(完整版)宇宙航行教学设计

合集下载

(完整word版)宇宙航行教学设计

(完整word版)宇宙航行教学设计

《宇宙航行》教学设计一.教材分析人教版必修二第六章第五节《宇宙航行》重点讲述了人造卫星的发射原理,推导了第一宇宙速度,介绍了三个宇宙速度的含义。

本节内容是万有引力定律在天体运动中的具体运用,是航天科学技术理论基础。

引导学生运用科学的思维方法,探究人造卫星的发射原理,进行知识的正向迁移,顺利、流畅地推导第一宇宙速度,有助于培养学生的发散思维、逻辑思维和分析推理的能力。

另外,学生通过对人造卫星、宇宙速度的了解,也将潜移默化地产生对航天科学的热爱,增强民族自信心和自豪感。

二.学情分析通过前面的学习,学生已对平抛运动、曲线运动的特点、万有引力定律已有一定的了解。

在此基础上,通过教师合理诱导,按照迁移规律科学地设计问题情境,促进学生探究,获得新知。

尽管学生对天体运动的知识储备不足,猜想可能缺乏科学性,表达也许欠妥。

但只要始终参与到学习情境中,五官体验激活思维,大胆猜想,敢于表达,就都能获得发展和提高.三.教学目标(一)知识与技能1.通过观察思考、合作探究使学生知道人造地球卫星的发射原理;2.通过阅读、合理诱导与精心研究使学生掌握三个宇宙速度,学会推导第一宇宙速度的两个求解公式;3.通过公式分析、练习反馈使学生掌握用万有引力定律和圆周运动知识求解有关卫星运动的基本问题。

(二)过程与方法1.通过对人造卫星的发射原理和第一宇宙速度公式推导的学习,使学生经历科学探究、分析、归纳的思维过程;2.教育学生在处理实际问题时,如何忽略次要因素,抓住主要因素,抽象出物理模型。

从而对学生进行物理研究方法的培养。

(三)情感态度与价值观1.在主动学习合作探究过程中,体验和谐、流畅、民主、愉悦的学习情境,在满怀热望的探究中不断获得美的感受和成功的喜悦。

2.介绍我国航天事业的发展现状,激发学生的求知欲和热爱科学的激情,增强民族自信心和自豪感,培养爱国热情。

四.教学重点1.人造卫星的发射原理,第一宇宙速度的推导;2.卫星做圆周运动时,各运动量与轨道半径r的关系。

《宇宙航行》教学设计

《宇宙航行》教学设计

《宇宙航行》教学设计一、教学目标:1. 通过学习《宇宙航行》,学生了解宇宙航行的基本知识和原理。

2. 培养学生对宇宙航行的兴趣,激发学生对科学的探索和创新精神。

3. 培养学生的团队合作能力和科学实验的能力。

4. 培养学生的观察、分析和解决问题的能力。

二、教学内容:1. 宇宙航行的基本知识和原理:太空飞行器、火箭原理、太空站等。

2. 宇宙探索的历史和现状:人类的太空探索历程、目前已经实现的太空探索计划。

3. 宇宙航行的挑战和未来发展:太空食品、太空旅游等。

三、教学方法:1. 激发学生学习兴趣的方法:通过引入《宇宙航行》的一些有趣的事例和图片,让学生产生兴趣。

2. 探究和实践的方法:组织学生进行宇宙航行模拟实验,让学生亲自动手操作,体验科学实验的乐趣和创造的成就感。

3. 讨论和合作的方法:引导学生进行小组讨论,共同解决问题和提出创新的想法。

四、教学步骤:第一课时:宇宙航行的基本原理和知识1. 引入:通过播放宇宙飞船发射的视频,激发学生对宇宙航行的兴趣和想象力。

2. 讲解宇宙航行的基本原理和知识:太空飞行器、火箭原理、太空站等。

3. 组织学生进行小组讨论,让学生互相交流自己的理解和见解。

4. 总结和检查:通过提问和答题的方式巩固学生的学习成果。

第二课时:宇宙探索的历史和现状1. 复习:回顾上节课学习的内容,让学生回答一些简单的问题。

2. 讲解宇宙探索的历史:人类的太空探索历程,从最早的人工卫星到人类登月。

3. 讲解宇宙探索的现状:目前已经实现的太空探索计划,如国际空间站等。

4. 小组活动:组织学生分成小组,让他们根据自己的理解,展示一个宇宙探索计划,并进行演讲。

5. 总结和反思:每个小组进行演讲,其他学生进行提问和评价。

五、课堂评价:1. 观察学生在实验中的表现,评价他们的实验操作和解决问题的能力。

2. 听取学生的小组讨论和演讲,评价他们的团队合作和表达能力。

3. 提问和答题的方式,检查学生对宇宙航行的基本知识和原理的理解程度。

《宇宙航行》教学设计

《宇宙航行》教学设计

《宇宙航行》教学设计
一、教学内容:
本教学设计的教学内容为《宇宙航行》,主要包括宇宙飞船、太空站、太阳系、星系
和宇宙的探索与认识等内容。

二、教学目标:
1. 能够了解宇宙航行的基本知识,包括宇宙飞船的构造和功能、太空站的作用和组
成等;
2. 能够认识太阳系、星系和宇宙的基本概念,并了解地球在宇宙中的地位;
3. 能够培养学生对宇宙的好奇心和探索精神,激发学生的科学兴趣和学习激情。

三、教学重点和难点:
重点:宇宙航行的基本知识和太阳系、星系和宇宙的基本概念。

四、教学方法:
1. 教师讲解:通过讲解,向学生介绍宇宙航行的基本知识和太阳系、星系和宇宙的
基本概念;
2. 多媒体教学:利用图片、视频等多媒体教学手段,给学生展示宇宙航行和太阳系、星系、宇宙的相关知识;
3. 实验演示:通过实验演示,让学生亲身体验宇宙航行和宇宙的奥秘,激发学生的
好奇心和探索欲望。

五、教学流程:
六、教学手段:
1. 多媒体教学设备,包括电脑、投影仪、音响等;
2. 实验器材,包括模型、仪器等;
3. 图片、视频资料。

七、教学评估:
1. 学生作业:布置相关题目让学生进行思考和总结;
2. 实验报告:要求学生撰写实验心得和体会,加深对宇宙的认识;
3. 课堂互动:通过提问等方式,检验学生的学习情况,及时纠正错误。

八、教学反思:
1. 鼓励学生多参与实验演示,让他们亲身体验宇宙的奥秘;
2. 多引导学生自主探索,激发他们的探索欲望和学习兴趣;
3. 根据学生实际,调整教学内容和方法,让教学更贴近学生生活和兴趣。

宇宙航行-精品教案

宇宙航行-精品教案

宇宙航行【教学目标】一、知识与技能1.了解人造卫星的有关知识。

2.知道三个宇宙速度的含义,会推导第一宇宙速度。

二、过程与方法通过用万有引力定律推导第一宇宙速度,培养学生运用知识解决问题的能力三、情感、态度与价值观1.通过介绍我国在卫星发射方面的情况,激发学生的爱国热情。

2.感知人类探索宇宙的梦想,促使学生树立献身科学的人生价值观。

【教学重难点】第一宇宙速度的推导、运行速率与轨道半径之间的关系【教学建议】随着航天事业的飞速发展,人造地球卫星的应用也越来越广泛.从高考命题的指导思想来看,要求高考试题具有时代气息,反映现代科技的发展和动向,因此有关卫星的问题将继续是高考的热点问题。

解决卫星的运动问题,其依据都是万有引力提供向心力,列出相应的方程,就可得出向心加速度、线速度、角速度、周期跟轨道半径的关系.通过例题和练习,帮助学生掌握这一基本方法。

【教学片段】一、提出问题1.月球也要受到地球引力的作用,为什么月亮不会落到地面上来?2.物体做平抛运动时,飞行的距离与飞行的水平初速度有何关系?3.若抛出物体的水平初速度足够大,物体将会怎样?二、学生活动:分组讨论,得出结论。

1.由于月球在绕地球沿近似圆周的轨道运转,此时月球受到的地球的引力(即重力),用来充当绕地运转的向心力,故而月球并不会落到地面上来。

2.由平抛物体的运动规律知:x =v 0t①h =221gt ②联立①、②可得: x =v 0gh 2 即物体飞行的水平距离和初速度v 0及竖直高度h 有关,在竖直高度相同的情况下,水平距离的大小只与初速度v 0有关,水平初速度越大,飞行的越远。

3.当平抛的水平初速度足够大时,物体飞行的距离也很大,由于地球是一圆球体,故物体将不能再落回地面,而成为一颗绕地球运转的卫星。

三、学生活动:阅读找出答案。

1.卫星绕地球运转时做匀速圆周运动,此时的动力学方程是:G rv m r Mm 22= 2.向高轨道发射卫星时,火箭须克服地球对它的引力而做更多的功,对火箭的要求更高一些,所以比较困难。

高中高一下册物理教学设计:宇宙航行2篇

高中高一下册物理教学设计:宇宙航行2篇

高中高一下册物理教学设计:宇宙航行高中高一下册物理教学设计:宇宙航行精选2篇(一)教学目标:1. 了解宇宙航行的基本概念和发展历程;2. 掌握宇宙航行的基本原理和技术;3. 认识宇宙航行对人类社会发展的影响。

