初一数学整式的加减1

合集下载

初一数学整式的加减第1课时课堂实录

初一数学整式的加减第1课时课堂实录
师:回答得很好,非常不错。
师:根据课前小结中的方法,式子100t+252t能化简吗?依据是什么?
生:能!用乘法的分配率。
师:给予肯定。
4
师:我们再来看看问题(2),看大家能不能快速地写出答案。
师:让三名同学回答。
生:准确快速地给出答案。
师:上述运算有什么共同特点,你能从中得出什么规律吗?
师:我们分组讨论,然后再分享结果。
整式的加减(1) 课堂实录
2
师:同学们,今天我们将新的知识,在学习新知识之前先来做下课前小测。
生:快速地口头给出了答案。
师:给出肯定。
3
师:我们一起来看下问题(1)。
生:一起朗读题目。
师:在遇到包含如此多文字的应用题时
先将重要的信息列在草稿纸上,然后再分析各数据间的关系,最后列出式子。
生:100t+252t
6
师:板书同类项的定义,特别强调常数项也是同类项。
师:1.同类项必须满足①所含字母相同,②相同字母的次数也相同. 两个条件缺一不可;
2.说明几个常数项也是同类项这一规定的合理性。
生:一起朗读定义,并且当场消化。
7
师:我们一起来看看这样的一个问题,大家先将式子中的同类项找出来,然后再化简式子。
生:齐回答式子中同类项。
生:部分学生可以独立完成,其他同学讨论。
师:鼓励学生,详细地评讲。
11
师:同学们这节课的表现都不错,现在来回忆一下我们学习了什么。
生:同类项的概念;如何合并同类项;运用合并同类项法则解决数学问题。
师:给予学生肯定。
师生:一起回顾重要的知识点。
12
9
师:我们一起来学习例2.老师先讲解第一小题,二三小题老师就请两位同学上黑板板书。

人教版初一上册数学第二章整式的加减总结(共66张PPT)

人教版初一上册数学第二章整式的加减总结(共66张PPT)
注意:几个常数项也是_同__类__项_。
合并同类项概念: _把__多__项_式__中__的__同__类_项__合__并__成__一_项_.
合并同类项法则: 1.__系_数___相加减;
2._字__母__和__字_母__的__指__数___不变。
掌握同类项的概念时注意:
1.判断几个单项式或项,是否是同类项,就 要掌握两个条件: ①所含字母相同。 ②相同字母的次数也相同.
=(3x2 3x2 2x2 ) 2x 3
=4x 2 2 x 3
注意:有多重括号的,一般先去小括号,再去中括号, 最后再去大括号;
求多项式3(x2 4x 1) 1 (3x3 4x2 6)的值,其中x 2; 3
(先去括号) (降幂排列)
(合并同类项,化简完成) 当x=-2时(代入)
是单项式。 • 4,0也是数字,也属于单项式。 • 5,有分数也属于单项式。
• 单项式的次数是指单项式中所有字母因数的指数和

这个名词是清代数学家李善兰译书时根据原词概念汉
化的。

单项式是字母与数的乘积。

单项式的次数:一个单项式中,所有字母的指数的和
叫做这个单项式的次数。

单项式的系数:单项式中的数字因数。如:2xy的系
3、 –xmy与45ynx3是同类项,则 m=__3_____. n=__1____
1.填空,并解释其中依据:
(1) 79t 21t (79 21)t 100t
(2) 3ab2 4ab2 ( 3 4)ab2 ab2
(3) 1.618 x 0.118 x 0.5x ( 1.618 0.118 0.5 )x x
呀!!
1、找出同类项
用不同的线标记出各组同类项,注意每一项的符号。

人教版初一数学上册《整式的加减一》

人教版初一数学上册《整式的加减一》
(2)如果2a2b3与-4a︱m︱b︱n+1︱是同类项,则m=,n=
(3)写出三组不同的同类项,并把它们合并同类项。
师生共同总结归纳。
教师布置作业,学生记录。
通过小结,让学生进一步明确本节课的主要内容,逐步提高学生的归纳总结能力和语言表达能力.
继续巩固、灵活运用本节课所学内容。学生才是真正的学习主人,由学生自编同类项再合并,让学生对同类项的相关知识上升到理性认识。
5、把(x-y)2看作一个整体,合并同类项:
3(x-y)2-2(x-y)2+6(x-y)2
学生独立完成,并上黑板板演练。Fra bibliotek教师讲评并指出应该注意的地方。
教师选几个组代表展示小组成果。
学生先独立完成,再小组讨论,并由小组代表说出解答过程。
教师巡堂并适时引导。
通过练习熟悉掌握一个式子中全是同类项的合并练习。
对刚学的多字母的同类项的合并的巩固,难度比上一组练习有所提升。
让学生做由自己编的式子组成的题目易激发学生的学习热情。
三种阶梯形练习一步步加大难度,符合学生的学习习惯与认知规律。
提升题“跳一跳,摘得到。”
[活动5]
1、问题:本节课你学了什么知识?有什么收获?你还有什么疑惑?
2、布置作业:
(1)课本P691.
教师展示课件,提出问题,并引导学生仔细观察。
师生共同归纳同类项的定义。
复习旧知,为新课作铺垫。
观看超市整齐的图片和对硬币分类统计金额,让学生潜意识里有“将同类事物归类在一起”的概念。
让学生通过观察、分析,小组讨论逐步得出同类项的定义,对同类项有感性认识。
[活动2]
1、练习1:判断下列各组数是否是同类项。
(1)2x与-3x

