面面垂直的判定定理
面面垂直判定定理
例3. 在Rt△ABC中,∠B=90,P为△ABC 所在平面外一点,PA⊥平面ABC,问:四面 体PABC中有几个直角三角形?
P
C A
所以 四面体中 四个面都 是直角三 角形。
B
归纳小结:
(1)判定面面垂直的两种方法: ①定义法
②根据面面垂直的判定定理 (2)从面面垂直的判定定理我们还可以看出 面面垂直的问题可以转化为线面垂直的问 题来解决.
面面 垂直
例1.A是ΔBCD所在平面外一点,AB=AD, BC=CD,E是BD的中点, 求证:平面AEC⊥平面BCD
A
B
C
E D
例2、已知直线PA垂直于O所在的平面,A 为垂足,AB为O的直径,C是圆周上异于A、 B的一点。 求证:平面PAC平面PBC;
C
A
O
B
观察图形, 要证明两平面 垂直,只需证 明直线AC⊥面 PBC,或者直 线BC⊥面PAC 即可。
12
1.定义法 A 根据定义作出来 l B O 2.垂面法 作与棱垂直的平面与 两半平面的交线得到 l O 3.垂线法
A
γ A
B
Dl
O
(4)二面角的范围 [0 ,180 ] (5)直二面角
平面角为直角的二面角 叫做直二面角
A
。
。
归纳:求二面角大小的步骤为:
(1)找出或作出二面角的平面角; (2)证明其符合定义(垂直于棱); (3)计算.
O
B
问题:
如何检测所砌的墙面和地 面是否垂直?
猜想:
如果一个平面经过了另一 个平面的一条垂线,那么这两 个平面互相垂直.
面面垂直的判定定理
如果一个平面经过另一个平面的一 条垂线,那么这两个平面互相垂直
面面垂直的判定与性质课件
如果两个平面都与同一直线垂直,那 么这两个平面之间的夹角为90度,即 这两个平面互相垂直。
性质3:垂直于同一平面的两条直线互相平行
总结词
如果两条直线都垂直于同一个平面,则这两条直线互相平行。
详细描述
如果两条直线都与同一个平面垂直,那么这两条直线之间的夹角为0度,即这两 条直线互相平行。
应用场景1:建筑学中的面面垂直
逆定理的表述
• 逆定理:如果一个平面内的两条相交直线与另一 个平面垂直,则这两个平面互相垂直。
逆定理的证明
• 证明:设两条相交直线为$a$和$b$,它们与平面$\alpha$垂直。根据直线与平面垂直的性质,有$a \perp \alpha$和$b \perp \alpha$。由于$a$和$b$相交,根据平面的性质,过$a$和$b$的平面$\beta$与平面$\alpha$垂直。因此,逆定理 得证。
推论
总结词
如果两个平面都垂直于同一个平面,则这两个平面之间的距离相等。
详细描述
根据面面垂直的性质,如果两个平面都与第三个平面垂直,那么这两个平面之间的距离 是相等的。这是因为它们都与第三个平面形成相同的角度,所以它们之间的距离也是相
等的。
推论
总结词
如果两个平面都垂直于同一条直线,则 这两个平面之间的距离相等。
电子设备设计中,面面垂直的应用有助于提高设备的性能和稳定性。
详细描述
在电子工程中,电路板和电子元件的布局都需要遵循面面垂直的判定与性质。例如,在制造手机的过程中,利用 面面垂直的判定方法可以确保屏幕与机壳之间的垂直度,从而提高手机的显示效果和使用寿命。此外,在制造高 精度传感器的过程中,也需要利用面面垂直的判定方法来确保传感器的精确度和稳定性。
【高中数学】高中数学知识点:平面与平面垂直的判定与性质
【高中数学】高中数学知识点:平面与平面垂直的判定与性质
平面和平面垂直的定义:
如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是
直二面角(平面角是直角),就说这两个平面垂直。
如图,
面面垂直的判定定理:
如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
(线面垂直
面面垂直)
面面垂直的性质定理:
如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。
(面面垂直
线面垂直)
性质定理符号表示:
线线垂直、线面垂直、面面垂直的转化关系:
证明面面垂直的方法:
证明两个平面垂直,通常是通过证明线线垂直、线面垂直来实现的,在关于垂直问题
的论证中要注意三者之间的相互转化,必要时可添加辅助线,如:已知面面垂直时,一般
用性质定理,在一个平面内作出交线的垂线,使之转化为线面垂直,然后转化为线线垂直,故要熟练掌握三者之间的转化条件及常用方法.线面垂直与面面垂直最终归纳为线线垂直,证共面的两直线垂直常用勾股定理的逆定理、等腰三角形的性质;证不共面的两直线垂直
通常利用线面垂直或利用空间向量.
