原子物理知识点汇总

合集下载

高考物理原子必考知识点总结

高考物理原子必考知识点总结

高考物理原子必考知识点总结在高考物理考试中,原子物理是一个必考的知识点。

了解原子物理的基本概念和相关原理,掌握一些基本计算方法,对于顺利完成物理题目至关重要。

本文将对高考物理原子必考的知识点进行总结。

1. 原子结构原子结构是原子物理的基础。

原子由质子、中子和电子组成。

质子和中子构成了原子核,而电子围绕在原子核外部的轨道上。

2. 质子数和电子数质子数通常等于电子数,一个稳定的原子内,正电荷和负电荷相等,使得原子整体是电中性的。

3. 同位素和质量数同位素是指具有相同质子数但质量数不同的原子。

质量数是指原子核中质子和中子的总数。

4. 原子的电离原子发生电离意味着它失去或获得电子。

当原子失去电子时,它会变成正离子;当原子获得电子时,它会变成负离子。

电离过程对于理解离子化合物的形成和电解质的行为至关重要。

5. 原子核的稳定性原子核的稳定性决定了原子是否具有放射性。

通过了解原子核的稳定性规律,可以判断某个核素是否具有放射性以及它的衰变方式。

6. 放射性衰变放射性衰变是指原子核自发地转变为另一种原子核的过程。

常见的放射性衰变有α衰变、β衰变和γ衰变。

α衰变是指原子核放出一个α粒子,质量数减少4、原子序数减少2;β衰变是指原子核衰变成另一个元素,电子从原子核中发射出来;γ衰变是指原子核释放出γ射线,改变的只是能量状态而不改变原子核本身。

7. 原子能级和能级跃迁原子的电子在不同的能级上存在。

原子的电子可以吸收或释放能量,从一个能级跃迁到另一个能级。

这种能级跃迁是光谱学研究的基础,也是激光产生的原理之一。

8. 粒子的波粒二象性粒子的波粒二象性是指微观粒子既可以表现出粒子性质,又可以表现出波动性质。

通过对粒子的物态描述和双缝干涉实验等现象的解释,可以更好地理解物质微观本质。

9. 干涉和衍射干涉是指两个或多个波的叠加现象。

光的干涉在涉及光的波动性质的实验中经常发生。

衍射是波在穿过障碍物或经过边缘时产生的弯曲和扩散现象。

原子物理知识点总结

原子物理知识点总结

原子物理知识点总结1. 原子的基本结构原子的基本结构由核和电子组成。

原子核位于原子的中心,它由质子和中子组成。

质子带正电荷,中子不带电,它们共同组成原子核的内部结构。

原子核的直径约为10^-15米,但它包含了原子的绝大部分质量。

电子绕着原子核运动,它们带负电荷,质量远小于质子和中子。

电子的外轨道上有固定的能量,可以跃迁到不同的能级,从而导致原子的发光和吸收现象。

2. 原子核原子核是原子的中心部分,它由质子和中子组成。

质子和中子是由夸克组成的基本粒子,它们之间通过强相互作用力相互作用。

质子和中子在原子核中相互聚集,通过核力相互作用,维持着原子核的结构。

原子核的质量集中在原子核的小范围内,并且它带有整数的电荷,这使得原子核可以被外部的电场所控制。

3. 原子的谱线原子的谱线是原子的能级结构在光谱上的体现。

原子的能级是电子在原子轨道上具有的稳定能量,不同的能级对应着不同的波长和频率的电磁波谱线。

当电子从高能级跃迁到低能级时,会放出能量,产生发射谱线。

而当原子吸收能量后,电子会从低能级跃迁到高能级,产生吸收谱线。

通过观察原子的谱线,可以了解原子的能级结构和原子的性质。

4. 原子的量子力学原子的性质可以通过量子力学的理论来解释。

量子力学是一种描述微观粒子运动和相互作用的理论,它通过波函数描述了微观粒子的运动状态和性质。

原子内的电子是以波动形式存在的,它们的轨道运动是由波函数描述的。

波函数是满足薛定谔方程的解,并且它们描述了电子的位置、动量、运动轨道等性质。

量子力学的理论可以解释原子的光谱、化学键、原子的稳定性等现象,为我们理解原子的性质和行为提供了重要的理论基础。

总之,原子物理是研究原子内部结构和性质的重要学科,它对于我们理解物质的性质和行为具有重要的意义。

通过了解原子的基本结构、原子核、原子的谱线和原子的量子力学等知识点,我们可以更深入地理解原子的性质和行为,为相关领域的研究和应用提供理论基础。

希望本文的总结对读者有所帮助,也希望大家能够深入学习原子物理,探索更多有关原子的奥秘。

原子物理学知识点总结

原子物理学知识点总结

原子物理学知识点总结一、理论知识基础1。

离子化合物原子的结构是由原子核和电子组成,原子核又由质子和中子组成,而质子与中子又可以有不同的结合能状态,但其最稳定的结合方式是结合成带正电荷的原子核,所以质子与中子便有不同的能量状态,而根据原子的能级知识,高能级原子会向低能级原子转变,因此在实验室中经常观察到了同种元素的气态氢化物比其固态氢化物稳定。

除此之外,原子的能级状态还与其带电的状态有关。

如上述气态氢化物因为同种元素的原子核带同种电荷,因此它们的结合能最大,所以也就更加稳定。

而根据电荷守恒,气态非金属元素的阳离子由于失去一个电子,所以其结合能比其阴离子小,因此更加稳定。

2。

共价化合物 2。

共价化合物1。

配位化合物配位化合物是含有共用电子对的分子。

其实质是在形成配位键时,电子云必须重新排布。

两种元素的原子只有各自得到两个电子才形成稳定的配位键,因此元素原子的核电荷数等于零,它们的原子彼此形成的是共价键。

2。

配位多面体( NaFeCl3, Cl2)配位多面体指的是元素间形成配位键时,有四个原子与另一元素形成四个共价键的情况。

配位多面体是平面正方形的对角线围城的封闭区域,该区域具有平行于对角线的一组相互垂直的平面,因此每条边长为1, 3。

1。

钠原子Na的结合能比较低,与水作用放出大量的热,水的结合能比钠的低,放出的热也少,反应速度很快,这说明钠原子只能和活泼金属反应,那么钠原子能否与活泼金属钠和碱反应呢?从微观角度来看,一般认为钠原子具有8电子,和氯原子的外层电子差不多,但钠原子比氯原子小,所以钠原子的能级与氯原子相近,故钠原子也只能与活泼金属反应。

2。

锂原子Li与活泼金属反应的时候能放出大量的热,这些热是由Li原子内层2电子与2个原子核形成共价键的热运动放出的,可见锂原子内部能级比较高,所以锂原子也不容易与活泼金属反应。

2。

锂原子Li的结合能比钠原子小,所以Li能与活泼金属锂发生置换反应, 2Li+3H2O=LiCl2+2H2↑,或者2Li+Li2O2=Li2CO3+2H2↑。

原子物理知识点详细汇总

原子物理知识点详细汇总

第一讲 原 子 物 理自1897年发现电子并确认电子是原子的组成粒子以后,物理学的中心问题就是探索原子内部的奥秘,经过众多科学家的努力,逐步弄清了原子结构及其运动变化的规律并建立了描述分子、原子等微观系统运动规律的理论体系——量子力学。

本章简单介绍一些关于原子和原子核的基本知识。

§1.1 原子1.1.1、原子的核式结构1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的。

1909年,卢瑟福和他的同事以α粒子轰击重金属箔,即α粒子的散射实验,发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90°,有的甚至被弹回,偏转几乎达到180°。

1911年,卢瑟福为解释上述实验结果而提出了原子的核式结构学说,这个学说的内容是:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间里软核旋转,根据α粒子散射的实验数据可估计出原子核的大小应在10-14nm 以下。

1、1.2、氢原子的玻尔理论 1、核式结论模型的局限性通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。

电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。

由此可得两点结论:①电子最终将落入核内,这表明原子是一个不稳定的系统; ②电子落入核内辐射频率连续变化的电磁波。

原子是一个不稳定的系统显然与事实不符,实验所得原子光谱又为波长不连续分布的离散光谱。

如此尖锐的矛盾,揭示着原子的运动不服从经典理论所表述的规律。

为解释原子的稳定性和原子光谱的离经叛道的离散性,玻尔于1913年以氢原子为研究对象提出了他的原子理论,虽然这是一个过渡性的理论,但为建立近代量子理论迈出了意义重大的一步。

2、玻尔理论的内容:一、原子只能处于一条列不连续的能量状态中,在这些状态中原子是稳定的,电子虽做加速运动,但并不向外辐射能量,这些状态叫定态。

原子物理知识点归纳

原子物理知识点归纳

原子物理知识点归纳原子物理知识点归纳原子是指化学反应不可再分的基本微粒。

原子在化学反应中不可分割,但在物理状态中可以分割。

以下是店铺为大家收集的原子物理知识点归纳,仅供参考,希望能够帮助到大家。

1.卢瑟福的核式结构模型(行星式模型)α粒子散射实验:是用α粒子轰击金箔,结果是绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但是有少数α粒子发生了较大的偏转。

这说明原子的正电荷和质量一定集中在一个很小的核上。

卢瑟福由α粒子散射实验提出:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间运动。

由α粒子散射实验的实验数据还可以估算出原子核大小的数量级是10-15m。

2.玻尔模型(引入量子理论,量子化就是不连续性,整数n叫量子数。

)⑴玻尔的三条假设(量子化)①轨道量子化rn=n2r1r1=0。

53×10-10m②能量量子化:E1=-13。

6eV③原子在两个能级间跃迁时辐射或吸收光子的能量hν=Em-En⑵从高能级向低能级跃迁时放出光子;从低能级向高能级跃迁时可能是吸收光子,也可能是由于碰撞(用加热的方法,使分子热运动加剧,分子间的相互碰撞可以传递能量)。