初一数学上册整式的加减

初一数学上册整式的加减

初一数学上册整式的加减整式是指由常数、未知数和它们的积所构成的代数表达式,包括常数项、一次项、二次项及其他各种项。

首先,我们来了解一下整式的加法。

整式的加法就是将两个或多个整式相加,将同类项相加即可。

所谓同类项,是指具有相同的字母和相同的指数的项。

例如,对于两个整式5x+3y和2x-4y,它们的同类项是5x和2x,以及3y和-4y。

将同类项相加得到7x-y,所以5x+3y+(2x-4y)=7x-y。

整式的减法与加法类似,也是将两个或多个整式相减,将同类项相减即可。

例如,对于两个整式5x+3y和2x-4y,它们的同类项是5x 和2x,以及3y和-4y。

将同类项相减得到3x+7y,所以5x+3y-(2x-4y)=3x+7y。

在进行整式的加减法时,有几个需要注意的地方。

首先,要注意符号的运用。

相同的正负号相加为正,不同的正负号相加为负。

相同的正负号相减为零,不同的正负号相减为正。

其次,要注意化简的步骤。

在将同类项相加或相减后,要进行合并整理,将同类项合并成一个系数。

最后,要注意根据具体的题目要求进行化简。

有些题目要求化简至最简形式,有些题目要求展开式子等等,要根据题目要求进行相应的操作。

接下来,我们举几个例子来进行实际操作。

例子1:化简表达式5x+3y-(2x-4y)。

首先,将同类项相加,得到3x+7y。

所以化简后的表达式为3x+7y。

例子2:求解方程3x+5=2x+8。

首先,将方程中的同类项移到一边,得到3x-2x=8-5。

化简得到x=3。

例子3:展开并化简表达式(2x+3y)(4x-5y)。

展开表达式,得到8x^2-10xy+12xy-15y^2。

将同类项相加得到8x^2+2xy-15y^2,所以展开并化简后的表达式为8x^2+2xy-15y^2。

整式的加减法是数学中的基本运算,掌握好整式的加减法是学习代数的基础。

通过反复练习和实际应用,我们可以更好地理解和掌握整式的加减法,提高我们的数学能力。

人教版初中数学七年级上册教学课件 第二章 整式的加减 (第1课时)

人教版初中数学七年级上册教学课件 第二章 整式的加减 (第1课时)

探究新知
知识点 1 同类项的概念
猴子要搬新家啦!有八只小猴子,每只身上都标有一个
单项式,你能根据这些单项式的特征将这些小猴子分到
不同的房间里吗?(用几个房间都可以)
8n
-7a2b
3ab2
2a2b
8n 6xy
5n
-3xy
-ab2
探究新知
8n 5nn
3ab2 -ab2
6xy -3xy
-7a2b 2a2b
法则
(1)系数相加;
合并同类项 (一加两不变) (2)字母连同它的指数不变.
步骤 一容
教材作业 从课后习题中选取
自主安排 配套练习册练习
3
3
巩固练习
当x=2019时,求多项式x4-5x2+2x3-x4+5x2-2x3+2x-1的值.
解: x4-5x2+2x3-x4+5x2-2x3+2x-1 = (x4-x4)+(-5x2+5x2)+(2x3-2x3)+2x-1 = 2x-1 当x=2019时,原式=2×2019-1=4037.
探究新知
(2)3a+2b=5ab ×
(5)3x2+2x3=5x5 ×
(3)5y2-3y2=2 ×
(6)a+a-5a=-3a √
注:(2)(4)(5)中的单项式不是同类项,不能合并. (3)是同类项,但合并结果不对.
的同类探项究.新知
素养考点 1 合并同类项
4a2 3b2 2ab 3a2 b2.
解: 4a2 3b2 2ab 3a2 b2 找
探究新知
归纳总结
同类项的判别方法: (1)同类项只与字母及其指数有关,与系数无关,与

初中七年级数学《整式的加减》教案3篇

初中七年级数学《整式的加减》教案3篇

初中七年级数学《整式的加减》教案3篇学问与技能:1、在现实情境中理解整式的加减实际就是合并同类项,有意识地培育他们有条理的思索和语言表达力量。

2、了解同类项的定义及合并法则,且会运用此法则进展整式加减运算。

3、知道在求多项式的值时,一般先合并同类项再代入数值进展计算。

过程与方法:通过详细情境的观看、思索、类比、探究、沟通和反思等数学活动培育学生创新意识和分类思想,使学生把握讨论问题的方法,从而学会学习。

情感与态度与价值观:通过学生自主学习探究出合并同类项的定义和法则,培育了学生的自学力量和探究精神,提高学习兴趣。

感受数学的形式美、简洁美,感受学数学是美的享受,爱学、乐学数学。

教学重点:娴熟地进展合并同类项,化简代数式。

教学难点;如何推断同类项,正确合并同类项。

教学用具:多媒体或小黑板、教学过程:一、创设情景问题:在甲、乙两面墙壁上,各挖去一个圆形空洞安装窗花,其余局部刷油漆,请依据图中的尺寸,算出:(1)甲乙油漆面积的和。

(2)甲比乙油漆面积大多少。

(处理方式:①学生思索片刻②找学生代表沟通自己的解答③教师汇总学生的解答)板书:(1)(2ab-πr2)+(ab-πr2)或(2ab+ab)-(πr2+πr2 )(2) (2ab-πr2)-(ab-πr2)(此时提问学生:这3个式子都是什么式子?在学生答复的根底上引出课题—从本节课开头来学习:2.3整式的加减。

并板书)二、探求新知教师自问:如何计算(1)和(2)两个式子呢?接着解答:本节课来学习2.2.1合并同类项(此时板书课题——1.合并同类项)1、同类项的概念观看多项式(2ab+ab)-(πr2+πr2 )中的项:2ab、ab 的特点。

