平面图形的认识(二)知识点总结

合集下载

七年级下册数学期末考试知识点总结

七年级下册数学期末考试知识点总结

目录第七章平面图形的认识〔二〕1第八章幂的运算2第九章整式的乘法与因式分解3第十章二元一次方程组4第十一章一元一次不等式4第十二章证明9第七章平面图形的认识〔二〕一、知识点:1、“三线八角〞①如何由线找角:一看线,二看型。

同位角是“F〞型;错角是“Z〞型;同旁角是“U〞型。

②如何由角找线:组成角的三条线中的公共直线就是截线。

2、平行公理:如果两条直线都和第三条直线平行,那么这两条直线也平行。

简述:平行于同一条直线的两条直线平行。

补充定理:如果两条直线都和第三条直线垂直,那么这两条直线也平行。

简述:垂直于同一条直线的两条直线平行。

3、平行线的判定和性质:判定定理性质定理条件结论条件结论同位角相等两直线平行两直线平行同位角相等错角相等两直线平行两直线平行错角相等同旁角互补两直线平行两直线平行同旁角互补4、图形平移的性质:图形经过平移,连接各组对应点所得的线段互相平行〔或在同一直线上〕并且相等。

5、三角形三边之间的关系:三角形的任意两边之和大于第三边;三角形的任意两边之差小于第三边。

假设三角形的三边分别为a 、b 、c ,那么 b a c b a +<<-6、三角形中的主要线段:三角形的高、角平分线、中线。

注意:①三角形的高、角平分线、中线都是线段。

②高、角平分线、中线的应用。

7、三角形的角和:三角形的3个角的和等于180°;直角三角形的两个锐角互余;三角形的一个外角等于与它不相邻的两个角的和;三角形的一个外角大于与它不相邻的任意一个角。

8、多边形的角和:n 边形的角和等于〔n-2〕•180°;任意多边形的外角和等于360°。

第八章 幂的运算幂〔power 〕指乘方运算的结果。

a n 指将a 自乘n 次(n 个a 相乘〕。

把a n 看作乘方的结果,叫做a 的n 次幂。

对于任意底数a,b ,当m,n为正整数时,有a m•a n =a m+n (同底数幂相乘,底数不变,指数相加)a m÷a n =a m-n (同底数幂相除,底数不变,指数相减)(a m)n =a mn (幂的乘方,底数不变,指数相乘)(ab)n =a n a n (积的乘方,把积的每一个因式乘方,再把所得的幂相乘)a 0=1(a ≠0) (任何不等于0的数的0次幂等于1)a -n =1/a n (a ≠0) (任何不等于0 的数的-n 次幂等于这个数的n 次幂的倒数)科学记数法:把一个绝对值大于10(或者小于1)的整数记为a×10n 的形式(其中1≤|a|<10),这种记数法叫做科学记数法.复习知识点:1.乘方的概念求n 个一样因数的积的运算,叫做乘方,乘方的结果叫做幂。

苏教版七年级下册数学[《平面图形的认识(二)》全章复习与巩固(基础)知识点整理及重点题型梳理]

苏教版七年级下册数学[《平面图形的认识(二)》全章复习与巩固(基础)知识点整理及重点题型梳理]

苏教版七年级下册数学重难点突破知识点梳理及重点题型巩固练习《平面图形的认识(二)》全章复习与巩固(基础)知识讲解【学习目标】1. 区别平行线的判定与性质,并能灵活运用;2. 了解图形平移的概念及性质;3. 熟练掌握三角形的三边关系及内角和定理,并能灵活应用;4、掌握多边形的内角和公式与外角和定理.【知识网络】【要点梳理】要点一、平行线的判定与性质1.平行线的判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行.(2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性).(3)在同一平面内,垂直于同一直线的两条直线平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直. 要点二、图形的平移1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.要点诠释:决定平移的两个要素:(1)平移的方向;(2)平移的距离.2.平移的性质:(1)图形的平移不改变图形的形状与大小,只改变图形的位置.(2)图形平移后,对应点的连线平行或在同一直线上且相等.(3)图形经过平移,对应线段互相平行或在同一条直线上且相等,对应角相等. 要点三、认识三角形1.三角形的分类(1)按角分: 三角形 2.三角形的三边关系三角形的任意两边之和大于第三边; 三角形任意两边之差小于第三边.要点诠释:(1)判断给定三条线段能否构成一个三角形:看较小两边的和是否大于最长边.(2)已知三角形的两边长,确定第三边的范围:两边之差的绝对值<第三边<两边之和.3.三角形的三条主要线段(1)在三角形中,连接一个顶点与它对边中点的线段,叫做三角形的中线。

