第三章微生物发酵产酶描述
酶的生物合成
生产酪氨酸脱羧酶、链激酶、链道酶、双链酶等(有溶解血栓、血 块,加速伤口愈合等作用)
产生葡萄糖异构酶
.
8
2、 放线菌
菌种
(1) 链霉菌属
(Streptomyces)
委内瑞拉链霉菌 (S. venezulae)
灰色链霉菌 (S. griseus) 白色链霉菌 (S. albus)
不产色素链霉菌 (S. achromogenes)
(4) 透明质酸酶
治疗关节损伤、关节周围炎症及膝外伤,传染性肝炎及肝硬 化等
用做药物扩散剂
.
22
四、 产酶微生物的来源
1、土壤中的产酶微生物 2、水体中的产酶微生物 3、空气中的产酶微生物 4、极端环境中的产酶土壤是微生物生活的大本营,为微生物生长繁 殖及生命活动提供了各种条件
用于分析组成和杂质浓度的分析方法的细节
酶或微生物的毒理数据
微生物必须是非致病性的 微生物一定不能产生真菌素或其他毒性化合物 微生物一定不能产生抗生素
.
33
二、 微生物酶的发酵生产
1、酶的发酵生产方法 2、培养基的配制 3、种子培养 4、微生物发酵产酶的一般工艺
.
34
1、 酶的发酵生产方法
(1) 固体培养法 (2) 液体培养法
酶)
.
13
4、 霉菌
菌种 (4) 青霉(Penicillium)
酶及功能
点青霉 (P. notatum) 产紫青霉 (P. ururogenum)
产黄青霉 (P. chrysogenum)
橘青霉 (P. citrinum)
(5) 犁头霉(Absidia)
葡萄糖氧化酶
葡萄糖氧化酶,中性、碱性蛋白酶和青霉素V酰化酶 5’-磷酸二脂酶(水解RNA,生产4种5’-单核苷酸,肌苷酸和鸟苷
酶学与酶工程重点总结
酶学与酶⼯程重点总结第⼆章酶学基础⼀、酶的活性中⼼(active center,active site)(⼀)活性中⼼和必需基团1、与酶活性显⽰有关的,具有结合和催化底物形成产物的空间区域,叫酶的活性中⼼,⼜叫活性部位。
2、活性中⼼可分为结合部位和催化部位。
3、结合部位决定酶的专⼀性,催化部位决定酶所催化反应的性质。
4、酶结构概述(1)活性中⼼是⼀个三维实体。
(2)是有⼀些⼀级结构上可能相距较远的氨基酸侧链基团组成,有的还包含辅酶或辅基的某⼀部分基团。
(3)在酶分⼦表⾯呈裂缝状。
(4)酶活性中⼼的催化位点和结合位点可以不⽌⼀个。
(5)酶活性中⼼的基团都是必需基团,但必需基团还包括活性中⼼以外的基团。
5、酶分⼦中的氨基酸残基或其侧链基团可以分为四类1.接触残基2.辅助残基3.结构残基4.⾮贡献残基(⼆)酶活性中⼼中的化学基团的鉴别1.⾮特异性共价修饰:某些化学试剂能使蛋⽩质中氨基酸残基的侧链基团反应引起共价结合、氧化或还原修饰反应,使基团结构和性质发⽣变化。
如果某基团修饰后不引起酶活⼒的变化,就可初步认为此基团可能是⾮必需基团;反之,如修饰后引起酶活⼒的降低或丧失,则此基团可能是酶的必需基团。
2.亲和标记共价修饰剂是底物的类似物,可专⼀性地引⼊酶的活性中⼼,并具有活泼的化学基团(如卤素),可与活性中⼼的基团形成稳定的共价键。
因其作⽤机制是利⽤酶对底物类似物的亲和性⽽将酶共价标记的,故称为亲和标记。
3.差别标记在过量底物或可逆抑制剂遮蔽活性中⼼的情况下,加⼊共价修饰剂,使后者只修饰活性中⼼以外的有关基团;然后去除底物或可逆抑制剂,暴露活性中⼼,再⽤同位素标记的向⼀修饰剂作⽤于活性中⼼的同类基团;将酶⽔解后分离带有同位素的氯基酸,即可确定该氨基酸参与活性中⼼。
4.蛋⽩质⼯程这是研究酶必需基闭和活性中⼼的最先进⽅法,即将酶蛋⽩相应的互补DNA(cDNA)定点突变,此突变的cDNA表达出只有⼀个或⼏个氨基酸被置换的酶蛋⽩,再测定其活性,可以知道被置换的氨基酸是否为活⼒所必需。
第三章 酶的生物合成
溶氧量过低,会对微生物生长、繁殖和新陈代 谢产生影响,从而使酶产量降低。但,过高的 溶氧量对酶的发酵生产业会产生不利影响,一 方面会造成浪费,另一方面高溶氧也会抑制某 些酶的生物合成,因此在整个发酵过程中应根 据需要控制好溶氧量。.
酶浓度调节的化学本质是基因表达的调节, 在细胞内进行的转录或翻译过程都有特定的 调节控制机制,其中,转录水平的调控占主 导地位,是酶生物合成中最重要的调节
.
操纵子
操纵子(operon)是一组功能上相关且受同 一调控区控制的基因组成的遗传单位
操纵子是酶合成调控的结构基础
.