学生沟通、争论。

③师生总结:(这就是我们今日所要介绍的同类项,此时板书:1.同类项的概念)所含字母一样并且一样字母的指数也一样的项叫做同类项。

几个常数项也是同类项。

强调:①所含字母一样②一样字母的指数也一样简称“两同”。

初一数学整式的加减的知识点总结

初一数学整式的加减的知识点总结

初一数学整式的加减的知识点总结在初一数学的学习中,整式的加减是一个重要的基础知识点。

它不仅是后续学习方程、函数等内容的基石,也对培养我们的代数思维和运算能力起着关键作用。

下面,让我们一起来详细了解整式的加减的相关知识。

一、整式的基本概念1、单项式由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。

例如,3x、-5、abc 等都是单项式。

单项式中的数字因数叫做这个单项式的系数,所有字母指数的和叫做这个单项式的次数。

例如,在单项式3x 中,系数是3,次数是1;在单项式-5 中,系数是-5,次数是 0;在单项式 abc 中,系数是 1,次数是 3。

2、多项式几个单项式的和叫做多项式。

在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。

多项式里次数最高项的次数,叫做这个多项式的次数。

例如,多项式 2x + 3y 5 中,有三项,分别是 2x、3y、-5,其中-5 是常数项,次数最高项是 2x 和 3y,次数都是 1,所以这个多项式的次数是 1。

3、整式单项式和多项式统称为整式。

二、同类项1、定义所含字母相同,并且相同字母的指数也相同的项叫做同类项。

几个常数项也是同类项。

例如,2x²y 和5x²y 是同类项,3 和-7 是同类项。

2、合并同类项把多项式中的同类项合并成一项,叫做合并同类项。

合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。

例如,计算 3x²+ 2x²=(3 + 2)x²= 5x²。

三、去括号法则1、括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变。

例如,a +(b + c) = a + b + c 。

2、括号前是“”号,把括号和它前面的“”号去掉后,原括号里各项的符号都要改变。

例如,a (b c) = a b + c 。

四、整式的加减运算整式的加减实质就是合并同类项和去括号。

初一数学整式的加减的知识点_知识点总结

初一数学整式的加减的知识点_知识点总结

初一数学整式的加减的知识点_知识点总结初一数学整式的加减的知识点 - 知识点总结在初一数学学习中,整式的加减是一个重要的知识点。

掌握了整式的加减运算规则,将有助于我们解决各种复杂的数学问题。

本文将对初一数学整式的加减的知识点进行总结和归纳。

一、整式的基本概念整式是指由数字、字母及其乘积按照代数运算法则相加减构成的代数式。

整式的加减运算是指按照相同变量的幂次相同的原则进行合并和化简。

二、整式的加法1. 同类项合并在整式的加法中,首先需要将同类项进行合并。

所谓同类项,是指它们具有相同的字母或常数因子。

例如:2x + 3x - 5x + 4y - 2y,将变量x和y的系数相同的项合并,得到:2x - 5x - 2y。

2. 合并同类项后的化简合并同类项后,我们可以对整式进行进一步的化简。

将同类项相加减得到一个系数,并保留原有的字母部分。

例如:2x - 5x - 2y 可进一步化简为 -3x - 2y。

三、整式的减法整式的减法也是按照相同变量的幂次相同的原则进行合并和化简,与加法类似。

例如:(2x + 3y) - (x - y),将括号内的加法运算符变为减法运算符,然后进行同类项合并,得到:2x + 4y。

四、整式加减混合运算整式的加减运算可以与其他运算符混合进行运算。

具体的计算顺序是按照数学运算的规则进行,先进行括号内的计算,然后按照乘方、乘法、除法、加法、减法的顺序进行计算。

例如:(2x^2 + 3xy) - (x^2 - 2xy) + 4y^2,首先进行括号内的运算,得到:2x^2 + 3xy - x^2 + 2xy + 4y^2,然后进行同类项合并,得到:x^2 + 5xy + 4y^2。

五、整式加减的注意事项1. 不同变量之间的项不能合并。

例如:2x + 3y - x,2x和-x是同类项,可以合并为x,但是3y是与其他项不同类的项,不能与其它项合并。

所以最终结果为:x + 3y。

2. 注意减法的特殊处理。

人教版初一数学上册整式的加减(第一课时)

人教版初一数学上册整式的加减(第一课时)

《整式的加减》第一课时教学设计(姓名:刘享佳)教学目标:1.理解同类项的概念;2.掌握合并同类项法则,能进行同类项的合并;3.通过比较数的运算律得出合并同类项的法则,发展类比的思想方法; 教学重点 合并同类项法则;教学难点 对同类项概念的理解及合并同类项法则的探究教学过程一、 问题引入比较下列各式有何特点(1)100t 与252t(2)32x 与2x(3)32ab 与24ab -(认真观察,后抽答)一起总结出特点:字母相同,相同的字母的指数相同.师:像这样的式子我们叫做同类项.今天我们就一起来学习同类项的相关知识。

(引出同类项的定义,同时板书出课题)二、 同类项(一)同类项的定义师:请打开书63页,做笔记,勾画出定义,问:关键词是什么?(抽打,同时老师板书出关键)关键:(1)字母相同;(2)相同的字母的指数相同;(指导关键词做笔记) 师:几个常数项也是同类项.师:了解到同类项的概念之后,我们首先就要会判断哪些是同类项,请看例1.(二)例1下列各式:(1)y x 23与y x 23- (2)nabc 与bc 7(3)125与833- (4)323n m 与23m n - (5)24xy 与yz x 24 (6)26与2x同类项有 (1)(3)(4) (填序号)(学生先独立完成,后抽答,把空填上)师问:(1)(4)为什么是同类项?(抽答)小结出:要判断两个式子是不是同类项,紧紧扣着两相同来,字母相同,相同的字母的指数相同,只要同时满足这两个条件,就一定是同类项,从(1)可以看出与各式的系数无关,从(4)可以看出还与字母的顺序无关.(板书出:两无关 (1)与系数无关 (2)与字母的顺序无关师问:(3)为什么是同类项?(抽答)小结出:常数项也是同类项.师:(2)(4)(6)不满足两相同,所以不是同类项.(三)小试牛刀1. 判断下列几组式子,哪些是同类项?(1)y x 23与25.0xy (2)xy 5.2与ab 3 (3)b a 321和b a 33- (4)xyz 4与yz 21 (5)6y x 2与2yx - (6)1-和32. 33y x m 与n xy 3-是同类项,求m 、n 的值。