教学准备:1. PowerPoint或其他媒体工具;2. 示意图或图片展示宇宙航行的相关知识;3. 相关的实验工具或模型。

教学过程:第一步: 引入 (5分钟)使用多媒体展示一些宇宙航行的图片和视频,引导学生进入学习状态,并激发学生对宇宙航行的兴趣。

第二步: 导入 (10分钟)通过讲述人类对宇宙探索的历史,介绍宇宙航行的起源和发展,包括火箭原理及发展、载人航天飞行和航天站等内容,以增强学生的背景知识。

第三步: 探究 (15分钟)1. 向学生提出以下问题:“为什么火箭能够在宇宙中飞行?”、“宇宙航行的基本原理是什么?”引导学生思考,并根据学生的回答进行讨论。

2. 展示火箭的结构和工作原理,解释推力产生的原理,并使用实验模型或示意图进行演示和说明。

第四步: 学习 (20分钟)1. 介绍宇宙航行中常用的推进器技术,如常压发动机、涡扇发动机、离子推进器等,并讲解其工作原理和应用场景。

2. 解释航天器的轨道选择和调整、速度和能量管理等关键技术,以及航天飞行中遇到的挑战和解决方法。

第五步: 实验 (20分钟)设计一个简单的实验,展示火箭发射和空间舱的设计与制造,例如使用烟花模型进行火箭发射的示范,或使用简易模型展示航天器的设计原理。

第六步: 拓展 (10分钟)讨论宇宙航行对人类社会发展的影响,包括科技创新、国际合作和人类想象力等方面,鼓励学生发表个人观点和意见。

第七步: 小结 (5分钟)总结本节课的重点内容,检查学生的理解和掌握情况,并解答他们的问题。

教学延伸:1. 鼓励学生自主了解更多有关宇宙航行的知识,并撰写研究报告或主题论文。

2. 组织学生参观航天科技展览或相关实验室,增强他们对宇宙航行的实际了解。

宇宙航行教案范文

宇宙航行教案范文

宇宙航行教案范文一、课程目标:1.通过学习宇宙航行教案,学会宇宙和太阳系的基本概念和知识。

2.了解人类的探索宇宙的历史和成就。

3.培养学生对宇宙探索的兴趣和好奇心,激发他们的科学探索欲望。

二、教学准备:1.课件、投影仪等多媒体设备。

2.世界地图、宇宙图表等教具。

3.多媒体资料、实物模型等辅助教材。

三、教学过程:活动一:前导活动(15分钟)1.学生观看一段有关宇宙航行的视频片段,引起他们的兴趣。

2.向学生展示一幅世界地图,并让他们标出各个国家的名称。

然后,引导学生思考,人类探索宇宙的过程中是否有学到了其他国家?活动二:知识讲授(30分钟)1.通过课件和投影仪,呈现宇宙和太阳系的相关知识,包括宇宙的起源、星系、行星等。

2.讲解人类对宇宙探索的历史,包括太空竞赛、阿波罗登月计划、国际空间站等。

3.介绍有关宇航员和宇宙飞船的知识,包括宇宙飞船的构造、宇航员的培训和任务等。

活动三:合作探索(30分钟)1.学生分为小组,给每个小组分发一幅宇宙图表。

2.学生根据宇宙图表中的信息,进行合作探索。

每个小组选择一个星球或行星,了解并介绍其特点和可探索性。

3.学生利用多媒体资料、实物模型等辅助教材,进行合作讨论和展示。

活动四:创造性任务(30分钟)1.要求学生以小组为单位,设计一艘宇宙飞船,并给它起一个名字。

要求飞船能够在宇宙中进行探索,并解决一些问题,例如如何保证飞船的稳定性、如何应对太空辐射等。

2.学生需要为飞船的设计和功能提供理论支持和解释,并利用物品进行模型展示。

3.每个小组展示他们设计的飞船,并介绍其特点和功能。

活动五:展示和总结(15分钟)1.每个小组展示他们的飞船设计,并回答其他小组提出的问题。

2.教师对学生的展示进行点评,并总结宇宙航行的重要性和挑战性。

3.以游戏、小测验等方式进行知识回顾和巩固。

四、教学延伸:1.鼓励学生阅读有关太空探索和宇宙航行的书籍或文章,增加他们对宇宙航行的知识和了解。

2.组织学生观看与宇宙航行有关的电影或纪录片,进一步激发他们的兴趣和好奇心。

《宇宙航行》教学设计

《宇宙航行》教学设计

《宇宙航行》教学设计一、教学目标1. 知识与技能a. 了解宇宙航行的基本知识,包括宇宙飞船的构造、发射原理、轨道运行等内容;b. 掌握宇宙航行的相关术语和概念;c. 能够描述宇宙航行的发展历程和未来发展趋势。

2. 过程与方法a. 通过课堂讲解、多媒体展示、小组讨论等方式引导学生主动参与;b. 利用真实案例和视频资料激发学生的学习兴趣;c. 鼓励学生提出问题和进行思考,培养其独立思考和解决问题的能力。

3. 情感态度与价值观a. 培养学生对科学探索的兴趣和热爱;b. 培养学生的科学观念和探索精神;c. 提高学生的国际化视野,增强对宇宙探索的认识和理解。

二、教学内容1. 宇宙航行的定义和概念;2. 宇宙飞船的构造和发射原理;3. 宇宙航行的发展历程和未来发展趋势;4. 宇宙探索的意义和价值。

四、教学过程1. 导入利用多媒体展示宇宙中的星际飞船、宇宙站、地球卫星等图片,引导学生思考,激发学习兴趣,为引入宇宙航行的相关知识做铺垫。

2. 讲授a. 介绍宇宙航行的定义和概念,让学生了解宇宙航行的范畴和意义;b. 介绍宇宙飞船的构造和发射原理,通过图片和视频资料展示不同类型的宇宙飞船,让学生了解宇宙飞船的构造和发射过程;c. 分析宇宙航行的发展历程和未来发展趋势,介绍宇宙探索的里程碑事件和未来发展规划;d. 探讨宇宙探索的意义和价值,引导学生思考宇宙探索对人类的意义和影响。

3. 拓展小组活动:分成若干小组,让学生自行选择一个特定的宇宙航行项目或事件进行研究,如月球登陆、国际空间站、火星探测等,通过小组讨论和展示,让学生更深入地了解和探讨宇宙航行的相关内容。

4. 总结总结宇宙航行的基本知识和概念,强调宇宙探索的意义和价值,鼓励学生对科学探索保持兴趣和热爱。

五、教学手段1. 多媒体展示;2. 视频资料播放;3. 教科书教材;4. 图表和图片展示。

六、教学评价1. 学生表现评价a. 参与课堂讨论的积极性;b. 小组活动的成果展示;c. 对宇宙航行相关知识的理解程度。

《宇宙航行》教学设计

《宇宙航行》教学设计

《宇宙航行》教学设计一、教学目标1.了解宇宙航行的定义、历史和意义;2.了解宇宙航行的基本原理和关键技术;3.掌握宇宙航行的基本术语和常用知识;4.培养学生的科学思维和创新能力。

二、教学内容三、教学过程1.导入(10分钟)通过播放一段宇航员在太空中的影片,引入宇宙航行的话题,激发学生的兴趣。

2.展开(30分钟)(1)讲解宇宙航行的定义和意义,引导学生思考宇宙航行对人类的影响和重要性。

(2)介绍宇宙航行的历史与进展,从阿波罗登月计划到国际空间站的建立,帮助学生了解宇宙航行的发展历程和里程碑。

(3)讲解宇宙航行的基本原理和关键技术,如火箭发动机、航天器的轨道控制和重力平衡等,让学生掌握宇宙航行的基本知识。

(4)引导学生学习宇宙航行的常用术语和知识,如轨道、航天器、太空漫步等,加深学生对宇宙航行的理解。

3.活动(30分钟)(1)分组讨论:学生分组讨论一个关于宇宙航行的话题,可以是宇宙探索、太空旅行、月球基地等,要求每个小组根据所讨论的话题准备一份简短的报告,并在课堂上展示。

(2)实践活动:设计一个模拟宇宙航行的实验活动,如通过制作纸板火箭模型,让学生学习火箭发射原理,并通过比赛测量火箭飞行的高度和距离。

4.总结(15分钟)(1)学生回顾本节课所学内容,归纳总结宇宙航行的定义、历史、基本原理和关键技术。

(2)思考问题:请学生思考宇宙航行的未来发展方向和可能遇到的挑战,鼓励学生展开想象和讨论。

5.拓展(15分钟)通过布置拓展作业,让学生继续深入了解宇宙航行相关的知识和研究,可以是阅读相关的科普材料、观看相关的记录片,或是访问相关的网站和论坛。

四、教学评估1.观察学生在活动中的表现,评估学生对宇宙航行的理解和掌握程度。

2.书面作业:要求学生撰写一个关于宇宙航行的小议论文,包括对宇宙航行意义的思考以及未来宇宙航行的发展展望。

五、教学资源1.多媒体设备(如电视、投影仪);2.相关图书、杂志和报纸等资料;3.纸板、剪刀、胶水等制作火箭模型的材料;4.网络资源(如科普网站、视频网站)。

7.4 宇宙航行 教学设计-2023年高一下学期物理人教版(2019)必修第二册

7.4 宇宙航行  教学设计-2023年高一下学期物理人教版(2019)必修第二册

7.4 宇宙航行教学设计教学目的:1.了解人造地球卫星的最初构想,会推导第一宇宙速度。

2.知道同步卫星和其他卫星的区别,会分析人造地球卫星的受力和运动情况并解决涉及卫星运动的简单问题。

3.了解发射速度与环绕速度的区别和联系。

教学重点:区分三个宇宙速度及含义教学过程教师活动学生活动【课前回顾】1、默写(1)地球的质量M公式(2)计算天体的质量公式2、请说出三种其他天体名称3、哈雷彗星的回归时间:上次?下次?4、作业问题解答提问强调重点作业点评默写订正教学过程教师活动学生活动【导入】1、拿一支粉笔水平抛出,粉笔做什么运动?——可以看作平抛运动2、在相同高度使抛出时的速度更大一些,与第一次抛出有什么区别?——水平飞出的距离更远3、是否可以一直运动不掉下来?为什么会这样呢? ——不可以,因为受到重力作用,粉笔会向下运动。