原子从低能级向高能级跃迁时只能吸收一定频率的光子;而从某一能级到被电离可以吸收能量大于或等于电离能的任何频率的光子。

(如在基态,可以吸收E≥13。

6eV的任何光子,所吸收的能量除用于电离外,都转化为电离出去的电子的动能)。

2.天然放射现象⑴天然放射现象----天然放射现象的发现,使人们认识到原子核也有复杂结构。

⑵各种放射线的性质比较③放射性同位素的应用⑴利用其射线:α射线电离性强,用于使空气电离,将静电泄出,从而消除有害静电。

γ射线贯穿性强,可用于金属探伤,也可用于治疗恶性肿瘤。

各种射线均可使DNA发生突变,可用于生物工程,基因工程。

⑵作为示踪原子。

用于研究农作物化肥需求情况,诊断甲状腺疾病的类型,研究生物大分子结构及其功能。

原子物理常考知识点

原子物理常考知识点

原子物理常考知识点一、光电效应:物体在光的照射下发射电子的现象;发射出的电子称光电子,照射的光叫光子。

1、条件:入射光的频率大于被照物体的极限频率;与光照强度无关,与光照时间无关;即:入射光的频率小于被照物体的极限频率的话,无论多大强度,无论多长的照射时间,都不会产生光电效应。

2、光电效应方程E km=hν-W0h:普朗克常量;ν:光子的频率;hν:光子的能量;E km:发射出光电子的初动能;W0:克服原子核引力做功(逸出功);即:照射光子的能量一部分用来克服原子核做功(逸出功),余下的部分转化为光电子的动能。

二:氢原子的能级1、氢原子能自发的从高能级向低能级跃迁,跃迁时放出光子的能量等于初末两能级的能量之差,能放出的光谱条数如能级3跃迁到能级2:1条能级2跃迁到能级1:1条能级3跃迁到能级1:1条合计:3条2、若吸收的光子能量恰好等于某两级能量之差,则从低能级向高能级跃迁;注:吸收的能量必须等于初能级与末能级的能量之差,否则不跃迁。

如处在能级2(-3.40ev)要向能级3(-1.51ev)跃迁,吸收的能量必.须.是-1.51ev—(-3.40ev)=1.89ev三、几种常见的微粒质子:11H;电子:0-1e;中子:10n ;α粒子:42He;氘核:21H ;氚核:31H 三种射线:α射线:放出α粒子(带正电);β射线:放出电子(带负电);γ射线:放出光子(不带电)四、原子核的衰变α衰变:A Z X→A-4Z-2Y+42He;放出α粒子;如:211H+210n→42He;β衰变:A Z X→A Z+1Y+0-1e ;放出电子如:10n→11H+0-1e半衰期:放射性元素的原子核有半数发生衰变所需的时间:如:某原子核的半衰期为8天,经过8天,衰变一般,剩下一半,在经过8天(即16天)后,又衰变剩下的这一半的一半,还余下1/4,再经过8天,剩下1/8,依次下去,每经过半衰期衰变余下一半中的一半五:爱因斯坦质能方程质能方程:一定的能量和一定的质量相联系,物体的总能量和它的质量成正比,即E=mc2m:物体的总质量;c:光速方程的含义是:物体具有的能量与它的质量之间存在简单的正比关系,物体的能量增大,质量也增大;物体的能量减小,质量也减小.①核子在结合成原子核时出现质量亏损Δm,其能量也要相应减少,即ΔE =Δmc2.②原子核分解成核子时要吸收一定的能量,相应的质量增加Δm,吸收的能量为ΔE=Δmc2.六、几个核反应方程四种核反应:衰变、人工转变、裂变、聚变注:1、核反应过程一般都不是可逆的,所以核反应方程只能用单向箭头表示反应方向,而不能用等号连接2、核反应过程遵循质量数守恒及电荷数守恒而不是质量守恒,即:左右两边的质量数总和相等,左右两边的电荷数(质子数)总和相等,核反应过程前后的总质量一般会发生变化(质量亏损)且释放出核能.。

原子物理知识点

原子物理知识点

考点一光电效应1.与光电效应有关的五组概念(1)光子与光电子:光子指光在空间传播时的每一份能量,光子不带电;光电子是金属表面受到光照射时发射出来的电子,其本质是电子。

光子是因,光电子是果。

(2)光电子的动能与光电子的最大初动能:只有金属表面的电子直接向外飞出时,只需克服原子核的引力做功的情况,才具有最大初动能。

(3)光电流和饱和光电流:金属板飞出的光电子到达阳极,回路中便产生光电流,随着所加正向电压的增大,光电流趋于一个饱和值,这个饱和值是饱和光电流,在一定的光照条件下,饱和光电流与所加电压大小无关。

(4)入射光强度与光子能量:入射光强度指单位时间内照射到金属表面单位面积上的总能量。

(5)光的强度与饱和光电流:频率相同的光照射金属产生光电效应,入射光越强,饱和光电流越大,但不是简单的正比关系。

2.对光电效应规律的理解1)光电效应中的“光”不是特指可见光,也包括不可见光。

2)能否发生光电效应,不取决于光的强度和光照时间而取决于光的频率。

任何一种金属都有一个截止频率,入射光的频率低于这个频率则不能使该金属发生光电效应。

3)光电效应的发生几乎是瞬时的。

4)五个关系:最大初动能与入射光频率的关系:E k=hν-W0(光电子的最大初动能与入射光的强度无关).最大初动能与遏止电压U c的关系:E k=eU c,U c可以利用光电管实验的方法测得.逸出功W0与极限频率νc的关系:W0=hνc。

光子频率一定时光照强度与光电流的关系:光照强度大→光子数目多→发射光电子多→光电流大.光子频率与最大初动能的关系:光子频率高→光子能量大→产生光电子的最大初动能大.(5)逸出功的大小由金属本身决定,与入射光无关。

(6)若入射光子的能量恰等于金属的逸出功W0,则光电子的最大初动能为零,入射光的频率就是金属的截止频率。

此,可求出截止频率。

时有hνc=W0,即νc=W0h考点二光电效应的图像问题1.解答光电效应有关图像问题的三个“关键”1)明确图像的种类。

原子物理 知识要点

原子物理  知识要点

原子物理 知识要点第一节 电子的发现与汤姆孙模型 1、阴极射线 2、汤姆孙的研究3. 汤姆生发现电子,根据原子呈电中性,提出了原子的葡萄干布丁模型。

第二节 原子的核式结构模型 1、粒子散射实验原理、装置 (1)粒子散射实验原理:(2)粒子散射实验装置 主要由放射源、金箔、荧光屏、望远镜几部分组成。

(3)实验的观察结果 入射的粒子分为三部分。

大部分沿原来的方向前进,少数发生了较大偏转,极少数发生大角度偏转。

2、原子的核式结构的提出三个问题:用汤姆生的葡萄干布丁模型能否解释粒子大角度散射?(1)粒子出现大角度散射有没有可能是与电子碰撞后造成的?(2)按照葡萄干布丁模型,粒子在原子附近或穿越原子内部后有没有可能发生大角度偏转?小结:实验中发现极少数粒子发生了大角度偏转,甚至反弹回来,表明这些粒子在原子中某个地方受到了质量、电量均比它本身大得多的物体的作用,可见原子中的正电荷、质量应都集中在一个中心上。

①绝大多数粒子不偏移→原子内部绝大部分是“空”的。

②少数粒子发生较大偏转→原子内部有“核”存在。

③极少数粒子被弹回 表明:作用力很大;质量很大;电量集中。

3、原子核的电荷与大小4.卢瑟福原子核式结构模型 第三节 波尔的原子模型卢瑟福原子核式结构学说与经典电磁理论的矛盾丹麦物理学家玻尔,在1913年提出了自己的原子结构假说。

1、玻尔的原子理论(1)能级(定态)假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。

这些状态叫定态。

(本假设是针对原子稳定性提出的)(2)跃迁假设:原子从一种定态(设能量为En )跃迁到另一种定态(设能量为E m )时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即(h 为普朗克恒量)(本假设针对线状谱提出)(3)轨道量子化假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。

原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的。

原子物理知识点汇总

原子物理知识点汇总

一、高考考点: 原子物理考点分析二、历史人物及相关成就1、中子: 质子: 电子:汤姆生: 发现电子, 并提出原子枣糕模型——说明原子可再分卢瑟福: 粒子散射实验——说明原子的核式结构模型2、发现质子:是1919年英国卢瑟福任卡文迪许实验室主任时,用α粒子轰击氮原子核后射出的粒子,命名为质子查德威克:发现中子:是1932年英国B.查德威克用a粒子轰击的实验中发现,并根据E.卢瑟福的建议命名的.约里奥.居里夫妇:发现正电子3、贝克勒尔: 发现天然放射现象——说明原子核可再分4、爱因斯坦: 质能方程,5、玻尔:提出玻尔原子模型, 解释氢原子线状光谱三、密立根: 油滴实验——测量出电子的电荷量四、核反应的四种类型提醒:核反应过程一般都是不可逆的, 所以核反应方程只能用单箭头表示反应方向, 不能用等号连接。

核反应的生成物一定要以实验事实为基础, 不能凭空只依据两个守恒定律杜撰出生成物来写出核反应方程核反应遵循质量数守恒而不是质量守恒, 遵循电荷数守恒提醒:半衰期: 表示原子衰变一半所用时间半衰期由原子核内部本身的因素据顶, 跟原子所处的物理状态(如压强、温度)或化学状态(如单质、化合物)无关半衰期是大量原子核衰变时的统计规律, 个别原子核经多长时间衰变无法预测, 对个别或极少数原子核, 无半衰期而言。

放射性同位素的应用: (1)工业、摊上、农业、医疗等(2)作为示踪原子原子结构原子的核式结构模型(1)粒子散射实验结果:绝大多数粒子穿过金箔后仍沿原来的方向前进, 少数粒子发生了较大偏转, 极少数粒子甚至被反弹回来。