常用结论:
(1)如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直
线在第一个平面内,此结论可以作为性质定理用,
(2)从该性质定理的条件看出:只要在其中一个平面内通过一点作另一个平面的垂线,那么这条垂线必在这个平面内,点的位置既可以在交线上,也可以不在交线上,如图.
感谢您的阅读,祝您生活愉快。
面面垂直性质
面面垂直性质
性质定理:如果两个平面相互垂直,那么在一个平面内垂直于它们交
线的直线垂直于另一个平面。
如果两个平面相互垂直,那么经过第一个平
面内的一点作垂直于第二个平面的直线在第一个平面内等。
面面垂直
定义
若两个平面的二面角为直二面角(平面角是直角的二面角),则这两
个平面互相垂直。
性质定理
1、如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直
线垂直于另一个平面。
2、如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于
第二个平面的直线在第一个平面内。
3、如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于
第三个平面。
4、如果两个平面互相垂直,那么一个平面的垂线与另一个平面平行。
(判定定理推论1的逆定理)
线面垂直
定义
如果一条直线与一个平面内的任意一条直线都垂直,就说这条直线与
此平面互相垂直。
是将“三维”问题转化为“二维”解决是一种重要的立
体几何数学思想方法。
在处理实际问题过程中,可以先从题设条件入手,分析已有的垂直关系,再从结论入手分析所要证明的重要垂直关系,从而架起已知与未知的“桥梁”。
判定定理
直线与平面垂直的判定定理(线面垂直定理):一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
推论1:如果在两条平行直线中,有一条直线垂直于一个平面,那么另一条直线也垂直于这个平面。
推论2:如果两条直线垂直于同一个平面,那么这两条直线平行。
线面垂直 面面垂直的性质与判定定理
A
又⊥β,∩β=AB
辅助线(面):
所以b⊥β
发展条件的使解题过 程获得突破的
进而a⊥β
【课后自测】4、如图,已知SA⊥平面ABC,
平面SAB⊥平面SBC,求证:AB⊥BC
证明:过点A作AD⊥SB于D, ∵平面SAB⊥平面SBC,
S
平面SAB∩平面SBC=SB,
∴AD⊥平面SBC
符号语言:
ab
a ,b a//b
α
线面垂直关 系
线线平行关 系
平面与平面垂直的性质
温故知新
面面垂直的判定方法: 1、定义法:
找二面角的平面角
说明该平面角是直角。
2、判定定理:
要证两平面垂直,只要在其中一个平面内找到 另一个平面的一条垂线。
(线面垂直面面垂直)
知识探究:
思考1:如果平面α与平面β互相垂直,
a/ / ,aA,B 试判断 a与直 平 的 线 面 位置关
α
Aa
β
a⊥β
B
例3 ,a ,a ,判 断 a 与 位 置 关 系
证明:设 I l
α a //
在α内作直线b⊥l
b
a
l
β
I b b
l
l
b
α 发展条件
转化结论
CB
D β
E 证明:在平面β内过D作直线
A
DE ⊥AB
则 CD 是 E二面 -A B 角 的平面
由 ⊥β 得CD ⊥ DE
又CD ⊥ AB, 且DE ∩ AB =D
所以直线CD⊥平面β
平面与平面垂直的性质定理:
两个平面垂直,则一个平面内垂直于交线 的直线与另一个平面垂直。
线面垂直、面面垂直的性质与判定定理
α
发展条件
转化结论
CB
D β
E 证明:在平面β内过D作直线
A
DE ⊥AB
则 CD 是 E二面 -A B 角 的平面
由 ⊥β 得CD ⊥ DE
又CD ⊥ AB, 且DE ∩ AB =D
所以直线CD⊥平面β
平面与平面垂直的性质定理:
两个平面垂直,则一个平面内垂直于交线 的直线与另一个平面垂直。
又a
a// b
b
性质
a //
a
面面垂直性质
变式:
思考:已 , 知 ,平 直 a,且 面 线 ,A,B a/ / ,aA,B 试判断 a与直 平 的 线 面 位置关
a⊥β
α
b
a
B
γ
证明:过a作平面γ 交于b, 因为直线a//,所以a//b
: 2、会利用“转化思想”解决垂直问题
面面关系
线面关系
线线关系Βιβλιοθήκη 空间问题平面化 面面平行线面平行
线线平行
面面垂直
线面垂直
线线垂直
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!