[问题]牛顿的设想:把物体从高山上水平抛出,速度一次比一次大,落地点也就一次比一次远;抛出速度足够大时,物体就不会落回地面,成为人造地球卫星。

你知道这个速度究竟有多大吗? 【新授】 一、宇宙速度(一)第一宇宙速度的推导[思考]:以多大的速度抛出这个物体,它才会绕地球表面运动,不会落下来?(已知G=6.67×10-11Nm 2/kg 2,地球质m=6×1024kg ,地球半径R=6400km ,地球表面重力加速度g=9.8m/s 2) 1、拱桥法:当支持力为0时,重力提供物体作圆周运动的向心力。

由mg =m v2R 得:v =gR =7.9km/s第一宇宙速度的大小:v =7.9km/s , 第一宇宙速度是航天器成为卫星的最小发射速度:发射卫星的轨道越高,需要克服万有引力的阻碍作用越多,所以发射速度需要增加。

提问 引导思考重点讲解板书P59[问题] 思考回答笔记记录教 学 过 程 教师活动 学生活动2、物体在地面附近绕地球的运动可视作匀速圆周运动,万有引力提供物体运动所需的向心力,轨道半径r 近似认为等于地球半径R由Gmm地R2=mv2R,可得v=Gm地R.第一宇宙速度是卫星的最大环绕速度(二)第二宇宙速度理论研究指出:在地面附近发射飞行器,如果速度大于7.9 km/s、小于11.2 km/s,它绕地球运行的轨迹就不是圆,而是椭圆,且在轨道不同点速度大小一般不同。

《宇宙航行》教学设计

《宇宙航行》教学设计

《宇宙航行》教学设计一、教学背景分析《宇宙航行》是一门高度前沿和实践性很强的科学课程。

宇宙是人类永恒的梦想,宇宙航行更是人类向往和探索的终极目标。

通过学习《宇宙航行》,学生可以了解宇宙的奥秘,探索太空的无限可能。

本教学设计主要针对初中生的特点和科学兴趣,以引发学生对宇宙探索的兴趣,培养学生的科学精神和探索精神为目的,通过多种教学手段和实践活动,激发学生的创造力,培养学生的科学素养。

二、教学目标1.知识目标:(1)了解宇宙航行的历史和发展;(2)认识和理解宇宙中的行星、卫星、星系等基本概念;(3)了解宇宙中的重力、黑洞、宇宙射线等基本现象。

2.能力目标:(1)培养学生的观察、实验和分析能力;(2)培养学生的科学探究和发现问题的能力;(3)培养学生的科学思维和科学素养。

3.情感目标:(1)激发学生对宇宙探索的兴趣;(2)培养学生的探索精神和创新意识;(3)引导学生尊重科学、尊重科学家。

2.教学难点:(1)宇宙射线、黑洞等抽象概念的理解;(2)观察和实验宇宙现象的方法和技巧。

2.教学方法(1)讲授法:通过讲授宇宙航行的相关知识,引导学生了解宇宙的奥秘;(2)实验法:组织学生进行宇宙现象的实验,培养学生的观察和分析能力;(3)讨论法:组织学生围绕宇宙航行展开讨论,激发学生的创造力和科学素养。

2.具体流程(1)导入:通过介绍国际空间站或登月计划等宇宙航行的著名事件,引发学生对宇宙的向往和探索欲望;(2)展示:组织学生观看关于宇宙航行的视频或图片,了解宇宙航行的历史和发展,引导学生对宇宙航行有更深入的认识;(3)实验:组织学生进行宇宙现象的实验,如模拟重力实验、黑洞模型实验等,培养学生的观察和分析能力;(4)讨论:组织学生围绕宇宙航行展开讨论,鼓励学生提出自己的想法和观点,激发学生的创造力和科学素养;(5)总结:通过教师总结和学生自我总结,巩固所学知识,引导学生展望未来的宇宙航行。

六、教学资源准备1.多媒体课件:准备与宇宙航行相关的多媒体课件,包括图片、视频等,以丰富教学内容;2.实验器材:准备宇宙现象的实验器材,如模拟重力实验装置、黑洞模型等,以进行实践活动;3.教科书和参考书:准备宇宙航行相关的教科书和参考书,以便教师备课和学生复习。

高中物理宇宙航行教学设计

高中物理宇宙航行教学设计

高中物理宇宙航行教学设计一、教学任务及对象1、教学任务本教学设计的任务是向高中学生传授宇宙航行相关的物理知识,包括天体运动规律、宇宙速度、航天器轨道等。

通过本课程的教学,使学生能够理解并掌握宇宙航行的基本原理,培养他们的空间想象能力和逻辑思维能力,激发对航天事业的热爱和探索宇宙的兴趣。

2、教学对象本教学设计的对象为高中二年级学生,他们已经具备了一定的物理知识基础,如牛顿运动定律、万有引力定律等,但对于宇宙航行的具体内容了解不多。

此外,这个年龄段的学生思维活跃,好奇心强,对新鲜事物有较高的兴趣,有利于开展宇宙航行相关内容的教学。

在教学过程中,需要关注学生的个体差异,充分调动他们的学习积极性,提高课堂参与度。

二、教学目标1、知识与技能(1)理解并掌握天体运动的基本规律,如开普勒定律、牛顿万有引力定律等。

(2)了解宇宙速度的概念,掌握第一宇宙速度、第二宇宙速度的计算方法。

(3)掌握航天器轨道的类型,如圆轨道、椭圆轨道,以及轨道变化的基本原理。

(4)学会分析航天器在轨道上的受力情况,运用物理知识解决实际问题。

(5)通过学习,提高学生的空间想象能力、逻辑思维能力和解决问题的能力。

2、过程与方法(1)采用问题驱动的教学方法,引导学生主动探究宇宙航行的物理原理。

(2)运用案例分析、小组讨论等教学手段,帮助学生深入理解航天器轨道设计和宇宙航行过程中的实际问题。

(3)利用多媒体、网络资源等辅助教学工具,丰富课堂教学内容,提高学生的学习兴趣。

(4)鼓励学生进行实验操作,如制作简单的模型火箭,增强他们对宇宙航行知识的实践体验。

3、情感,态度与价值观(1)激发学生对宇宙航行的兴趣,培养他们的探索精神和创新意识。

(2)通过学习我国航天事业的发展历程,增强学生的民族自豪感,培养爱国主义情怀。

(3)引导学生关注航天领域的最新发展,提高他们对科技前沿的关注度。

(4)培养学生团结协作、共同探究的精神,使他们认识到团队合作的重要性。

《宇宙航行》教学设计完美版

《宇宙航行》教学设计完美版

宇宙航行》教学设计一、教学内容分析《宇宙航行》是人教版必修二第六章《万有引力定律与航天》第五节,介绍了人造卫星发射中一些基本理论,更是在其中渗透了很多研究实际物理问题的物理方法。

是曲线运动和万有引力定律知识的在人造地球卫星上的综合应用,在高中物理、高考中占有非常重要的作用。

另外,人造卫星是万有引力定律在天文学上应用的一个实例,是人类征服自然的见证,体现了知识的力量,是学生学习了解现代科技知识的一个极好素材。

二、教学对象分析从学生的知识基础来看,已掌握平抛运动、圆周运动及万有引定律基本知识,但对其综合运用不熟练。

从认知特点及思维规律来看,学生容易接收表象、浅显的知识,不易接收推理性强、易混淆的知识;具有较强的好奇心和探究欲望,对航天事业的认识较少,认为航天事业是一项高精尖的事业,与自己相去甚远。

三、教学目标(一)知识和能力目标1.了解人造地球卫星的发射原理。

2.认识发射一个物体,会有落回地面、绕地球转、绕太阳转和飞出太阳系。

3.知道什么情况下会落回地面、绕地球转、绕太阳转和飞出太阳系。

4.掌握第一宇宙速度的推导,理解第一宇宙速度是最小的发射速度,最大的环绕速度。

(二)过程与方法目标1.通过学习牛顿对卫星发射思考过程,体验探索科学的思路和方法;2.通过对第一宇宙速度的推导及含义的学习,建立卫星运行模型,体验万有引力提供向心力的解题思路。

(三)情感态度与价值观目标1.关注国、内外航天技术的发展现状与趋势,有献身科学的精神,有振兴中华的使命感和责任感。

2.有主动与他人合作的精神,有将自己的见解与他人交流的愿望,勇于修正错误,具有团队精神。

四、教学重难点重点:能建立正确卫星运行图景,会用万有引力提供向心力的思路推导第一宇宙速度。

难点:理解第一宇宙速度是最小的发射速度,最大的环绕速度。

五、教学方法、过程及整合点本节课中突出发挥学生的主体作用,课堂中通过创设情境设疑T小组思考讨论T引导启发这样一条主线,激发鼓励学生的大胆思考、积极参与,让学生通过自己的分析研究并利用多媒体信息技术辅助法来掌握获取相关的知识和方法。

