变形 /三、计算弯曲变形的两种方法
例题:列出图示结构的边界条件和连续条件。
边界条件: A 0
A 0
连续条件: B左 B右
B左 B右
演示课件
第八章 弯曲变形 /三、计算弯曲变形的两种方法
例题:列出图示结构的边界条件和连续条件。
y
p
c
c
w
x
x
W(-) θ(-)
(1)坐标系的建立: 坐标原点一般设在梁的左端,并规 定:以变形前的梁轴线为x轴,向右为正;以y轴代表曲线 的纵坐标(挠度),向上为正。
(2)挠度的符号规定:向上为正,向下为负。
(3)转角的符号规定:逆时针转向的转角为正; 顺时针转向的转角为负。
演示课件
第八章 弯曲变形
6
x L, y 0 代入(2)得: D 1 qL4
8
代入(1)(2)得:
1 ( 1 qx3 1 qL3)
EI 6 6
1 ( 1 qx4 qL3 x qL4 )
EI 24
68
材料力学-梁的挠度 PPT

最大挠度及最大转角
max(a)
Pa2 2EI
a
P
L
x
fmax f(L)6PE2aI3La
f
[例3] 试用积分法求图示梁的挠曲线方程和转角方程,并
求C截面挠度和A截面转角。设梁的抗弯刚度EI为常数。
解:1.外力分析:求支座约束反力。 研究梁ABC,受力分析如图,列平衡方程:
m F yA R R A B R l B FF 1 .5 0 l0 R R B A 1 .0 5.F 5F
二、结构形式叠加(逐段刚化法)
2.位移边界条件
P
A
C
B
D
P
支点位移条件:
fA 0 fB 0
连续条件: fC fC
光滑条件: 讨论:
C
C
fD 0 D 0
或写 fC 左成 fC 右
或 写 C 左 成C 右
①适用于小变形情况下、线弹性材料、细长构件的平面弯曲。
②可应用于求解承受各种载荷的等截面或变截面梁的位移。
③积分常数由挠曲线变形的几何相容条件(边界条件、连续条
件)确定。
④优点:使用范围广,直接求出较精确;缺点:计算较繁。
[例1] 求下列各等截面直梁的弹性曲线、最大挠度及最大转角。
解:
P L
建立坐标系并写出弯矩方程
x
x
M (x)P(xL)
f
写出微分方程并积分
应用位移边界条件求积分常数
E f I M (x ) P (L x ) EfI1 2P(Lx)2C1
大家有疑问的,可以询问和交
对于等截面直梁,挠曲线近似微分方程可写成如下形式:
EfI (x) M (x)
§7-3 积分法计算梁的位移
板壳理论--薄板小挠度弯曲问题及经典解法 ppt课件

§13.2弹性曲面的微分方程
3.力平衡方程
z
w 表示,取体力分量 Z 0
z xz yz
z x y
zx
2
E
1 2
z2
t2 4
x
2w
zy
2
E
1 2
z2
t2 4
y
2w
z
z
E (z2t2)4w
2(12) 4
推导过程
21
PPT课件
z xz yz z x y
zx
y xy zy 0 y x z
z
xz
yz
Z
0
z x y
x ux,y yv,z wz,xyxvuy,
yzvzw y,zx
uw z x
物理方程
x E1[(x (y z)];y E1[(y (x z)];
z E1[(z (x y)]
xy
8G1xy;yz
G1yz;zx
Ez2
1 2
x
2w
F1
x,
y
zy
2
Ez2
1 2
y
2
w
F2
x,
y
zy z t 0 2
zx z t 0 2
F1x,y81Et22
2w x
F2x,y81Et22
2w y
zx
2
E
1 2
z2
t2 4
x
2w
zy
2
E
1 2
z2
t2 4
y
2w
20
PPT课件
z E (z2t2)4w
z 2(12) 4
22
PPT课件
§13.2弹性曲面的微分方程
第四章弯曲挠度3-Lu

C
q
B
( d)
C
wc1 (q)
c1 (q)
2 AB变形,BC不变形(刚化)。
ml c 2 (q ) B (q ) 3EI 2 1 3 qa 2 a qa 2 3 EI 3 EI 4 qa wc 2 (q) B (q) a 3 EI
A
qa2/2
B
(e)
AD : Fb( l 2 b 2 ) Fbx2 1 w1 6 EI 2 EIl
Fb( l 2 b 2 ) Fb 3 w1 x x 6 EIl 6 EIl
y
l
HOHAI UNIVERSITY
DB :
Fb( l 2 b 2 ) Fb 2 F 2 w x ( x a ) 2 2 6 EIl 2 EIl 2 EI
M x w EI z
—— 挠曲线近似微分方程
HOHAI UNIVERSITY
§4-9 用积分法计算梁的挠度与转角
对于等截面梁,EI = 常数。
E I w "= - M (x)
EIw EI M ( x )dx C
EIw [ M ( x)dx ]dx Cx D
θ p
A
y
C w C p θ
B x
1、挠度: 梁的截面形心在垂直于轴线方向的线位 移w。 w= w(x)——挠曲线方程(挠度方程)。向下为正.