初一平面图形的认识2知识点

初一平面图形的认识2知识点

初一平面图形的认识2知识点1. 平面图形的分类在初一的数学学习中,我们会接触到许多不同的平面图形。

根据图形的特征和性质,我们可以将平面图形分为以下几类:1.1 直线直线是最基本的平面图形,可以用于连接两个点。

直线是由无数个点组成的,延伸的方向上没有尽头。

1.2 射线射线是由一个起点向一个方向延伸出去的直线。

射线只有一个端点,并且在延伸的方向上没有尽头。

1.3 线段线段是由两个端点确定的直线部分。

线段有确定的长度,起点和终点之间没有延伸。

1.4 角角是由两条射线共享一个端点组成的图形。

角可以通过两条射线的夹角来衡量,常用单位是度或弧度。

1.5 矩形矩形是一个具有四个直角的四边形。

矩形的对边相等且平行,对角线相等。

1.6 正方形正方形是一种特殊的矩形,它的四个角都是直角,并且四条边相等。

1.7 三角形三角形是一个由三条线段组成的图形。

根据边的长度和角的大小,三角形可以进一步分为等边三角形、等腰三角形和一般三角形。

1.8 平行四边形平行四边形是一种具有两对平行边的四边形。

平行四边形的对边相等且平行。

2. 平面图形的性质和特征了解平面图形的性质和特征有助于我们更好地认识和理解它们。

2.1 直线的性质 - 直线没有宽度和长度,可以延伸到无穷远。

-直线上的任意两点可以被直线上的任意一点所连接。

- 直线上的两个相邻角互补,即它们的和为180°。

2.2 角的性质 - 角的单位通常使用度或弧度来衡量。

- 角的大小可以用角度来表示,度数为0到360之间。

- 两个互补角的和为90°,两个补角的和为180°。

2.3 矩形的性质 - 矩形的对边相等且平行。

- 矩形的所有内角都是直角(90°)。

- 矩形的对角线相等且互相平分。

2.4 三角形的性质 - 三角形的三个内角的和为180°。

- 等边三角形的三条边相等,三个内角也相等(都是60°)。

- 等腰三角形的两个底角相等。

平面图形的认识知识点

平面图形的认识知识点

平面图形的认识(二)平行一、平行:1、在同一平而内,不相交的两条直线叫做平行线.2、平行线的定义包含三层意思:①“在同一平而内”是前提条件;②“不相交”是指两条直线没有交点:③平行线指的是”两条直线S而不是两条射线或两条线段.3、平行公理:经过一条直线外一点有一条并且只有一条直线与已知直线平行・4、推论:(平行线的传递性):设罕b、c是三条直线,如果&二、三线八角:两条直线AB、CD与直线EF相交,交点分别为E、F,如图,则称直线AB、CD彼直线EF所截,直线EF为截线•两条宜线AB、CD被直线EF所截可得8个角,即所谓“三线八角J(一).这八个角中有:1、对顶角:Z1 与Z3, Z2 与Z4, Z5 与Z7, Z6 与Z8.2、邻补角有:Z1 与Z2, Z2 与Z3, Z3 与Z4, Z4 与Zl, Z5 与Z6, Z6 与Z7,(二)、同位角,内错角,同旁内角:K同位角:两条直线被第三条直线所截,任二条直线的同侧,且在第三条直线的同旁的二个角叫同位角.如图中的Z1与Z5分别在直线AB、CD的上侧,又在第三条直线EF的右侧,所以Z1与Z5 是同位角,它们的位置相同,在图中还有Z2与Z6, Z4与Z8, Z3与Z7也是同位角.2、内错角:两条直线被第三条直线所截,在二条直线的内侧,且在第三条直线的两旁的二个角叫内错角.如上图中Z2与Z8在直线AB. CD的内侧(即AB、CD之间),且在EF的两旁,所以Z2与Z8是内错角•同理,Z3与Z5也是内错角.3、同旁内角:两条直线被第三条直线所截,在两条直线的内侧,且在第三条宜线的同旁的两个角叫同旁内角.如上图中的Z2与Z5在直线AB、CD内侧又在EF的同旁,所以Z2与Z5是同旁内角,同理, Z3与Z8也是同旁内角.4、因此,两条直线被第三条宜线所截,共得4对同位角,2对内错角,2对同旁内角.三、直线平行的条件(判定):1、两条直线被第三条直线所截,如果同位角相等,那么这两条宜线平行,简记为:同位角相等,两直线平行2、两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简记为:内错角相等,两直线平行3、两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简记为:同旁内角互补,两直线平行四.平行线的性质:1、两条平行线被第三条直线所截,同位角相等.简记为:两直线平行,同位角相等2、两条平行线被第三条宜线所截,内错角相等.简记为:两直线平行,内错角相等3、两条平行线被第三条直线所截.同旁内角互补,简记为:两直线平行,同旁内角互补平移一.平移的概念:把图形上所有点都按同一方向移动相同的距离叫作平移。

《平面图形的认识(二)》全章复习与巩固(提高)知识讲解

《平面图形的认识(二)》全章复习与巩固(提高)知识讲解

《平面图形的认识(二)》全章复习与巩固(提高)知识讲解责编:康红梅【学习目标】1. 区别平行线的判定与性质,并能灵活运用;2. 了解图形平移的概念及性质;3. 熟练掌握三角形的三边关系及内角和定理,并能灵活应用;4. 掌握多边形的内角和公式与外角和定理.【知识网络】【要点梳理】要点一、平行线的判定与性质1.平行线的判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行. (2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性). (3)在同一平面内,垂直于同一直线的两条直线平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等; 性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有: (1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直. 要点二、图形的平移1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.要点诠释:决定平移的两个要素:(1)平移的方向;(2)平移的距离. 2.平移的性质:(1)图形的平移不改变图形的形状与大小,只改变图形的位置. (2)图形平移后,对应点的连线平行或在同一直线上且相等.(3)图形经过平移,对应线段互相平行或在同一条直线上且相等,对应角相等.要点三、认识三角形 1.三角形的分类(1)按角分:三角形 2.三角形的三边关系三角形的任意两边之和大于第三边; 三角形任意两边之差小于第三边. 要点诠释:(1)判断给定三条线段能否构成一个三角形:看较小两边的和是否大于最长边.(2)已知三角形的两边长,确定第三边的范围:两边之差的绝对值<第三边<两边之和. 3.三角形的三条主要线段(1)在三角形中,连接一个顶点与它对边中点的线段,叫做三角形的中线。

平面图形的认识二知识点及练习

平面图形的认识二知识点及练习

平面图形的认识二知识点及练习第七章平面图形的认识(二)一、平行线1、同位角、内错角、同旁内角的定义两条线(a,b)被第三条(c)直线所截,在截线的同旁,被截两直线的同一方,把这种位置关系的角称为同位角(corresponding angles) 如图:∠1与∠8,∠2与∠7,∠3与∠6,∠4与∠5均为同位角。

两条线(a,b)被第三条(c)直线所截,两个角分别在截线的两侧,且在两条被截直线之间,具有这样位置关系的一对角叫做内错角。

如图:∠1与∠6,∠2与∠5均为同位角。

两条线(a,b)被第三条(c)直线所截,两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角(interior angles of thesame side)。

如图:∠1与∠5,∠2与∠6均为同位角。

2、平行线的性质(1)两直线平行,同位角相等。

(2)两直线平行,内错角相等。

(3)两直线平行,同旁内角互补。

3、平行线的判定(1)同位角相等,两直线平行。

(2)内错角相等,两直线平行。

(3)同旁内角互补,两直线平行。

(4)平行于同一直线的两直线平行。

4、平移平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做图形的平移(translation),简称平移。

5、平移的性质经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。

(1)图形平移前后的形状和大小没有变化,只是位置发生变化;(2)图形平移后,对应点连成的线段平行且相等(或在同一直线上)(3)多次平移相当于一次平移。

(4)多次对称后的图形等于平移后的图形。

(5)平移是由方向,距离决定的。

(6)经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等。

二、三角形1、由三条不在同一直线上的三条线段首尾依次相接组成的图形叫做三角形。

一年级下册数学第一单元题目

一年级下册数学第一单元题目

一年级下册数学第一单元题目
由于您没有给出一年级下册数学第一单元的具体标题内容,我先以人教版一年级下册数学第一单元“认识图形(二)”为例来提供学习资料。

一、知识点总结
1. 平面图形的认识
长方形:长长方方的,有四条边,对边相等,四个角都是直角。

正方形:四四方方的,四条边都相等,四个角都是直角。

三角形:有三条边,三个角。

圆:圆圆的,由一条曲线围成,没有角。

2. 图形的拼组
两个相同的长方形可以拼成一个长方形(特殊情况可拼成正方形,当长方形的长是宽的2倍时)。

两个相同的正方形可以拼成一个长方形。

多个三角形可以拼出不同的图形,如长方形、正方形、平行四边形等。

二、典型题目及解析
1. 题目:下面的图形哪些是长方形,哪些是正方形,哪些是三角形,哪些是圆?(给出一些图形让学生分辨)
解析:
对于长方形,要观察图形是否长长方方,对边是否相等,角是否为直角。

对于正方形,看四条边是否都相等,角是否是直角。

对于三角形,数是否有三条边和三个角。

对于圆,看是否是由一条曲线围成,没有角。

2. 题目:用两个相同的长方形可以拼成什么图形?
解析:
一般情况下可以拼成一个长方形。

如果这两个长方形的长是宽的2倍,就可以拼成一个正方形。

可以让学生用学具(长方形纸片)动手拼一拼,直观地感受结果。

3. 题目:在一个三角形上添一条线,使它变成两个三角形。

解析:
可以从三角形的一个顶点向对边画一条线段,这样就把原来的三角形分成了两个三角形。

这是基于三角形的定义和图形分割的知识,通过添加一条线改变图形的构成。

(完整版)第七章平面图形的认识(二)知识点归纳+典型例题,推荐文档

(完整版)第七章平面图形的认识(二)知识点归纳+典型例题,推荐文档

第七章 平面图形的认识(二)一、知识梳理1、在同一平面上,两条直线的位置关系有 或者 .练习:平面内三条直线的交点个数可能有 ( )A. 1个或3个B.2个或3个C.1个或2个或3个D.0个或1个或2个或3个2、判定与性质:什么叫做平行线?在同一平面内, 的两直线叫平行线。