操纵子调控模型
根据基因调节理论,在 DNA 分子中,与酶的生物 合成有密切关系的基因有 4 种。它们是调节基因 (regulator gene)、启动基因(promoter gene)、 操纵基因(operator gene)和结构基因(structural gene)。
蛋白酶
. 皮革脱毛
酶发酵生产菌种要求
产酶量高,具有生产应用价值 易培养,既能适应大生产粗放的营养和生产条
件,包括能利用廉价原料、对工艺条件要求不 苛刻 代谢速率高,发酵周期短 产酶稳定性好,菌种的生产性能不易退化,不 易感染噬菌体 安全可靠,要求菌种不是致病菌,其代谢物安 全无毒,在系统发育上与病原体无关 选用产胞外酶菌种,有. 利于酶的分离提取
.
发酵条件控制及对产酶的影响
温度:影响微生物生长和合成酶、影响酶合成 后的稳定性
pH:影响微生物体内各种酶活性,从而导致微生 物代谢途径发生变化;影响微生物形态和细胞 膜通的透性,从而影响微生物对培养基中营养 成分的吸收以及代谢产物的分泌;影响培养基 中某些营养物质的分解或中间产物的解离,从 而影响微生物对这些营养物质的利用
酶工程 第三章酶的发酵生产 第三节发酵工艺条件及控制
第三节 发酵工艺条件及控制
无机元素是通过添加无机盐来提供的,一般采用水溶 性的硫酸盐、磷酸盐或盐酸盐等。有时也使用硝酸盐,在 提供无机氮的同时,提供无机元素。
4.生长因素 生长因素是指细胞生长繁殖所必不可缺的微量有机化 合物主要包括各种氨基酸、嘌呤、嘧啶、维生素,以及动 植物生长激素等。各种氨基酸是蛋白质和酶的组分;嘌呤 和嘧啶是核酸和某些辅酶的组分;维生素主要起辅酶作用; 动植物生长激素则分别对动物细胞和植物细胞的生长、分 裂起调节作用。有的细胞能够自己合成各种生长因素,而 有的细胞则缺少合成一种或多种生长因素的能力,需由外 界供给,才能正常生长繁殖,这样的细胞称为营养缺陷型。
第三节 发酵工艺条件及控制
在酶的发酵生产中,通常在培养基中加进玉米浆、酵 母膏等,以提供各种必需的生长因素。有时,也加进纯化 的生长因素,以供细胞生长繁殖之需。
现举例几种酶发酵培养基: (1)枯草杆菌BF7658α—淀粉酶发酵培养基:玉米粉 8%,豆饼粉4%,磷酸氢二钠0.8%,硫酸铵0.4%,氧化钙 0.2%,氯化铵0.15%。 (2)枯草杆菌AS1.398中性蛋白酶发酵培养基:玉米 粉4%,豆饼粉3%,麸皮3.2%,米糠1%,磷酸氢二钠0.4%, 磷酸二氢钾0.03%。 (3)黑曲霉糖化发酵培养基:玉米粉10%,豆饼粉4%, 麸皮1%(PH4.4—5.0)。
第三节 发酵工艺条件及控制
不同细胞生长繁殖的最适PH有所不同。一般细胞和放 线菌的生长最适PH为中性或微碱性(PH6.5—8.0);霉菌 和酵母的生长最适PH为偏酸性(PH4.0—6.0);植物细胞 生长的最适PH为5—6。
第三章 微生物酶
二、菌种的分离 菌种的分离是整个工作的第一个关键步骤。 菌种的分离是整个工作的第一个关键步骤。分离应注 意以下几个问题: 意以下几个问题: • • 分离培养基的确定。 分离培养基的确定。 分离培养条件的选择,如培养温度、湿度、好氧或厌氧 分离培养条件的选择,如培养温度、湿度、
培养等; 培养等; • 在分离的最初阶段一般不给予严密的培养条件, 在分离的最初阶段一般不给予严密的培养条件,尽可能
八、微生物酶的提取方法 微生物酶的提取工作是为进一步了解酶的特性、 微生物酶的提取工作是为进一步了解酶的特性、完善酶开 发后续工艺的前提和基础。 发后续工艺的前提和基础。酶的提取按照不同的提纯要求又可 分为酶的粗提及酶的精提。 分为酶的粗提及酶的精提。 1.酶的粗提 1.酶的粗提 工业生产上用到的微生物酶一般用量都很大,纯度要求 工业生产上用到的微生物酶一般用量都很大, 也不很高。如果待开发的酶是工业用途的话,则提取方法可 也不很高。如果待开发的酶是工业用途的话, 以比较粗放。具体的提取流程如下: 以比较粗放。具体的提取流程如下:
而且最好是产胞外酶的菌株。 而且最好是产胞外酶的菌株。 • • 产生的酶便于分离和提纯,得率高。 产生的酶便于分离和提纯,得率高。 营养要求低。 营养要求低。
六、最佳产酶条件的初步确定 培养方式的确定——固体法;液体法 固体法; 1. 培养方式的确定 固体法 2. 最佳培养条件组合 3. 胞内酶和胞外酶 胞外酶具有以下一些优点: 胞外酶具有以下一些优点: (1)分离提取容易,且不必破碎细胞,因而也就省去 分离提取容易,且不必破碎细胞, 了去除核酸的工艺; 了去除核酸的工艺; (2)胞外酶的生产不受可获得生物量的限制,因而容 胞外酶的生产不受可获得生物量的限制, 易得到较高的酶产量; 易得到较高的酶产量; (3)胞外酶活性显现的最适条件与产酶菌株的最适生 长条件往往一致。 长条件往往一致。
第三章酶的生产