人教版初中七年级数学上册第二章《整式的加减》(含答案解析)(1)

人教版初中七年级数学上册第二章《整式的加减》(含答案解析)(1)

1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±8D解析:D【分析】根据单项式的定义可得8m x y 和36n x y 是同类项,因此可得参数m 、n ,代入计算即可. 【详解】解:由8mx y 与36n x y 的和是单项式,得 3,1m n ==.()()333164m n +=+=,64的平方根为8±. 故选D .【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数.2.代数式x 2﹣1y的正确解释是( ) A .x 与y 的倒数的差的平方 B .x 的平方与y 的倒数的差C .x 的平方与y 的差的倒数D .x 与y 的差的平方的倒数B 解析:B【分析】根据代数式的意义,可得答案.【详解】解:代数式x 2﹣1y的正确解释是x 的平方与y 的倒数的差, 故选:B .【点睛】 本题考查了代数式,理解题意(代数式的意义)是解题关键.3.已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( )A .2x 2﹣5x ﹣1B .﹣2x 2+5x+1C .8x 2﹣5x+1D .8x 2+13x ﹣1A解析:A【分析】根据由题意可得被减式为5x 2+4x-1,减式为3x 2+9x ,求出差值即是答案.【详解】由题意得:5x 2+4x−1−(3x 2+9x),=5x 2+4x−1−3x 2−9x ,=2x 2−5x−1.故答案选A.【点睛】本题考查了整式的加减,解题的关键是熟练的掌握整式的加减运算.4.已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( )A .2B .3C .4D .6C解析:C【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】 由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩, 故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细. 5.若 3x m y 3 与﹣2x 2y n 是同类项,则( )A .m=1,n=1B .m=2,n=3C .m=﹣2,n=3D .m=3,n=2B解析:B【分析】根据同类项是字母相同且相同字母的指数也相,可得答案.【详解】 33m x y 和22n x y ﹣是同类项,得m=2,n=3,所以B 选项是正确的.【点睛】本题考查了同类项,利用了同类项的定义.6.已知322x y 和m 2x y -是同类项,则式子4m 24-的值是( )A .21-B .12-C .36D .12B解析:B【分析】根据同类项定义得出m 3=,代入求解即可.【详解】解:∵322x y 和m 2x y -是同类项, ∴m 3=,∴4m 24432412-=⨯-=-,故选B .【点睛】本题考查了对同类项定义的应用,注意:所含字母相同,并且相同字母的指数也分别相等的项,叫同类项,常数也是同类项.7.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】 根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 8.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( ) A .2018B .2018-C .1009-D .1009C 解析:C【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于-12(n-1),n 是偶数时,结果等于-2n ,然后把n 的值代入进行计算即可得解. 【详解】解: 123450|01|1|12|1|13|2|24|2a a a a a ==-+=-=--+=-=--+=-=--+=-678|25|3|36|3|37|4a a a =--+=-=-+=-=--+=-⋯⋯∴201920181009a a ==-,故选择C【点睛】本题考查了数字变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.9.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( )A .2+6nB .8+6nC .4+4nD .8n A 解析:A【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答.【详解】解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8;第二个“金鱼”需用火柴棒的根数为6×2+2=14;第三个“金鱼”需用火柴棒的根数为6×3+2=20;……;第n 个“金鱼”需用火柴棒的根数为6n +2.故选:A .【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键. 10.下列去括号运算正确的是( )A .()x y z x y z --+=---B .()x y z x y z --=--C .()222x x y x x y -+=-+D .()()a b c d a b c d -----=-+++ D 解析:D【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A. ()x y z x y z --+=-+-,故错误;B. ()x y z x y z --=-+,故错误;C. ()222x x y x x y -+=--,故错误;D. ()()a b c d a b c d -----=-+++,正确.故选:D【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.11.下列式子中,是整式的是( )A .1x +B .11x +C .1÷xD .1x x+ A解析:A【分析】根据整式的定义即单项式和多项式统称为整式,找出其中的单项式和多项式即可.【详解】解:A. 1x +是整式,故正确; B. 11x +是分式,故错误; C. 1÷x 是分式,故错误; D.1x x+是分式,故错误. 故选A.【点睛】 本题主要考查了整式,关键是掌握整式的概念.12.若252A x x =-+,256B x x =--,则A 与B 的大小关系是( )A .AB >B .A B =C .A B <D .无法确定A 解析:A【分析】作差进行比较即可.【详解】解:因为A -B =(x 2-5x +2)-( x 2-5x -6)=x 2-5x +2- x 2+5x +6=8>0,所以A >B .故选A .【点睛】本题考查了整式的加减和作差比较法,若A -B >0,则A >B ,若A -B <0,则A <B ,若A -B =0,则A =B .13.