(2)原子的核式结构模型:在原子中心有一个很小的原子核, 原子全部的正电荷和几乎全部质量都集中在核里, 带负电的电子在核外空间绕核旋转。

(3)原子核的尺度:原子核直径的数量级为10-15m, 原子直径的数量级约为10-10m。

(4)原子核的组成:原子核是由质子和中子组成的, 原子核的电荷数等于核内的质子数。

原子的物理知识点总结

原子的物理知识点总结

原子的物理知识点总结一、原子的历史1. 原子的起源和发展古代人们对原子的概念最早可以追溯到古希腊时期。

古希腊哲学家德谟克利特认为宇宙是由原子构成的,这种叫做“原子论”的哲学思想对后来化学、物理学的发展产生了深远的影响。

公元前5世纪,古希腊哲学家德谟克利特提出了原子理论,他认为世界上的一切物质都是由不可分割的原子组成的。

公元前4世纪,古希腊哲学家柏拉图和亚里士多德分别论述了原子学说,使原子学说得到发展。

17世纪,英国科学家伽利略和泰勒独立提出了原子理论。

1803年,英国科学家道尔顿提出了原子假说,并提出了道尔顿原子论。

19世纪末,英国科学家汤姆逊发现了电子,为原子结构的研究奠定了基础。

20世纪初,爱因斯坦和布朗尼根发现原子运动规律。

2. 原子的实质古时候,人们认为原子是世界上的最小粒子,因此名称“原子”。

20世纪初,随着量子力学的发展,人们逐渐认识到原子是由更小的粒子组成的。

至今为止,已经证明原子是由质子、中子和电子组成的。

质子和中子构成原子的核,电子绕核运动。

质子的电荷为正电荷,中子没有电荷,电子的电荷为负电荷。

质子和中子的质量大致相等,约为1.67×10^-27千克,而电子的质量比质子和中子小很多,约为9.11×10^-31千克。

在原子中,电子的质量可以忽略不计,因此原子的质量主要来自于质子和中子。

3. 原子的结构原子的结构是由实验证实的。

经典的原子结构模型是由英国科学家汤姆逊提出的,称为“西瓜核模型”。

这个模型认为原子是一个带正电的基底,电子均匀分布在其中,就像西瓜核和果肉一样。

然而,经过实验证实,汤姆逊的模型是不正确的。

20世纪初,英国科学家卢瑟福发现了原子的核,并提出了“卢瑟福核模型”。

这个模型认为原子是由一个带正电的核和围绕核运动的电子组成的。

电子围绕核运动的轨道上,根据不同能级排列。

根据量子力学理论,电子的位置是不确定的,只能给出概率分布。

因此,电子云模型认为电子不是沿着确定轨道运动的,而是以一定概率分布在原子核周围。

原子物理学知识要点总结

原子物理学知识要点总结

E s
仍与
j
有关。
能量E由
n, l , j 三个量子数决定。
碱金属原子能级的分裂 当
0
时,
1 j 2
当 0 时,
j
1 2
1 j 能级不分裂 2 2 *4 Rhc Z El , s 1 3 2n (l )(l 1) 2 Rhc 2 Z *4 El , s 1 3 2n l (l ) 2
第一章 原子的基本状况 主要内容:原子的质量和大小、原子的核式结构、α粒子散 射实验(重点)。 基本要求: (1)掌握估算原子大小的方法、理解原子量的定义和原子量、 原子质量的计算。 (2)了解汤姆逊模型的要点和遇到的困难;理解卢瑟福核式 结构的要点和提出核式结构的实验依据;
原子的质量
原子质量单位和原子量 各种原子的质量各不相同,常用它们的相对值原子量。 原子质量单位:

自旋多重度,表示原子态的多重数。对碱原子 2 s 1 S 态虽然是单层(重)能级,仍表示为:2 S
2
例: 3 2 P 表示: n 3, 1, j 3/ 2 的原子态,多重度:2 3/ 2
Li原子能级图(考虑精细结构,不包括相对论修正)
单电子辐射跃迁选择定则
1、选择定则 单电子辐射跃迁(吸收或发射光子)只能在下列条件下发生:
l
: 量子数亏损
能级图
0 5 4
s
=0 5 4 3 3
p =1 5 4 3
d =2 5 4
f =3 H 7 6 5 4 3
10000
柏 格 曼 系
20000 2
30000
2
40000
厘米-1
2
锂原子能级图
锂的四个线系

原子物理知识点总结

原子物理知识点总结

原子物理一、波粒二象性1、热辐射:一切物体均在向外辐射电磁波。

这种辐射与温度有关。

故叫热辐射。

特点:1〕物体所辐射的电磁波的波长分布情况随温度的不同而不同;即同时辐射各种波长的电磁波,但*些波长的电磁波辐射强度较强,*些较弱,分布情况与温度有关。

2〕温度一定时,不同物体所辐射的光谱成分不同。

2、黑体:一切物体在热辐射同时,还会吸收并反射一局部外界的电磁波。

假设*种物体,在热辐射的同时能够完全吸收入射的各种波长的电磁波,而不发生反射,这种物体叫做黑体(或绝对黑体)。

在自然界中,绝对黑体实际是并不存在的,但有些物体可近似看成黑体,例如,空腔壁上的小孔。

注意,黑体并不一定是黑色的。

热辐射特点 吸收反射特点一般物体 辐射电磁波的情况与温度,材料种类及外表状况有关 既吸收,又反射,其能力与材料的种类及入射光波长等因素有关黑体 辐射电磁波的强度按波长的分布只与黑体温度有关 完全吸收各种入射电磁波,不反射黑体辐射的实验规律:1〕温度一定时,黑体辐射的强度,随波长分布有一个极大值。

2〕温度升高时,各种波长的辐射强度均增加。

3〕温度升高时,辐射强度的极大值向波长较短方向移动。

4、能量子:上述图像在用经典物理学解释时与该图像存在严重的不符〔维恩、瑞利的解释〕。

普朗克认为能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做能量子.νεh =)1063.6(34叫普朗克常量s J h ⋅⨯=-。

由量子理论得出的结果与黑体的辐射强度图像吻合的非常完美,这印证了该理论的正确性。

5光电效应:在光的照射下,金属中的电子从金属外表逸出的现象。

发射出来的电子叫光电子。

光电效应由赫兹首先发现。

爱因斯坦指出:① 光的能量是不连续的,是一份一份的,每一份能量子叫做一个光子.光子的能量为ε=h ν,其中h=6.63×10-34 J ·s 叫普朗克常量,ν是光的频率;② 当光照射到金属外表上时,一个光子会被一个电子吸收,吸收的过程是瞬间的〔不超过10-9s 〕。

原子的知识点归纳总结

原子的知识点归纳总结

原子的知识点归纳总结一、原子的概念原子是构成物质的基本单位,是由质子、中子和电子组成的微观粒子。

它是化学性质的基本单位,也是物质的最小单位。

原子的结构非常复杂,是由各种基本粒子通过强相互作用力和电磁力相互作用形成的。

原子的大小通常用纳米(1纳米=10^-9米)或者皮米(1皮米=10^-12米)来描述。

原子的质量大约为10^-27千克,因此可以近似地看作质点。

现代物理学认为,原子具有波粒二象性,既可以像粒子一样表现出固有的质量和位置,也可以像波一样表现出波长和频率。

这意味着我们不能用经典的物理学来全面描述原子的行为,而需要运用量子力学来解释。

二、原子的组成1. 质子质子是原子核中的一种基本粒子,带正电荷。

它的质量大约是电子的1836倍。

质子数量决定了元素的种类,因为原子的化学性质主要取决于电子的排布,而原子核的质子数量并不改变。

各种元素的质子数量不同,决定了它们的原子序数。

例如,氢原子的原子核中只有一个质子,氦原子的原子核中有两个质子,氧原子的原子核中有八个质子。

2. 中子中子也是原子核中的一种基本粒子,不带电。

它的质量与质子相近,也大约是电子的1836倍。

中子的数量并不影响原子的化学性质,但会影响原子的同位素。

原子的同位素是指具有相同质子数量,但中子数量不同的原子。

同位素之间的化学性质相似,但物理性质不同,例如放射性和稳定性。

3. 电子电子是原子中的围绕核运动的基本粒子,带负电荷。

它的质量非常小,大约是质子和中子的千分之一。

电子的数量和排布决定了原子的化学性质。

电子绕核运动的轨道数量和能级也随着原子的原子序数不同而不同。

三、原子核原子核是原子的中心部分,由质子和中子组成。

在原子中,质子和中子被强相互作用力绑在一起,形成一个极其紧凑、密集的结构。

原子核的直径约为10^-15米,而原子的整体直径约为10^-10米,这意味着原子的绝大部分体积是空的。

原子核具有正电荷,而电子围绕核运动,形成了原子的外部电子结构。

原子物理知识点

原子物理知识点

原子物理知识点原子物理是物理学的一个重要分支,它研究原子的结构、性质以及原子内部发生的各种过程和现象。

以下是一些关键的原子物理知识点。

一、原子的结构原子由原子核和核外电子组成。

原子核位于原子的中心,带正电荷,由质子和中子构成。

质子带正电,中子不带电。

核外电子带负电,围绕原子核作高速运动。

原子的大小主要由电子云的范围决定。

原子的直径约为 10^(-10) 米,而原子核的直径约为 10^(-15) 米,仅占原子体积的极小部分,但却集中了几乎全部的原子质量。

二、氢原子的能级结构氢原子的能级是量子化的,这意味着电子只能处于特定的能量状态。

这些能量状态可以用能级公式来表示:$E_n =\frac{136}{n^2}eV$,其中 n 是主量子数,n = 1, 2, 3, 当电子从高能级跃迁到低能级时,会发射出光子,其能量等于两个能级的能量差。