2023年5月15日星期一
第三章 酶的生产制备
酶的生产方式
1.提取法: 植物、动物、微生物
2.化学合成法
生物合成法: 利用植物、动物、微生物细胞合成。 上个世纪50年代起利用微生物生产酶
。 1949年细菌发酵生产淀粉酶
上个世纪70年代以来利用植物细胞和 动物细胞培养技术生产酶。
木瓜细胞培养生产木瓜蛋白酶和木瓜 凝乳蛋白酶 人黑色素瘤细胞培养生 产血纤维蛋白溶酶原激活剂
34
2.生长偶联型中的特殊形式——中期合成型
酶的合成在细胞生长一段时间后才开始,而在细胞生 长进入平衡期以后,酶的合成也随着停止。 特点:酶的合成受产物的反馈阻遏或分解代谢物阻遏。
所对应的mRNA是不稳定的。
枯草杆菌碱性磷酸酶合成曲线 35
3.部分生长偶联型(又称延续合成型)
酶的合成在细胞的生长阶段开始,在细胞生长进入 平衡期后,酶还可以延续合成较长一段时间。 特点:可受诱导,一般不受分解代谢物和产物阻遏。
所对应的mRNA相当稳定。
黑曲霉聚半乳糖醛酸酶合成曲线 36
4. 非生长偶联型(又称滞后合成型)
只有当细胞生长进入平衡期以后,酶才开始合成并 大量积累。许多水解酶的生物合成都属于这一类型。 特点:受分解代谢物的阻遏作用。
所对应的mRNA稳定性高。
黑曲霉酸性蛋白酶合成曲线 37
总结:影响酶生物合成模式的主要因素
②发酵代谢调节:理想诱导物的添加,解除 反馈阻遏和分解代谢物阻遏(难利用的碳 氮源的使用,补料发酵)。
③降低产酶温度。
二、细胞生长动力学
微生物细胞生长的动力学方程:
Monod方程:
S-限制性基质浓度; μm—最大比生长速率; Ks —Monod常数
第三章酶的发酵生产
CAP结合位点
DNA
P
O
Z
Y
A
+ + + + 转录
无葡萄糖,cAMP浓度高时
CAP CAP CAP CAP
CAP CAP
CAP
有葡萄糖,cAMP浓度低时
低半乳糖时
葡萄糖低 cAMP浓度高
高半乳糖时
RNA-pol
O I
无转录
O
mRNA
葡萄糖高 cAMP浓度低
I O
无转录
O
低水平转录
色氨酸操纵子——阻遏型操纵子 调节区
UUUU…… UUUU……
4
trp 密码子 前导肽
序列3、4不能形成衰减子结构 •当色氨酸浓度低时
细胞周期与酶的合成
可能的三种模式:
合成伴着生长进行,
进入静止期,合成降
低 静止期合成增加
中间类型
对数生长期合成降低,
三、酶发酵动力学
主要研究在发酵过程中细胞生长速率,产物 形成速率以及环境因素对速率的影响. 在酶的发酵生产中,研究酶发酵动力学对于了 解酶生物合成模式;发酵条件的优化控制,提 高酶产量具有重要的理论指导意义。
影响酶生物合成模式的因素主要是: mRNA和培养基中存的阻遏物:
mRNA稳定性高的,在细胞停止生长后继续合成相应的酶; mRNA稳定性差的,随着细胞生长停止而终止酶的合成;
不受阻遏物阻遏的,可随着细胞生长而开始酶的合成;
受阻遏物阻遏的,要在细胞生长一段时间或进入稳定期后解除 阻遏,才能开始酶的合成。
2.人工合成酶制剂:
蛋白质的人工合成:人 工合成胰岛素等
人工合成酶制剂受客观
条件的限制,如试剂、 设备等,另外,体外合 成,形成单体的难度大,
第三章酶的生物合成法生产
• 10)红曲霉
• 淀粉酶、糖化酶、蛋白酶
• 11)啤酒酵母
• 啤酒和酒类生产 • 转化酶、丙酮酸脱羧酶
• 12假丝酵母
• 脂肪酶、尿酸酶、转化酶、醇脱氢酶
2植物细胞
• 植物细胞培养主要用于:色素、药物、香精 和酶蛋白的生产 • 其中用于产酶的细胞 • 番木瓜细胞------木瓜蛋白酶 • 大蒜细胞----------超氧化物歧化酶 • 胡萝卜细胞-------糖苷酶
•解除反馈阻遏 选育结构类似物抗性突变株 •解除分解代谢物阻遏——选育抗分解代谢阻遏突变株
2. 基因工程育种
(二)条件控制 1. 添加诱导物
酶的底物类似物最有效。
2. 降低阻遏物浓度
除去终产物 产物阻遏 添加阻止产物形成的抑制剂 避免使用葡萄糖 分解代谢物阻遏 避免培养基过于丰富 添加一定量的cAMP
固定化原生质体技术
• 20世纪80年代发展 • 便于胞内酶的分离纯化
微生物酶的类型
1.胞外酶:大多是水解酶(如淀粉酶、蛋白酶、
纤维素酶、果胶酶),是微生物为了利用环境中的 大分子而释放到细胞外的,即使胞外浓度很高,胞 内也能维持较低水平,受到的调节控制少。 2.胞内酶:指合成后仍留在细胞内发挥作用的酶, 酶活性和浓度受到中间产物和终产物的调控。
所需的 酶
分离纯化技术
酶的发酵液
第一节 细胞的选择
• • • • • • 用于酶生产的细胞必须具备条件: 1)酶的产量高; 2)容易培养和管理; 3)产酶稳定性好; 4)利于酶的分离纯化; 5)安全可靠,无毒性。
大多数酶采用微生物发酵生产,部分采用 植物细胞和动物细胞
1产酶微生物
• 利用微生物产酶优势:
4动物细胞培养基
微生物的发酵与产酶过程
微生物的发酵与产酶过程微生物的发酵与产酶过程是一种重要的生物技术,在食品工业、药品制造以及环境保护等领域扮演着重要角色。
微生物发酵通过利用微生物的代谢作用,将有机废弃物转变为有用的化合物,产酶则是指微生物在发酵过程中产生并分泌的特定酶类。
本文将从微生物发酵和产酶的定义、发酵与产酶的应用以及发酵与产酶的前景等方面来探讨微生物的发酵与产酶过程。
一、微生物发酵和产酶的定义微生物发酵是指在合适的条件下,利用微生物的代谢活动,通过控制发酵过程,获得所需产物的一种生物技术。
微生物发酵一般分为液态发酵和固态发酵两种形式。
液态发酵常用于大规模工业生产,而固态发酵则更适用于小规模生产和特定产品的制备。
产酶是微生物在发酵过程中分泌的特定酶类,这些酶能够催化特定底物的转化反应。
产酶的种类很多,包括脂肪酶、蛋白酶、纤维素酶等。
这些酶在医药、食品、化工等行业中具有重要的应用价值。
二、发酵与产酶的应用1. 食品工业中的应用微生物发酵在食品工业中被广泛应用。
例如,嗜酸乳杆菌可以发酵牛奶,制成酸奶。
酸奶中的乳酸菌有助于改善肠道菌群,增强人体免疫能力。
此外,假丝酵母菌的发酵可以产生酵母、面包、啤酒等食品。
2. 药品制造中的应用微生物发酵在药品制造中也起到重要的作用。
通过微生物发酵,可以产生多种药用物质,如抗生素、肽类药物等。
其中,青霉素是一种广泛应用的抗生素,通过青霉菌的发酵生产得到。
3. 环境保护中的应用微生物发酵还可以应用于环境保护领域。
例如,利用微生物发酵处理有机废弃物,可以将废物转化为有机肥料或生物柴油。
这种方法不仅能减少废弃物对环境的污染,还能获得可再利用的资源。
三、发酵与产酶的前景微生物的发酵与产酶技术在许多领域都显示出广阔的应用前景。
随着科学技术的不断发展,微生物的发酵与产酶技术也在不断创新和改进。
以下是展望微生物发酵与产酶技术的几个发展方向。
1. 高效产酶菌株的筛选与改造在微生物发酵过程中,寻找和改造高产酶菌株是提高产酶效率的关键。
第三章 酶的发酵生产
五、温度的调节控制
1、温度对酶的发酵生产的影响
在发酵初期,细胞吸收营养物质合成自身物质和酶, 吸热反应,培养基中的营养物质被大量分解释放热 反应,但此时吸热反应大于放热反应,培养基需升 温;
当细胞繁殖迅速时,情况相反,需降温维持细胞生 产繁殖和产酶所需的最适的温度。
细胞(微生物)生产繁殖和产酶的最适温度随菌种 和酶的性质不同而异,并且生长繁殖和产酶的最适 温度往往不一致。 一般,细菌为37℃,霉菌和放线菌为28~30℃, 一些嗜温微生物需在40~50℃生长繁殖, 如:红曲霉的生长温度为35℃~37℃,而产糖化 酶的最适温度为37 ℃~40 ℃。
1、划线分离法
将样品制备适当的稀释液,用接种环蘸取样品 稀释液在培养基平板上分区划线分离,然后培养直 至单个菌落出现。
2、稀释分离法
五、菌株产酶性能鉴定
1、平板透明水解圈法
透明圈直径与产酶的关系: lg[E] / D=k· △[C] / lgt R/r·
其中:
[E] :产酶浓度; D:菌体量; R:水解圈; r:菌落直径;△:琼脂厚度;[C] :底物浓度; t:培养时间; k:常数。
(一)固体培养发酵(传统的方法)
一般适合于真菌发酵。
(二)液体深层发酵:
①适用性强,可用于各种细胞的悬浮培养和发酵。 ②易于人为控制。 ③机械化程度高,酶产品质量好,酶产率及回收 率较高。
(三)固定化细胞发酵(70年代后期)
1、优点:重复使用、易于分离、易于机械化、 抗逆性强、效率高。 2、缺点:产品质量不够稳定、易受传质和氧 的限制。
4、滞后合成型
只有当细胞生长进入平衡期后,酶才开始合成并大 量积累。许多水解酶类属于此类。 它们在细胞对数期 不合成,可能是受 到分解代谢产物的 阻遏作用,当阻遏 解除后,酶开始合 成,其对应的 mRNA稳定性高。
酶工程
滞后合成型:设法降低培养基中阻遏物的浓度 ,尽量减少甚 至解除产物阻遏或分解代谢物阻遏作用,使酶 的生物合成提早开始;
中期合成型:在提高mRNA的稳定性以及解除阻遏两方面下 功夫,使其生物合成的开始时间提前, 并尽量 延迟其生物合成停止的时间。
生长因子:细胞生长繁殖所必需的微量有机化合物。
二、微生物培养基
碳源:淀粉或其水解产物 氮源:混合氮源
三、植物细胞培养基
特点:需要大量的无机盐;需要多种维生素和植物生长激素; 一般要求无机氮源;一般以蔗糖为碳源。
常用的培养基:MS培养基、B5培养基、White培养基、KM-8P培养基等。
配制方法:先配制母液; 大量元素母液、微量元素母液、铁盐母液、微生素 母液、植物激素母液。
第三节 产酶工艺条件及其调节控制
保藏细胞
原生质体
细胞活化 细胞扩大培养
固定化细胞
固定化原生质体
培养基
产酶
分离纯化
预培养
无菌空气
酶
图3-1 酶生产的工艺流程
