的邻边的对边A tan ∠∠=
A A b a
A =tan 0tan >A (∠A 为锐角)
B A cot tan = B A tan cot =
A
A cot 1
tan =
(倒数) 1cot tan =⋅A A
余切
的对边的邻边A A A ∠∠=
cot a b
A =cot 0cot >A (∠A 为锐角) 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)
三角函数
0° 30°
45°
60°
90° αsin 0
2
1 2
2 2
3
1 αcos
1 2
3 2
2
2
1
αtan 0 3
3
1 3 不存在 αcot
不存在
3
1
3
3
6、正弦、余弦的增减性:
当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 7、正切、余切的增减性:
当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。
)
90cot(tan A A -︒=)90tan(cot A A -︒=
B A cot tan = B A tan cot =
)90cos(sin A A -︒=)
90sin(cos A A -︒=
B
A cos sin =
B A sin cos =A
90B 90∠-︒=∠︒=∠+∠得由B A
对边
邻边
斜边 A
C
B
b
a c
A
90B 90∠-︒=∠︒=∠+∠得由B A
1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法)
2、应用举例:
(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
仰角铅垂线
水平线
视线
视线俯角
(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。用字母i 表示,即h
i l
=。坡度一般写成1:m 的形式,如1:5i =等。
把坡面与水平面的夹角记作α(叫做坡角),那么tan h
i l
α=
=。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。
4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。
:i h l =h
l
α