六年级举一反三(含答案) 第02讲 简便运算(一)
小学奥数六年级举一反三完整版

小学奥数六年级举一反三Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】第一周定义新运算专题简析:定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些特殊算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、等,这是与四则运算中的“、、、·”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
例题1。
假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
13*5=(13+5)+(13-5)=18+8=265*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13+10)+(13-10)=26练习11..将新运算“*”定义为:a*b=(a+b)×(a-b).求27*9。
2.设a*b=a2+2b,那么求10*6和5*(2*8)。
3.设a*b=3a-×b,求(25*12)*(10*5)。
例题2。
设p、q是两个数,规定:p△q=4×q-(p+q)÷2。
求3△(4△6).3△(4△6).=3△【4×6-(4+6)÷2】=3△19=4×19-(3+19)÷2=76-11=65练习21.设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。
2.设p、q是两个数,规定p△q=p2+(p-q)×2。
求30△(5△3)。
3.设M、N是两个数,规定M*N=+,求10*20-。
例题3。
如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44。
举一反三-简便运算(1)

简便运算(二)举一反三.专题简析:计算过程中,我们先整体地分析算式的特点,然后进行一定的转化,创造条件运用乘法分配律来简算,这种思考方法在四则运算中用处很大。
.例题1答计算:1234+2341+3412+4123【思路导航】整体观察全式,可以发现题中的4个四位数均由数1,2,3,4组成,且4个数字在每个数位上各出现一次,于是有原式=1×1111+2×1111+3×1111+4×1111=(1+2+3+4)×1111=10×1111=11110.练习1答1.23456+34562+45623+56234+623452.45678+56784+67845+78456+845673.124.68+324.68+524.68+724.68+924.68.例题2答计算:2又4/5×23.4+11.1×57.6+6.54×28【思路导航】我们可以先整体地分析算式的特点,然后进行一定的转化,创造条件运用乘法分配律来简算。
所以原式=2.8×23.4+2.8×65.4+11.1×8×7.2=2.8×(23.4+65.4)+88.8× 7.2=2.8×88.8+88.8×7.2=88.8×(2.8+7.2)=88.8×10=888.练习2答计算下面各题:1.99999×77778+33333×666662.34.5×76.5-345×6.42-123×1.453.77×13+255×999+510.例题3答计算(1993×1994-1)/(1993+1992×1994)【思路导航】仔细观察分子、分母中各数的特点,就会发现分子中1993×1994可变形为1992+1)×1994=1992×1994+1994,同时发现1994-1 = 1993,这样就可以把原式转化成分子与分母相同,从而简化运算。
六年级奥数(举一反三版)

- 1 -第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b ,那么求10*6和5*(2*8)。
3.设a*b=3a -b ×1/2,求(25*12)*(10*5)。
【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2.设p 、q 是两个数,规定p △q =p2+(p -q )×2。
求30△(5△3)。
3.设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
六年级奥数(举一反三版)

第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b ,那么求10*6和5*(2*8)。
3.设a*b=3a -b ×1/2,求(25*12)*(10*5)。
【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2.设p 、q 是两个数,规定p △q =p2+(p -q )×2。
求30△(5△3)。
3.设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
小学奥数六年级举一反三1-5学生用

第一讲定义新运算专题简析:定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些特殊算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、等,这是与四则运算中的“∆、#、*、·”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
例题1。
假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
13*5=(13+5)+(13-5)=18+8=26 5*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13+10)+(13-10)=26练习11..将新运算“*”定义为:a*b=(a+b)×(a-b).求27*9。
2.设a*b=a 2+2b ,那么求10*6和5*(2*8)。
3.设a*b=3a -12×b ,求(25*12)*(10*5)。
例题2。
设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6). 3△(4△6). =3△【4×6-(4+6)÷2】 =3△19=4×19-(3+19)÷2 =76-11 =65 练习21. 设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2. 设p 、q 是两个数,规定p △q =p 2+(p -q )×2。
求30△(5△3)。
3. 设M 、N 是两个数,规定M*N =M N +N M ,求10*20-14。
例题3。
如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44。
那么7*4=?,210*2=?7*4=7+77+777+7777=8638 210*2=210+210210=210420练习31. 如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,…..那么,4*4=?,18*3=?2. 规定a*b=a+aa+aaa+aaa+aaaa ……..a,那么8*5=?(b-1)个a 3. 如果2*1=12 ,3*2=133 ,4*3=1444 ,那么(6*3)÷(2*6)=?。
小学奥数举一反三(六年级)[1]
![小学奥数举一反三(六年级)[1]](https://img.taocdn.com/s3/m/6ead4a4176232f60ddccda38376baf1ffc4fe384.png)
小学奥数举一反三(六年级)[1]六年级数学奥数培训资料第1课定义新操作一、知识要点定义一个新运算是一种使用特殊符号来表达特定含义并求解某些公式的运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新操作是一种人为的临时操作形式。
它使用一些特殊的操作符号,例如:*,△, ⊙ 以此类推,这与“+,-×、÷”是不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
这个问题的新运算定义为:a*B等于a和B之和加上它们之间的差。
这里的“*”代表一个新的操作。
在新操作的定义中,还规定应首先计算括号内的值。
因此,在13*(5*4)中,必须首先计算括号中的(5*4)。
练习1:1.将新操作“*”定义为:a*b=(a+b)×a-b找到27*9。
2.让a*b=A2+2B,然后找到10*6和5*(2*8)。
3.设a*b=3A-b×1/2,求(25*12)*(10*5)。
[例2]设P和Q为两个数字,并指定P△ q=4×q-(p+q)÷2.找到3△ (4 △ 6).【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。
2.设p、q 是两个数,规定p△q=p2+(p-q)×2。
求30△(5△3)。
3.设m、n是两个数,规定m*n=m/n+n/m,求10*20-1/4。
【例3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=;210*2=________。
小学奥数举一反三(六年级)