《宇宙航行》教学设计

《宇宙航行》教学设计

《宇宙航行》教学设计【教学设计】一、知识准备1、简要介绍太阳系结构及各行星基本信息,如行星轨道、卫星、大小、状态等。

2、了解荷兰天文学家哈勃的研究成果,即哈勃定律和宇宙膨胀的概念。

3、了解航天器的发展历程及其在探索宇宙中的作用。

二、教学目标1、了解太阳系各行星的特点及其结构。

2、掌握哈勃定律及其在宇宙学中的作用。

3、了解航天器的类型和用途。

4、了解太阳系和宇宙探索的现状和未来的发展趋势。

三、教学步骤1、引入(5分钟)介绍宇宙的无限大,人类探索宇宙的历史和人们对于宇宙的好奇心。

从而引出本节课的教学内容。

3、哈勃定律和宇宙的膨胀(15分钟)介绍哈勃定律和宇宙的膨胀,这是宇宙学的基础理论。

引出探索宇宙的重要性,从而讲解航天器的类型和用途。

介绍航天器的类型和用途,主要包括地球观测卫星、通信卫星、气象卫星、空间站、载人飞船、探测器等。

结合现实生活和实例进行讲解。

介绍太阳系和宇宙探索的现状和未来趋势,引导学生思考和探究宇宙的未知领域。

对本节课的内容进行小结,总结知识点和教学重点。

四、教学方式1、讲解和演示结合。

2、图片、视频等多媒体辅助课件。

3、学生讨论和思考。

五、教学评估1、提出一个问题,让学生在课后思考并回答,以检查学生对于本节课的理解程度。

六、教学建议1、在教学过程中,可以为学生提供更多的宇宙探索相关的内容和实例,让学生更加深入地了解并掌握知识。

2、在讲解过程中,需要注重启发教育,让学生有探究和思考的精神。

3、在教学中可以使用多媒体辅助课件,使学生更好地理解和掌握知识。

第4节 宇宙航行 教学设计

第4节 宇宙航行 教学设计

第4节宇宙航行[学习目标]1.知道三个宇宙速度的含义,并会推导第一宇宙速度.2.认识同步卫星的特点.3.了解人造卫星的相关知识和我国卫星发射的情况以及人类对太空的探索历程.知识点1宇宙速度1.人造地球卫星的发射原理(1)牛顿的设想:在高山上水平抛出一个物体,当初速度足够大时,它将会围绕地球旋转而不再落回地球表面,成为一颗绕地球转动的人造地球卫星.(2)原理:一般情况下可认为人造地球卫星绕地球做匀速圆周运动,向心力由地球对它的万有引力提供,即G mm地r2=mv2r,则卫星在轨道上运行的线速度v=Gm地r.2.宇宙速度(1)第一宇宙速度vⅠ:卫星在地面附近绕地球做匀速圆周运动的速度,vⅠ=7.9 km/s.(2)第二宇宙速度vⅡ:使卫星挣脱地球引力束缚的最小地面发射速度,vⅡ=11.2 km/s.(3)第三宇宙速度vⅢ:使卫星挣脱太阳引力束缚的最小地面发射速度,vⅢ=16.7 km/s.[判一判]1.(1)在地面上发射人造卫星的最小速度是7.9 km/s.()(2)在地面上发射火星探测器的速度应为11.2 km/s<v<16.7 km/s.()(3)要发射离开太阳系的探测器,所需发射速度至少为16.7 km/s.()(4)要发射一颗月球卫星,在地面的发射速度应大于16.7 km/s.()提示:(1)√(2)√(3)√(4)×[想一想](1)汽车通过半径为r 的拱桥顶部时,行驶速度不能超过多大?假设地球是半径为R 的球体,在地球表面上的物体以多大的水平速度运行时,对地球的压力为零?(2)有人说,第一宇宙速度也可用v =gR (式中g 为重力加速度,R 为地球半径)算出,你认为正确吗?提示:(1)汽车通过拱桥顶部时速度v <gr ,若速度达到gr ,汽车在拱桥顶部对桥面压力等于零,将离开桥面做平抛运动,容易出事故.对于地球表面的物体,若物体对地球的压力为零,则mg =m v 2R ,则物体运动的速度v =gR .(2)方法1:万有引力提供卫星运动的向心力→G MmR 2=m v 2R →v = GM R ;方法2:重力提供卫星运动的向心力→mg =m v 2R →v =gR . 任何一颗行星都有自己的第一宇宙速度,都应用v =GMR 或v =gR 表示,式中G 为引力常量,M 为中心天体的质量,g 为中心天体表面的重力加速度,R 为中心天体的半径.知识点2 人造地球卫星1.1957年10月4日,世界上第一颗人造地球卫星发射成功.2.1970年4月24日,我国第一颗人造地球卫星“东方红一号”发射成功. 3.为我国航天事业作出特殊贡献的科学家钱学森被誉为“中国航天之父”. 4.地球同步卫星:运动方向与地球自转方向相同.因其相对地面静止,也称静止卫星.知识点3 载人航天与太空探索1.1961年4月12日,苏联航天员加加林进入东方一号载人飞船进行人类第一次太空航行.2.1969年7月16日,美国运载阿波罗11号飞船的土星5号火箭点火升空,并于20日在月球留下足迹.3.2003年10月15日9时,我国神舟五号宇宙飞船把中国第一位航天员杨利伟送入太空.[判一判]2.(1)地球的同步卫星一定位于赤道的正上方.( ) (2)地球同步卫星的周期与地球自转的周期相同.( ) 提示:(1)√ (2)√1.(对三种宇宙速度的理解)(多选)在地面上以速度v 发射一飞船后,这艘飞船绕地球转动,当将发射速度提高到2v 时,飞船将可能( )A .仍绕地球转动,轨道半径增大B .仍绕地球转动,轨道半径减小C .摆脱地球引力的束缚,成为太阳系的小行星D .摆脱太阳引力的束缚,飞向宇宙解析:选CD.飞船绕地球转动时对应的发射速度7.9 km/s ≤v <11.2 km/s ,则15.8 km/s ≤2v <22.4 km/s ,若15.8 km/s ≤2v <16.7 km/s 时,C 正确;若16.7 km/s ≤v <22.4 km/s 时,D 正确.2.(第一宇宙速度的计算)已知地球半径为R ,质量为M ,自转角速度为ω,地面重力加速度为g ,引力常量为G ,地球同步卫星的运行速度为v ,则第一宇宙速度的值不可表示为( )A.RgB.v 3ωRC.R GMD.4GMg解析:选C.第一宇宙速度可表示为v 1=GMR =gR ,A 正确,C 错误;由同步卫星的运行可知:GMmr 2=m v 2r 及v =rω有GM =v 3ω,故有v 1= v 3ωR ,B正确;由GMmR 2=mg 有R =GM g,故v 1=gR =4GMg ,D 正确. 3.(地球的轨道卫星问题)如图所示,a 、b 、c 、d 四条圆轨道的圆心均在地球的自转轴上,其中a 、b 、c 的圆心在地球球心处.关于绕地球做匀速圆周运动的卫星,下列说法正确的是( )A .图中a 、b 、c 、d 都是可能的轨道B .只有a 、b 、c 是可能的轨道C .图中a 、b 、c 都可能是同步卫星的轨道D .若b 、c 轨道半径相同,在这两个轨道上运行的所有卫星的速度大小、加速度大小、向心力大小、绕行周期、重力加速度大小都一定分别相等解析:选 B.卫星运动过程中的向心力由万有引力提供,故地心必定在卫星轨道的中心,即地心为圆周运动的圆心.因此轨道d 是不可能的,而轨道a 、b 、c 均是可能的轨道,故A 错误,B 正确;同步卫星由于其周期和地球的自转周期相同,轨道一定在赤道的上空,故轨道只可能为a ,故C 错误;根据万有引力提供向心力公式可知F =GMmr 2,由于卫星的质量不一定相等,所以向心力大小不一定相等,故D 错误.4.(地球同步卫星)“北斗”卫星导航定位系统由地球静止轨道卫星(同步卫星)、中圆轨道卫星和倾斜同步卫星组成.地球静止轨道卫星和中圆轨道卫星都在圆轨道上运行,它们距地面的高度分别约为地球半径的6倍和3.4倍,下列说法正确的是( )A .静止轨道卫星的周期约为中圆轨道卫星的2倍B .静止轨道卫星的线速度大小约为中圆轨道卫星的2倍C .静止轨道卫星的角速度大小约为中圆轨道卫星的17 D .静止轨道卫星的向心加速度大小约为中圆轨道卫星的17解析:选A.由万有引力提供向心力可知G Mm r 2=m v 2r =mrω2=mr ⎝ ⎛⎭⎪⎫2πT 2=ma ,整理可得周期T =4π2r 3GM ,线速度v =GMr ,角速度ω=GMr 3,向心加速度a =GMr 2,设地球的半径为R ,由题意知静止轨道卫星的运行半径是r 1=7R ,中圆轨道卫星的运行半径是r 2=4.4R ,由比例关系可得静止轨道卫星的周期约为中圆轨道卫星的734.43≈2倍,故A 正确;同理可判断出B 、C 、D 错误.探究一 对宇宙速度的理解1.第一宇宙速度:人造卫星近地环绕地球做匀速圆周运动的速度. 2.第一宇宙速度的推导 万有引力提供卫星运动的向心力重力提供卫星运动的向心力公式 G MmR 2=m v 2R mg =m v 2R 结果 v =GM Rv =gR普适性既适用于地球,也适用于其他星体3.对第一宇宙速度的理解(1)“最小发射速度”:向高轨道发射卫星比向低轨道发射卫星困难,因为发射卫星要克服地球对它的引力.近地轨道是人造卫星的最低运行轨道,而近地轨道的发射速度就是第一宇宙速度,所以第一宇宙速度是发射人造卫星的最小速度.(2)“最大环绕速度”:在所有环绕地球做匀速圆周运动的卫星中,近地卫星的轨道半径最小,由G Mmr 2=m v 2r 可得v =GMr ,轨道半径越小,线速度越大,所以在这些卫星中,第一宇宙速度是所有环绕地球做匀速圆周运动的卫星的最大环绕速度.【例1】 (多选)下列关于三种宇宙速度的说法中正确的是( )A .第一宇宙速度v 1=7.9 km/s ,第二宇宙速度v 2=11.2 km/s ,则人造卫星绕地球在圆轨道上运行时的速度大于等于v 1,小于v 2B .