反之,当电子吸收光子时,可以从低能级跃迁到高能级。

三、电子的轨道根据玻尔理论,电子在原子中的轨道是特定的,并且是稳定的。

这些轨道的角动量是量子化的,即$L = n\hbar$,其中$\hbar$ 是约化普朗克常数。

然而,现代量子力学的观点认为,电子并不是在确定的轨道上运动,而是以概率云的形式分布在原子核周围。

电子在空间某点出现的概率可以通过波函数来描述。

四、原子的光谱当原子中的电子发生能级跃迁时,会发射或吸收特定频率的光,形成原子光谱。

原子光谱分为发射光谱和吸收光谱。

发射光谱是原子从高能级向低能级跃迁时产生的,表现为一系列明亮的谱线。

吸收光谱则是原子从低能级吸收特定频率的光跃迁到高能级时形成的,表现为一系列暗线。

每种元素的原子都有其独特的光谱特征,通过对光谱的分析,可以确定物质的组成成分。

五、泡利不相容原理在一个原子中,不可能有两个或两个以上的电子具有完全相同的四个量子数。

这意味着每个原子轨道最多只能容纳两个电子,且这两个电子的自旋方向必须相反。

六、原子的磁矩电子绕原子核运动以及电子的自旋都会产生磁矩。

原子物理高考必背知识点归纳总结

原子物理高考必背知识点归纳总结

原子物理高考必背知识点归纳总结在准备高考物理考试时,原子物理是一个重要的知识点。

了解原子结构、放射性衰变、核能和核辐射等内容,对于解答试题是至关重要的。

本文将对原子物理考点进行归纳总结,帮助考生系统地掌握这些知识。

一、原子结构1. 原子的组成:原子由电子、质子和中子组成。

电子带有负电荷,质量极小;质子带有正电荷,质量较大;中子不带电,质量与质子相近。

2. 原子核的结构:原子核由质子和中子组成,质子数决定了元素的属性。

3. 原子的电荷状态:正负电荷的数量相等时,原子呈中性;带有正电荷时,称为正离子;带有负电荷时,称为负离子。

二、放射性衰变1. 放射性衰变的概念:放射性衰变是指不稳定核自发地转变成稳定核的过程,伴随着放射性衰变产物的释放。

2. 放射性衰变的种类:包括α衰变、β衰变和γ衰变。

α衰变是指放射出α粒子,改变了核的质量数和原子序数;β衰变是指放射出β粒子,改变了核的质量数,但不改变原子序数;γ衰变是指放射出γ射线,不改变核的质量数和原子序数。