1 / 148第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b ,那么求10*6和5*(2*8)。
3.设a*b=3a -b ×1/2,求(25*12)*(10*5)。
【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2.设p 、q 是两个数,规定p △q =p2+(p -q )×2。
求30△(5△3)。
3.设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
小学奥数教材举一反三六年级课程40讲全整理之欧阳光明创编

*欧阳光明*创编 2021.03.07修改整理加入目录,方便查用,六年级奥数举一反三欧阳光明(2021.03.07)目录第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1、将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2、设a*b=a2+2b ,那么求10*6和5*(2*8)。
3、设a*b=3a -b ×1/2,求(25*12)*(10*5)。
【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1、设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2、设p 、q 是两个数,规定p △q =p2+(p -q )×2。
求30△(5△3)。
3、设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
3△(4△6)=3△【4×6-(4+6)÷2】 =3△19=4×19-(3+19)÷2 =76-11 =6513*5=(13+5)+(13-5)=18+8=26 5*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13+10)+(13-10)=26【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
小学六年级奥数举一反三

1第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。
这里“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b ,那么求10*6和5*(2*8)。
3.设a*b=3a -b ×1/2,求(25*12)*(10*5)。
【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2.设p 、q 是两个数,规定p △q =p2+(p -q )×2。
求30△(5△3)。
3.设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
六年级举一反三(含答案)_第02讲__简便运算(一)