2、转角:梁的截面绕中性轴转过的角度θ。
小变形时,θ≈tanθ=dw (x)/dx=w'(x)——转角方
程。顺时针为正。
HOHAI UNIVERSITY
§4-8 梁的挠曲线近似微分方程
B
x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章 变形和裂缝宽度的计算
§ 10.3 钢筋混凝土受弯构件的挠度验算
10.3.1 挠度控制的目的和要求 目的
1、保证结构的使用功能要求。结构构件产生过大的变形将影响 甚至丧失其使用功能,如支承精密仪器设备的梁板结构挠度 过大,将难以使仪器保持水平;屋面结构挠度过大会造成积 水而产生渗漏;吊车梁和桥梁的过大变形会妨碍吊车和车辆 的正常运行等。
要求
f ≤[f]
表 11.1 受弯构件的挠度限值 [ f ]
构件类型 吊车梁:手动吊车
电动吊车
挠度限值(以计算跨度 l0 计算)
l0/500 l0/600
屋盖、楼盖及楼梯构件:
当 l0≤7m 时
l0/200(l0/250)
当 7m≤l0≤9m 时
l0/250(l0/300)
当 l0 > 9m 时
l0/300(l0/400)
钢筋混凝土适筋梁的M-f 关系不再是直线,而是随弯矩增大,
截面曲率呈曲线变化。
M 0.85EcI0
My
Mk
Mcr
Bs
f
10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
对钢筋混凝土梁
f
S
Mk B
l02
短期弯矩Mk一般处于第Ⅱ阶段,刚度计算需要研究构件带裂缝 时的工作情况。该阶段裂缝基本等间距分布,钢筋和混凝土的 应变分布具有以下特征:
y Ey EI
10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
1、几何关系: f e s ec
h0
2、物理关系:
es
ss
Es
,
ec
sc Ec
3、平衡关系:根据裂缝截面的应力分布
M s C h0 s c h0 b h0
M s T h0 s s As h0
sc
Ms
bh02
ss
Ms
As h0
h0
h0
sc sc
C
ssAs
10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
ec
cec
c
sc Ec
c
Ms
Ecbh02
Ms Ecbh02
es
e s
ss
Es
Ms Es As h0
sc sc
3、平衡关系:根据裂缝截面的应力分布
C
M s C h0 s c h0 b h0 M s T h0 s s As h0
2、受压区边缘混凝土平均应变综合系数 根据试验实测受压边缘混凝土的压应变,可以得到系数 的试
验值。在短期弯矩Msk=(0.5~0.7)Mu范围,系数 的变化很小,
仅与配筋率有关。《规范》根据试验结果分析给出,
E 0.2 6 E
1 3.5 f
f
(bf b)hf bh0
受压翼缘加强系数
10.3 受弯构件的挠度验算
2、防止对结构构件产生不良影响。如支承在砖墙上的梁端产生 过大转角,将使支承面积减小、支承反力偏心增大,并会引 起墙体开裂。
3、防止对非结构构件产生不良影响。结构变形过大会使门窗等 不能正常开关,也会导致隔墙、天花板的开裂或损坏。
10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
4、保证使用者的感觉在可接受的程度之内。过大振动、变形 会引起使用者的不适或不安全感。
在短期弯矩Msk=(0.5~0.7)Mu范围,三个参数、 和 中, 和 为常数,而 随弯矩增长而增大。
第十章 变形和裂缝宽度的计算
刚度是反映力与变形之间的关系:
应力-应变:s E e
弯矩-曲率:M EI ×f
荷载-挠度:P
ห้องสมุดไป่ตู้
48 ×
EI l03
×
(f 集中荷载)
水平力-侧移:V
12
EI h3
d(两端刚接)
10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
对钢筋混凝土梁
由于混凝土开裂、弹塑性应力-应变关系和钢筋屈服等影响,
Bs
Es As h02
E
10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
四、参数、 和
1、开裂截面的内力臂系数
试验和理论分析表明,在短期弯矩Msk=(0.5~0.7)Mu范围,
裂缝截面的相对受压区高度 变化很小,内力臂的变化也不大。 对常用的混凝土强度和配筋情况, 值在0.83~0.93之间波动。 《规范》为简化计算,取=0.87。
te为以有效受拉混凝土截面面积
计算的受拉钢筋配筋率。
Ate为有效受拉混凝土截面面积,对
受弯构件取