β 又因为a⊥AB,所以b⊥AB
A
又⊥β ,∩β =AB
辅助线(面):
所以b⊥β
发展条件的使解题过 程获得突破的
进而a⊥β
【课后自测】4、如图,已知SA⊥平面ABC,
平面SAB⊥平面SBC,求证:AB⊥BC
证明:过点A作AD⊥SB于D, ∵平面SAB⊥平面SBC,
S
平面SAB∩平面SBC=SB,
符号语言:
β
面面垂直判定定理
面面垂直在解析几何中的应用
判定定理的应用
在解析几何中,利用面面垂直的判定定理可以确定两个平面是否垂直,进而解决与垂直相关的问题。
空间角的计算
通过面面垂直的关系,可以计算两个平面之间的夹角,即二面角的大小。
面面垂直的推广与应用前景
推广至一般曲面
在机械工程中的应用
将面面垂直的概念推广至一般曲面, 研究曲面间的垂直关系及其性质。
判定条件的证明
条件一的证明
假设有两个平面α和β,且α∩β=l ,如果直线m⊥α且m⊂β,那么 根据面面垂直的定义,我们可以 得出α⊥β。
条件二的证明
假设有两个平面α和β,且直线 m⊥α,如果m∥β,那么我们可 以过直线m作一个平面γ,使得γ 与β相交于一条直线n。由于m∥n 且m⊥α,根据线面垂直的性质定 理,我们可以得出n⊥α。又因为 n⊂β,所以根据面面垂直的判定 定理,我们可以得出α⊥β。
条件三的证明
假设有两个平面α和β,它们的法 向量分别是n1和n2。如果 n1·n2=0(即n1和n2互相垂直) ,那么根据面面垂直的定义,我 们可以得出α⊥β。
03
面面垂直的性质
面面垂直与线面垂直的关系
01
如果两个平面互相垂直,那么在 一个平面内垂直于它们交线的直 线垂直于另一个平面。
02
如果两个平面互相垂直,那么经 过第一个平面内的一点并垂直于 第二个平面的直线在第一个平面 内。
机械制造
在机械制造中,许多零部件需要保持 严格的垂直关系以确保设备的正常运 行。例如,机床的主轴与工作台需要 保持垂直,以确保加工的精度和效率 。
06
面面垂直的拓展与延伸
面面垂直与空间向量的关系
空间向量法
利用空间向量的数量积判断两个平面的法向量是否垂直,从而确定两个平面是否垂直。
如何证面面垂直的判定定理
如何证面面垂直的判定定理如何证面面垂直的判定定理一、引言在几何学中,面面垂直是一个重要的概念。
如果两个平面相互垂直,则它们的交线是一条直线,这条直线被称为它们的公垂线。
本文将介绍如何证明两个平面相互垂直的判定定理。
二、定义和性质1. 定义:如果两个平面相互垂直,则它们的交线是一条直线,这条直线被称为它们的公垂线。
2. 性质:(1)两个平面相互垂直,则它们的法向量也相互垂直;(2)两个平面相互垂直,则它们的法向量所在的直线也相互垂直;(3)如果一条直线与一个平面相交且与该平面上某一条不同于此交点处经过该点的另一条直线都垂直,则该交点在该平面上。
三、证明方法1. 方法一:向量法证明(1)已知两个平面 P1 和 P2,设它们分别由点 A、B、C 和 A、D、E 确定;(2)求出 P1 和 P2 的法向量 n1 和 n2;(3)如果n1 · n2 = 0,则 P1 和 P2 相互垂直;(4)否则,它们不相互垂直。