一、细胞活化与扩大培养
将保藏的细胞接种于新鲜的培养基上,在一定的条件下进行 培养,使细胞的生命活性得以恢复的过程。
条件:适合细胞生长、繁殖的最适条件
四、固定化微生物细胞发酵产酶
固定化细胞:采用各种方法固定在载体上,在一定的空间范 围内进行生长、繁殖和新陈代谢的细胞。
(一)固定化细胞发酵产酶的特点
提高产酶率 可以反复使用或连续使用较长时间 稳定性好 缩短发酵周期,提高设备利用率 产品容易分离纯化 适用于胞外酶等胞外产物的生产
(二)固定化细胞发酵产酶的工艺条件控制
同,进行光照的调节控制; 前体的添加:目的代谢物代谢途径上游的物质。 刺激剂的应用:常用的刺激剂有微生物细胞的碎片和果胶酶、
《酶工程》课件-微生物发酵产酶
05
微生物发酵产酶存在问题与挑战
产量问题
微生物发酵产酶产量低
由于微生物发酵过程中受到多种因素 的影响,如营养物质的供应、发酵条 件、微生物菌种等,导致酶的产量较 低。
发酵周期长
微生物发酵产酶通常需要较长的发酵 周期,这增加了生产成本和时间成本。
稳定性问题
酶稳定性差
许多酶在发酵过程中容易受到温度、pH值、金属离子等因素的影响,导致酶的稳定性降低。
04
微生物发酵产酶应用实例
工业应用
洗涤剂制造
微生物发酵产生的酶可用于制造 洗涤剂,如蛋白酶用于去除蛋白 质污渍,淀粉酶用于去除淀粉污
渍。
纺织工业
利用微生物发酵产生的酶处理纺织 品,可以改善其质地、手感和外观, 如纤维素酶用于棉织物的生物抛光。
造纸工业
通过微生物发酵产酶技术,可以改 进造纸工艺,提高纸张质量和降低 环境污染,如木聚糖酶用于纸浆漂 白。
过程优化与控制
通过人工智能技术,对微生物发酵产酶过程进行建模和优化,提高 目标酶的产量和质量。
个性化定制酶
结合人工智能和基因工程技术,实现个性化定制酶的合成,满足不 同领域的需求。
THANKS
感谢观看
《酶工程》课件-微生物发酵 产酶
• 微生物发酵产酶概述 • 微生物发酵产酶原理与过程 • 微生物发酵产酶技术与方法
• 微生物发酵产酶应用实例 • 微生物发酵产酶存在问题与挑战 • 未来发展趋势与展望
01
微生物发酵产酶概述
酶工程简介
酶工程定义
酶工程是生物工程的重要组成部分,是利用酶或者微生物细胞、动植物细胞、 细胞器等具有的生物催化功能,借助工程手段来生产有用物质、设计改造酶或 者生产细胞、器官乃至整个生物体的一门科学技术。
第三章 微生物的营养与代谢
3.鉴别培养基
根据微生物的代谢特点,通过指示剂的显
色反应用以鉴别不同微生物的培养基。
第二节 微生物酶
生化反应多数是在特定酶的参与下进行的 酶促反应。具有很强的催化活性和高度专一性, 称为生物催化剂。酶的主要成分是蛋白质,结 构有两种:
单纯蛋白酶:单成分酶,它本身就是具有
催化活力的蛋白质。
结合蛋白酶:双成分酶,由蛋白质和非蛋
最好的能源为葡萄糖,其他糖类代谢产生
能量的速度慢。发酵工业选用玉米粉、米糠、
麦麸、马铃薯、甘薯和野生淀粉,作为廉价碳 源。
(二)氮源 氮源:能提供微生物细胞组成成分或代谢 产物中的氮素来源的营养物质。 合成氨基酸和碱基,进而合成蛋白质、核 酸等细胞成分。地球氮循环从微生物固氮作用 开始。发酵工业中常用鱼粉、血粉、蚕蛹粉、 豆饼粉和花生饼粉。
质的膜囊,膜囊游离于细胞质中。专一性不强,
摄取物质被胞内酶逐步分解。
胞吐作用 胞吞作用
胞饮作用
四、培养基
培养基:人工配制适合微生物生长、繁殖
和积累代谢产物所需要的营养基质。根据不同
微生物的营养要求,加入适当种类和数量的营
养物,注意碳氮比、酸碱度、氧化还原电位。
(一)根据成分划分
1.天然培养基
解酶在细胞质中;呼吸酶在中间体上或线粒体
上;蛋白合成酶在核蛋白体上。
三、微生物酶在食品工业中的应用
动植物蛋白酶水解生产蛋白肽;烘焙工业
中对淀粉和蛋白质改良;果胶酶澄清果汁。
Better dough makes better bread
For bigger, better-looking baked goods
兼性寄生:既能在活生物体上生活,又能
在死的有机残体上生长。
3第三章微生物的代谢调控理论及其在食品发酵与酿造中的应用(精)
(2) 协同反馈抑制
指分支代谢途径中的几个末端产物同时过量时才能 抑制共同途径中的第一个酶的一种反馈调节方式。
例如,荚膜红假单胞菌中天门冬氨酸族氨基酸生 物合成途径中,天门冬氨酸激酶(AK)是受末端产物赖 氨酸和苏氨酸的协同反馈抑制。
(3)合作反馈抑制
指两种末端产物同时存在时,可以起着比一种末 端产物大得多的反馈抑制作用。
2.1 无分支代谢途径的调节
无分支代谢途径的调节通常是在线形的代谢途径 中末端产物对催化第一步反应的酶活性有抑制作用。 例如,在大肠杆菌中,由苏氨酸(Thr)合成异亮氨 酸(IIeu)时,异亮氨酸对催化反应途径中的第一步反应 的苏氨酸脱氨酶(TD)有抑制作用。