Ate 0.5bh (bf b)hf
10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
Bs
Es Ash02
E
Bs
Es Ash02
1.15 6E
1 3.5 f
1.1 0.65 ftk s sk te
第十章 变形和裂缝宽度的计算 10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
3、钢筋应变不均匀系数
1.1 0.65 ftk s sk te
s sk
M sk
As h0
当 <0.2时,取 =0.2;
当 >1.0时,取 =1.0;
对直接承受重复荷载作
用的构件,取 =1.0。
te
As Ate
Pl
3 0
EI
5 Ml02 48 EI
1 Ml02 12 EI
f
f
S
M EI
l02
Sf l02
fM
EI
EI M
f
M EI f
截面抗弯刚度EI 体现了截面抵抗弯曲变形的能力,同时也反映
了截面弯矩与曲率之间的物理关系。
对于弹性均质材料截面,EI为常数,M-f 关系为直线。
10.3 受弯构件的挠度验算
h0
h 0
sc
Ms
bh02
ss
Ms
As h0
ssAs
10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
ec
cec
c
sc Ec
c
Ms
Ecbh02
Ms Ecbh02
es
e s
ss
Es
Ms Es As h0
f Ms
es ec
Ms Ecbh02
Ms Es Ash0
Bs
h0
h0
10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
c
ec ec
f es ec
h0
es es
Bs
Ms
f
10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
三、刚度公式的建立 材料力学中曲率与弯矩关系的推导
fM
EI
fe
y
s Ee e s
E
sM y
I
几何关系 物理关系 平衡关系
fe s M
注:1、表中括号内数值适用于使用上对挠度有较高要求的构件;
2、悬臂构件的挠度限值按表中相应数值乘以系数 2.0 取用。
10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
10.3.2 截面抗弯刚度的概念 钢筋混凝土梁的抗弯刚度B
对匀质弹性材料梁
均布: f 集中:f
5 384 1 48
ql04 EI
§ 10.3 钢筋混凝土受弯构件的挠度验算
10.3.1 挠度控制的目的和要求 目的
1、保证结构的使用功能要求。结构构件产生过大的变形将影响 甚至丧失其使用功能,如支承精密仪器设备的梁板结构挠度 过大,将难以使仪器保持水平;屋面结构挠度过大会造成积 水而产生渗漏;吊车梁和桥梁的过大变形会妨碍吊车和车辆 的正常运行等。
要求
f ≤[f]
表 11.1 受弯构件的挠度限值 [ f ]
构件类型 吊车梁:手动吊车
电动吊车
挠度限值(以计算跨度 l0 计算)
l0/500 l0/600
屋盖、楼盖及楼梯构件:
当 l0≤7m 时
l0/200(l0/250)
当 7m≤l0≤9m 时
l0/250(l0/300)
当 l0 > 9m 时
l0/300(l0/400)
钢筋混凝土适筋梁的M-f 关系不再是直线,而是随弯矩增大,
截面曲率呈曲线变化。
M 0.85EcI0
My
Mk
Mcr
Bs
f
10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
对钢筋混凝土梁
f
S
Mk B
l02
短期弯矩Mk一般处于第Ⅱ阶段,刚度计算需要研究构件带裂缝 时的工作情况。该阶段裂缝基本等间距分布,钢筋和混凝土的 应变分布具有以下特征:
y Ey EI
10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
1、几何关系: f e s ec
h0
2、物理关系:
es
ss
Es
,
ec
sc Ec
3、平衡关系:根据裂缝截面的应力分布
M s C h0 s c h0 b h0
M s T h0 s s As h0
sc
Ms
bh02
ss
Ms
As h0
h0
h0
sc sc
C
ssAs
10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
ec
cec
c
sc Ec
c
Ms
Ecbh02
Ms Ecbh02
es
e s
ss
Es
Ms Es As h0
sc sc
3、平衡关系:根据裂缝截面的应力分布
C
M s C h0 s c h0 b h0 M s T h0 s s As h0