美国发射的“凤凰号”火星探测卫星,其发射速度大于第三宇宙速度C .第二宇宙速度是在地面附近使物体可以挣脱地球引力束缚,成为绕太阳运行的人造小行星的最小发射速度D .第一宇宙速度7.9 km/s 是人造地球卫星绕地球做圆周运动的最大运行速度[解析]根据v=GMr可知,卫星的轨道半径r越大,即距离地面越远,卫星的环绕速度越小,v1=7.9 km/s是人造地球卫星绕地球做圆周运动的最大运行速度,D正确;实际上,由于人造卫星的轨道半径都大于地球半径,故卫星绕地球在圆轨道上运行时的速度都小于第一宇宙速度,A错误;美国发射的“凤凰号”火星探测卫星,仍在太阳系内,所以其发射速度小于第三宇宙速度,B错误;第二宇宙速度是使物体挣脱地球束缚而成为太阳的一颗人造小行星的最小发射速度,C正确.[答案]CD【例2】我国执行火星探测任务的天问一号探测器成功着陆火星,标志着中国迈出了星际探测征程的重要一步,成为第三个成功着陆火星的国家.已知地球半径约为火星半径的2倍,地球密度约为火星密度的1.6倍,则地球第一宇宙速度与火星第一宇宙速度的比值约为()A.5410B.4510C. 23 D.16[解析]根据万有引力提供向心力,得G MmR2=mv2R,则第一宇宙速度v=GMR,又由M=ρ×43πR3,解得v=43πGρR2,所以地球第一宇宙速度与火星第一宇宙速度的比值v地v火=ρ地ρ火×R2地R2火=4510,故B正确.[答案] B[针对训练1](多选)据报道,目前我国正在研制“萤火二号”火星探测器,已知火星的质量约为地球质量的19,火星的半径约为地球半径的12.下列关于火星探测器的说法正确的是()A.发射速度只要大于第一宇宙速度即可B.发射速度只有达到第三宇宙速度才可以C.发射速度应大于第二宇宙速度、小于第三宇宙速度D .火星探测器环绕火星运行的最大速度约为第一宇宙速度的12解析:选CD.由于所发射的火星探测器需脱离地球的束缚,故发射速度需超过第二宇宙速度才能到达火星,但仍在太阳系内未脱离太阳束缚,故发射速度不需超过第三宇宙速度,A 、B 错误,C 正确;火星探测器环绕火星运行的最大速度即为火星的环绕速度,由G MmR 2=m v 2R 得v 火= GM 火R 火= 2GM9R 地=29v地≈0.47v 地,D 正确.[针对训练2] 恒星演化发展到一定阶段,可能成为恒星世界的“侏儒”——中子星.中子星的半径较小,一般在7~20 km ,但它的密度大得惊人.若某中子星的半径为10 km ,密度为1.2×1017 kg/m 3,那么该中子星上的第一宇宙速度约为( )A .7.9 km/sB .16.7 km/sC .2.9×104 km/sD .5.8×104 km/s解析:选D.中子星上的第一宇宙速度即为它表面处的飞行器的环绕速度.飞行器的轨道半径近似认为是该中子星的半径,且中子星对飞行器的万有引力充当向心力,由G Mmr 2=m v 2r ,得v = GM r ,又M =ρV =ρ4πr 33,得v =r4πGρ3=1×104×4×3.14×6.67×10-11×1.2×10173m/s≈5.8×107 m/s =5.8×104 km/s. 探究二 卫星运行规律分析人造地球卫星的轨道特点:卫星绕地球运动的轨道可以是椭圆轨道,也可以是圆轨道.(1)卫星绕地球沿椭圆轨道运动时,地心是椭圆的一个焦点,卫星的周期和半长轴的关系遵循开普勒第三定律.(2)卫星绕地球沿圆轨道运动时,因为地球对卫星的万有引力提供了卫星绕地球运动的向心力,而万有引力指向地心,所以地心必定是卫星圆轨道的圆心.(3)卫星的轨道平面可以在赤道平面内(如同步卫星),可以通过两极上空(极地轨道),也可以和赤道平面成任一角度,如图所示.【例3】如图所示的是一张人造地球卫星轨道示意图,其中圆轨道a、c、d的圆心均与地心重合,a与赤道平面重合,b与某一纬线圈共面,c与某一经线圈共面.下列说法正确的是()A.a、b、c、d都有可能是卫星的轨道B.轨道a上卫星的线速度大于7.9 km/sC.轨道c上卫星的运行周期可能与地球自转周期相同D.仅根据轨道d上卫星的轨道半径、角速度和引力常量,也不能求出地球质量[解析]卫星绕地球做匀速圆周运动,地球对卫星的引力提供向心力,可知地心为卫星的圆轨道圆心,故b不可能是卫星的轨道,A错误;第一宇宙速度7.9 km/s是卫星在地球表面绕地球做匀速圆周运动时的线速度,是卫星绕地球做匀速圆周运动的最大线速度,故轨道a上卫星的线速度小于7.9 km/s,B错误;如果轨道c的半径等于地球同步卫星的轨道半径,则轨道c上卫星的运行周期等于地球同步卫星的周期,即轨道c上卫星的运行周期等于地球自转周期,C正确;根据万有引力提供向心力可得GMmr2=mω2r,可得M=ω2r3G,根据轨道d上卫星的轨道半径、角速度和引力常量,可以求出地球质量,D错误.[答案] C[针对训练3](多选)如图所示,地球半径为R,甲、乙两颗人造卫星绕地球做圆周运动,甲离地面的高度为R ,乙离地面的高度为2R .下列说法正确的是( )A .甲、乙做圆周运动的速率之比v 1v 2=32B .甲、乙做圆周运动的速率之比v 1v 2 =3C .甲、乙做圆周运动的周期之比T 1T 2=827 D .甲、乙做圆周运动的周期之比T 1T 2=23解析:选AC.根据万有引力提供向心力可知G Mmr 2 =m v 2r ,解得v =GM r ,故v 1v 2 =r 2r 1 =32 ,A 正确,B 错误;又因为G Mm r 2 =m ·r 4π2T 2 ,则T =4π2r 3GM ,故T 1T 2=r 31 r 32=827 ,C 正确,D 错误.探究三 地球同步卫星问题地球同步卫星位于地面上方高度约36 000 km 处,周期与地球自转周期相同,其中一种的轨道平面与赤道平面成0度角,运动方向与地球自转方向相同.因其相对地面静止,也称静止卫星.地球同步卫星的特点见下表: 周期一定 与地球自转周期相同, 即T =24 h =86 400 s 角速度一定 与地球自转的角速度相同 高度一定卫星离地面高度h =r -R ≈ 6R (为恒量)≈3.6×104 km速度大小一定 v =2πrT =3.07 km/s(为恒量), 环绕方向与地球自转方向相同向心加速度 大小一定 a n =0.23 m/s 2 轨道平面一定轨道平面与赤道平面共面【例4】 关于地球同步卫星的说法正确的是( ) A .所有地球同步卫星一定在赤道上空 B .不同的地球同步卫星,离地高度不同 C .不同的地球同步卫星的向心加速度大小不相等 D .所有地球同步卫星受到的向心力大小一定相等[解析] 地球同步卫星是相对地面静止的卫星,故其周期等于地球自转周期,轨道平面只能位于赤道平面内,且运行方向与地球自转方向同向,A 正确;由T =2πr 3GM 可知同步卫星周期一定,则轨道半径一定,离地面高度一定,B 错误;再由a =r 4π2T 2可知r 、T 均为一定的情况下向心加速度a 的大小也一定,C 错误;由于F =G Mmr 2,故质量不同的同步卫星,其所受向心力也不同,D 错误.[答案] A[针对训练4] 假设量子卫星轨道在赤道平面内,如图所示.已知量子卫星的轨道半径是地球半径的m 倍,同步卫星的轨道半径是地球半径的n 倍,图中P 点是地球赤道上一点,由此可知( )A .量子卫星的环绕速度大于7.9 km/sB .同步卫星与量子卫星的运行周期之比为n 2m 3 C .量子卫星与同步卫星的速度之比为nm D .量子卫星与P 点的速率之比为n 3m解析:选D.第一宇宙速度是所有环绕地球做圆周运动的卫星的最大线速度,则量子卫星的环绕速度小于7.9 km/s ,A 错误;根据开普勒第三定律可知r 3同T 2同=r 3量T 2量,则T 同T 量=r 3同r 3量=n 3m 3,B 错误;根据v =GMr 可知v 量v 同=r 同r 量=nm ,C 错误;根据ω=2πT 可知ω量ω同=T 同T 量=n 3m 3,则ω量ωP =n 3m 3,根据v =ωr 可知量子卫星与P 点的速率之比为v 量v P =ω量·mRωPR =mn 3m 3=n 3m ,D 正确.[A 级——合格考达标练]1.(多选)下列关于三种宇宙速度的说法中正确的是( )A .第一宇宙速度v 1=7.9 km/s ,第二宇宙速度v 2=11.2 km/s ,则人造卫星绕地球在圆轨道上运行时的速度大于等于v 1,小于v 2B .美国发射的“凤凰号”火星探测卫星,其发射速度大于第三宇宙速度C .第二宇宙速度是在地面附近使物体可以挣脱地球引力束缚,成为绕太阳运行的人造小行星的最小发射速度D .第一宇宙速度7.9 km/s 是人造地球卫星绕地球做圆周运动的最大运行速度解析:选CD.根据v =GMr 可知,卫星的轨道半径r 越大,即距离地面越远,卫星的环绕速度越小,v 1=7.9 km/s 是人造地球卫星绕地球做圆周运动的最大运行速度,D 正确;实际上,由于人造卫星的轨道半径都大于地球半径,故卫星绕地球在圆轨道上运行时的速度都小于第一宇宙速度,A 错误;美国发射的“凤凰号”火星探测卫星,仍在太阳系内,所以其发射速度小于第三宇宙速度,B 错误;第二宇宙速度是使物体挣脱地球束缚而成为太阳的一颗人造小行星的最小发射速度,C 正确.2.与地球最类似的太阳系外行星如图所示,这颗行星距离地球约20亿光年(189.21万亿公里),公转周期约为37年,这颗名叫Gliese581g 的行星位于天秤座星群,它的半径大约是地球的1.9倍,重力加速度与地球相近.则下列说法正确的是( )A .