2.2 有分支代谢途径的调节
在有两种或两种以上的末端产物的分支合成代 谢途径中,调节方式较复杂,其共同特点是每个分 支途径的末端产物控制分支点后的第一个酶,同时 每个末端产物又对整个途径的第一个酶有部分的抑 制作用,分支代谢的反馈调节方式有多种:
一、酶活性的调节
酶活性的调节是指在酶分子水平上的一种代谢调节, 它是通过改变现成的酶分子活性来调节新陈代谢的速率, 包括酶活性的激活和抑制
酶活性的激活系指在分解代谢途径中,后面的反应 可被较前面的中间产物所促进 酶活性的抑制主要是反馈抑制,它主要表现在某代 谢途径的末端产物(即终产物)过量时,这个产物可反 过来直接抑制该途径中第一个酶的活性,促使整个反应 过程减慢或停止,避免终产物的过多累积
酶工程 第三章
第一节 酶生物合成的基本理论
三、酶生物合成的调节
如上所述,酶的生物合成要经过一系列的步骤,需要 诸多因素的参与。故此,在转录和翻译过程中,许多因素 都会影响酶的生物合成。那么,究竟哪些因素对酶的生物 合成起主要的调节控制作用呢?研究结果表明,至少在原 核生物中,甚至在所有生物中,转录水平的调节控制对酶 的生物合成是至为重要的。 转录水平调节控制,又称为基因的调节控制。这种控 制理论最早是由雅各(Jacob)和莫诺德(Monod)于1960年 提出的操纵子学说来阐明的,1966年发现了启动基因,使 这一调节控制理论不断完善。
第一节 酶生物合成的基本理论
根据基因调节控制理论,在DNA分子中,与酶生物合 成有密切关系的基因有4种。它们是调节基因(Regulator gene)、启动基因(Promoter gene)、操纵基因(Operator gene)和结构基因(Strutural gene)。其中,结构基因与 酶有各自的对应关系,结构基因中的遗传信息可转录成 mRNA上的遗传密码,再经翻译成为酶蛋白的多肽链。操纵 基因可以特异性地与调节基因产生的边构蛋白(阻抑蛋白) 中的一种结构结合,从而操纵酶合成的时机及速度。结构 基因与操纵基因一起称为操纵子。启动基因决定酶的合成 能否开始,启动基因由两个位点组成,一个是RNA聚合酶 的结合位点,另一个是环腺苷酸(cAMP)与环腺苷酸接受 蛋白(CRP)的复合物(cAMP- CRP)的结合位点。只有在 cAMP- CRP复合物结合到启动基因的位点上时,RNA
第一节 酶生物合成的基本理论
转录时,RNA聚合酶首先结合到DNA的特定位点(启动基因)上,DNA的 双螺旋链部分解开,以其中一条链为模板,通过碱基互补方式结合进第一个 核苷三磷酸,然后随着RNA聚合酶的移动,DNA双螺旋逐渐解开,按照模板上 的碱基顺序逐个加入与其互补的核苷三磷酸并聚合而生成多聚核苷酸链。在 RNA聚合酶后面生成的多聚核苷酸链立即与模板分开,DNA分子的两条链又重 新缠绕形成双螺旋。(图3-1)
第三章 酶的发酵生产
三 动植物细胞培养缺点 动植物细胞体积大、对剪切力敏感, 动植物细胞体积大 、 对剪切力敏感 , 要求特殊生 物反应器。 物反应器。 动植物细胞生长速率、代谢速率低,发酵周期长, 动植物细胞生长速率 、 代谢速率低 , 发酵周期长 , 对防止杂菌污染的技术要求高。 对防止杂菌污染的技术要求高。 动物细胞营养要求苛刻. 动物细胞营养要求苛刻
应用实例 在利用嗜热芽孢杆菌生产α-淀粉酶时 淀粉酶时,采用甘油替 在利用嗜热芽孢杆菌生产 淀粉酶时 采用甘油替 代果糖解除分解代谢物阻遏,可以使产量提高 可以使产量提高25 代果糖解除分解代谢物阻遏 可以使产量提高 倍. 某些商业酶的诱导 酶 α-淀粉酶 淀粉酶 葡萄糖淀粉酶 转化酶 普鲁兰酶 木糖异构酶 底物 淀粉 淀粉 蔗糖 普鲁兰 木糖 诱导 淀粉或麦芽糊精
酶的生产方法 酶的生产方法
提取分离法
生物合成
化学合成
SOD-BLOOD Papain-Papaya Chymotrypsin-Pancrea
Amylase from B.subtilis Protease from B.subtilis Phosphatase from B.subtilis Glucoamylase from Aspergillus Plant cell Animal cell
二 不同类型、植物、动物细胞的特性比较 不同类型、植物、
微生物细胞 细菌 细胞大小 (µm) 025~1 ~ 倍增时间(hr) 倍增时间 营养要求 细胞壁 对剪切力 主要产物 酵母 1~10 ~ 1.15~ ~ 2 简单 有 大多不敏感 醇、有机酸、氨基酸、核苷 有机酸、氨基酸、 抗生素、 多糖、 酸、抗生素、酶、多糖、色 素、菌体 2~6.9 ~ 霉菌 20~300 ~ 20~74 ~ 较简单 有,坚硬 敏感 色素、 色素、香 精、药物 10~100 ~ 15~100 ~ 复杂 无 很敏感 激素、 激素、疫 苗、单克 隆抗体 植物细胞 动物细胞