的两直线平行。

判 定性 质(1) ,两直线平行。

(2) ,两直线平行。

(3) ,两直线平行。

(1)两直线平行, 。

(2)两直线平行, 。

(3)两直线平行,互补。

如果两条直线互相平行,那么其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。

(等积变形)(2)如图,长方形ABCD 的面积为16,四边形BCFE 为梯形,BC 与DE 交于点G,则阴)如图,对面积为,使得记其面积为S 1;第二次操作,分别延长A 1B 1,B 1C 1,C 1A 1至点A 2,B 2,C 2,使得A 2B 1=2A 1B 1,B 2C 1=2B 1C 1,C 2A 1=2C 1A 1,顺次连接A 2,B 2,C 2,得到△A 2B 2C 2,记其面积为S 2;…;按此规律继续下去,可得到△A 5B 5C 5,则其面积S 5= .(4)已知方格纸中的每个小方格是边长为1的正方形,A ,B 两点在小方格的顶点上,位置如图所示,在小方格的顶点上确定一点C ,连接AB ,AC ,BC ,使△ABC 的面积为3个平方单位.则这样的点C 共有 个.(1)如图,边长为3cm ,与5cm 的两个正方形并排放在一起,在大正方形中画一段以它的一个顶点为圆心,边长为半径的圆弧,则阴影部分的面积是______cm 2(π取3).F3、图形的平移 在平面内,将一个图形沿着________________移动____________,这样的____________叫做图形的平移。

4、平移的性质(1)平移不改变图形的_______、________,只改变图形的_________。

平面图形的认识(二)知识点总结#精选.

平面图形的认识(二)知识点总结#精选.
探索平行线的性质
平行线的性质
性质:1、两直线平行,同位角相等。2、两直线平行,内错角相等。3、两直线平行,同旁内角互补。
注意:1、性质成立的前提条件是两直线平行。2、通过该性质可以确定两个角的大小关系,还可以由已知角求出与之相关的角。
考查点:1、求特殊位置角的度数。2、求非特殊角的度数。
平行线的判定与性质的区别
区别:平行线判定的条件和结论与性质的条件和结论的位置是相相反的。
注意:1、判定是由角的关系得到直线平行,性质是由直线平行得到角的关系。2、条件和性质不能混淆。
考查点:1、平行线的判定和性质的综合应用。2、角度计算。3、在生活中的应用。易错点:考虑问题不够全面。
图形的平移
平移的概念
概念:在平面内,将一根图形沿着某个方向移动一定距离,这样的图形运动叫做图形的平移。
注意:1、平移两个要素:方向和距离。2、平移不改变图形大小,只是位置发生了变化。考查点:辨别平移后的图形。
平移的性质
性质:平移只改变图形位置,不改变图形的大小和形状。经过平移后,连接各组对应点所得的线段互相平行(或在同一条直线上)且相等。
注意:1、大小和形状是相同的。2、平移后要注意对应点、对应角、对应线段的关系。3、对应点连线的线段特点。
考查点:1、平移性质运用。2、求图形的面积和周长。
简单的平移作图
平移作图的根据是图形平移后,对应角相等,对应线段互相平行(或在同一条直线上)且相等,连接对应点的线段互相平行(或在同一条直线上)且相等。注意:平移作图要找准对应点。考查点:会画平移后的图形。
最新文件仅供参考已改成word文本。方便更改如有侵权请联系网站删除
两直线平行的条件
条件:1、同位角相等,两直线平行。2、内错角相等,两直线平行。3、同旁内角相等,两直线平行。

苏科版七年级下册数学第7章平面图形的认识(二)知识点总复习及强化练习

苏科版七年级下册数学第7章平面图形的认识(二)知识点总复习及强化练习

平面图形的认识(二)知识点总复习及强化练习【知识梳理】1.平行线的认识(1)认识三线八角:如图,两条直线被第三条直线所截,分成了八个角。

(2)平行的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。

(3)平行的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。

2.三角形的认识(1)三角形的三边关系:两边之和大于第三边,两边之差小于第三边。

(2)三角形的内角和:三角形的内角和是180°(3)三角形内外角关系:一个外角大于和它不相邻的任意一个内角,等于和它不相邻的两个内角和。

(4)三角形的分类:直角三角形;锐角三角形;钝角三角形。

(5)三角形的三线:角平分线;中线;高线。

3.多边形的外角和与内角和公式。

【例题精讲】题型一:平行的判定与性质例1.如图所示,AB∥CD,AF平分∠CAB,CF平分∠ACD.计算(1)∠B+∠E+∠D=________;(2)∠AFC=________.例2.如图,AB∥CD,∠A=120°,∠1=72°,则∠D的度数为__________.题型二:折叠问题例1.如图,将一张长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,ED′的延长线与BC交于点G.若∠EFG=55°,则∠1=__________.与AD交于点G,例2.如图,把矩形ABCD沿EF折叠,点A、B分别落在A′、B′处.A′B′若∠1 =50°,则∠AEF=()A.110°B.115°C.120°D.130°题型三:多边形的内角和与外角和例1.一多边形内角和为2340°,若每一个内角都相等,求每个外角的度数.......。

例2.一个零件的形状如图,按规定∠A=90°,∠ABD和∠ACD,应分别是32°和21°,检验工人量得∠BDC=148°,就断定这个零件不合格,运用三角形的有关知识说明零件不合格的理由.例3.如图,已知∠DAB+∠D=180°,AC平分∠A,且∠CAD=25°,∠B=95°(1)求∠DCA的度数;(2)求∠ACE的度数.题型四:拓展延伸例1.如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若∠DEF=200,则图③中∠CFE度数是多少?(2)若∠DEF=α,把图③中∠CFE用α表示.例2.如图,△ABC中,BE,CD为角平分线且交点为点O,当∠A=600时,(1)求∠BOC的度数;(2)当∠A=1000时,求∠BOC的度数;(3)若∠A=α时,求∠BOC的度数。

第二章平面几何图形的初步认识知识点总结

第二章平面几何图形的初步认识知识点总结

第二章几何图形的初步认识2.1从生活中认识几何图形几何图形包括平面图形和立体图形。

2.2 点和线1,位于线段AB两端的点AB,叫做这条线段的端点吗。

2,将线段AB沿这条线段向两方无限延申所形成的图形,叫做直线。

3,位于线段AB沿AB方向(或BA方向)无限延伸所形成的图形叫做射线。

点A(或点B)叫做射线的端点。

4,基本事实,经过两点有一条直线,并且只有一条直线。

2.3线段的长短1,比较线段的长短的两种方法:1),测量法,2)将线段一段对齐,比较另一端。

2,学会作一条线段等于已知线段。

3,基本事实,两点之间的所有连线中,线段最短。

2.4 线段的和与差线段AB上的一点M,把线段AB分成两条线段AM和MB,那么M就叫做线段AB的中点。

在等式两边分别加上相等的量,等式仍然成立。

2.5 角以及角的度量1.有公共端点的;两条射线所组成的图形叫做角。

角可以看做一条射线绕着端点旋转到另一个位置所形成的图形。

在不作特殊说明的情况下,今后所说的角都是小于平角的角。

2,角的度量:度,分,秒。

一度等于60分,一分等于60秒。

2.6 角的大小比较角的大小的方法,1),测量法,2),比较法,把两个角的顶点和一条边分别重合在一起,即可比较。

2.7角的和与差1,如果从一个角的顶点引出的一条射线把这个角分成的两个角相等,那么这条射线叫做这个角的平分线。

2,如果有个角的和等于90度,那么这两个角互为余角,简称互余;3,如果有个角的和等于180度,那么这两个角互为补角,简称互补;4,同角(或等角)的余角相等,同角(或等角)的补角相等。