2、受压区边缘混凝土平均应变综合系数 根据试验实测受压边缘混凝土的压应变,可以得到系数 的试
验值。在短期弯矩Msk=(0.5~0.7)Mu范围,系数 的变化很小,
仅与配筋率有关。《规范》根据试验结果分析给出,
E 0.2 6 E
1 3.5 f
f
(bf b)hf bh0
受压翼缘加强系数
10.3 受弯构件的挠度验算
2、防止对结构构件产生不良影响。如支承在砖墙上的梁端产生 过大转角,将使支承面积减小、支承反力偏心增大,并会引 起墙体开裂。
3、防止对非结构构件产生不良影响。结构变形过大会使门窗等 不能正常开关,也会导致隔墙、天花板的开裂或损坏。
10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
4、保证使用者的感觉在可接受的程度之内。过大振动、变形 会引起使用者的不适或不安全感。
在短期弯矩Msk=(0.5~0.7)Mu范围,三个参数、 和 中, 和 为常数,而 随弯矩增长而增大。
第十章 变形和裂缝宽度的计算
刚度是反映力与变形之间的关系:
应力-应变:s E e
弯矩-曲率:M EI ×f
荷载-挠度:P
ห้องสมุดไป่ตู้
48 ×
EI l03
×
(f 集中荷载)
水平力-侧移:V
12
EI h3
d(两端刚接)
10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
对钢筋混凝土梁
由于混凝土开裂、弹塑性应力-应变关系和钢筋屈服等影响,
Bs
Es As h02
E
10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
四、参数、 和
1、开裂截面的内力臂系数
试验和理论分析表明,在短期弯矩Msk=(0.5~0.7)Mu范围,
裂缝截面的相对受压区高度 变化很小,内力臂的变化也不大。 对常用的混凝土强度和配筋情况, 值在0.83~0.93之间波动。 《规范》为简化计算,取=0.87。
te为以有效受拉混凝土截面面积
计算的受拉钢筋配筋率。
Ate为有效受拉混凝土截面面积,对
受弯构件取
Ate 0.5bh (bf b)hf
10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
Bs
Es Ash02
E
Bs
Es Ash02
1.15 6E
1 3.5 f
1.1 0.65 ftk s sk te
第十章 变形和裂缝宽度的计算 10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
3、钢筋应变不均匀系数
1.1 0.65 ftk s sk te
s sk
M sk
As h0
当 <0.2时,取 =0.2;
当 >1.0时,取 =1.0;
对直接承受重复荷载作
用的构件,取 =1.0。
te
As Ate
Pl
3 0
EI
5 Ml02 48 EI
1 Ml02 12 EI
f
f
S
M EI
l02
Sf l02
fM
EI
EI M
f
M EI f
截面抗弯刚度EI 体现了截面抵抗弯曲变形的能力,同时也反映
了截面弯矩与曲率之间的物理关系。
对于弹性均质材料截面,EI为常数,M-f 关系为直线。
10.3 受弯构件的挠度验算
h0
h 0
sc
Ms
bh02
ss
Ms
As h0
ssAs
10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
ec
cec
c
sc Ec
c
Ms
Ecbh02
Ms Ecbh02
es
e s
ss
Es
Ms Es As h0
f Ms
es ec
Ms Ecbh02
Ms Es Ash0
Bs
h0
h0
10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
c
ec ec
f es ec
h0
es es
Bs
Ms
f
10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
三、刚度公式的建立 材料力学中曲率与弯矩关系的推导
fM
EI
fe
y
s Ee e s
E
sM y
I
几何关系 物理关系 平衡关系
fe s M
注:1、表中括号内数值适用于使用上对挠度有较高要求的构件;
2、悬臂构件的挠度限值按表中相应数值乘以系数 2.0 取用。
10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
10.3.2 截面抗弯刚度的概念 钢筋混凝土梁的抗弯刚度B
对匀质弹性材料梁
均布: f 集中:f
5 384 1 48
ql04 EI