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验室的常用培养基:
细菌:牛肉膏/蛋白胨培养基(或简称普通肉汤培养基); 放线菌:高氏1号合成培养基培养; 酵母菌:麦芽汁培养基; 霉菌:查氏合成培养基;
例如枯草芽孢杆菌: 一般培养:肉汤培养基或LB培养基; 自然转化:基础培养基; 观察芽孢:生孢子培养基; 产蛋白酶:以玉米粉、黄豆饼粉为主的产酶培养基;
4、酵母
(1)啤酒酵母(Saccharomyces cereviaiae)
细胞圆形、卵形、椭圆形或腊肠型。菌 落为白色,有光泽、平滑,边缘整齐。 营养细胞可直接变为子囊。 主要用于啤酒、酒类生产,还可产生丙 酮酸脱氢酶、醇脱氢酶等生产。
(2)假丝酵母(Candida)
细胞圆形、卵形或长形。无性繁殖为多 边牙殖,形成假菌丝,可生成孢子。菌 落为乳白色或奶油色。 可生产脂肪酶、尿酸酶、转化酶、醇脱 氢酶等。
3、提高产酶的措施- Translation
1、培养基
1)各种生物对营养的需求
动物 (异养) 碳源 氮源 能源 生长因子 无机元素 水分
糖类、脂肪 蛋白质及其降解物 与碳源同 维生素 无机盐 水
微生物
异养 糖、醇、有机酸等 蛋白质及其降解 物、有机氮化物、 无机氮化物、氮 与碳源同 有些需要维生素等 生长因子 无机盐 水 自养 二氧化碳、碳酸盐等 无机氮化物、氮 氧化无机物或利用日 光能 不需要 无机盐 水
三、产酶微生物的筛选与选育
1、产酶微生物的筛选
2、产酶微生物优良菌种的选育
诱变育种 原生质体融合 基因工程育种
第二节酶的发酵工艺条件及控制 一、微生物产酶方法
1、固体发酵法 2、液体发酵法
1、 固体发酵
固体发酵法(麸曲发酵)
以皮麸或米糠为主要原料,同时依需要添加其它谷糠、 豆饼等,加水搅拌成适度的含水量的半固态物料作为培养 基,以作为微生物的生长繁殖和产酶用 主要产品:淀粉酶、糖化酶 1)浅盘法 2)转桶法 3)厚层通气法。
1) 浅盘法发酵
将固态培养基平铺在浅盘内,进行微生物的培养和产酶 ,固体培养基装在木盘或竹匾上,厚3-5cm在能够控制 温度、湿度的曲房内的盘架上进行发酵。
2)转桶法发酵
是将固态培养基先接入菌种,再放入可旋转的转桶 内,培养基随转桶慢慢转动而翻动,通气及温度 湿度调节比较均匀,易于产酶。 特点:①机械化有所提高; ②转桶的清洗、灭菌操作较难。
为了维持培养基pH的相对恒定。可改变培养基的组分和比例,在培养基中 加入pH缓冲液,或在进行工业发酵时补加酸、碱。
2)温度的控制
对于微生物来说,温度直接影响其生长、繁殖和产酶。 不同微生物有其最适 生长温度:枯草杆菌 的最适生长温度为 34~37℃。 黑曲霉的最适生长温 度为28~32 ℃。 细胞发酵产酶的最适温度与细胞生长最适温度有所不同。 因此对某些微生物来说,在发酵产酶的不同阶段要控制不同温 度。 温度的控制一般采用热水升温、冷水降温的方法,在发酵罐内 外装置换热装置,如:蛇管、排管、夹套等。
3)厚层通气法发酵
是在浅盘法及竹帘法的生产实践上改进而成的。 固体培养基灭菌加入曲种多孔假底的大池内 微生物开始生长、曲温逐渐升高通入空气 特点:①成本高(设备)
②设备利用率提高
③劳动强度低。
2、 液体发酵
是利用液态培养基,进行微生物的 生长繁殖和产酶。 1)液体表面发酵
2)液体深层发酵
第三章 微生物发酵产酶
第一节、常见产酶微生物
第二节、酶的发酵工艺条件及控制
第三节、酶生产过程的动力学 第四节、固定化细胞发酵产酶 第五节 固定化微生物原生质体发酵产酶
酶的生产方法
提取分离法 (Extraction)
生物合成 (Bபைடு நூலகம்osynthesis)
化学合成 (chemicalsynthesis)
直状、近直状的杆菌,周 生或侧生鞭毛,革兰氏阳 性 , 无 荚 膜 , 芽 孢 0.5×1.51.8m ,中生或 近中生。 枯草芽孢杆菌是工业发酵 的重要菌种之一。生产淀 粉酶、蛋白酶、5’-核苷 酸酶、碱性磷酸酶、某些 氨基酸及核苷。
2、放线菌
具有分支状菌丝的单细胞原核生物 常用的产酶放线菌为链霉菌 链霉菌菌落成放射状,具有分支的菌丝体,菌丝直径 0.2-1.2μm,革兰氏阳性。菌丝有气生菌丝和基内菌丝 之分 链霉菌是生产葡萄糖异构酶的主要微生物,同时可生 产青霉素酰化酶、纤维素酶、碱性蛋白酶几丁质酶
1)液体表面发酵法
又称液体浅盘发酵法或静置培养法。
特点 ①无搅拌,动力消耗少 ②培养基灭菌用单独设备 ③易生杂菌 ④占地较大。
2)液体深层发酵法
此法是酶制剂发酵应用最广的
特点 ①发酵罐 ②搅拌器 ③通空气(无菌过滤器) ④培养基灭菌、冷却、发酵在同一罐中。
二、 酶的发酵工艺条件与控制