若23,33M N x M x +=-=-,则N =( )A .236x x +-B .23x x -+C .236x x --D .23x x - D解析:D【分析】根据N=M+N-M 列式即可解决此题.【详解】依题意得,N=M+N-M=222(3)(33)3333x x x x x x ---=--+=-; 故选D.【点睛】此题考查的是整式的加减,列式是关键,注意括号的运用.14.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B解析:B【分析】 根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.15.如果m ,n 都是正整数,那么多项式x m +y n +3m+n 的次数是( )A .2m +2nB .mC .m +nD .m ,n 中的较大数D解析:D【解析】【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 的次数是m ,n 中的较大数是该多项式的次数.【详解】根据多项式次数的定义求解,由于多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 中次数最高的多项式的次数,即m ,n 中的较大数是该多项式的次数.故选D.【点睛】此题考查多项式,解题关键在于掌握其定义.1.请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, … 则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101 【解析】试题1111++++13355799101⨯⨯⨯⨯=111111111111)()()()23235257299101-+-+-++-(=111111111++)23355799101---++-( =111)2101-(=11002101⨯ =50101. 2.a -b ,b -c ,c -a 三个多项式的和是____________0【解析】(a-b )+(b-c )+(c-a )=a-b+b-c+c-a=a-a+b-b+c-c=0故答案为0解析:0【解析】(a-b )+(b-c )+(c-a )=a-b+b-c+c-a=a-a+b-b+c-c=0, 故答案为0.3.单项式2335x yz -的系数是___________,次数是___________.六【分析】根据单项式系数次数的定义来求解单项式中数字因数叫做单项式的系数所有字母的指数和叫做这个单项式的次数【详解】的系数是次数是6故答案为六【点睛】本题考查了单项式的次数和系数确定单项式的系数和次解析:35六 【分析】 根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】2335x yz -的系数是35-,次数是6, 故答案为35-,六.【点睛】本题考查了单项式的次数和系数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.4.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.6n+2【解析】寻找规律:不难发现后一个图形比前一个图形多6根火柴棒即:第1个图形有8根火柴棒第2个图形有14=6×1+8根火柴棒第3个图形有20=6×2+8根火柴棒……第n个图形有6n+2根火柴棒解析:6n+2.【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒,第2个图形有14=6×1+8根火柴棒,第3个图形有20=6×2+8根火柴棒,……,第n个图形有6n+2根火柴棒.5.将代数式4a2b+3ab2﹣2b3+a3按a的升幂排列的是_____.﹣2b3+3ab2+4a2b+a3【分析】找出a的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b3+3ab2+4a2b+a3.【分析】找出a的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b3+3ab2+4a2b+a3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.y=,则输入的数x=________________.6.在如图所示的运算流程中,若输出的数3或【分析】由运算流程可以得出有两种情况当输入的x为偶数时就有y=x当输入的x为奇数就有y=(x+1)把y=3分别代入解析式就可以求出x的值而得出结论【详解】解:由题意得当输入的数x是偶数时则y=x当解析:5或6【分析】由运算流程可以得出有两种情况,当输入的x为偶数时就有y=12x,当输入的x为奇数就有y=12(x+1),把y=3分别代入解析式就可以求出x的值而得出结论.【详解】解:由题意,得当输入的数x是偶数时,则y=12x,当输入的x为奇数时,则y=12(x+1).当y=3时,∴3=12x或3=12(x+1).∴x=6或5故答案为:5或6【点睛】本题考查了有理数的混合运算,解答此题的关键是,根据流程图,列出方程,解方程即可得出答案.7.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m为________,第n个正方形的中间数字为______.(用含n的代数式表示)…………【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3其它三个分别为4n-24n-14n由以上规律即可求解【详解解析:83n【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,∴第n个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.8.已知|a|=-a ,bb =-1,|c|=c ,化简 |a+b| + |a-c| - |b-c| = _________.-2a 【分析】由已知可以判断出ab 及c 的正负进而确定出a+ba-c 与b-c 的正负利用绝对值的代数意义化简即可得到结果【详解】解:∵|a|=-a=-1|c|=c ∴∴则|a+b|+|a-c|-|b-c| 解析:-2a【分析】由已知可以判断出a, b 及c 的正负,进而确定出a+b ,a-c 与b-c 的正负,利用绝对值的代数意义化简,即可得到结果.【详解】解:∵|a|=-a ,bb=-1,|c|=c∴00, 0,a b c ≤<≥, ∴000,a b a c b c +<-≤-<,,则|a+b| + |a-c| - |b-c| =-+2a b a c b c a --+-=- .故答案为: -2a.【点睛】此题考查了整式的加减, 涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.9.若单项式322m x y -与3-x y 的差仍是单项式,则m 的值为__________.