2. 方法二:点线面法证明(1)已知两个平面 P1 和 P2,设它们分别由点 A、B、C 和 A、D、E 确定;(2)求出线段 AB 和 DE 的交点 F;(3)如果 F 在 P1 上,则 DE 垂直于 P1;(4)如果 F 在 P2 上,则 AB 垂直于 P2;(5)否则,它们不相互垂直。
四、例题解析例题:已知三角形 ABC 中,AB = 3 cm,AC = 4 cm,BC = 5 cm。
在三角形 ABC 中作高 BD,过 D 分别作 BE、CF 垂直于 AC、AB。
求证:BE 垂直于 CF。
解析:根据勾股定理可知:BC² = AB² + AC²= 9 + 16= 25因此,三角形 ABC 是一个直角三角形。
设 BD 的长度为 h,则有:h² + 3² = 4²h² + 9 = 16h² = 7h ≈ 2.65 cm根据三角形相似可知:BE/CE = BD/CDBE/(4-h) = h/(3-h)BE = (4h - h²)/3BE ≈ 0.87 cm同理,有:CF = (3h - h²)/4CF ≈ 1.16 cm因此,BE² + CF² ≈ 2.02,BC² ≈ 25,且 BE 和 CF 的长度均为正数。
立体几何面面垂直判定定理
立体几何面面垂直判定定理
立体几何面面垂直判定定理是指,如果两个不共面的平面上的任意一条直线垂直于两个平面的交线,则这两个平面互相垂直。
这个定理可以帮助我们在解决立体几何问题时判断两个平面是否垂直。
要理解这个定理,首先需要明确什么是不共面的平面和交线。
不共面的平面是指两个平面不在同一个平面上,它们之间有一定的夹角。
交线是指两个平面的交集,通常是一条直线。
例如,有两个平面A和B,它们不在同一个平面上,它们的交线是直线L。
如果我们能够证明直线L垂直于平面A和平面B的交线,那么就可以得出平面A和平面B互相垂直的结论。
证明方法可以使用向量法或坐标法。
向量法是基于向量的投影和内积来判断平面的垂直关系,而坐标法则是基于平面的法向量来判断平面的垂直关系。
除了理论证明,这个定理还可以应用到实际问题中。
例如,在建筑设计中,如果需要在墙面上嵌入一个电视墙架,需要确保墙面和墙架垂直,否则会影响安装效果。
通过使用面面垂直判定定理,可以准确判断墙面和墙架之间的垂直关系,从而确保安装效果。
总之,立体几何面面垂直判定定理是一个重要的判定工具,可以帮助我们解决立体几何问题中的垂直关系。
熟练掌握这个定理,可以更快地解决立体几何问题,并在实际应用中提高工作效率。
- 1 -。
2.3.2 面面垂直判定定理
A
B
二面角- l-
l
二面角的平面角
过二面角棱上任一点在两个
半平面内分别作垂直于棱的射线,
则这两条射线所成的角叫做二面角
的平面角。
O。
B
O1 。 A
B1
A1
β
α
二面角的平面角必须满足:
1)角的顶点在棱上
二 面
2)角的两边分别在两个面内
角 3)角的边都要垂直于二面角的棱
的 平
面
证明:连接BD,∵AB=AD,∠DAB=60°, ∴△ADB为等边三角形,∵E是AB的中 点,∴AB⊥DE. ∵PD⊥平面ABCD,AB⊂平面 ABCD,∴AB⊥PD. 又∵DE⊂平面PED,PD⊂平面 PED,DE∩PD=D, ∴AB⊥平面PED,∵AB⊂平面PAB.∴平面 PED⊥平面PAB.