2.8 平面图形的旋转1,旋转:在平面内,一个图形绕一个顶点沿某一个方向转过一个角度,这样的图形运动叫做旋转。

旋转中心,旋转角,对应点,对应线段。

2,在平面内,一个图形旋转后得到的图形与原来的图形之间有如下的结果:对应点到旋转中心的距离相等,每对对应点与旋转中心的连线所成的角都是相等的角,它们都是旋转角。

七下平面图形的认识(二)整章教案 知识点+例题+练习 含答案 (全面)

七下平面图形的认识(二)整章教案 知识点+例题+练习 含答案 (全面)

教学主题平面图形的认识(二)教学目标掌握平行的判定和性质、图形的平移、三角形、多边形对的内角和与外角和重要知识点1.平行的判定和性质2.图形的平移3.三角形、多边形对的内角和与外角和易错点平行的判定和性质图形的平移三角形、多边形对的内角和与外角和教学过程平行线及其判定【要点梳理】要点一、平行线的定义及画法1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a∥b.2.平行线的画法:用直尺和三角板作平行线的步骤:①落:用三角板的一条斜边与已知直线重合.②靠:用直尺紧靠三角板一条直角边.③推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点.④画:沿着这条斜边画一条直线,所画直线与已知直线平行.要点二、平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点三、直线平行的判定判定方法1:同位角相等,两直线平行.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.【典型例题】类型一、平行线的定义及表示例1.下列叙述正确的是()A.两条直线不相交就平行B.在同一平面内,不相交的两条线叫做平行线C.在同一平面内,不相交的两条直线叫做平行线D.在同一平面内,不相交的两条线段叫做平行线【答案】C举一反三:【变式】下列说法错误的是()A.无数条直线可交于一点B.直线的垂线有无数条,但过一点与垂直的直线只有一条C.直线的平行线有无数条,但过直线外一点的平行线只有一条D.互为邻补角的两个角一个是钝角,一个是锐角【答案】D类型二、平行公理及推论例2.下列说法中正确的有()①一条直线的平行线只有一条;②过一点与已知直线平行的直线只有一条;③因为a∥b,c∥d,所以a∥d;④经过直线外一点有且只有一条直线与已知直线平行.A.1个 B 2个C.3个D.4个【答案】 A举一反三:【变式】直线a∥b,b∥c,则直线a与c的位置关系是.【答案】平行类型三、两直线平行的判定例3.如图,在下列条件中,不能判定直线a与b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°【答案】C举一反三:【变式1】如图,下列条件中,不能判断直线1l ∥2l 的是( ).A .∠1=∠3B .∠2=∠3C .∠4=∠5D .∠2+∠4=1800【答案】B【变式2】已知,如图,BE 平分∠ABC ,CF 平分∠BCD ,∠1=∠2,求证:AB//CD .【答案】∵ ∠1=∠2∴ 2∠1=2∠2 ,即∠ABC =∠BCD∴ AB//CD (内错角相等,两直线平行)例4.如图所示,由(1)∠1=∠3,(2)∠BAD =∠DCB ,可以判定哪两条直线平行.解:(1)由∠1=∠3,可判定AD ∥BC (内错角相等,两直线平行);(2)由∠BAD =∠DCB ,∠1=∠3得:∠2=∠BAD -∠1=∠DCB -∠3=∠4(等式性质),即∠2=∠4可以判定AB ∥CD (内错角相等,两直线平行).例5.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?【答案与解析】解:这两条直线平行.理由如下:如图:∵ b⊥a, c⊥a∴∠1=∠2=90°∴b∥c (同位角相等,两直线平行) .举一反三:【变式】已知,如图,EF⊥EG,GM⊥EG,∠1=∠2,AB与CD平行吗?请说明理由.【答案】解:AB∥CD.理由如下:如图:∵EF⊥EG,GM⊥EG (已知),∴∠FEQ=∠MGE=90°(垂直的定义).又∵∠1=∠2(已知),∴∠FEQ -∠1=∠MGE -∠2 (等式性质),即∠3=∠4.∴AB∥CD (同位角相等,两直线平行).【巩固练习】一、选择题1.下列关于作图的语句正确的是().A.画直线AB=10厘米.B.画射线OB=10厘米.C.已知A,B,C三点,过这三点画一条直线.D.过直线AB外一点画一条直线和直线AB平行.2.有下列四种说法:(1)过直线外一点有且只有一条直线与这条直线平行(2)平面内,过一点能且只能作一条直线与已知直线垂直(3)直线外一点与直线上各点连接的所有线段中,垂线段最短(4)平行于同一条直线的两条直线平行.其中正确的个数是()A.1个B.2个C.3个D.4个3.若直线a∥b,b∥c,则a∥c的依据是().A.平行的性质B.等量代换C.平行于同一直线的两条直线平行.D.以上都不对4.下列说法中不正确的是().A.同位角相等,两直线平行.B.内错角相等,两直线平行.C.同旁内角相等,两直线平行.D.在同一平面内,垂直于同一条直线的两直线平行.5.如图所示,给出了过直线l外一点P作已知直线l的平行线的方法,其依据是().A.同位角相等,两直线平行. B.内错角相等,两直线平行.C.同旁内角互补,两直线平行. D.以上都不对.6.如图所示,有以下四个条件:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.其中能判定AB∥CD的序号是( ).A.1 B.2 C.3 D.4二、填空题7.两条射线或线段平行,是指 .8.如图所示,直线a,b被c所截,∠1=30°,∠2:∠3=1:5,则直线a与b的位置关系是________.9.如图,直线a和b被直线c所截,∠1=110°,当∠2=________时,有直线a∥b成立.10.如图,是小明学习三线八角时制作的模具,经测量∠2=100°,要使木条a与b平行,则∠1的度数必须是.11.小军在一张纸上画一条直线,再画这条直线的平行线,然后依次画前一条直线的平行线,当他画到第十条直线时,第十条直线与第一条直线的位置关系是________.12.已知直线a、b都过点M,且直线a∥l,b∥l,那么直线a、b是同一条直线,根据是________.三、解答题13.读下列语句,用直尺和三角尺画出图形.(1)点P是直线AB外的一点,直线CD经过点P,且CD与AB平行;(2)直线AB与CD相交于点O,点P是AB、CD外的一点,直线EF经过点P,且EF∥AB,与直线CD 相交于点E.14.已知如图,∠ABC=∠ADC,BF、DE分别是∠ABC、∠ADC的角平分线,∠1=∠2,那么CD与AB平行吗?写出推理过程.15.如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.【答案与解析】一、选择题1.【答案】D2.【答案】D.【解析】(1)过直线外一点有且只有一条直线与这条直线平行,正确;(2)平面内,过一点能且只能作一条直线与已知直线垂直,正确;(3)直线外一点与直线上各点连接的所有线段中,垂线段最短,正确;(4)平行于同一条直线的两条直线平行,正确;正确的有4个,故选:D.3.【答案】C【解析】这是平行线的传递性,其实质是平行公理的推论.4. 【答案】C【解析】同旁内角互补,两直线平行.5. 【答案】A【解析】这种作法的依据是:同位角相等,两直线平行.6. 【答案】C【解析】∠1=∠2,但∠1、∠2不是截AB、CD所得的内错角,所以不能判定AB∥CD.二、填空题7. 【答案】射线或线段所在的直线平行;8.【答案】平行;【解析】由已知可得:∠2=30°,所以∠1=∠2,可得:a∥b.9.【答案】70°;10.【答案】80°.【解析】因为a与b平行,所以∠1=∠3,又∠2=100°,所以∠3=80°,∴∠1=80°.11.【答案】平行;【解析】平行公理的推论12.【答案】过直线外一点有且只有一条直线与这条直线平行;【解析】这是平行公理的具体内容.三、解答题13.【解析】解:14.【解析】解:CD∥AB.理由如下:∵BF、DE分别是∠ABC、∠ADC的角平分线,要点一、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点二、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点三、图形的平移1. 定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动叫做平移.2. 性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:(1)平移后,对应线段平行(或在同一条直线上)且相等;(2)平移后,对应角相等;(3)平移后,各组对应点的连线平行(或在同一条直线上)且相等;(4)平移后,新图形与原图形是一对全等图形.3. 作图:平移作图是平移基本性质的应用,在具体作图时,应抓住作图的“四步曲”——定、找、移、连.(1)定:确定平移的方向和距离;(2)找:找出表示图形的关键点;(3)移:过关键点作平行且相等的线段,得到关键点的对应点;(4)连:按原图形顺次连接对应点.【典型例题】类型一、平行线的性质例1.如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A .122°B .151°C .116°D .97°【答案】B .举一反三:【变式】如图,已知1234//,//l l l l ,且∠1=48°,则∠2= ,∠3= ,∠4= .【答案】48°,132°,48°类型二、两平行线间的距离例2.如图所示,直线l1∥l2,点A、B在直线l2上,点C、D在直线l1上,若△ABC的面积为S1,△ABD的面积为S2,则()A.S1>S2B.S1=S2C.S1<S2D.不确定【答案】B举一反三:【变式】如图,在五边形ABCDE中,AB∥DE,若△ABE的面积为5,则△ABD的面积为()A.4 B.5 C.10 D.无法判断【答案】B.类型三、图形的平移例3.如图所示,平移△ABC,使点A移动到点A′,画出平移后的△A′B′C′.解:如图所示,例4.如图所示,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为________.【答案】30°举一反三:【变式】如图所示,三角形FDE经过怎样的平移可以得到三角形ABC()A.沿EC的方向移动DB长B.沿BD的方向移动BD长C.沿EC的方向移动CD长D.沿BD的方向移动DC长【答案】A类型四、平行的性质与判定综合应用例5.如图所示,AB∥EF,那么∠BAC+∠ACE+∠CEF=( )A.180°B.270°C.360°D.540°【答案】C举一反三:【变式】如图所示,如果∠BAC+∠ACE+∠CEF=360°,则AB与EF的位置关系.【答案】平行【巩固练习】一、选择题1.下列说法:①两直线平行,同旁内角互补;②内错角相等,两直线平行;③同位角相等,两直线平行;④垂直于同一条直线的两条直线平行,其中是平行线的性质的是().A.①B.②和③C.④D.①和④2.(2015•枣庄)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°3.