【分析】根据题意可知单项式与是同类项从而可求出m 的值【详解】解:∵若单项式与的差仍是单项式∴这两个单项式是同类项∴m-2=1解得:m=3故答案为:3【点睛】本题考查合并同类项和单项式解题关键是能根据解析:3【分析】根据题意可知单项式322m x y-与3-x y 是同类项,从而可求出m 的值. 【详解】解:∵若单项式322m x y -与3-x y 的差仍是单项式, ∴这两个单项式是同类项,∴m-2=1解得:m=3.故答案为:3.【点睛】本题考查合并同类项和单项式,解题关键是能根据题意得出m=3.10.如果13k x y 与213x y -是同类项,则k =______,21133k x y x y ⎛⎫+-= ⎪⎝⎭______.0【分析】根据同类项的定义先得到k 的值再代入代数式中计算即可【详解】解:与是同类项k=2∴故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项比较基础解析:0【分析】根据同类项的定义先得到k 的值,再代入代数式中计算即可.【详解】 解:13k x y 与213x y -是同类项, ∴k=2,∴222111103333k x y x y x y x y ⎛⎫⎛⎫+-=+-= ⎪ ⎪⎝⎭⎝⎭故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项,比较基础.11.已知22211m mn n ++=,26mn n +=,则22m n +的值为______.5【分析】观察多项式之间的关系可知将已知两式相减再化简即可得到结果【详解】∵∴∴的值为5【点睛】本题考查整式的加减观察得出整式之间的关系再进行去括号化简是解题的关键解析:5【分析】观察多项式之间的关系可知,将已知两式相减,再化简即可得到结果.【详解】∵22211m mn n ++=,26mn n +=,∴()22222222221165mn m mn n m n n mn nm mn n ---=+++=++=-=+, ∴22m n +的值为5.【点睛】本题考查整式的加减,观察得出整式之间的关系再进行去括号化简是解题的关键. 1.一个三位数M ,百位数字为a ,十位数字为b ,个位数字是c .(1)请用含,,a b c 的式子表示这个数M ;(2)现在交换百位数字和个位数字,得到一个新的三位数N ,请用含,,a b c 的式子表示N ;(3)请用含,,a b c 的式子表示N M -,并回答N M -能被11整除吗?解析:(1)10010M c b a =++;(2) 10010N c b a =++;(3) N-M ()99c a =-,能被11整除【分析】(1)根据百位数字为a ,十位数字为b ,个位数字是c 表示出M 即可;(2)根据百位数字为c ,十位数字为b ,个位数字是a 表示出N 即可;(3)列出整式相加减的式子,再合并同类项即可.【详解】解:()1 ∵百位数字为a ,十位数字为b ,个位数字是c ,∴10010M c b a =++;()2百位数字为c ,十位数字为b ,个位数字是a ,∴10010N c b a =++;()3()()1001010010N M c b a a b c -=++-++9999c a =-()99c a =-. 99是11的9倍,,c a 为整数,N M ∴-能被11整除.【点睛】本题考查的是整式加减的实际应用题,数字问题,掌握数字的表示方法及整式的加减法法则是解答此题的关键.2.数学老师给出这样一个题:2-⨯2 2x x =-+. (1)若“”与“”相等,求“ ”(用含x 的代数式表示); (2)若“”为2326x x -+,当1x =时,请你求出“”的值. 解析:(1)22x x --;(2)2223x x -+,3【分析】(1)用替换,得到-22x x =-+,进而得到答案; (2)把“”用2326x x -+替换,求出2223x x =-+,再把1x =代入求解即可得到答案;【详解】解:()1由题意得: 2-⨯22x x =-+∴-22x x =-+ ∴22x x =--()2把“”用2326x x -+替换,得到:2326x x -+2-⨯2 2x x =-+ 即:2()223262x x x x =-+--+22362x x x x =-++-2446x x =-+ ∴222 3.x x =-+当1x =时,原式221213=⨯-⨯+223=-+3=.【点睛】 本题主要考查了新定义下的二元一次方程的应用,能把作相应的替换是解题的关键.3.让我们规定一种运算a bad cb c d =-, 如232534245=⨯-⨯=-. 再如14224x x =-. 按照这种运算规定,请解答下列问题,(1)计算60.5142= ;-3-245= ;2-335x x =- (2)当x=-1时,求223212232x x x x -++-+---的值(要求写出计算过程). 解析:(1)1;-7;-x ;(2)-7【分析】(1)根据新运算的定义式,代入数据求出结果即可;(2)根据新运算的定义式将原式化简为-x-8,代入x=-1即可得出结论.【详解】解:(1)60.5160.543211242=⨯-⨯=-=; -3-23524158745=-⨯--⨯=---=-()();2-3253310935xx x x x x x =⨯---⨯=---=--()()().故答案为:1;-7;-x .(2)原式=(-3x 2+2x+1)×(-2)-(-2x 2+x-2)×(-3),=(6x 2-4x-2)-(6x 2-3x+6),=-x-8,当x=-1时,原式=-x-8=-(-1)-8=-7.∴当x=-1时,223212232x x x x -++-+---的值为-7. 【点睛】本题考查了整式的化简求值以及有理数的混合运算,读懂题意掌握新运算并能用其将整式进行化简是解题的关键.4.给定一列分式:3x y ,52x y -,73x y ,94x y-,…(其中0x ≠). (1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式和第8个分式.解析:(1)任意一个分式除以前面一个分式,都得2x y -.(2)第7个分式为157x y,第8个分式为178x y-. 【分析】(1)分别算出第二个与第一个,第三个与第二个,第四个与第三个分式的除法结果,即可发现规律;(2)根据题中所给的式子找出分子、分母的指数变化规律、再找出符号的正负交替变化规律,根据规律写出所求的式子.【详解】解:(1)5352223x x x y x y y y x y, 757223235x x x y x y y y x y , 979324347x x x y x y y y x y , …… ∴任意一个分式除以前面一个分式,都得2x y-. (2)∵由式子3579234x x x x y y y y,-,,- …,发现分母上是y 1,y 2,y 3,y 4,……所以第7个式子分母上是y 7,第8个分母上是y 8;分子上是x 3,x 5,x 7,x 9,……所以第7个式子分子上是x15,第8个分子上是x17,再观察符号发现,第偶数个为负,第奇数个为正,∴第7个分式为157xy,第8个分式为178xy.【点睛】本题考查式子的规律,根据题意分别找出分子和分母及符号的变化规律是解答此题的关键.。