3. 放射性衰变的应用:放射性同位素在医学诊疗、工业上有广泛应用,如碘-131用于治疗甲状腺疾病,辐射消毒灯可用于杀菌消毒等。

三、核能1. 核反应的能量变化:核反应中,质量可以转化为能量。

根据爱因斯坦的质能方程E=mc²,质量变化Δm对应的能量变化ΔE=Δmc²。

2. 核聚变和核裂变:核聚变是指轻核聚合成重核的过程,如太阳能的产生;核裂变是指重核分裂成轻核的过程,如核电站的反应堆。

3. 核能的应用:核能可以用于发电、提供热能等,但同时也存在核废料处理和环境影响的问题,需要合理利用和管理。

四、核辐射1. 核辐射的定义:核辐射是指放射性核和高能粒子通过空气、物质等传播的现象。

2. 核辐射的种类:包括α粒子、β粒子、γ射线等。

α粒子带有正电荷,质量较大,穿透能力较弱;β粒子带有负电荷,质量比较小,穿透能力较强;γ射线为电磁辐射,穿透能力最强。

原子物理复习要点

原子物理复习要点

原子物理学复习要点第一章 原子的核式结构一、学习要点1.原子的质量和大小M A =A N A (g), R ~10-10 m ,N A =6.022⨯1023mol -1,1u=1.6605655⨯10-27kg2.原子核式结构模型(1)汤姆孙原子模型(2)α粒子散射实验:装置、结果、分析(3)原子的核式结构模型(4)α粒子散射理论:库仑散射理论公式(会推导):θπεcot 422002Mv Ze b =卢瑟福散射公式: 2sin )Z ()41(4220220θπεσΩ=d Mv e d ,θθπd d sin 2=Ω实验验证:A N n Mv t d dN μρθ=⎪⎭⎫ ⎝⎛∝Ω-- ; )21(,Z ,,2sin 220214,μ靶原子的摩尔质量 (4)微分散射面的物理意义、总截面(5)原子核大小的估计 (会推导): 散射角θ:),2sin 11(Z 2412020θπε+⋅=Mv e r mα粒子正入射:20024Z 4Mv e r m πε= ,m r ~10-15-10-14m二、基本练习1.褚书课本P 20-212.选择(1)原子半径的数量级是:A .10-10cm; B.10-8m C. 10-10m D.10-13m(2)原子核式结构模型的提出是根据α粒子散射实验中A.绝大多数α粒子散射角接近180︒B.α粒子只偏2︒~3︒C.以小角散射为主也存在大角散射D.以大角散射为主也存在小角散射(3)进行卢瑟福理论实验验证时发现小角散射与实验不符这说明:A.原子不一定存在核式结构B.散射物太厚C.卢瑟福理论是错误的D.小角散射时一次散射理论不成立(4)用相同能量的α粒子束和质子束分别与金箔正碰,测量金原子核半径的上限. 问用质子束所得结果是用α粒子束所得结果的几倍?A. 1/4 B . 1/2 C . 1 D. 2(5)动能E K =40keV 的α粒子对心接近Pb(z=82)核而产生散射,则最小距离为(m ):A.5.9⨯10-10B.3.05⨯10-12C.5.9⨯10-12D.5.9⨯10-14(6)如果用相同动能的质子和氘核同金箔产生散射,那么用质子作为入射粒子测得的金原子半径上限是用氘核子作为入射粒子测得的金原子半径上限的几倍?A.2B.1/2C.1 D .4(7)在金箔引起的α粒子散射实验中,每10000个对准金箔的α粒子中发现有4个粒子被散射到角度大于5°的范围内.若金箔的厚度增加到4倍,那么被散射的α粒子会有多少?A. 16B..8C.4D.2(8)在同一α粒子源和散射靶的条件下观察到α粒子被散射在90°和60°角方向上单位立体角内的粒子数之比为:A .4:1 B.2:2 C.1:4 D.1:8(9)在α粒子散射实验中,若把α粒子换成质子,要想得到α粒子相同的角分布,在散射物不变条件下则必须使:A.质子的速度与α粒子的相同; B .质子的能量与α粒子的相同;C .质子的速度是α粒子的一半;D .质子的能量是α粒子的一半2.简答题(1)什么是电子?简述密立根油滴实验.(2)简述卢瑟福原子有核模型的要点.(3)简述α粒子散射实验. α粒子大角散射的结果说明了什么?(4)什么是微分散射截面?简述其物理意义.3.计算题:(1)当一束能量为4.8Mev 的α粒子垂直入射到厚度为4.0×10-5cm 的金箔上时探测器沿20°方向上每秒记录到2.0×104个α粒子试求:①仅改变探测器安置方位,沿60°方向每秒可记录到多少个α粒子?②若α粒子能量减少一半,则沿20°方向每秒可测得多少个α粒子?③α粒子能量仍为4.8MeV ,而将金箔换成厚度的铝箔,则沿20°方向每秒可记录到多少个α粒子?(ρ金=19.3g/cm 3 ρ铅=27g /cm 3;A 金=179 ,A 铝=27,Z 金=79 Z 铝=13)(2)试证明:α粒子散射中α粒子与原子核对心碰撞时两者之间的最小距离是散射角为900时相对应的瞄准距离的两倍.(3)10Mev 的质子射到铜箔片上,已知铜的Z=29, 试求质子散射角为900时的瞄准距离b 和最接近于核的距离r m .第二章 玻尔氢原子理论一、学习要点:1.氢原子光谱:线状谱、五个线系(记住名称、顺序)、广义巴尔末公式)11(~22n m R -=ν、 光谱项()2nR n T =、并合原则:)()(~n T m T -=ν 2.玻尔氢原子理论:(1)玻尔三条基本假设的实验基础和内容(记熟)(2)圆轨道理论(会推导):氢原子中假设原子核静止,电子绕核作匀速率圆周运动02200202220A 529,04,Z Z 4≈===e m a n a n e m r e e n πεπε;13714,Z Z 40202≈===c e n c n e c e n πεααπευ; ()n hcT n hc R n e m E e n --=-=∞22224220Z 2Z )41( πε,n =1.2.3……(3)实验验证:(a )氢原子五个线系的形成)11(Z ~,)4(222232042n m R c h e m R e -==∞∞νπεπ (会推导)非量子化轨道跃迁 )(212n E E mv h -+=∞ν (b )夫-赫实验:装置、.结果及分析;原子的电离电势、激发电势3.类氢离子(+++Li ,He ,正电子偶素.-μ原子等) (1) He +光谱:毕克林系的发现、波数公式、与氢原子巴耳末系的异同等(2)理论处理(会推导):计及原子核的运动,电子和原子核绕共同质心作匀速率圆周运动e e m M m M +⋅=μ, 正负电荷中心之距Ze n r n 22204μπε =. 能量2242202Z )41(n e E n μπε-=,里德伯常数变化Mm R R e A +=∞11 重氢(氘)的发现及相关理论计算4.椭圆轨道理论 索末菲量子化条件q q n h n pdq ,⎰=为整数a n nb n e m a n e m E n p e n ϕϕϕπεπε==-==,Z 4,2Z )41(,2220224220 ,n n n ,,3,2,1;,3,2,1 ==ϕn 一定,n E 一定,长半轴一定,有n 个短半轴,有n 个椭圆轨道(状态),即n E 为n 度简并5空间量子化:(1)旧量子论中的三个量子数n ,m n n =ψϕ,的名称、取值范围、物理量表达式、几何参量表达式名 称 取 值 物理量表达式 几何参量表达式 nn ϕψn(2)空间量子化(ϕP 空间取向)、电子的轨道磁矩(旧量子论)、斯特恩—盖拉赫实验6.玻尔对应原理及玻尔理论的地位二、基本练习(共29题)1.楮书P76--772.选择题(1)若氢原子被激发到主量子数为n 的能级,当产生能级跃迁时可能发生的所有谱线总条数应为:A .n-1B .n(n-1)/2C .n(n+1)/2D .n(2)氢原子光谱赖曼系和巴耳末系的系线限波长分别为:A.R/4 和R/9B.R 和R/4C.4/R 和9/RD.1/R 和4/R(3)氢原子赖曼系的线系限波数为R,则氢原子的电离电势为:A .3Rhc/4 B. Rhc C.3Rhc/4e D. Rhc/e(4)氢原子基态的电离电势和第一激发电势分别是:A .13.6V 和10.2V;B –13.6V 和-10.2V; C.13.6V 和3.4V; D. –13.6V 和-3.4V(5)由玻尔氢原子理论得出的第一玻尔半径0a 的数值是:A.5.291010-⨯mB.0.529×10-10mC. 5.29×10-12mD.529×10-12m(6)根据玻尔理论,若将氢原子激发到n=5的状态,则:A.可能出现10条谱线,分别属四个线系B.可能出现9条谱线,分别属3个线系C.可能出现11条谱线,分别属5个线系D.可能出现1条谱线,属赖曼系(7)欲使处于激发态的氢原子发出αH 线,则至少需提供多少能量(eV )?A.13.6B.12.09C.10.2D.3.4(8)氢原子被激发后其电子处在第四轨道上运动,按照玻尔理论在观测时间内最多能看到几条线?A.1B.6C.4D.3(9)氢原子光谱由莱曼、巴耳末、帕邢、布喇开系…组成.为获得红外波段原子发射光谱,则轰击基态氢原子的最小动能为:A .0.66 eV B.12.09eV C.10.2eV D.12.57eV(10)用能量为12.7eV 的电子去激发基态氢原子时,受激氢原子向低能级跃迁时最多可能出现几条光谱线(不考虑自旋);A .3 B.10 C.1 D.4(11)有速度为1.875m/s 106⨯的自由电子被一质子俘获,放出一个光子而形成基态氢原子,则光子的频率(Hz )为:A .3.3⨯1015; B.2.4⨯1015 ; C.5.7⨯1015; D.2.1⨯1016.(12)按照玻尔理论基态氢原子中电子绕核运动的线速度约为光速的:A.1/10倍B.1/100倍 C .1/137倍 D.1/237倍(13)玻尔磁子B μ为多少焦耳/特斯拉?A .0.9271910-⨯ B.0.9272110-⨯ C. 0.9272310-⨯ D .0.9272510-⨯(14)已知一对正负电子绕其共同的质心转动会暂时形成类似于氢原子的结构的“正电子素”那么该“正电子素”由第一激发态跃迁时发射光谱线的波长应为:A .3∞R /8 B.3∞R /4 C.8/3∞R D.4/3∞R(15)象μ-子(带有一个单位负电荷)通过物质时,有些在核附近的轨道上将被俘获而形成μ-原子,那么μ-原子基态轨道半径与相应的电子轨道半径之比为(μ-子的质量为m=206m e )A.1/206B.1/(206)2C.206D.2062(16)电子偶素是由电子和正电子组成的原子,基态电离能量为:A.-3.4eVB.+3.4eVC.+6.8eVD.-6.8eV(17)根据玻尔理论可知,氦离子H e +的第一轨道半径是:A .20a B. 40a C. 0a /2 D. 0a /4(18)一次电离的氦离子 H e +处于第一激发态(n=2)时电子的轨道半径为:A.0.53⨯10-10mB.1.06⨯10-10mC.2.12⨯10-10mD.0.26⨯10-10m(19)假设氦原子(Z=2)的一个电子已被电离,如果还想把另一个电子电离,若以eV 为单位至少需提供的能量为:A .54.4 B.-54.4 C.13.6 D.3.4(20)在H e +离子中基态电子的结合能是:A.27.2eVB.54.4eVC.19.77eVD.24.17eV(21)夫—赫实验的结果表明:A 电子自旋的存在;B 原子能量量子化C 原子具有磁性;D 原子角动量量子化(22)夫—赫实验使用的充气三极管是在:A.相对阴极来说板极上加正向电压,栅极上加负电压;B.板极相对栅极是负电压,栅极相对阴极是正电压;C.板极相对栅极是正电压,栅极相对阴极是负电压;D.相对阴极来说板极加负电压,栅极加正电压(23)处于基态的氢原子被能量为12.09eV 的光子激发后,其轨道半径增为原来的A .4倍 B.3倍 C.9倍 D.16倍(24)氢原子处于基态吸收1λ=1026Å的光子后电子的轨道磁矩为原来的( )倍:A .3; B. 2; C.不变; D.93.简答题(1)19世纪末经典物理出现哪些无法解决的矛盾?(1999长春光机所)(2)用简要的语言叙述玻尔理论,并根据你的叙述导出氢原子基态能量表达式.(1998南开大学)(3)写出下列物理量的符号及其推荐值(用国际单位制):真空的光速、普朗克常数、玻尔半径、玻尔磁子、玻尔兹曼常数、万有引力恒量. (2000南开大学)(4)解释下列概念:光谱项、定态、简并、电子的轨道磁矩、对应原理.(5)简述玻尔对原子结构的理论的贡献和玻尔理论的地位与不足.4.计算题(1)单色光照射使处于基态的氢原子激发,受激发的氢原子向低能级跃迁时可能发出10条谱线.问:①入射光的能量为多少?②其中波长最长的一条谱线的波长为多少?