下列图形中,由AB∥CD,能得到∠1=∠2的是().4.如图,点D是AB上的一点,点E是AC边上的一点,且∠B=70°,∠ADE=70°,∠DEC=100°,则∠C是().A.70°B.80°C.100°D.110°5.(南通)如图所示,已知AD与BC相交于点O,CD∥OE∥AB.如果∠B=40°,∠D=30°,则∠AOC 的大小为().A.60°B.70°C.80°D.120°6.(山东德州)如图所示,直线l1//l2,∠1=40°,∠2=75°,则∠3等于().A.55°B.30°C.65°D.70°7.如图所示的图形中的小三角形可以由△ABC平移得到的有().A.3个B.4个C.5个D.6个二、填空题8.如图,已知AB∥CD,S△ACD=6cm2,则S△BCD=6cm2.9. 如图所示,△ABC经过平移得到△A′B′C′,图中△_________与△_________大小形状不变,线段AB 与A′B′的位置关系是________,线段CC′与BB′的位置关系是________.10. (浙江湖州)如图所示,已知CD平分∠ACB,DE∥AC,∠1=30°,则∠2=______度.11.如图,在四边形ABCD中,若∠A+∠B=180°,则∠C+∠D=_______.12.将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸片的一条边上,则∠1+∠2=________.13.如图所示,AB∥CD,且∠BAP=60°-a,∠APC=45°+a,∠PCD=30°-a,则a=________.三、解答题14.如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD.15. 如图,a∥b∥c,∠1=60°,∠2=36°,AP平分∠BAC,求∠PAQ的度数.16. 如图,将四边形ABCD平移到四边形EFGH的位置,根据平移后对应点所连的线段平行且相等,写出图中平行的线段和相等的线段.【答案与解析】一、选择题∴∠2=∠3(两直线平行,同位角相等);∵∠1=∠2(已知),∴∠1=∠3(等量代换);∴DG∥AB(内错角相等,两直线平行).∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).∵∠BAC=70°,∴∠AGD=110°.15.【解析】解:∵a∥b∥c,∴∠BAQ=∠1=60°,∠CAQ=∠2=36°,∠BAC=60°+36°=96°,又AP平分∠BAC,∠BAP=12×96°=48°,∴∠PAQ=∠BAQ-∠BAP=60°-48°=12°.16.【解析】解:平行的线段:AE∥BG∥DH,相等的线段:AE=BF=OG=DH.认识三角形【要点梳理】要点一、三角形的定义由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点二、三角形的三边关系定理:三角形任意两边之和大于第三边.推论:三角形任意两边的之差小于第三边.要点三、三角形的分类1.按角分类:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形要点诠释:①锐角三角形:三个内角都是锐角的三角形.②钝角三角形:有一个内角为钝角的三角形.2.按边分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形要点四、三角形的三条重要线段三角形的高、中线和角平分线是三角形中三条重要的线段,它们提供了重要的线段或角的关系,为我们以后深入研究三角形的一些特征起着很大的帮助作用,因此,我们需要从不同的角度弄清这三条线段,列表如下:线段三角形的高三角形的中线三角形的角平分线名称文字语言从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.三角形中,连接一个顶点和它对边中点的线段.三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段.图形语言作图语言过点A作AD⊥BC于点D.取BC边的中点D,连接AD.作∠BAC的平分线AD,交BC于点D.标示图形符号语言1.AD是△ABC的高.2.AD是△ABC中BC边上的高.3.AD⊥BC于点D.4.∠ADC=90°,∠ADB=90°.(或∠ADC=∠ADB=90°)1.AD是△ABC的中线.2.AD是△ABC中BC边上的中线.3.BD=DC=12BC4.点D是BC边的中点.1.AD是△ABC的角平分线.2.AD平分∠BAC,交BC于点D.3.∠1=∠2=12∠BAC.推理语言因为AD是△ABC的高,所以AD⊥BC.(或∠ADB=∠ADC=90°)因为AD是△ABC的中线,所以BD=DC=12BC.因为AD平分∠BAC,所以∠1=∠2=12∠BAC.用途举例1.线段垂直.2.角度相等.1.线段相等.2.面积相等.角度相等.注意事项1.与边的垂线不同.2.不一定在三角形内.—与角的平分线不同.重要特征三角形的三条高(或它们的延长线)交于一点.一个三角形有三条中线,它们交于三角形内一个三角形有三条角平分线,它们交于三角形内一一点.点.要点五、三角形的稳定性三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性.【典型例题】类型一、三角形的定义及表示例1.如图,图中共有三角形()A.4个B.5个C.6个D.8个【答案】D.举一反三:【变式】如图,以A为顶点的三角形有几个?用符号表示这些三角形.【答案】3个,分别是△EAB, △BAC, △CAD.类型二、三角形的三边关系例2. (四川南充)三根木条的长度如图所示,能组成三角形的是()【答案】D举一反三:【变式】判断下列三条线段能否构成三角形.(1) 3,4,5; (2) 3,5,9 ; (3) 5,5,8.【答案】(1)能;(2)不能;(3)能.例3.若三角形的两边长分别是2和7,则第三边长c 的取值范围是_______. 【答案】59c << 举一反三:【变式】(浙江金华)已知三角形的两边长为4,8,则第三边的长度可以是________(写出一个即可) 【答案】5,注:答案不唯一,填写大于4,小于12的数都对. 类型三、三角形中重要线段例4. 小华在电话中问小明:“已知一个三角形三边长分别为4,9,12,如何求这个三角形的面积?”小明提示:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( ) .【答案】C 举一反三:【变式】如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .【答案】A .例5.如图所示,CD 为△ABC 的AB 边上的中线,△BCD 的周长比△ACD 的周长大3cm ,BC =8cm ,求边AC 的长.【答案与解析】 答:AC 的长为5cm . 举一反三:【变式】如图所示,在△ABC 中,D 、E 分别为BC 、AD 的中点,且4ABC S =△,则S 阴影为________.【答案】1类型四、三角形的稳定性例6.如图所示,木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即AB、CD),这样做的数学道理是什么?解:三角形的稳定性.【巩固练习】一、选择题1.如图,以BC为边的三角形有()个.A.3个B.4个C.5个D.6个2.如图所示的图形中,三角形的个数共有().A.1个B.2个C.3个D.4个3.已知三角形两边长分别为4 cm和9 cm,则下列长度的四条线段中能作为第三边的是().A.13 cm B.6 cm C.5 cm D.4 cm4.为估计池塘两岸A、B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是().A.5m B.15m C.20m D.28m5.三角形的角平分线、中线和高都是().A.直线B.线段C.射线D.以上答案都不对6.下列说法不正确的是()A.三角形的中线在三角形的内部B.三角形的角平分线在三角形的内部C.三角形的高在三角形的内部D.三角形必有一高线在三角形的内部7.如图,AM是△ABC的中线,那么若用S1表示△ABM的面积,用S2表示△ACM的面积,则S1和S2的大小关系是().A.S1>S2B.S1<S2C.S1=S2D.以上三种情况都有可能8.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是().A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短二、填空题9.不一定在三角形内部的线段是(填“角的平分线”或“高线”或“中线”).10.如果三角形的两边长分别是3 cm和6 cm,第三边长是奇数,那么这个三角形的第三边长为________cm.11. 已知等腰三角形的两边分别为4cm和7cm,则这个三角形的周长为________.12. 如图,AD是△ABC的角平分线,则∠______=∠______=12∠_______;BE是△ABC的中线,则________=_______=12________;CF是△ABC的高,则∠________=∠________=90°,CF________AB.13.如图,AD、AE分别是△ABC的高和中线,已知AD=5cm,CE=6cm,则△ABE和△ABC的面积分别为________________.14.如果知道三角形的一边之长和这边上的高,三角形________确定.(填“能”或“不能”)三、解答题15.判断下列所给的三条线段是否能围成三角形?(1)5cm,5cm,a cm(0<a<10);(2)a+1,a+2,a+3;(3)三条线段之比为2:3:5.16.已知△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,分别交CD、AC于点F、E,求证:∠CFE=∠CEF.17.如图所示,已知AD,AE分别是ΔABC的中线、高,且AB=5cm,AC=3cm,则ΔABD与ΔACD的周长之差为多少,ΔABD与ΔACD的面积有什么关系.18.利用三角形的中线,你能否将图中的三角形的面积分成相等的四部分(给出3种方法)?【答案与解析】一、选择题(2)当-1<a <0时,因为a+1+a+2=2a+3<a+3,所以此时不能围成三角形,当a =0时,因为a+1+a+2=2a+3=3,而a+3=3,所以a+1+a+2=a+3,所以此时不能围成三角形.当a >0时,因为a+1+a+2=2a+3>a+3.所以此时能围成三角形.(3)因为三条线段之比为2:3:5,则可设三条线段的长分别是2k ,3k ,5k ,则2k+3k =5k 不满足三角形三边关系.所以不能围成三角形. 16.【解析】解:AD 、AF 分别是△ABC ,△ABE 的角平分线.BE 、DE 分别是△ABC ,△ADC 的中线,AG 是△ABC ,△ABD ,△ACD ,△ABG ,△ACG ,△ADG 的高.17.【解析】解: (1)ΔABD 与ΔACD 的周长之差=(AB +BD +AD)-(AD +CD +AC),而BD =CD.所以上式=AB -AC =5-3=2.(2)S ΔABD =21BD ·AE ,S ΔACD =21CD ·AE 。