在地球上发射航天器到达该星球,航天飞机的发射速度至少要达到第三宇宙速度B .该行星的公转速度比地球大C .该行星的质量约为地球质量的2.61倍D .要在该行星表面发射人造卫星,发射速度至少要达到7.9 km/s 解析:选 A.发射航天器到达该行星要飞离太阳系,发射速度要达到第三宇宙速度,A 正确;该行星的公转速度v =2πrT,我们只知道该行星的公转周期比地球的大,但不知道公转半径如何,所以无法确定该行星公转速度与地球公转速度的大小关系,B 错误;根据G M 行m R 2行=mg 行, G M 地m R 2地=mg 地,解得M 行M 地=3.61,C错误;要在该行星表面发射人造卫星,发射速度至少为该星球的第一宇宙速度v =gR 行,该行星的重力加速度与地球相近,但半径比地球大,所以发射速度要大于7.9 km/s ,D 错误.3.现代人们的生活与各类人造卫星应用息息相关,下列关于卫星的说法正确的是( )A .顺德的正上方可能存在同步卫星B .地球周围卫星的轨道可以在任意平面内C .卫星围绕地球转动的速度不可能大于7.9 km/sD .卫星的轨道半径越大运行速度就越大解析:选 C.同步卫星一定位于赤道的正上方,而顺德不在赤道上,所以顺德的正上方不可能存在同步卫星,故A错误;卫星的向心力是由万有引力提供的,所以地球周围卫星的轨道平面一定经过地心,不是在任意平面内都存在地球卫星,故B错误;根据v=GMr可知,当r等于地球半径时的速度为7.9 km/s,所以7.9 km/s是最大的环绕速度,卫星围绕地球转动的速度不可能大于7.9 km/s,故C正确;根据v=GMr可知,卫星的轨道半径越大运行速度就越小,故D错误.4.(多选)(2023·陕西西安期末)我国航天事业的快速发展,充分体现了民族智慧、经济实力、综合国力,也大大促进了我国生产力的发展.下列关于我国航天器的发射速度、绕行速度的说法正确的是()A.火星探测器天问一号的发射速度大于第三宇宙速度B.探月工程中嫦娥五号的发射速度大于第二宇宙速度C.北斗卫星导航系统中地球静止轨道卫星的绕行速度小于第一宇宙速度D.中国空间站中天和核心舱的发射速度大于第一宇宙速度解析:选CD.火星探测器并没有脱离太阳引力束缚,发射速度应该小于第三宇宙速度,故A错误;探月工程中嫦娥五号没有脱离地球引力束缚,发射速度小于第二宇宙速度,故B错误;第一宇宙速度是最大的环绕速度,地球静止轨道卫星的绕行速度小于第一宇宙速度,故C正确;第一宇宙速度是最小的发射速度,中国空间站中天和核心舱的发射速度大于第一宇宙速度,故D正确.5.关于地球同步卫星,下列说法正确的是()A.运行轨道可以位于北京正上方B.稳定运行的线速度小于7.9 km/sC.运行轨道可高可低,轨道越高,绕地球运行一周所用时间越长D.若卫星质量加倍,运行高度将降低一半解析:选 B.在除赤道所在平面外的任意点,假设实现了“同步”,那它的运动轨道所在平面与受到地球的引力就不在一个平面上,这是不可能的,所以同步卫星只能在赤道的正上方,故A错误;根据万有引力提供向心力G Mmr2=mv2r得:v=GMr,卫星离地面越高r越大,则速度越小,当r最小等于地球半径R时,线速度最大,为地球的第一宇宙速度7.9 km/s ,故同步卫星的线速度小于7.9 km/s ,故B 正确;地球同步卫星运行轨道为位于地球赤道平面上的圆形轨道即轨道平面与赤道平面重合,运行周期与地球自转一周的时间相等,即为一天,根据万有引力提供向心力,列出等式GMm (R +h )2=m 4π2T 2(R +h ),其中R 为地球半径,h 为同步卫星离地面的高度.由于同步卫星的周期必须与地球自转周期相同,所以T 为一定值,根据上面等式得出:同步卫星离地面的高度h 也为一定值,故C 、D 错误.6.一颗人造地球卫星在距地球表面高度为h 的轨道上做匀速圆周运动,运行周期为T .若地球半径为R ,则( )A .该卫星运行时的线速度为2πRT B .该卫星运行时的向心加速度为4π2RT 2C .物体在地球表面自由下落的加速度为4π2(R +h )T 2D .地球的第一宇宙速度为2πR (R +h )3TR解析:选D.卫星的轨道半径为R +h ,则其运行线速度v =2π(R +h )T,向心加速度也即在该处的自由落体加速度a =(R +h )⎝ ⎛⎭⎪⎫2πT 2=4π2(R +h )T 2,并不等于在地球表面的重力加速度,A 、B 、C 错误;地球的第一宇宙速度等于在地球表面运行的卫星的运行速度,即GMm R 2=m v 2R ,而对于该卫星GMm (R +h )2=m (R +h )⎝ ⎛⎭⎪⎫2πT 2, 联立可得v =2π(R +h )3R T =2πR (R +h )3TR,D 正确.7.已知某半径为r 0的质量分布均匀的天体,测得它的一个卫星的圆轨道半径为r ,卫星运行的周期为T ,则该天体的第一宇宙速度的大小是( )A. 4π2r 3T 2r 0 B. 4π2r 3T 2r 20 C.4π2r 3T 2r 30D.4π2r 2T 2r 20解析:选A.卫星做圆周运动,由万有引力提供向心力得GMm r 2 =m ⎝ ⎛⎭⎪⎫2πT 2r ,解得GM =4π2r 3T 2 ,由GMmr 20 =m v 2r 0,得v =GMr 0 ,联立解得v =4π2r 3T 2r 0 .8.我国北斗卫星导航系统由空间段、地面段和用户段三部分组成.空间段由若干地球静止轨道卫星A (GEO)、倾斜地球同步轨道卫星B (IGSO)和中圆地球轨道卫星C (MEO)组成,如图所示.设三类卫星都绕地球做匀速圆周运动,其轨道半径关系为2r A =2r B =3r C .下列说法正确的是( )A.A 的线速度比B 的小 B .A 的角速度比C 的大 C .B 和C 的周期之比为 827 D .B 和C 的线速度之比为23解析:选D.根据万有引力提供向心力可知GMmr 2 =m v 2r ,解得v =GM r ,由轨道半径的关系为2r A =2r B =3r C 可得,B 和C 的线速度之比v Bv C=r Cr B =23 ,A 与B 的线速度大小相等,故A 错误,D 正确;根据万有引力提供向心力可知GMmr 2 =mω2r ,解得ω=GMr 3 ,可知A 的角速度比C 的小,故B 错误;根据万有引力提供向心力可知GMm r 2 =m 4π2T 2 r ,解得T =4π2r 3GM ,可得B 和C的周期之比T BT C=r 3B r 3C=278 ,故C 错误. [B 级——等级考增分练]9.(多选)一探测器探测某星球表面时做了两次测量.探测器先在近星轨道上做圆周运动测出其运行周期T ;着陆后,探测器将一小球以不同的速度竖直向上抛出,测出了小球上升的最大高度h与抛出速度v的二次方的关系,如图所示,图中a、b已知,引力常量为G,忽略空气阻力的影响,根据以上信息可求得()A.该星球表面的重力加速度为2b aB.该星球的半径为bT2 8aπ2C.该星球的密度为3πGT2D.该星球的第一宇宙速度为4aT πb解析:选BC.由h=v22g结合图像有g=v22h=b2a,A错误;由mg=mR⎝⎛⎭⎪⎫2πT2得星球半径R=gT24π2=bT28aπ2,B正确;由GMmR2=mR⎝⎛⎭⎪⎫2πT2及M=ρV=43ρπR3可得ρ=3πGT2,C正确;该星球的第一宇宙速度为v=2πRT=bT4πa,D错误.10.(多选)a、b、c、d四颗地球卫星,a还未发射,在地球赤道上随地球表面一起转动,向心加速度为a1;b处于近地轨道上,运行速度为v1;c是地球同步卫星,离地心距离为r,运行速度为v2,加速度为a2;d是高空探测卫星,各卫星排列位置如图所示,已知地球的半径为R,则有()A.a的向心加速度等于重力加速度gB.v1v2=rRC.a1a2=RrD.d的运动周期不可能是20 h解析:选CD.同步卫星的周期与地球自转周期相同,角速度相同,则知a与c 的角速度相同,根据a =ω2r 知,c 的向心加速度大于a 的向心加速度,由a =GMr 2 知,卫星的轨道半径越大,向心加速度越小,则同步卫星的向心加速度小于b 的向心加速度,而b 的向心加速度约为g ,故知a 的向心加速度小于重力加速度g ,故A 错误;由GMmr 2 =m v 2r 得v =GMr ,所以v 1v 2 =rR ,B 错误;由a=ω2r 得a 1a 2 =R r ,C 正确;由开普勒第三定律r 3T 2 =k 得,卫星的轨道半径越大,周期越大,所以d 的运动周期大于c 的周期,即大于24 h ,不可能是20 h ,D 正确.11.(多选)已知火星的质量约为地球的0.1,半径约为地球的0.5,地球表面的重力加速度大小为g ,地球半径为R ,探测器在火星表面环绕火星速度为v .则下列选项正确的是( )A .火星表面的重力加速度为0.4gB .火星和地球的第一宇宙速度之比为 5 ∶1C .火星和地球的平均密度之比为5∶4D .探测器环绕火星运行周期为5πvg解析:选AD.对星球表面物体有G MmR 2 =mg ,得g 火g 地 =M 火M 地 ·(R 地R 火)2=0.4,故A 正确;对贴近星球表面的卫星有mg =m v 2R ,得v 火v 地 =g 火g 地·R 火R 地=55 ,故B 错误;星球密度ρ=M V =M43πR3 ,则ρ火ρ地 =M 火M 地 (R 地R 火 )3=45 ,故C 错误;对环绕火星正常运行的探测器有G M 火m R 2火=m v 2πT ,又GM 火=g 火R 2火 、g 火=0.4g ,代入可得T =5πv g ,故D 正确.。