(hc=12400eV·Å)(2)已知一对正负电子绕共同质心转动会形成类似氢原子结构-正电子素.试求:①正电子素处于基态时正负电子间的距离;②n=5时正电子素的电离能(已知玻尔半径0a =0.529Å).(3)不计电子自旋当电子在垂直于均匀磁场B 的平面内运动时,试用玻尔理论求电子动态轨道半径和能级(提示: B v m E e n ⋅-=ϕμ221 ; n me 2 =ϕμ n p =ϕ) (4)氢原子巴尔末系的第一条谱线与He +离子毕克林系的第二条谱线(6→4)两者之间的波长差是多少?(R H =1.09678×10-3 Å, R He =1.09722×10-3 Å)(5)设氢原子光谱的巴耳末系的第一条谱线αH 的波长为αλ,第二条谱线βH 的波长为βλ,试证明:帕邢系的第一条谱线的波长为βαβαλλλλλ-=.(2000.上海大学)(6)一个光子电离处于基态的氢原子,被电离的自由电子又被氦原子核俘获,形成处于2=n 能级的氦离子He +,同时放出波长为500nm 的光子,求原入射光子的能量和自由电子的动能,并用能级图表示整个过程.(1997北京师大)(7)在天文上可观察到氢原子高激发态之间的跃迁,如108=n 与109=n 之间,请计算此跃迁的波长和频率. (1997.中科院)(8) He +离子毕克林系的第一条谱线的波长与氢原子的巴耳末系αH 线相近. 为使基态的He +离子激发并发出这条谱线,必须至少用多大的动能的电子去轰击它?(2001.中科院)(9)试用光谱的精细结构常数表示处于基态的氢原子中电子的速度、轨道半径、氢原子的电离电势和里德伯常数. (1999.中科院)(10)计算氢原子中电子从量子数为n 的状态跃迁到1-n 的状态时所发出谱线的频率. (2001.中科院固体所)第三章 量子力学初步一、学习要点轨道角动量()1,,2,1,0,1-=+=n l l l p l ,l 称为轨道角量子数,轨道角量子数l =0 1 2 3 4 …电 子 态 s p d f g …原 子 态 S P D F G …能量()n hcT n hc R n e m E e n --=-=∞22224220Z 2Z )41( πε,n =1.2.3……轨道投影角动量()l l l l m m p l l lz ,1,,1,0,,1,,----== ,称轨道磁量子数,表征轨道角动量对外场方向的取向,轨道角动量对外场方向的投影图描述电子空间运动的三个量子数l m l n ,,的名称、取值范围、所表征的物理量表达式二、基本练习(1)按量子力学原理,原子状态用波函数来描述. 不考虑电子自旋,对氢原子当有确定主量子数n 时,对应的状态数是:A .2n; B.2n+1; C.n 2; D.2n 2(2)按量子力学原理,原子状态用波函数来描述.不考虑电子自旋,对氢原子当nl 确定后,对应的状态数为:A.n 2;B.2n;C.l ;D.2l +1(3)按原子力学原理,原子状态用波函数来描述.考虑电子自旋,对氢原子当nl 确定后,对应的状态数为:A.2(2l +1);B.2l +1;C. n;D.n 2(4)按量子力学原理,原子状态用波函数来描述.考虑自旋对氢原子当nl m 确定后对应的状态数为:A.1;B.2;C.2l +1;D. n(5)试画出2=l 时电子轨道角动量在磁场中空间量子化示意图,并标出电子轨道角动量在外磁场方向z 的投影的各种可能值.(中山大学1993)第四章 碱金属原子一、学习要点1.碱金属原子光谱和能级(1)四个线系:主线系、第一辅线系(漫)、第二辅线系(锐)、柏格曼系(基)共振线、线系限波数、波数表达式(2)光谱项()()222222Z Z n R n R n R n RT l σ-==∆-==**;σ-=∆-=∆-=**Z Z ,ll n n n n (3)起始主量子数Li:n=2 ; Na:n=3 ; K:n=4 ; Rb:n=5 ;Cs:n=6 ; Fr:n=7(4)碱金属原子能级.选择定则1±=∆l(5)原子实极化和轨道贯穿是造成碱金属原子能级与氢原子不同的原因2.电子自旋(1)实验基础与内容:电子除具有质量、电荷外,还具有自旋角动量()21(,1=+=s s s p s 称自旋角量子数)和自旋磁矩B s s e s p m e μμμ3,=-= . 自旋投影角动量21,±==s s sz m m p 称自旋磁量子数 (2)单电子角动量耦合:总角动量()⎪⎪⎩⎪⎪⎨⎧=≠±=+=0,210,21,1l l l j j j p j ,称总角量子数(内量子数、副量子数;总角动量的投影角动量()j j j j m m p j j jz ,1,,1,,----== ,称总磁量子数(3)描述一个电子的量子态的四个量子数:强场:s l m m l n ,,,;弱场:j m j l n ,,,原子态(光谱项)符号 j s L n 12+S 态不分裂, ,,,,G F D P 态分裂为两层3.碱金属原子光谱和能级的精细结构:(1)原因:电子自旋—轨道的相互作用(2)能级和光谱项的裂距;(3)选择定则:1±=∆l ,1,0±=∆j画出锂、钠、钾原子的精细结构能级跃迁图4.氢原子光谱和能级的精细结构:(1)原因:相对论效应和电子自旋-轨道相互作用;(2)狄拉克能级公式;(3)赖曼系第一条谱线和巴尔末线系αH 线的精细分裂(4)蓝姆移动*二.基本练习:1.褚书P1432.选择题:(1)单个f 电子总角动量量子数的可能值为:A. j =3,2,1,0; B .j=±3; C. j= ±7/2 , ± 5/2; D. j= 5/2 ,7/2(2)单个d 电子的总角动量投影的可能值为:A.2 ,3 ;B.3 ,4 ;C. 235, 215; D. 3/2, 5/2 . (3)已知一个价电子的21,1==s l ,试由s l j m m m +=求j m 的可能值:A .3/2,1/2 ,-1/2 ,-3/2 ; B. 3/2 ,1/2 ,1/2, -1/2 ,-1/2,-3/2;C .3/2,1/2 ,0,-1/2, -3/2; D. 3/2,1/2 ,1/2 ,0,-1/2, -1/2,-3/2;(4)锂原子光谱由主线系.第一辅线系.第二辅线系及柏格曼系组成.这些谱线系中全部谱线在可见光区只有:A.主线系;B.第一辅线系;C.第二辅线系;D.柏格曼系(5)锂原子主线系的谱线在不考虑精细结构时,其波数公式的正确表达式应为: A.nP S -=2~ν; B. S nP 2~→=ν; C .nP S →=2~ν; D .S nP 2~-=ν (6)碱金属原子的光谱项为:A.T=R/n 2; B .T=Z 2R/n 2; C .T=R/n *2; D. T=RZ *2/n *2(7)锂原子从3P 态向基态跃迁时,产生多少条被选择定则允许的谱线(不考虑精细结构)?A.一条B.三条C.四条D.六条(8)已知锂原子光谱主线系最长波长为6707埃,辅线系线系限波长为3519埃,则Li 原子的电离电势为:A .5.38V B.1.85V C.3.53V D.9.14V(9)钠原子基项3S 的量子改正数为1.37,试确定该原子的电离电势:A.0.514V;B.1.51V;C.5.12V;D.9.14V(10)碱金属原子能级的双重结构是由于下列哪一项产生:A.相对论效应B.原子实的极化C.价电子的轨道贯穿D.价电子的自旋-轨道相互作用(11)产生钠的两条黄谱线的跃迁是:A.2P 3/2→2S 1/2 , 2P 1/2→2S 1/2;B. 2S 1/2→2P 1/2 , 2S 1/2→2P 3/2;C. 2D 3/2→2P 1/2, 2D 3/2→2P 3/2;D. 2D 3/2→2P 1/2 , 2D 3/2→2P 3/2(12)若已知K 原子共振线双重成分的波长等于7698.98埃和7664.9埃,则该原子4p 能级的裂距为多少eV ?A.7.4×10-2; B .7.4×10-3; C .7.4×10-4; D .7.4×10-5.(13)对锂原子主线系的谱线,考虑精细结构后,其波数公式的正确表达式应为: A.ν~= 22S 1/2-n 2P 1/2 ν~= 22S 1/2-n 2P 3/2 B. ν~= 22S 1/2→n 2P 3/2 ν~= 22S 1/2→n 2P 1/2C. ν~= n 2P 3/2-22S 1/2 ν~= n 2P 1/2-22S 3/2D. ν~= n 2P 3/2→n 2P 3/2 ν~= n 2P 1/2→n 21/2(14)碱金属原子光谱精细结构形成的根本物理原因:A.电子自旋的存在B.观察仪器分辨率的提高C.选择定则的提出D.轨道角动量的量子化(15)已知钠光谱的主线系的第一条谱线由λ1=5890埃和λ2=5896埃的双线组成,则第二辅线系极限的双线间距(以电子伏特为单位):A.0;B.2.14⨯10-3;C.2.07⨯10-3;D.3.42⨯10-2(16)考虑电子自旋,碱金属原子光谱中每一条谱线分裂成两条且两条线的间隔随波数增加而减少的是什么线系?A.主线系;B.锐线系;C.漫线系;D.基线系(17)如果l 是单电子原子中电子的轨道角动量量子数,则偶极距跃迁选择定则为:A.0=∆l ;B. 0=∆l 或±1;C. 1±=∆l ;D. 1=∆l(18)碱金属原子的价电子处于n =3, l =1的状态,其精细结构的状态符号应为:A .32S 1/2.32S 3/2; B.3P 1/2.3P 3/2; C .32P 1/2.32P 3/2; D .32D 3/2.32D 5/2(19)下列哪种原子状态在碱金属原子中是不存在的:A .12S 1/2; B. 22S 1/2; C .32P 1/2; D. 32S 1/2.32D 5/2(20)对碱金属原子的精细结构12S 1/2 12P 1/2, 32D 5/2, 42F 5/2,22D 3/2这些状态中实际存在的是:A.12S 1/2,32D 5/2,42F 5/2;B.12S 1/2 ,12P 1/2, 42F 5/2;C.12P 1/2,32D 5/2,22D 3/2;D.32D 5/2, 42F 5/2,32D 3/2(21)氢原子光谱形成的精细结构(不考虑蓝姆移动)是由于:A.自旋-轨道耦合B.相对论修正和极化贯穿C.自旋-轨道耦合和相对论修正D.极化.贯穿.自旋-轨道耦合和相对论修正(22)对氢原子考虑精细结构之后,其赖曼系一般结构的每一条谱线应分裂为:A.二条B.三条C.五条D.不分裂(23)考虑精细结构,不考虑蓝姆位移,氢光谱Hα线应具有:A.双线B.三线C.五线D.七线(24)氢原子巴尔末系的谱线,计及精细结构以后,每一条谱线都分裂为五个,但如果再考虑蓝姆位移其谱线分裂条数为:A.五条B.六条C.七条D.八条(25)已知锂原子主线系最长波长为λ1=67074埃,第二辅线系的线系限波长为λ∞=3519埃,则锂原子的第一激发电势和电离电势依次为(已知R =1.09729⨯107m -1)A.0.85eV,5.38eV;B.1.85V ,5.38V;C.0.85V ,5.38VD.13.85eV ,5.38eV(26)钠原子由nS 跃迁到3P 态和由nD 跃迁到3P 态产生的谱线分别属于:A.第一辅线系和基线系B.柏格曼系和锐线系C.主线系和第一辅线系D.第二辅线系和漫线系(27)d 电子的总角动量取值可能为: A. 215,235; B . 23,215; C. 235,263; D. 2,63.简答题(1)碱金属原子能级与轨道角量子数有关的原因是什么?造成碱金属原子精细能级的原因是什么?为什么S 态不分裂, ,,,,G F D P 态分裂为两层?(2)造成氢原子精细能级和光谱的原因是什么?(3)试由氢原子能量的狄拉克公式出发,画出巴尔末系第一条谱线分裂后的能级跃迁图,并写出各自成分的波数表达式(4)在强磁场下描述一个电子的一个量子态一般需哪四个量子数?试写出各自的名称、.取值范围、力学量表达式?在弱磁场下情况如何?试回答上面的问题.(5)简述碱金属原子光谱的精细结构(实验现象及解释).4.计算题(1)锂原子的基态光谱项值T2S=43484cm-1,若已知直接跃迁3P→3S产生波长为3233埃的谱线.试问当被激发原子由3P态到2S态时还会产生哪些谱线?求出这些谱线的波长(R =10972⨯10-3埃-1)(2)已知铍离子Be+主线系第一条谱线及线系限波长分别为3210埃和683埃,试计算该离子S项和P项的量子亏损以及锐线系第一条谱线的波长.(北大1986)(3)锂原子的基态是S2,当处于D3激发态的锂原子向低能级跃迁时,可能产生几条谱线(不考虑精细结构)?这些谱线中哪些属于你知道的谱线系的?同时写出所属谱线系的名称及波数表达式. 