归纳小结:
二 根据定义作出来 A
面 角 的ቤተ መጻሕፍቲ ባይዱ
2.垂面法 作与棱垂直的平面与
O
lB
平 两半平面的交线得到 l
面 3.垂线法
O
角 的
A
γA
B
作
法
Dl O
12
(4)二面角的范围
。
。
[0 ,180 ]
(5)直二面角
A
平面角为直角的二面角
叫做直二面角
O
B
归纳:求二面角大小的步骤为:
(1)找出或作出二面角的平面角;
(2)证明其符合定义(垂直于棱);
A
A
角
l
O
B
O B
哪个对?怎么画才对?
10
①二面角的平面角与点的位置 无任何关系,只与二面角的张 角大小有关。
面面垂直判定定理
猜想:
如果一个平面经过了另一个 平面的一条垂线,那么这两个 平面互相垂直.
面面垂直的判定定理
如果一个平面经过另一个平面的一 条垂线,那么这两个平面互相垂直
l α 符号表示: αβ l β
线线 垂直 线面 垂直
C A
l
B D
面面 垂直
面面垂直的判定定理
:线面垂直则面面垂直
如果一个平面经过另一个平面 如果一个平面内有一条直线垂直于 的一条垂线,那么这两个平面互相垂直 . 另一个平面,那么这两个平面互相垂直。
β l α
符号表示:
l l A
线面垂直 面面垂直
线线垂直
一、判断:
1.如果平面α内有一条直线垂直于平面β内 的一条直线,则α⊥β.( )
平面与平面 垂直的判定
复习:直线与平面垂直的判定定理 一条直线和一个平面内的两条相交直线都垂直, 则这条直线垂直于这个平面. 关键:线不在多,相交则行
m n mn P l l m l n 线线垂直ຫໍສະໝຸດ 线面垂直lα
m
P
n
问题:
如何检测所砌的墙面和地 面是否垂直?(即如何判定面 面垂直呢?)
×
2.如果平面α内有一条直线垂直于 平面β内的两条直线,则α⊥β.(
×) √
)
3. 如果平面α内的一条直线垂直于 平面β内的两条相交直线, 则α⊥β.(
4.若m⊥α,m
β,则α⊥β.(
)√
∪
例1、已知直线PA垂直于圆O所在的平面,A为 垂足,AB为圆O的直径,C是圆周上异于A、B 的一点。 求证:平面PAC平面PBC;
作业:数学书74页B组第1题 晚修练习:限时训练P108
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
ι
观 察 生 活
注意观察:
1.门轴与地 面的关系
2.门轴与门 面的关系
3.门面与地 面的关系
你发现了什么?
.
二、两个平面垂直的判定定理:
如果一个平面经过了另一个平面的一 条垂线,那么这两个平面互相垂直.
符号:AB⊥α, β经过AB,
β
则α⊥β
A
简记:线面垂直,则面面垂直
∴AB⊥CD
在平面β内过点B作直线BE⊥CD
∴ ∠ABE是二面角α—CD — β的平面角
∵ AB⊥β BE在β内
∴AB⊥BE 即∠ABE=90。
∴二面角α—CD — β是直二面角
∴α⊥β
.
α
A
B
Dห้องสมุดไป่ตู้
β E
C
线线垂直
α
线面垂直
证明两个平面垂直有那些方法? 1.定义法 2.两平面垂直的判定定. 理
B
面面垂直
建筑工人砌墙时, 如何使所砌的墙和水平面垂直? 应 用 于 生 活
.
如果一个平面经过了另一个平面的 一条垂线,那么这两个平面互相垂直.
如果:AB⊥β, α经过AB ,
那么:α⊥β
证明:
∵AB⊥β,CD 是交线