1、培养基 2、发酵条件及控制- Transcription
(2) 醋酸杆菌(Acetobacter)
菌体从椭圆至杆状,单个、成 对或成链,革兰氏阴性,运动 (周毛)或不运动,不生芽孢。 好气。含糖、乙醇和酵母膏的 培养基上生长良好。 应用:有机酸(食醋等)葡萄糖 异构酶(高果糖浆 )山梨糖 (维 C中间体)
(3)枯草芽孢杆菌(Bacillus subtilis)
3)微生物培养基:
培养基(medium):是人工配制的,适合微生物生 长 繁殖或产生代谢产物的营养基质。
任何培养基都应该具备微生物生长所需要五大 营养要素:
(1)水 (2)碳源、 (3)氮源、 (4)无机盐、 (5) 生长因子、
水
水是微生物最基本的组分(70%—90%) 水是微生物体内和体外的溶剂(吸收营养成分和代谢废物) 水是细胞质组分,直接参与各种代谢活动 调节细胞温度和保持环境温度的稳定(比热高,传热快)
铵盐、硝酸盐
需要注意合适的碳氮比
无机盐
细胞的主要组成元素 参与酶的组成、激活酶活性 调节细胞渗透压、pH値 控制细胞的氧化还原电位
常用:硫酸盐、 磷酸盐、氯化物 以及含有钾、钠、 钙、镁、铁等元 素的化合物。
生长因子
生长因子是指某些微生物不能用普通的碳源、氮源物质进 行合成,而必须另外加入少量的生长需求的有机物质。 分类: 化学结构分成维生素、氨基酸、嘌呤(或嘧啶)及其衍 生物和类脂等四类 功能:以辅酶与辅基的形式参与代谢中的酶促反应 实验室中常用酵母膏、蛋白胨、牛肉膏等作为各种生长因 子的的需要,麦芽汁、米曲汁等天然培养基中本身含有各 种生长因子
(2)曲霉(Aspergillus)
分类:多数属于子囊菌亚门,少 数属于半知菌亚门。 分布:广泛分布于土壤、空气和 谷物上,可引起食物、谷物和果 蔬的霉腐变质,有的可产生致癌 性的黄曲霉毒素。 代表种:黑曲霉Asp. Niger、黄曲 霉Asp.flavus、米曲霉Asp.oryzae 应用:是制酱、酿酒、制醋的主 要菌种。是生产酶制剂(蛋白酶 、淀粉酶、果胶酶)的菌种。生 产有机酸(如柠檬酸、葡萄糖酸 等)。农业上用作生产糖化饲料 的菌种。
枯草杆菌BF7658α -淀粉酶发酵培养基:玉米粉8%,豆饼粉4%,磷酸氢二钠 0.8%,硫酸铵0.4%,氯化钙0.2%,氯化按0.15%(自然pH)。 枯草杆菌AS1.398中性蛋白酶发酵培养基:玉米粉4%,豆饼粉3%,麸皮3.2%, 糠1%, 磷酸氢二钠0.4%, 磷酸二氢钾0.03%(自然pH)。 黑曲霉糖化酶发酵培养基:玉米粉10%,豆饼粉4%,麸皮1%(pH4.4~5.0)。 地衣芽孢杆菌2709碱性蛋白酶发酵培养基:玉米粉5.5%, 豆饼4%, 磷酸氢二 钠0.4%, 磷酸二氢钾0.03%(pH 8.5)。 黑曲霉AS 3.350酸性蛋白酶发酵培养基: 玉米粉6%, 豆饼粉4%, 玉米浆0.6%, 氯化钙0.5%, 氯化铵1%, 磷酸氢二钠0.2% (pH 5.5)。 游动放线菌葡萄糖异构酶发酵培养基:糖蜜2%,豆饼粉2%,磷酸氢二钠0。1%, 硫酸镁0。05% (pH 7.2)。 桔青霉磷酸二酯酶发酵培养基:淀粉水解糖5%,蛋白胨0.5%, 硫酸镁0.05%, 氯化钙0.04%, 磷酸氢二钠0.05%, 磷酸二氢钾0.05% (自然pH)。 黑曲霉AS3.396果胶酶发酵培养基: 麸皮5%, 果胶0.3%, 硫酸铵2%, 磷酸二氢 钾0.25%, 硫酸镁0.05%, 硝酸钠0.02%, 硫酸亚铁0.001% (自然pH)。 枯草杆菌AS1.398碱性磷酸酶发酵培养基: 葡萄糖0.4%, 乳蛋白水解物0.1%, 硫酸铵1%, 氯化钾0.1%, 氯化钙0.1mmol/L, 氯化镁1.0mmol/L, 磷酸氢二钠 20mol/L ( 用pH7.4的Tris-HCl缓冲液配制)
发酵周期短,产酶量高 易培养(生长速率高、营养要求低) 遗传性能稳定,不易退化 易分离提纯。 安全可靠(非致病菌): 凡从可食部分或食品加工中传统使用的微生物生产的酶, 安全! 由非致病微生物制取的酶,需作短期毒性实验。 非常见微生物制取的酶,需做广泛的毒性实验,包括慢性中 毒实验。
3、霉菌 (1) 根霉(Rhizopus)
分类学上属于藻状菌纲,毛霉目, 根霉属。 根霉因有假根(Rhizoid)而得名 (假根的功能是在培养基上固着, 并吸收营养)。 分布于土壤、空气中,常见于淀粉 食品上,可引起霉腐变质和水果、 蔬菜的腐烂。 代表种:米根霉(R.oryzae)黑根 霉(R.nigrican)等。 应用:根霉能产生一些酶类,如淀 粉酶、果胶酶、脂肪酶等,是生产 这些酶类的菌种。在酿酒工业上常 用做糖化菌。有些根霉还能产生乳 酸、延胡索酸等有机酸。
SOD - blood Papain-Papaya Chymotrypsin-Pancrea …… organ/tissue/cell