试画出有关的能级跃迁图,在图中标出各能级的光谱项符号,并用箭头都标出各种可能的跃迁. (中科院2001)(4)①试写出钠原子主线系、第一辅线系、第二辅线系和伯格曼系的波数表达式.②已知:35.1=∆s ,86.0=∆p,01.0=∆d,求钠原子的电离电势.③若不考虑精细结构,则钠原子自D3态向低能级跃迁时,可产生几条谱线?是哪两个能级间的跃迁?各对应哪个线系的谱线?④若考虑精细结构,则上问中谱线分别是几线结构?用光谱项表达式表示出相应的跃迁.(中科院1998)第五章多电子原子一、学习要点1.氦原子和碱土金属原子:(1)氦原子光谱和能级(正氦(三重态)、仲氦(单态))(2)镁原子光谱和能级2.重点掌握L-S耦合,了解j-j耦合3.洪特定则、朗德间隔定则、泡利不相容原理;4.两个价电子原子的电偶极辐射跃迁选择定则;5.*复杂原子光谱的一般规律:位移律、交替律、三个电子的角动量耦合6.普用选择定则(电子组态的跃迁选择定则,又称宇称跃迁选择定则,或拉波特定则;L-S耦合选择定则等)6.氦氖激光器*二、基本练习1.褚书P168-169习题2.选择题(1)关于氦原子光谱下列说法错误的是:A.第一激发态不能自发的跃迁到基态;B.1s2p 3P2,1,0能级是正常顺序;C.基态与第一激发态能量相差很大;D.三重态与单态之间没有跃迁(2)氦原子由状态1s2p 3P2,1,0向1s2s 3S1跃迁,可产生的谱线条数为:A.0;B.2;C.3;D.1(3)氦原子由状态1s3d 3D3,2,1向1s2p3P2,1,0跃迁时可产生的谱线条数为:A.3;B.4;C.6;D.5(4)氦原子有单态和三重态两套能级,从而它们产生的光谱特点是:A.单能级各线系皆为单线,三重能级各线皆为三线;B.单重能级各线系皆为双线,三重能级各线系皆为三线;C.单重能级各线系皆为单线,三重能级各线系皆为双线;D.单重能级各线系皆为单线,三重能级各线系较为复杂,不一定是三线.(5)下列原子状态中哪一个是氦原子的基态?A.1P1;B.3P1 ;C.3S1; D.1S0;(6)氦原子的电子组态为n1pn2s,则可能的原子态:A.由于n不确定不能给出确定的J值,不能决定原子态;B.为n1pn2s 3D2,1,0和n1pn2s 1D1;C.由于违背泡利原理只存单态不存在三重态;D.为n1pn2s 3P2,1,0和n1pn2s 1P1.(7)C++离子由2s3p 3P2,1,0到2s3s 3S1两能级的跃迁,可产生几条光谱线?A.6条;B.3条;C.2条;D.1条.(8)氦原子有单态和三重态,但1s1s3S1并不存在,其原因是:A.因为自旋为1/2,l1=l2=0 故J=1/2 ;B.泡利不相容原理限制了1s1s3S1的存在;C..因为三重态能量最低的是1s2s3S1;D.因为1s1s3S1和1s2s3S1是简并态(9)泡利不相容原理说:A.自旋为整数的粒子不能处于同一量子态中;B.自旋为整数的粒子能处于同一量子态中;C.自旋为半整数的粒子能处于同一量子态中;D.自旋为半整数的粒子不能处于同一量子态中.(10)若某原子的两个价电子处于2s2p组态,利用L-S耦合可得到其原子态的个数是:A.1;B.3;C.4;D.6.(11)4D3/2 态的轨道角动量的平方值是:A.-3 2 ; B.6 2; C.-2 2; D.2 2(12)一个p电子与一个 s电子在L-S耦合下可能有原子态为:A.3P0,1,2, 3S1 ;B.3P0,1,2 , 1S0;C.1P1, 3P0,1,2 ;D.3S1 ,1P1(13)设原子的两个价电子是p电子和d电子,在L-S耦合下可能的原子态有:A.4个;B.9个;C.12个;D.15个;(14)电子组态2p4d所形成的可能原子态有:A.1P 3P 1F 3F; B. 1P 1D 1F 3P 3D 3F;C.3F 1F; D.1S 1P 1D 3S 3P 3D.(15)硼(Z=5)的B+离子若处于第一激发态,则电子组态为:A.2s2pB.2s2sC.1s2sD.2p3s(16)铍(Be)原子若处于第一激发态,则其电子组态:A.2s2s;B.2s3p;C.1s2p;D.2s2p(17)若镁原子处于基态,它的电子组态应为:A.2s2s B.2s2p C.3s3s D.3s3p(18)今有电子组态1s2p,1s1p,2d3p,3p3s,试判断下列哪些电子组态是完全存在的:A.1s2p ,1s1pB.1s2p,2d3p C,2d3p,2p3s D.1s2p,2p3s(19)电子组态1s2p所构成的原子态应为:A1s2p1P1 , 1s2p3P2,1,0 B.1s2p1S0 ,1s2p3S1C1s2p1S0, 1s2p1P1 , 1s2p3S1 , 1s2p3P2,1,0; D.1s2p1S0,1s2p1P1(20)判断下列各谱项中那个谱项不可能存在:A.3F2;B.4P5/2;C.2F7/2;D.3D1/2(21)试判断原子态:1s1s 3S 1,1s2p 3P 2,1s2p 1D 1, 2s2p 3P 2中下列哪组是完全存在的?A. 1s1s 3S 1 1s2p 3P 2 2s2p 3P 2 B .1s2p 3P 2 1s2p 1D 1C. 1s2p 3P 2 2s2p 3P 2D.1s1s 3S 1 2s2p 3P 2 1s2p 1D 1(22)在铍原子中,如果3D 1,2,3对应的三能级可以分辨,当有2s3d 3D 1,2,3到2s2p 3P 2,1,0的跃迁中可产生几条光谱线?A .6 B.3 C.2 D.9(23)有状态2p3d 3P →2s3p 3P 的跃迁:A.可产生9条谱线B.可产生7条谱线C 可产生6条谱线 D.不能发生(24)已知Cl (Z=17)原子的电子组态是1s 22s 22p 63p 5,则其原子态是:A.2P 1/2;B.4P 1/2 ;C.2P 3/2;D.4P 3/2(25) 原子处在多重性为5,J 的简并度为7的状态,试确定轨道角动量的最大值: A. 6; B. 12; C. 15; D. 30(26)试确定D 3/2谱项可能的多重性:A.1,3,5,7;B.2,4,6,8; C .3,5,7; D.2,4,6.(27)某系统中有三个电子分别处于s 态.p 态.d 态,该系统可能有的光谱项个数是:A .7; B.17; C.8; D.18(28)钙原子的能级应该有几重结构?A .双重; B.一、三重; C.二、四重; D.单重3.简答题(1)简要解释下列概念:泡利不相容原理、洪特定则、朗德间隔定则.(2)L-S 耦合的某原子的激发态电子组态是2p3p ,可能形成哪些原子态?若相应的能级顺序符合一般规律,应如何排列?并画出此原子由电子组态2p3p 向2p3s 可能产生的跃迁.(首都师大1998)(3)写出两个同科p 电子形成的原子态,那一个能级最低?(4)写出两个同科d 电子形成的原子态,那一个能级最低?(5)写出5个同科p 电子形成的原子态,那一个能级最低?(6)写出4个同科p 电子形成的原子态,那一个能级最低?(7)汞原子有两个价电子,基态电子组态为6s6s 若其中一个电子被激发到7s 态(中间有6p 态)由此形成的激发态向低能级跃迁时有多少种可能的光谱跃迁?画出能级跃迁图.(8)某系统由一个d 电子和一个2P 3/2原子构成,求该系统可能的光谱项.(9)某系统由spd 电子构成,试写出它的光谱项.(10)碳原子的一个价电子被激发到3d 态,①写出该受激原子的电子组态以及它们在L —S 耦合下形成的原子态; ②画出对应的能级图并说明这些能级间能否发生电偶极跃迁?为什么?第六章 磁场中的原子一、学习要点1.原子有效磁矩 J J P m e g2-=μ, )1(2)1()1()1(1++++-++=J J S S L L J J g (会推导) 2.外磁场对原子的作用:(1)拉莫尔进动圆频率(会推导): B m e g eL 2=ω(2)原子受磁场作用的附加能量:B g M B E B J J μμ=⋅-=∆附加光谱项()1-m 7.464~,~4B mc eB L L g M mc eB g M T J J ≈===∆ππ 能级分裂图(3)史—盖实验;原子束在非均匀磁场中的分裂B J g M v L dz dB m s μ221⎪⎭⎫ ⎝⎛-=,(m 为原子质量) (4)塞曼效应:光谱线在外磁场中的分裂,机制是原子磁矩与外磁场的相互作用,使能级进一步的分裂所造成的. 塞曼效应的意义①正常塞曼效应:在磁场中原来的一条谱线分裂成3条,相邻两条谱线的波数相差一个洛伦兹单位L ~Cd 6438埃 红光1D 2→1P 1氦原子 66781埃 1D 2→1P 1②反常塞曼效应:弱磁场下:Na 黄光:D 2线 5890埃 2P 3/2→2S 1/2(1分为6);D 1线5896埃 2P 1/2→2S 1/2(1分为4)Li ( 2D 3/2→2P 1/2)格罗春图、相邻两条谱线的波数差、能级跃迁图选择定则 )(1);(0);(1+-+-=∆σπσJ M 垂直磁场、平行磁场观察的谱线条数及偏振情况③帕邢—贝克效应:强磁场中反常塞曼效应变为正常塞曼效应()()B M M B E B S L S L μμμ2+=⋅+-=∆ ,()L M M SL ~2~∆+∆=∆ν,1,0,0±=∆=∆L S M M ()L L ~,0,~~~0-+=νν (5)顺磁共振、物质的磁性二、基本练习1.楮书P1972.选择题(1)在正常塞曼效应中,沿磁场方向观察时将看到几条谱线:A .0; B.1; C.2; D.3(2)正常塞曼效应总是对应三条谱线,是因为:A .每个能级在外磁场中劈裂成三个; B.不同能级的郎德因子g 大小不同;C .每个能级在外场中劈裂后的间隔相同; D.因为只有三种跃迁(3)B 原子态2P 1/2对应的有效磁矩(g =2/3)是 A. B μ33; B. B μ32; C. B μ32 ; D. B μ22. (4)在强外磁场中原子的附加能量E ∆除正比于B 之外,同原子状态有关的因子有:A.朗德因子和玻尔磁子B.磁量子数、朗德因子C.朗德因子、磁量子数M L 和M JD.磁量子数M L 和M S(5)塞曼效应中观测到的π和σ成分,分别对应的选择定则为:A ;)(0);(1πσ±=∆J M B. )(1);(1σπ+-=∆J M ;0=∆J M 时不出现;C. )(0σ=∆J M ,)(1π±=∆J M ;D. )(0);(1πσ=∆±=∆S L M M(6)原子在6G 3/2状态,其有效磁矩为:A .B μ315; B. 0; C. B μ25; D. B μ215- (7)若原子处于1D 2和2S 1/2态,试求它们的朗德因子g 值:A .1和2/3; B.2和2/3; C.1和4/3; D.1和2(8)由朗德因子公式当L=S,J≠0时,可得g 值:A .2; B.1; C.3/2; D.3/4(9)由朗德因子公式当L=0但S≠0时,可得g 值:A .1; B.1/2; C.3; D.2(10)如果原子处于2P 1/2态,它的朗德因子g 值:A.2/3; B.1/3; C.2; D.1/2(11)某原子处于4D 1/2态,若将其放于弱磁场中,则能级分裂为:A .2个; B.9个; C.不分裂; D.4个(12)判断处在弱磁场中,下列原子态的子能级数那一个是正确的:A.4D 3/2分裂为2个;B.1P 1分裂为3个;C.2F 5/2分裂为7个;D.1D 2分裂为4个(13)如果原子处于2P 3/2态,将它置于弱外磁场中时,它对应能级应分裂为:A.3个B.2个C.4个D.5个(14)态1D 2的能级在磁感应强度B 的弱磁场中分裂多少子能级?A.3个B.5个C.2个D.4个(15)钠黄光D 2线对应着32P 3/2→32S 1/2态的跃迁,把钠光源置于弱磁场中谱线将如何分裂:A.3条B.6条C.4条D.8条(16)碱金属原子漫线系的第一条精细结构光谱线(2D 3/2→2P 3/2)在磁场中发生塞曼效应,光谱线发生分裂,沿磁场方向拍摄到的光谱线条数为A.3条B.6条C.4条D.9条(17)对钠的D 2线(2P 3/2→2S 1/2)将其置于弱的外磁场中,其谱线的最大裂距max~ν∆和最小裂距min~ν∆各是 A.2L 和L/6; B.5/2L 和1/2L; C.4/3L 和2/3L; D.5/3L 和1/3L(18)使窄的原子束按照施特恩—盖拉赫的方法通过极不均匀的磁场 ,若原子处于5F 1态,试问原子束分裂成A.不分裂B.3条C.5条D.7条(19)(1997北师大)对于塞曼效应实验,下列哪种说法是正确的?A .实验中利用非均匀磁场观察原子谱线的分裂情况;B .实验中所观察到原子谱线都是线偏振光;C .凡是一条谱线分裂成等间距的三条线的,一定是正常塞曼效应;D .以上3种说法都不正确.3.计算题。