七年级数学下册第7章平面图形的认识二7.2多边形的内角和与外角和

七年级数学下册第7章平面图形的认识二7.2多边形的内角和与外角和
4.一个(yī ɡè)多边形的内角和与外角和的和为2520°,求这个多边形的
边数.
【参考答案】14边形.
2021/12/10
第十二页,共三十三页。
中考(zhōnɡ kǎo) 在线
: 考点(kǎo diǎn) 三角形内角和性质.
【例】(2014江苏镇江)如图7.5-5,直线(zhíxiàn)m∥n,Rt△ABC的顶点A 在直线n上,∠C=90°,若∠1=25°,∠2=70°,则∠B=_______°4.5°
【讲解】垂线带来直角三角形,三角形三个内角的和等
于180°,平行线带来相等的角(或互补的角)等等,
这是根据已知角求未知角之类的问题要能够发现的信息.
2021/12/10
第十三页,共三十三页。
B
m 2
C
1
n
A 图7.5-5
中考(zhōnɡ kǎo) 在线
1.(2015四川省绵阳)如图7.5-7,在△ABC中,∠B、∠C的平分线BE、CD 相交(xiāngjiāo)于点F,∠ABC=42°,∠A=60°,则∠BFC= ( ). C
A.1个 B.2个 C.3个 D.4个
2021/12/10
图7.5-11
第二十五页,共三十三页。
课堂练习
3.若n边形的内角(nèi jiǎo)和是1260°,则边数n为( A.8 B.9 C.10 D.11
B ).
4. 一个(yī ɡè)多边形的每一个内角都是144°,则此多边形的边数为( B).
八边形.
中考在线
: 考点(kǎo diǎn) 多边形的外角和
【例】(2014•抚顺)将正三角形、正四边形、正五边形按如图7.5-36所示
的位置摆放.如果∠3=32°,那么∠1+∠2=

平面图形的认识(二)知识点总结

平面图形的认识(二)知识点总结

平面图形的认识(二)知识点总结一、直线平行的条件1.关于同位角、内错角和同旁内角同位角、内错角和同旁内角是两条直线被第三条直线所截得到的,因此识别这三种角的关键是认清第三条直线,即截线.这三种角有各自的特征.同位角的特征:在截线的同旁,被截两直线的同方向;内错角的特征:在截线的两旁,被截两直线的中间;同旁内角的特征:在截线的同旁,被截两直线之间.【例】填空1.∠1和∠3是,它是直线和被直线所截而成的;2.∠4和∠5是,它是直线和被直线AC所截而成的;3.∠2和∠6是,它是直线和BC被直线所截而成的;4.∠5和∠7是,它是直线和被直线AC所截而成的.2.关于两条直线互相平行的条件利用平移三角尺的方法画平行线,探索同位角与直线平行的关系:图中,当∠1与∠2相等,所画的直线a、b就;当∠1与∠2不相等时,直线a、b_________两直线平行的判定方法:①两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;简称:______________________________.②两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;简称:______________________________.③两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;简称:______________________________.④垂直于同一条直线的两条直线互相平行。