人教版 高中物理宇宙航行教案

人教版 高中物理宇宙航行教案

人教版高中物理宇宙航行教案一、教学目标1. 让学生了解和掌握宇宙航行的基本概念和原理,如星系、恒星、行星、宇宙速度等。

2. 培养学生运用物理知识解决实际问题的能力,如计算宇宙飞行器的轨道、速度等。

3. 提高学生对宇宙探索和航天技术的兴趣和认识,培养学生的创新精神和科学素养。

二、教学内容1. 宇宙的基本组成:星系、恒星、行星等。

2. 宇宙速度:第一宇宙速度、第二宇宙速度、第三宇宙速度。

3. 宇宙飞行器的轨道:椭圆轨道、圆形轨道、抛物线轨道。

4. 宇宙飞行器的发射和返回:发射原理、返回技术。

5. 航天技术的发展和应用:卫星、航天器、载人航天等。

三、教学方法1. 采用问题驱动的教学方法,引导学生主动探究宇宙航行的基本概念和原理。

2. 利用多媒体课件和实物模型,帮助学生直观地理解宇宙航行的相关知识。

3. 组织学生进行小组讨论和实验操作,培养学生的团队协作能力和实践能力。

4. 邀请相关领域的专家或从业人员进行讲座,拓宽学生的知识视野。

四、教学评价1. 课堂问答:检查学生对宇宙航行基本概念和原理的理解。

2. 课后作业:布置相关的计算题和思考题,检验学生对宇宙航行的掌握程度。

3. 小组讨论和实验报告:评估学生在团队协作和实践操作中的表现。

4. 期末考试:全面测试学生对宇宙航行的理解和应用能力。

五、教学资源1. 多媒体课件:介绍宇宙航行的基本概念、原理和实例。

2. 实物模型:展示恒星、行星、宇宙飞行器等。

3. 相关教材和参考书:提供宇宙航行的详细知识。

4. 网络资源:介绍航天技术的发展和应用。

5. 实验设备:进行宇宙航行相关的实验操作。

六、教学安排1. 第1-2课时:介绍宇宙的基本组成,星系、恒星、行星等概念。

2. 第3-4课时:讲解宇宙速度的定义和计算,第一宇宙速度、第二宇宙速度、第三宇宙速度。

3. 第5-6课时:讲解宇宙飞行器的轨道类型及其特点,椭圆轨道、圆形轨道、抛物线轨道。

4. 第7-8课时:讲解宇宙飞行器的发射和返回原理,发射技术、返回技术。

(完整版)宇宙航行教学设计

(完整版)宇宙航行教学设计

《宇宙航行》教学设计教学目标(一)知识和能力1.了解人造地球卫星的有关知识和航天发展史。

2.知道三个宇宙速度的含义和数值,会推导第一宇宙速度。

3.理解卫星的线速度、角速度、周期与轨道半径的关系。

(二)过程与方法1.在学习牛顿对卫星发射的思考过程的同时,培养学生科学探索能力;培养学生在处理实际问题时,如何构建物理模型的能力。

2.通过对卫星运行的线速度、角速度、周期与轨道半径的关系的讨论,培养学生运用知识分析解决实际问题的能力。

(三)情感态度与价值观1.通过展示人类在宇宙航行领域中的伟大成就,激发学生学习物理的热情。

2.通过介绍我国在航天方面的成就,激发学生的爱国热情,增强民族自信心和自豪感。

教学重点1.第一宇宙速度的推导。

2.卫星运行的线速度、角速度、周期与轨道半径的关系。

教学难点卫星的发射速度与运行速度的关系。

教学方法探究、讲授、讨论。

教学过程教学环节引入新课教学教师活动(展示视频片断,教师讲述)人类一直梦想能够在天空中遨游,古代就有人尝试用各种方法飞向天空,但均以失败告终,伴随着科技的发展,现代人类终于实现了梦想。

那么,现代人成功的奥秘在哪里呢?通过本节课的学习,你们能否找到答案呢?(一)宇宙速度1.人造卫星原理(1).牛顿对人造地球卫星原理的描绘提问:怎样才能使得一个物体绕着地球做圆周运动?在高山上物体作平抛运动的初速度越大,落地点高山脚越远,当抛出速度足够大时,物体就不会落到地面上,成为绕地球旋转的人造地球卫星.(展示人造卫星发射原理动画视频)问题:人造地球卫星绕地球运行的动力学原因是什么?(2).人造地球卫星绕地球运行的动力学原因地球给人造地球卫星的万有引力提供了它绕地球作匀速圆周运动所需的向心力.学生活动教学意图观看视频学生思考讨论回答并总结观看并思考引导学生思考,激发学生兴趣。

让学生了解人造地球卫星的最初构想和人造地球卫星的发射原理为第一宇宙速度的教学作好铺垫。

Mm v 24π22G 2=m =m ωr =m 2rr r T 2.宇宙速度探究:以多大的速度发射这个物体,物体就刚好不落回地面,成为一颗绕地球表面做匀速圆周运动的卫星呢?(1).第一宇宙速度①推导:突出难点,使学生会推导第一宇宙速度通过思考学习,使学生真切感受到用自己所学的物理知识能解决天体问题,能解决实际问题,增强学生学习物理的热情设地球和卫星的质量分别为M 和m ,卫星到地心的距离为r 卫星的运行速度为v ,由于卫星做圆周运动由万有引力提供向心学生板演,教师Mm v 2G 2=m纠偏r r 力得GM 6.67⨯10-11⨯5.89⨯1024v ===7.9⨯103m/s =7.9km/s6r 6.37⨯10v =7.9第一宇宙速度(环绕速度):1km/s②意义:它是人造卫星地面附近绕地球做匀速圆周运动所必须具备的速度.③如果卫星的速度小于第一宇宙速度,卫星将落到地面而不能绕地球运转;等于这个速度卫星刚好能在地球表面附近作匀速圆周运动;如果大于7.9km/s ,而小于11.2km/s (第二宇宙速度),卫星将沿椭圆轨道绕地球运行,地心就成为椭圆轨道的一个焦点.(2)第二宇宙速度(脱离速度):v 2=2v 1=11.2km/s①意义:使卫星挣脱地球的引力束缚,成为绕太阳运行的人造行星的最小发射速度.②如果人造天体的速度大于11.2km/s 而小于16.7km/s ,则它的运行轨道相对于太阳将是椭圆,太阳就成为该椭圆轨道的一个焦点.v 3=16.7km/s(3)第三宇宙速度(逃逸速度):①意义:使卫星挣脱太阳引力束缚的最小发射速度.②如果人造天体具有这样的速度并沿着地球绕太阳的公转方向发射时,就可以摆脱地球和太阳引力的束缚而邀游太空了.3、卫星运行的线速度、角速度、周期与轨道半径的关系。

《宇宙航行》教学设计

《宇宙航行》教学设计

《宇宙航行》教学设计一、教学目标1. 知识目标1)了解宇宙航行的发展历程;2)掌握宇宙航行的基本原理和技术;3)了解航天器的分类和功能。

2. 能力目标1)培养学生的观察、分析和解决问题的能力;2)引导学生探究宇宙航行技术的发展;3)启发学生关于宇宙探索的兴趣,激发他们对科学的探究精神。

3. 情感目标通过宇宙航行的教学,使学生感受到人类探索宇宙的神秘和伟大,激发他们对科学事业的热爱,培养他们积极进取的心态和探索未知的勇气。

二、教学内容三、教学重点和难点1. 教学重点:宇宙航行的基本原理和技术;2. 教学难点:航天器的分类和功能。

四、教学方法1. 解说结合课件展示通过老师的解说和课件的展示,向学生介绍宇宙航行的发展历程、基本原理和技术,直观地展示相关图表和实验过程。

2. 示范操作通过老师的示范操作,引导学生了解航天器的结构和功能,并进行实践操作,加深学生对宇宙航行知识的理解和掌握。

3. 启发式教学通过提问、讨论和小组活动等形式,引导学生探究宇宙探索的意义和价值,激发他们对科学探究的兴趣和探索未知的渴望。

五、教学过程1. 导入新课通过展示一些与宇宙航行相关的图片和视频,引起学生对宇宙探索的兴趣,并提出问题:“你知道人类是如何进行宇宙航行的吗?”,带领学生进入本课的学习主题。