【重点梳理】-初一数学-整式的加减

【重点梳理】-初一数学-整式的加减

作业帮一课初中独家资料之【初一数学】
核心知识点一:整式的加减
(1)合并同类项:
把同类项合并成一项的运算,叫做合并同类项.合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变.
(2)去括号:
①如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
②如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.
核心知识点二:整式化简求值
(1)直接代入:
直接给出字母的值,化简后直接代入即可.
(2)间接代入:
先求字母的值,再化简,最后代入求值.
(3)整体代入:
整体直接代入:当式子中的字母不能或不容易求出具体的值时,可将条件看成一个整体,直接代入求值;当式子不能直接代入时,可对所求式子或已知条件做适当的变形,使变形后可以整体代入.
(4)设k 法:
遇到连等方程或有已知连等式、连续比例式的题,解决这类题型的最佳方法是设k 法.
整式加减の重点梳理
一、基础知识梳理
二、知识体系梳理。

初一数学知识点整式的加减

初一数学知识点整式的加减

初一数学知识点整式的加减
初一数学知识点整式的加减
数学知识点整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.
2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.
3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.
5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.
整式分类为:.
6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.
7.合并同类项法则:系数相加,字母与字母的指数不变.
8.去(添)括号法则:去(添)括号时,若括号前边是+号,括号里的各项都不变号;若括号前边是-号,括号里的各项都要变号.
9.整式的加减:整式的加减,实际上是在去括号的基础上,。

初一数学整式的加减第1课时听评课记

初一数学整式的加减第1课时听评课记

48 听评课记
听课记录:
一、课前小测:
二、活动一:
问题(1).
式子100t+252t 能化简吗?依据是什么?
问题(2).
填空:
(1)100t-252t=( );
(2) 23x +22x =( );
(3) 23ab -24ab =( ).
同类项的定义,几个常数项也是同类项。

三.活动二:
找出多项式-2x 2y -4xy 2-3+8x 2y +2xy 2+10中的同类项,并化简式子。

合并同类项的定义
把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变。

要点:
1.对同类项的正确辨别;
2.合并同类项时,不要漏项。

四、小试牛刀:
例1:判断题
例2:合并下列各式的同类项: (1) 225
1xy xy -; (2) 2
2222323xy x y y x xy -++-; (3) 222234234b a ab b a --++
五、挑战自我: 两个单项式m b a 2543与63
2b a n -的和是一个单项式,那么n m ,应满足什么条件。

六、小结:
评课记录:
优点:
1.从实际例子出发,引出同类项的概念,让学生体会到数学源于生活; 2. 师生共同参与学习探究,做到了教学相长;
3.“挑战自我”加深学生对知识的理解,培养学生灵活应用的能力; 不足:对于基础薄弱的学生,课堂内容容量偏大,上课节奏快。

初一数学《整式的加减》教学教案设计

初一数学《整式的加减》教学教案设计

初一数学《整式的加减》教学教案设计人教版《数学》七班级上册其次章,本章由数到式,承前启后,既是有理数的概括与抽象,又是整式乘除和其他代数式运算的基础,也是学习方程、不等式和函数的基础。

接下来是我为大家整理的初一数学《整式的加减》教学教案设计,盼望大家喜爱!初一数学《整式的加减》教学教案设计一[学习目标]1、熟悉同类项,理解合并同类项法则,能进行同类项的合并。

2、能运用运算率去括号[考点归纳]考点1:合并同类项考点2:去括号法则考点3:整式的加减[考点例题]例1.合并下列多项式中的同类项.(1)4x2y-8xy2+7-4x2y+10xy2-4; (2)a2-2ab+b2+a2+2ab+b2.例2. 去括号,合并同类项(1)-3(2s-5)+6s (2)3x-[5x-3( x-4)](3)6a2-4ab-4(2a2+ ab) (4)例3.(1)已知一个多项式与a2-2a+1的和是a2 +a-1,求这个多项式。

(2)已知A=2x2+y2+2z,B=x2-y2 +z ,求2(A-B)+B[当堂检测]1.将如图两个框中的同类项用线段连起来:2.当m=________时,-x3b2m与 x3b是同类项.3.假如5akb与-4a2b是同类项,那么5akb+(-4a2b)=_______.4、下列说法正确的是( )A.字母相同的项是同类项B.只有系数不同的项,才是同类项C.-1与0.1是同类项D.-x2y与xy2是同类项5合并下列多项式中的同类项.(1)4x2y-8xy2+7-4x2y+10xy2-4; (2)a2-2ab+b2+a2+2ab+b2.2 先化简,再求值。

(1)(5a2-3b2)+(a2-b2)- (5a2-2b2) 其中a=-1,b=1(2)9a3-[-6a2+2(—a3- a2)] 其中a=-23. 且求的值。

[课外练习]1.下列合并同类项正确的是 ( )A.8a-3a=5B. 7a2+2a3=9a2C. 3ab2-2a2b=ab2D. 3a2b-2ba2=a2b2.ab减去等于 ( )A. ;B. ;C. ;D.3.当与时,代数式的两个值 ( )A.相等;B.互为倒数;C.互为相反数;D.既不相等也不互为相反数4下列各题中,去括号正确的是 ( )初一数学《整式的加减》教学教案设计二教学目标学问技能:理解同类项的概念,并能正确辨别同类项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八讲整式的加减(一)
一、知识梳理
1.去括号法则;
2.整式的加减;
二、课堂例题精讲与随堂演练
知识点1:去括号法则
法则1.括号前面是“+”号,把括号和它前面的“+”号去掉,
括号里各项都符号;
法则2.括号前面是“-”号,把括号和它前面的“-”号去掉,
括号里各项都符号。

▲去括号法则的依据实际是。

〖注意1〗要注意括号前面的符号,它是去括号后括号内各项是否变号的依据.
〖注意2〗去括号时应将括号前的符号连同括号一起去掉.
〖注意3〗括号前面是“-”时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.若括号前是数字因数时,可运用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误.
〖注意4〗遇到多层括号一般由里到外,逐层去括号,也可由外到里.数“-”的个数.
(注意:去括号时,要特别注意括号前面的因数。