⑤(平行线公理推论)如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

⑥(平行线定义)在同一平面内,不相交的两条直线平行。

【例】如图,(1)因为∠1=∠2,所以_______∥_______,理由是______________;(2)因为∠3=∠D,所以_______∥_______,理由是______________;(3)因为∠B+∠BCD=180°,所以_______∥_______,理由是______________.【例】如图,已知AC⊥AE,BD⊥BF,∠1=35°,∠2=35°.AC与BD平行吗?AE与BF平行吗?为什么?试猜想AC与BF的位置关系.二、直线平行的性质探索平行线的性质:平行线的性质:性质一:两条平行线被第三条直线所截,同位角相等简称:________________________________.性质二:两条平行线被第三条直线所截,内错角相等简称:________________________________.性质三:两条平行线被第三条直线所截,同旁内角互补简称:________________________________.【例】已知:如图,AD⊥BC于D,EG⊥BC与G,∠E=∠3,试问:AD是∠BAC的平分线吗?若是,请说明理由.解:AD是∠BAC的平分线,理由如下:因为AD⊥BC,EG⊥BC(已知),所以∠4=90°,∠5=90°(_______).所以∠4=∠5(_______).所以AD∥EG(______________).所以∠1=∠E(_______),∠2=∠3(______________).因为∠E=∠3(已知),所以 _______=_______(_______),所以AD是∠BAC的平分线(_______).【例】如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明你的理由.【例】将一张长方形纸片如图所示折叠后,再展开,如果∠1=55°,那么∠2等于______°三、图形的平移1、平移的概念在平面内,把一个图形整体沿某一直线方向移动,会得到一个新的图形,图形的这种移动,叫作平移。

2024年初三数学下册知识点总结(二篇)

2024年初三数学下册知识点总结(二篇)

2024年初三数学下册知识点总结一、平面图形的认识1. 点、线、面的基本概念2. 角的概念及角的分类3. 直线的分类及直线的性质4. 平行线的判定方法及平行线的性质5. 三角形的分类及三角形的性质6. 等腰三角形、等边三角形的性质7. 直角三角形、等腰直角三角形的性质8. 平行四边形、菱形、矩形、正方形的性质二、数据处理1. 平均数的概念及计算2. 中位数的概念及计算3. 众数的概念及计算4. 极差的概念及计算5. 百分数及其应用6. 棒形图、折线图、饼图的绘制及解读7. 统计调查设计三、方程式与不等式1. 一元一次方程的解法及应用2. 一元一次方程的解集及解集图的绘制3. 度量图形的方程式4. 解一元一次方程的应用题5. 一元一次不等式的认识及解法6. 一元一次不等式的应用题7. 二元一次方程组的解法及应用四、几何变换与成分比例1. 平移的性质及计算2. 旋转的性质及计算3. 对称的性质及计算4. 两个全等图形之间的性质及计算5. 两个相似三角形之间的性质及计算6. 成分比例的概念及计算7. 成分比例在几何形体中的应用五、平面向量1. 向量的概念及表示法2. 平面向量的加减法及性质3. 向量的数量积与性质4. 平面向量的数量积的性质及应用5. 平面向量的夹角和垂直的判定与计算6. 向量、点及直线的共线关系及应用7. 用平面向量解决平面几何问题六、三角函数1. 角度制与弧度制的相互转换2. 弧度的概念及性质3. 任意角与标准角的关系4. 正弦定理及应用5. 余弦定理及应用6. 正切定理及应用7. 三角函数基本关系式及应用8. 三角函数在直角三角形中的定值七、概率与统计1. 随机事件、样本空间及基本事件的认识2. 频率、概率的概念及计算3. 事件的复合及事件的计算4. 独立事件及概率的计算5. 试验次数的期望及概率模型6. 渐近性及概率的计算7. 初步了解贝叶斯公式及应用以上是初三数学下册的知识点总结,每个知识点都应掌握其概念、性质、计算方法及应用。

初一数学知识点总结20篇

初一数学知识点总结20篇

初一数学知识点总结20篇初一数学知识点总结1初一数学下册期末考试知识点总结一(苏教版)第七章平面图形的认识(二) 1第八章幂的运算 2第九章整式的乘法与因式分解 3第十章二元一次方程组 4第十一章一元一次不等式 4第十二章证明 9第七章平面图形的认识(二)一、知识点:1、“三线八角”① 如何由线找角:一看线,二看型。

同位角是“F”型;内错角是“Z”型;同旁内角是“U”型。

② 如何由角找线:组成角的三条线中的公共直线就是截线。

2、平行公理:如果两条直线都和第三条直线平行,那么这两条直线也平行。

描述:平行于同一直线的两条直线是平行的。

补充定理:如果两条线都垂直于第三条线,那么这两条线是平行的。

简述:垂直于同一条直线的两条直线平行。

3、平行线的判定和性质:判定定理性质定理条件结论条件结论同位角相等两直线平行两直线平行同位角相等内错角相等两直线平行两直线平行内错角相等同旁内角互补两直线平行两直线平行同旁内角互补4、图形平移的性质:图形平移后,连接各组对应点得到的线段相互平行(或在同一条直线上)且相等。

5、三角形三边之间的关系:三角形的.任意两边之和大于第三边;三角形的任意两边之差小于第三边。

若三角形的三边分别为a、b、c,则6、三角形中的主要线段:三角形的高、角平分线、中线。

注意:①三角形的高、角平分线、中线都是线段。

②高、角平分线、中线的应用。

7、三角形的内角和:三角形的3个内角的和等于180°;直角三角形的两个锐角互余;三角形的一个外角等于与它不相邻的两个内角的和;三角形的外角大于与其不相邻的任何内角。

8、多边形的内角和:n边形的内角和等于(n-2)180°;任意多边形的外角和等于360°。

第八章幂的运算幂(p5初一数学知识点总结2第一章:有理数★0既不是正数,也不是负数。

0是正数和负数的分界。

★整数的概念:正整数、0、负整数统称为整数。

★分数的概念:正负数和负分数统称为分数。

第7章平面图形的认识(二)知识点梳理苏科版七年级数学下册

第7章平面图形的认识(二)知识点梳理苏科版七年级数学下册

平面图形的认识(二)知识点梳理知识点一:认识三线八角如果两条线被第三条线所截,那么这两条线叫做被截线,这第三条线叫做截线。

这三条线一共可以组成八个角,简称三线八角。

同位角(F形):位于截线的同侧,被截线的同侧。

内错角(Z形):位于截线的两侧,被截线的内侧同旁内角(U形):位于截线的同侧,被截线的内侧注意:以上三种角都有一条公共边。

知识点二:两直线平行的判定条件1.同位角相等,两直线平行。

几何语言:∵∠1=∠2,∴AB∥CD。

2.内错角相等,两直线平行。

几何语言:∵∠1=∠2,∴AB∥CD。

3.同旁内角互补,两直线平行。

几何语言:∵∠1+∠2=180°,∴AB∥CD。

知识点四:平移1.概念:在平面内,把一个图形整体沿某一直线方向移动,会得到一个新的图形,图形的这种移动,叫作平移。

注意:平移改变的是图像的位置,不变的是图像的大小和形状。

2、平移的要素:方向、距离;3、平移作图的步骤:定、找、移、连。

①定:确定平移的方向和距离。

②找:找出表示图形的关键点。

③移:过关键点作平行且相等的线段,得到关键点的对应点。

④连:按原图形顺次连接对应点。

知识点五:三角形1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

知识点六:多边形1.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

2.多边形的内角:多边形相邻两边组成的角叫做它的内角。

多边形内角和定理:n 边形的内角的和等于: (n - 2)×180° 正多边形各内角度数为:n2)180-(n 3.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