2. 探究宇宙航行的发展历程通过讲解和课件展示,介绍宇宙航行的发展历史、重要事件和成就,激发学生对宇宙航行的好奇心和探索欲望。

3. 探讨宇宙航行的基本原理和技术通过解说和课件展示,向学生介绍宇宙航行的基本原理和技术,让学生了解宇宙飞行器的发射、轨道、变轨、返回等基本原理和技术。

4. 分组讨论航天器的分类和功能让学生分成小组,通过老师提供的资料和参考书籍,讨论航天器的分类和功能,展示各自的成果,并进行小组展示和讨论。

6. 总结课程内容通过小结的形式,对本节课所学的内容进行总结,并邀请学生分享对宇宙航行的认识和体会,激励他们对科学探究的热爱和探索未知的勇气。

初中物理宇宙航行教案

初中物理宇宙航行教案

初中物理宇宙航行教案教学目标:1. 了解宇宙航行的基本概念和原理;2. 掌握宇宙速度和宇宙航行的相关公式;3. 能够运用宇宙航行的知识解释实际问题。

教学重点:1. 宇宙速度的概念和计算;2. 宇宙航行的基本原理和公式。

教学难点:1. 宇宙速度的计算公式的理解和应用;2. 宇宙航行的相关公式的理解和应用。

教学准备:1. PPT课件;2. 黑板和粉笔;3. 相关图片和视频资料。

教学过程:一、导入(5分钟)1. 播放宇宙航行的视频资料,引起学生兴趣;2. 引导学生思考宇宙航行的意义和重要性。

二、宇宙速度(15分钟)1. 介绍宇宙速度的概念和定义;2. 讲解宇宙速度的计算公式;3. 举例说明宇宙速度的应用和计算。

三、宇宙航行(15分钟)1. 介绍宇宙航行的基本原理和公式;2. 讲解宇宙航行的相关公式;3. 举例说明宇宙航行的应用和计算。

四、练习与讨论(15分钟)1. 出示练习题,让学生独立完成;2. 分组讨论,让学生互相交流和解决问题。

五、总结与拓展(10分钟)1. 对本节课的内容进行总结;2. 引导学生思考宇宙航行的未来发展 and 应用前景。

教学反思:本节课通过播放宇宙航行的视频资料,引起学生的兴趣和关注。

在讲解宇宙速度和宇宙航行的相关公式时,通过举例和练习题的方式,让学生理解和掌握公式的应用。

在练习与讨论环节,学生能够互相交流和解决问题,提高了学生的合作能力和解决问题的能力。

通过总结和拓展环节,使学生对宇宙航行的未来发展有更深入的思考和认识。

总体来说,本节课达到了预期的教学目标,学生对宇宙航行的基本概念和原理有了较好的理解和掌握。

《宇宙航行》教学设计

《宇宙航行》教学设计

《宇宙航行》教学设计一. 教学目标1. 使学生了解宇宙航行的基本概念和发展历史。

2. 培养学生对宇宙探索的兴趣和热爱。

3. 提高学生的科学阅读和科学交流能力。

二. 教学内容1. 宇宙航行的定义和意义。

2. 宇宙航行的发展历史。

3. 宇宙航行的关键技术和挑战。

4. 宇宙飞船和太空探索任务。

5. 宇宙航行的未来发展。

三. 教学方法1. 授课方法:讲授、讨论和实践。

2. 学生参与:学生通过小组讨论和实验操作参与教学过程。

四. 教学过程1. 导入(5分钟)教师引入宇宙航行的话题,让学生对宇宙探索和宇宙航行产生兴趣。

2. 知识讲解(30分钟)教师讲解宇宙航行的定义和意义,以及宇宙航行的发展历史。

重点介绍人类首次登月和国际空间站等宇宙航行里程碑事件。

同时讲解宇宙航行中的关键技术和面临的挑战。

利用实物模型和多媒体资料进行示范和讲解。

3. 小组讨论(20分钟)学生分成小组,讨论宇宙航行的未来发展。

每个小组选择一个话题,如太空旅游、火星探索、外星生命等,发表自己的观点和想法。

教师鼓励学生积极参与,引导学生展开思维,扩展宇宙航行的想象空间。

4. 实验操作(20分钟)教师组织学生进行一个与宇宙航行相关的实验,如模拟宇宙环境的重力实验,或模拟太空环境的材料测试实验等。

学生通过实际操作,感受宇宙航行中面临的挑战和技术需求。

5. 总结和展示(10分钟)学生展示他们的实验结果,并总结今天的学习内容。

教师对学生的表现给予肯定和鼓励,同时强调宇宙航行的重要性和挑战,激发学生对科学探索的热爱和追求。

六. 教学评价1. 学生参与度:观察学生是否积极参与讨论和实验操作,是否尊重并听从他人意见。

2. 学生表现:观察学生在小组讨论和实验中的表现,包括分析问题、沟通能力、合作能力等。

3. 学习成果:评估学生对宇宙航行基本概念和发展历史的理解程度,是否能够运用所学知识进行思考和交流。

教学比赛用《宇宙航行》教学设计

教学比赛用《宇宙航行》教学设计

教学比赛用《宇宙航行》教学设计教学设计:《宇宙航行》一、教学目标1.知识目标:了解太阳系基本构成,认识太阳系的行星、卫星等天体,概括宇宙航行的发展历程。

2.能力目标:通过观察、实验等活动,培养学生的观察能力、实验能力和科学探索精神。

3.情感目标:培养学生对宇宙的好奇心和探索欲望,激发学生对科学的兴趣与热爱。

二、教学重难点1.教学重点:太阳系构成和宇宙航行的发展历程。

2.教学难点:理解太阳系中行星运行的原理和探索宇宙的重要意义。

三、教学过程1.导入(5分钟)通过播放一段宇宙探索的视频,引发学生对宇宙航行的兴趣,并提出问题:“你们知道什么是宇宙航行吗?宇宙航行的目的是什么?”2.概念讲解(10分钟)通过PPT或者黑板,向学生介绍太阳系的基本构成,包括太阳、行星、卫星等天体,并向学生解释宇宙航行的目的是为了探索宇宙的奥秘,寻找新的资源和生存环境。

3.实验展示(20分钟)为了让学生更加直观地理解太阳系的行星运行,可以进行一个简单的实验。

准备一个大球体作为太阳,用小球体代表行星,围绕太阳进行转动,展示行星公转和自转的过程。

同时,也可以通过展示宇宙飞船的模型,介绍宇宙航行的基本原理。

4.深入探究(25分钟)设计几个小组活动,让学生通过观察、推理和实验等方式,进一步了解宇宙航行的发展历程和相关知识。

a.小组活动一:制作太阳系模型。

将学生分成若干小组,每个小组负责制作一个太阳系模型,并在模型上标出行星的名称和位置。

b.小组活动二:探索地外生命。

引导学生根据已有的观测和发现,讨论地外生命的可能性,并展示不同的观点。

c.小组活动三:设计宇宙飞船。

让学生分组设计一个宇宙飞船,考虑到宇宙环境的特殊性,要求学生合理选择材料和设计结构。

5.总结归纳(10分钟)让学生对本节课所学内容进行总结归纳,并回答一些问题,如:“你最关注太阳系中的哪个天体?”、“你对宇宙航行有什么新的认识和思考?”等。

6.拓展延伸(5分钟)布置一些相关的拓展作业,鼓励学生自主学习和探索,如阅读有关太阳系和宇宙航行的书籍、观察宇宙观测图像等,并要求学生在下节课中分享自己的发现和体会。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《宇宙航行》教学设计
教学目标
(一)知识和能力
1.了解人造地球卫星的有关知识和航天发展史。

2.知道三个宇宙速度的含义和数值,会推导第一宇宙速度。

3.理解卫星的线速度、角速度、周期与轨道半径的关系。

(二)过程与方法
1.在学习牛顿对卫星发射的思考过程的同时,培养学生科学探索能力;培养学生在处理实际问题时,如何构建物理模型的能力。

2.通过对卫星运行的线速度、角速度、周期与轨道半径的关系的讨论,培养学生运用知识分析解决实际问题的能力。

(三)情感态度与价值观
1.通过展示人类在宇宙航行领域中的伟大成就,激发学生学习物理的热情。

2.通过介绍我国在航天方面的成就,激发学生的爱国热情,增强民族自信心和自豪感。

教学重点
1.第一宇宙速度的推导。

2.卫星运行的线速度、角速度、周期与轨道半径的关系。

教学难点
卫星的发射速度与运行速度的关系。

教学方法
探究、讲授、讨论。

教学过程
动,则有
可得:
结论:线速度、角速度、周期都与卫星的质量无关,仅由轨道半径决定。

当卫星环绕地球表面运行时,轨道半径最小为地球半径(r=R ),此时线速度最大为7.9km/s 。

,角速度最大,周期最小。

4、人造卫星的发射速度与运行速度 (播放嫦娥一号发射的模拟视频。

) 1.发射速度
发射速度是指卫星在地面附近离开发射装置的初速度,一旦发射后再无能量补充,要发射一颗人造地球卫星,发射速度不能小于第一宇宙速度。

2.运行速度
运行速度指卫星在进入运行轨道后绕地球做圆周运动的线速度。

当卫星“贴着”地面飞行时,运行速度等于第一宇宙速度,当卫星的轨道半径大于地球半径时,运行速度小于第一宇宙速度。

提问:人造卫星的发射速度与运行速度之间有什么关系? 解答:人造卫星的发射速度与运行速度之间的大小关系是:

发射v v >≥>km/s 9.7km/s 2.11
学生通过视频了解卫星发射的全过程
思考、讨论与交流 激发兴趣的同时,了解发射速度和运行速度。

使学生加深对第一宇宙速度的确切理解
认清发射速度与运行速度的关系,突破难点。

(二)、梦想成真
其实早在六百多年前的明朝,一个名叫万户的人就曾有“飞天”的壮举,但最终未能成功,并为之付出了生命。

万户是世界上第一个利用火箭向太空搏击的英雄。

他的努力虽然失败了,但他借助火箭推力升空的创想是世界上第一个,因此他被世界公认为“真正的航天始祖”,为了纪念这位世界航天始祖,世界科学家将月球上的一座环形火山命名为“万户山”。

19世纪中叶,俄罗斯学者,齐奥尔科夫斯基,提出利用喷气推进的多级火箭,运载发射卫星。

1957年10月4日,世界上第一颗人造卫星成功在苏联发射成功。

1961年4月12日,世界上第一次载人飞行,苏联。

1969年7月16日,人类第一次登上月球,美国。

1970年,中国第一颗人造卫星发射成功。

学生阅读
增强民族自信心和自豪感.
激发热爱科学,热爱祖国的情感,
课后反思
这节课始终以学生为主体精心设计学习活动。

没有让学生机械的记忆,而且给学生主动探索、自主学习的空间,通过学生的思考、动手、观察、讨论,激发学生的学习热情,使学生由被动接受知识转化为主动的获取知识,让学生真正学会如何学习,使学生的创新潜能得到最大发挥。

相关文档
最新文档