【随堂演练】
【A类】
1,下列去括号错误的是 ( )
A 、c b a a c b a a -+-=+--22)(
B 、565)53(25+-+=--+a a a a
C 、a a a a a a 3
23)23(31
322+-=-- D 、b a a b a a --=---2323)]([ 2.下面各题去括号错误的是( )
A.x -(6y -
21)=x -6y +2
1 B.2m +(-n +31a -b )=2m -n +3
1a -b C.-2
1(4x -6y +3)=-2x +3y +3 D.(a +21b )-(-31c +72)=a +21b +31c -72 3.下列去括号正确的是(
) A.()5252+-=+-x x B.()22242
1+-=--x x C.()n m n m +=-323231 D.x m x m 232232+-=⎪⎭⎫
⎝⎛-- 4.化简3x -2(x -3y )的结果是 .
5. 计算 )24()2
15(2222ab ba ab b a +-+-
【B 类】
6.已知=++=+-=+22224,142,82b ab a ab b ab a 则 ;=-22b a 。

7.若A 和B 都是4次多项式,则A+B 一定是( )
A 、8次多项式
B 、4次多项式
C 、次数不高于4次的整式
D 、次数不低于4次的整式
8.计算(1)3(-2ab +3a )-(2a -b )+6ab ;
(2)
212a -[21(ab -2a )+4ab ]-2
1ab .
9.计算(1) 12
st-3st+6 (2) 8a-a 3+a 2+4a 3-a 2-7a-6
(3)(a 3-2a 2+1)-2(3a 2-2a+21) (4)x-2(1-2x+x 2)+3(-2+3x-x 2
)
10、若B 是一个四次多项式,C 是一个二次多项式,则“B -C ” ( )
A 、可能是七次多项式
B 、一定是大于七项的多项式
C 、可能是二次多项式
D 、一定是四次多项式 知识点2: 整式的加减
整式的加减的过程就是 。

如遇到括号,则先 ,再 ,合并到 为止。

(注意:多项式相加(减)时,必须用括号把多项式括起来,才能进行计算。


【随堂演练】
【A 类】
1、化简:
(1)(x+y)—(2x -3y) (2)2()222223(2)a b
a b --+
(3)―2y 3+(3xy 2―x 2y)―2(xy 2―y 3)。

2、求整式x 2―7x ―2与―2x 2+4x ―1的差。

3、一个多项式加上―5x 2―4x ―3等于―x 2―3x ,求这个多项式。

4、先化简,再求值.
(1))15()42(22---+-a a a a ,其中2-=a .
(2)2,2
3),3123()3141
(222-==+-+--y x y x y x x 其中.
5、如果A=2a+4,B=3a-2。

(1)求A+B 的值;
(2)求3A-2B 的值。

6、先化简,后求值:(1)()()xy y x
y x 345352222+++-,其中3
1,1=-=y x
2312722a b b a y 与+-)(是同类项,求代数式:)733()9(6222222y xy x y xy m y x +---+-的值。

7、化简求值:(2x 3―xyz)―2(x 3―y 3+xyz)+(xyz ―2y 3
),其中x=1,y=2,z=―3。

8、已知:A=2244y xy x +- ,B=2
25y xy x -+,求(3A-2B )-(2A+B )的值。

9、某学生合唱团出场时第一排站了n名,从第二排起每一排都比前一排多一人,一共站了四排,则该合唱团一共有多少名学生参加?
①学生写出答案并化简:
10、有这样一道题“当2,2-==b a 时,求多项式)22(3)33(222b ab a b ab a +---+-的值”,马小虎做题时把2=a 错抄成2-=a ,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.
11、已知某船顺水航行3小时,逆水航行2小时,
(1)已知轮船在静水中前进的速度是m千米/时,水流的速度是a千米/时,则轮船共航行多少千米?
(2)轮船在静水中前进的速度是80千米/时,水流的速度是3千米/时,则轮船共航行多少千米?
12、一个多项式与多项式6a2-5a+3的和是5a2+2a-1,求这个多项式。

13、观察下列算式:
12-02=1+0=1;22-12=2+1=3;32-22=3+2=5;42-32=4+3=7;52-42=5+4=9;
62-52=6+5=11;72-62=7+6=13,82-72=8+7=15;··········
若字母n表示自然数,请写出第n个式子。

三、课程小结
1.整式的加减实际上就是去括号、合并同类项这两个知识的综合。

2.整式的加减的一般步骤:
①如果有括号,那么先算括号。

②如果有同类项,则合并同类项。

3.求多项式的值,一般先将多项式化简再代入求值,这样使计算简便。

4.数学是解决实际问题的重要工具。

四、课后作业
1.(1)若=-=+++y x x y 则,0)5(22 。

(2)若31392b a b
a n m n ++-与是同类项,则m= ,n= 。

(3)若213y nx y mx m p +与的和为0,则m-n+3p = 。

(4)代数式x+6与3(x+2)的值互为相反数,则x 的值为 。

(5)若34+x 与5
6 互为倒数,则x= 。

2、计算:
(1)2(22)3(23)a b b a -+- ;
(2)22222
2()3(23)2[(2)]x xy x xy x x xy y ------+
3、先化简,再求值:
(1)3223124(32)3x x x x x x +-
-+-,其中3;x =-
(2)
222215(3)(34)2
a b ac a c a b ac a c ---+-,其中1,2, 2.a b c =-==-
(3)ab ab a ab a 2
18)4(21222-⎥⎦⎤⎢⎣⎡+--,其中1=a ,b =31。

4、 小明在实践课中做了一个长方形模型,模型一边长为32,a b +,另一边比它小a b -,则长方形
模型周长为多少?
5、如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为r 米,广场长为a米,宽为b米。

(1)请列式表示广场空地的面积;
(2)若休闲广场的长为500米,宽为200米,圆形花坛的半径为20米,求广场空地的面积。

(计算结果保留 )
6.。

相关文档
最新文档