七年级 第六章:平面图形的认识知识点总结

七年级  第六章:平面图形的认识知识点总结

M O a第六章:平面图形的认识第一节:直线、射线、线段知识点1:概念线段:一段拉直的棉线可近似地看作线段,线段有两个端点。

线段的画法:(1)画线段时,要画出两个端点之间的部分,不要画出向任何一方延伸的情况.(2)以后我们说“连结 ”就是指画以A 、B 为端点的线段. 射线:将线段向一个方向无限延长,就形成了射线,射线有一个端点。

如手电筒、探照灯射出的光线等。

射线的画法:画射线 一要画出射线端点 ;二要画出射线经过一点,并向一旁延伸的情况. 直线:将线段向两个方向无限延长就形成了直线,直线没有端点。

如笔直的铁轨等。

直线的画法:用直尺画直线,但只能画出一部分,不能画端点。

知识点2:线段、直线、射线的表示方法:(1) 点的记法:用一个大写英文字母(2) 线段的记法:①用两个端点的字母来表示 ②用一个小写英文字母表示 如图:记作线段AB 或线段BA , 记作线段a ,与字母顺序无关 此时要在图中标出此小写字母温馨提示:线段是直线(或射线)的一部分;2.线段不可向两方无限延伸,但可度量;3.延长线常化成虚线;4.延长线段AB 是指按A 到B 的方向延长,延长线段BA 是指按B 到A 的方向延长.(3) 射线的记法:用端点及射线上一点来表示,注意端点的字母写在前面 如图:记作射线OM,但不能记作射线MO温馨提示:1.射线是直线的一部分;2.射线是像一方无限延伸,有一个端点,不能度量,不能比较大小;3.射线可作反向延长线,不存在射线的延长线。

(4) 直线的记法:①用直线上两个点来表示 ②用一个小写字母来表示 如图:记作直线AB 或直线BA , 记作直线l与字母顺序无关。

此时要在图中标出此小写字母 知识点3:线段、射线、直线的区别与联系:B A B A lA 联系:三者都是直的,线段向一个方向延长可得到射线,线段向两个方向延长可得到直线,故射线、线段都是直线的一部分,线段是射线的一部分。

区别:直线可以向两方延伸,射线可以向一方无限延伸,线段不能延伸,三者的区别见下表:知识点4:直线的基本性质(重点)(1) 经过一点可以画无数条直线(2) 经过两点只可以画一条直线直线的基本性质:经过两点有且只有一条直线(也就是说:两点确定一条直线) 注:“确定”体现了“有”,又体现了“只有”。

平面图形的认识(二)知识点总结

平面图形的认识(二)知识点总结

平面图形的认识(二)知识点总结B、CD被第三条直线EF所截而成的八个角中,像∠1与∠5,∠3与∠7,∠2与∠6,∠4与∠8这样的四对角称为同位角,像∠3与∠5,∠4与∠6这样的两对角称为内错角,像∠4与∠5,∠3与∠6这样的两对角称为同旁内角。

注意:这三类角必须是两条直线被第三条直线所截而成,并且是成对出现的。

考查点:同位角、内错角、同旁内角的识别。

两直线平行的条件条件:1、同位角相等,两直线平行。

2、内错角相等,两直线平行。

3、同旁内角相等,两直线平行。

注意:1、一定要看清楚是那两条直线被第三条直线所截,以便正确判断是哪两条直线平行。

2、同一平面内,垂直于同一条直线的两条直线平行。

3、同一平面内,平行于同一条直线的两条直线平行。

(平行线的传递性)考查点:1、两直线平行的条件。

2、平行线的判断方法及应用。

探索平行线的性质平行线的性质性质:1、两直线平行,同位角相等。

2、两直线平行,内错角相等。

3、两直线平行,同旁内角互补。

注意:1、性质成立的前提条件是两直线平行。

2、通过该性质可以确定两个角的大小关系,还可以由已知角求出与之相关的角。

考查点:1、求特殊位置角的度数。

2、求非特殊角的度数。

平行线的判定与性质的区别区别:平行线判定的条件和结论与性质的条件和结论的位置是相相反的。

注意:1、判定是由角的关系得到直线平行,性质是由直线平行得到角的关系。

2、条件和性质不能混淆。

考查点:1、平行线的判定和性质的综合应用。

2、角度计算。

3、在生活中的应用。

易错点:考虑问题不够全面。

图形的平移平移的概念概念:在平面内,将一根图形沿着某个方向移动一定距离,这样的图形运动叫做图形的平移。

注意:1、平移两个要素:方向和距离。

2、平移不改变图形大小,只是位置发生了变化。

考查点:辨别平移后的图形。

平移的性质性质:平移只改变图形位置,不改变图形的大小和形状。

经过平移后,连接各组对应点所得的线段互相平行(或在同一条直线上)且相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两直线平行的条件
条件:1、同位角相等,两直线平行。2、内错角相等,两直线平行。 3、同旁内角相等,两直线平行。
注意:1、一定要看清楚是那两条直线被第三条直线所截,以便正确判断是哪两条直线平行。 2、同一平面内,垂直于同一条直线的两条直线平行。 3、同一平面内,平行于同一条直线的两条直线平行。(平行线的传递性) 考查点:1、两直线平行的条件。2、平行线的判断方法及应用。
注意:1、平移两个要素:方向和距离。2、平移不改变图形大小,只是位置发生了变化。 考查点:辨别平移后的图形。
平移的性质
性质:平移只改变图形位置,不改变图形的大小和形状。经过平移后,连接各组对应点所得的线段互相平行(或在同一条直线上)且相等。
注意:1、大小和形状是相同的。2、平移后要注意对应点、对应角、对应线段的关系。3、对应点连线的线段特点。
区别:平行线判定的条件和结论与性质的条件和结论的位置是相相反的。
注意:1、判定是由角的关系得到直线平行,性质是由直线平行得到角的关系。2、条件和性质不能混淆。
考查点:1、平行线的判定和性质的综合应用。2、角度计算。3、在生活中的应用。 易错点:考虑问题不够全面。
图形的平移
平移的概念
概念:在平面内,将一根图形沿着某个方向移动一定距离,这样的图形运动叫做图形的平移。
平面图形的认识二
探索平行线平行的条件
同位角、内错角、同旁内角
如右图,两条直线AB、CD被第三条直线EF所截而成的八个角中,像∠1与∠5,∠3与∠7,∠2与∠6,∠4与∠8这样的四对角称为同位角,像∠3与∠5,∠4与∠6这样的两对角称为内错角,像∠4与∠5,∠3与∠6这样的两对角称为同旁内角。
注意:这三类角必须是两条直线被第三条直线所截而成,并且是成对出现的。 考查点:同位角、内错角、同旁内角的识别。
探索平行线的性质
平行线的性质
性质:1、两直线平行,同位角相等。 2、两直线平行,内错角相源自。 3、两直线平行,同旁内角互补。
注意:1、性质成立的前提条件是两直线平行。 2、通过该性质可以确定两个角的大小关系,还可以由已知角求出与之相关的角。
考查点:1、求特殊位置角的度数。 2、求非特殊角的度数。
平行线的判定与性质的区别
考查点:1、平移性质运用。2、求图形的面积和周长。
简单的平移作图
平移作图的根据是图形平移后,对应角相等,对应线段互相平行(或在同一条直线上)且相等,连接对应点的线段互相平行(或在同一条直线上)且相等。注意:平移作图要找准对应点。 考查点:会画平移后的图形。
相关文档
最新文档