简便运算(一)举一反三.专题简析:根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。
.例题1答计算4.75-9.63+(8.25-1.37)【思路导航】先去掉小括号,使4.75和8.25相加凑整,再运用减法的性质:a-b-c = a -(b+c),使运算过程简便。
所以原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2.练习1计算下面各题。
1. 6.73-2 又8/17+(3.27-1又9/17)答2. 7又5/9-(3.8+1又5/9)-1又1/5答3. 14.15-(7又7/8-6又17/20)-2.125答4. 13又7/13-(4又1/4+3又7/13)-0.75答.例题2答计算333387又1/2×79+790×66661又1/4【思路导航】可把分数化成小数后,利用积的变化规律和乘法分配律使计算简便。
所以原式=333387.5×79+790×66661.25=33338.75×790+790×66661.25=(33338.75+66661.25)×790=100000×790=79000000.练习2计算下面各题:1. 3.5×1又1/4+125%+1又1/2÷4/5答2. 975×0.25+9又3/4×76-9.75答3. 9又2/5×425+4.25÷1/60答4. 0.9999×0.7+0.1111×2.7答.例题3答计算:36×1.09+1.2×67.3【思路导航】此题表面看没有什么简便算法,仔细观察数的特征后可知:36 = 1.2×30。
这样一转化,就可以运用乘法分配律了。
所以原式=1.2×30×1.09+1.2×67.3=1.2×(30×1.09+1.2×67.3)=1.2×(32.7+67.3)=1.2×100=120.练习3计算:答1. 45×2.08+1.5×37.62. 52×11.1+2.6×7783. 48×1.08+1.2×56.84. 72×2.09-1.8×73.6.例题4答计算:3又3/5×25又2/5+37.9×6又2/5【思路导航】虽然3又3/5与6又2/5的和为10,但是与它们相乘的另一个因数不同,因此,我们不难想到把37.9分成25.4和12.5两部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简便运算(一)
举一反三.
专题简析:
根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。
.
例题1答
计算4.75-9.63+(8.25-1.37)
【思路导航】先去掉小括号,使4.75和8.25相加凑整,再运用减法的性质:a-b-c = a -(b+c),使运算过程简便。
所以
原式=4.75+8.25-9.63-1.37
=13-(9.63+1.37)
=13-11
=2
.
练习1
计算下面各题。
1.6.73-2 又8/17+(3.27-1又9/17)答
2. 7又5/9-(
3.8+1又5/9)-1又1/5答
3. 1
4.15-(7又7/8-6又17/20)-2.125答
4. 13又7/13-(4又1/4+3又7/13)-0.75答
.
例题2答
计算333387又1/2×79+790×66661又1/4
【思路导航】可把分数化成小数后,利用积的变化规律和乘法分配律使计算简便。
所以原式=333387.5×79+790×66661.25
=33338.75×790+790×66661.25
=(33338.75+66661.25)×790
=100000×790
=79000000
.
练习2
计算下面各题:
1. 3.5×1又1/4+125%+1又1/2÷4/5答
2. 975×0.25+9又3/4×76-9.75答
3. 9又2/5×425+
4.25÷1/60答
4. 0.9999×0.7+0.1111×2.7答
.
例题3答
计算:36×1.09+1.2×67.3
【思路导航】此题表面看没有什么简便算法,仔细观察数的特征后可知:36 = 1.2×30。
这样一转化,就可以运用乘法分配律了。
所以
原式=1.2×30×1.09+1.2×67.3
=1.2×(30×1.09+1.2×67.3)
=1.2×(32.7+67.3)
=1.2×100
=120
.
练习3
计算:答
1. 45×
2.08+1.5×37.6
2. 52×11.1+2.6×778
3. 48×1.08+1.2×56.8
4. 72×2.09-1.8×73.6
.
例题4答
计算:3又3/5×25又2/5+37.9×6又2/5
【思路导航】虽然3又3/5与6又2/5的和为10,但是与它们相乘的另一个因数不同,因此,我们不难想到把37.9分成25.4和12.5两部分。
当出现12.5×6.4时,我们又可以将6.4看成8×0.8,这样计算就简便多了。
所以
原式=3又3/5×25又2/5+(25.4+12.5)×6.4
=3又3/5×25又2/5+25.4×6.4+12.5×6.4
=(3.6+6.4)×25.4+12.5×8×0.8
=254+80
=334
.
练习4
计算下面各题:答
1.6.8×16.8+19.3×3.2
2.139×137/138+137×1/138
3.4.4×57.8+45.3×5.6
.
例题5答
计算81.5×15.8+81.5×51.8+67.6×18.5
【思路导航】先分组提取公因数,再第二次提取公因数,使计算简便。
所以原式=81.5×(15.8+51.8)+67.6×18.5
=81.5×67.6+67.6×18.5
=(81.5+18.5)×67.6
=100×67.6
=6760
.
练习5答
1.53.5×35.3+53.5×43.2+78.5×46.5
2.235×12.1++235×42.2-135×54.3
3.3.75×735-3/8×5730+16.2×62.5
答案:
练习1
1.6.73-2 又8/17+(3.27-1又9/17)
=(6.73+3.27)-(2 又8/17+又9/17)= 6
2.7又5/9-(3.8+1又5/9)-1又1/5
= (7又5/9-1又5/9)-(3.8+1又1/5)= 6-5
= 1
3.14.15-(7又7/8-6又17/20)-2.125 =(14.15+6.85)-(7.875+2.125)
= 21-10
= 11
4.13又7/13-(4又1/4+3又7/13)-0.75 = 13又7/13-3又7/13-(4.25+0.75)
= 10-5
= 5
练习2
1.3.5×1又1/4+125%+1又1/2÷4/5
=(3.5+1+1.5)×1又1/4
= 7.5
2.975×0.25+9又3/4×76-9.75
= 9.75×(25+76-1)
= 975
3.9又2/5×425+4.25÷1/60
= 4.25×940+4.25÷60
= 4.25×(940+60)
= 4250
4.0.9999×0.7+0.1111×2.7
= 0.9999×(0.7+0.3)
= 0.9999
练习3
1.45×2.08+1.5×37.6
= 1.5×62.4+1.5×37.6
= 1.5×(62.4+37.6)
= 150
.
2.52×11.1+2.6×778
= 2.6×222+2.6×778
= 2.6×(222+778)
= 2600
3.48×1.08+1.2×56.8
= 1.2×43.2+1.2差56.8
= 1.2×(43.2+56.8)
= 120
4.72×2.09-1.8×73.6
= 1.8×83.6-1.8×73.6
= 1.8×(83.6-73.6)
= 18
练习4
1.6.8×16.8+19.3×3.2
= 6.8×16.8+16.8×3.2+2.5×3.2 = (6.8+3.2)×16.8+2.5×4×0.8 = 168+8
= 176
2.139×137/138+137×1/138
= 139×137/138+1×137/138
= (139+1)×137/138
= 138×137/138+2×137/138
= 138又68/69
3.4.4×57.8+45.3×5.6
= 4.4×45.3+4.4×12.5+45.3×5.6
= (4.4+5.6)×45.3+0.55×8×12.5 = 453+55
= 508
练习5
1.53.5×35.3+53.5×43.2+78.5×46.5 = 53.5×78.5+78.5×46.5
= (53.5+46.5)×78.5
= 7850
2.235×12.1++235×42.2-135×54.3 = 235×54.3-135×54.3
= (235-135)×54.3
= 5430
3.3.75×735-3/8×5730+16.2×62.5 = 3.75×735-3.75×573+16.2×62.5 = 3.75×162+16.2×62.5
= 162×(3.75+6.25)
= 1620。