原子的性质知识点总结

原子的性质知识点总结

原子的性质知识点总结一、原子的基本结构和性质1. 原子的组成原子是物质的基本单位,由质子、中子和电子组成。

质子和中子集中在原子的中心核内,形成原子核,而电子在原子核的外围轨道上运动。

2. 原子的大小原子的大小主要取决于其电子云的大小。

电子云是电子在原子周围以波动形式存在的空间,它在三维空间中的范围称为原子的大小。

3. 原子的质量原子的质量主要由质子和中子的质量决定。

质子和中子的质量大致相等,约为1.67×10^-27千克,而电子的质量远小于质子和中子,约为9.11×10^-31千克。

4. 原子的电荷原子的电荷由其质子和电子的数量决定。

质子带正电荷,电子带负电荷,质子和电子的数量一样时,原子是电中性的。

5. 原子的稳定性原子的稳定性主要取决于其核外电子的排布。

当原子的电子数和质子数相等时,原子是稳定的,否则会倾向于失去或获得电子,使得电子与质子数量相等。

二、原子的化学性质1. 原子的化学键化学键是原子与原子之间的相互作用力,形成分子或晶体。

常见的化学键有共价键、离子键、金属键和氢键。

2. 原子的化学反应原子通过化学反应能够组成新的物质。

化学反应包括物质的分解、合成、置换和双元反应等。

3. 原子的化学性质原子的化学性质主要包括原子的化合价、化学惰性、化学活性等。

原子的化合价表示其与其他原子结合时所能提供或接受的电子数,化学惰性表示原子不容易与其他原子发生化学反应,而化学活性表示原子易于与其他原子发生化学反应。

三、原子的物理性质1. 原子的热性质原子的热性质包括热膨胀、热导率和热容等。

当物质受热时,原子振动加剧,从而导致物质的体积膨胀;原子通过热传导方式使得热量传递;原子具有吸热和释热的能力,从而造成物质的温度变化。

2. 原子的电性质原子的电性质包括导电性和绝缘性。

金属原子由于自由电子的存在,具有良好的导电性;而绝缘体往往是由稳定的共价键或离子键构成,没有自由电子,因而呈现绝缘性。

原子物理知识点总结全

原子物理知识点总结全

原 子 物 理一、卢瑟福的原子模型——核式构造1.1897年,_________发现了电子.他还提出了原子的______________模型.2.物理学家________用___粒子轰击金箔的实验叫__________________。

3.实验结果: 绝大局部α粒子穿过金箔后________;少数α粒子发生了较大的偏转; 极少数的α粒子甚至被____.4.实验的启示:绝大多数α粒子直线穿过,说明原子部存在很大的空隙; 少数α粒子较大偏转,说明原子部集中存在着对α粒子有斥力的正电荷;极个别α粒子反弹,说明个别粒子正对着质量比α粒子大很多的物体运动时,受到该物体很大的斥力作用. 5.原子的核式构造:卢瑟福依据α粒子散射实验的结果,提出了原子的核式构造:在原子中心有一个很小的核,叫________, 原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核旋转.例1:在α粒子散射实验中,卢瑟福用α粒子轰击金箔,以下四个选项中哪一项属于实验得到的正确结果: A.α粒子穿过金箔时都不改变运动方向 B.极少数α粒子穿过金箔时有较大的偏转,有的甚至被反弹 C.绝大多数α粒子穿过金箔时有较大的偏转 D.α粒子穿过金箔时都有较大的偏转. 例2:根据α粒子散射实验,卢瑟福提出了原子的核式构造模型。

如图1-1所示表示了原子核式构造模型的α粒子散射图景。

图中实线表示α粒子的运动轨迹。

其中一个α粒子在从a 运动到b 、再运动到c 的过程中〔α粒子在b 点时距原子核最近〕,以下判断正确的选项是〔 〕 A .α粒子的动能先增大后减小B .α粒子的电势能先增大后减小C .α粒子的加速度先变小后变大D .电场力对α粒子先做正功后做负功 二 玻尔的原子模型 能级1.玻尔提出假说的背景——原子的核式构造学说与经典物理学的矛盾:⑴按经典物理学理论,核外电子绕核运动时,要不断地辐射电磁波,电子能量减小,其轨道半径将不断减小,最终落于原子核上,即核式构造将是不稳定的,而事实上是稳定的.⑵电子绕核运动时辐射出的电磁波的频率应等于电子绕核运动的频率,由于电子轨道半径不断减小,发射出的电磁波的频率应是连续变化的,而事实上,原子辐射的电磁波的频率只是某些特定值。

关于原子物理的知识点总结

关于原子物理的知识点总结

关于原子物理的知识点总结1. 原子结构原子是物质的基本单位,它由原子核和围绕原子核运动的电子构成。

根据量子力学的理论,电子围绕原子核的轨道是量子化的,即电子只能占据特定的能级。

这些能级又被称为原子的轨道,它们分别对应着不同的能量。

根据波尔理论,原子轨道的能量级数由主量子数决定,而轨道的形状由角量子数和磁量子数决定。

此外,每个轨道还有自旋量子数。

原子的轨道可以分为s、p、d、f等不同的子壳,每个子壳又可以分为不同的轨道。

2. 原子核原子核是原子的中心部分,它由质子和中子组成。

质子和中子有着相同的质量,但是它们的电荷正负相反。

根据现代原子模型,质子和中子是由更小的粒子——夸克构成的。

原子核的直径大约只有10^-15米,而原子整体的直径则大约为10^-10米,因此原子核是原子的重要组成部分。

原子核的结构是非常复杂的,其中包含着大量的核子相互作用和核力。

在原子核中,质子和中子之间的作用力非常强大,能够保持原子核的稳定性。

3. 元素周期表元素周期表是化学中的重要工具,它将所有已知的元素按照其原子序数和化学性质排列在一张表格上。

元素周期表的排列方式使得化学家可以快速地找到元素之间的联系和规律。

元素周期表以不断重复的周期性性质为基础,其中每个周期都代表一种化学行为规律。

原子序数自然地反映了元素的电子排布和原子结构。

元素周期表的周期性规律性质是由原子结构和电子排布的规律性所决定的,因此元素周期表的排列方式和元素的性质之间存在着内在的联系。

4. 原子激发和原子能级当原子受到外部能量的激发时,其电子可能会跃迁到更高能级的轨道上,这种现象被称为原子的激发。

原子的激发能够产生出各种不同的现象,比如光子的辐射和吸收,原子光谱和激光等。

原子的能级结构是由原子内部的电子排布所决定的,不同的能级对应着不同的轨道和能量。

当电子从高能级跃迁到低能级时,会释放出一定的能量。

这些特定的能量级被称为原子的能级,它是原子物理研究的重要内容之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考考点:原子物理考点分析
一、
历史人物及相关成就
1、 汤姆生:发现电子,并提出原子枣糕模型 ——说明原子可再分
2、 卢瑟福:α粒子散射实验——说明原子的核式结构模型 发现质子
3、 查德威克:发现中子
4、 约里奥.居里夫妇:发现正电子
5、 贝克勒尔:发现天然放射现象——说明原子核可再分
6、 爱因斯坦:质能方程2mc E =,2
mc E ∆=∆ 7、 玻尔:提出玻尔原子模型,解释氢原子线状光谱 8、 密立根:油滴实验——测量出电子的电荷量 二、
核反应的四种类型
提醒:
1、 核反应过程一般都是不可逆的,所以核反应方程只能用单箭头表示反应方向,不能用等号连
接。

2、 核反应的生成物一定要以实验事实为基础,不能凭空只依据两个守恒定律杜撰出生成物来写
出核反应方程
3
、 核反应遵循质量数守恒而不是质量守恒,遵循电荷数守恒
提醒:
1、 半衰期:表示原子衰变一半所用时间
2、 半衰期由原子核内部本身的因素据顶,跟原子所处的物理状态(如压强、温度)或化学状态(如
单质、化合物)无关
3、 半衰期是大量原子核衰变时的统计规律,个别原子核经多长时间衰变无法预测,对个别或极少
数原子核,无半衰期而言。

4、 放射性同位素的应用:(1)工业、摊上、农业、医疗等(2)作为示踪原子 四、
原子结构
1、 原子的核式结构模型 (1)α粒子散射实验结果:
绝大多数α粒子穿过金箔后仍沿原来的方向前进,少数α粒子发生了较大偏转,极少数α粒子甚至被反弹回来。

(2)原子的核式结构模型:
在原子中心有一个很小的原子核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。

(3)原子核的尺度:原子核直径的数量级为10-15
m ,原子直径的数量级约为10-10
m 。

(4)原子核的组成:原子核是由质子和中子组成的,原子核的电荷数等于核内的质子数。

2、玻尔原子模型
(1)原子只能处于一系列能量不连续的状态中,具有确定能量的未定状态叫定态。

原子处于最低能级的状态叫基态,其他的状态叫激发态。

(2)频率条件:
高能m 到低能m 态:辐射光子λ
c
h
E E hv n m =-=
(3)原子的不同能量状态对应于电子的不同运行轨道。

五、氢原子光谱
1、氢原子光谱的实验规律
巴耳末系是氢光谱在可见光区的谱线,其波长公式
)为里德伯常量(1722101.01R ..R .,54,3n )n
1-21R(1
-⨯===m λ 2、 氢原子的能级和轨道半径
(1)
氢原子的能级公式:...)3,2,1(1
12==n E n
En 其中E 1
=-3.6ev
(2) 氢原子的半径公式:...)3,2,1(12
=⋅=n r n r n ,其中r1=0.53×10-10
m
(3) 氢原子能级图: 提醒:
A 、 原子跃迁条件:n m E E hv -=,只适用于光子和原
子作用而使原子在各定态之间跃迁的情况。

对于光
子和原子作用而使原子电离时,只要入射光的能量
eV E 6.13≥,原子就能吸收,对于实物粒子与原子作用使原子激发时,粒子能量大于或
等于能级差即可。

B 、 原子跃迁发出的光谱线条数2
)
1(2
-=
=n n C N n ,是一群氢原子,而不是一个,因为某一个氢原子有固定的跃迁路径。

六、核力与核能
1、核力:原子核内核子间存在的相互作用力
2、特点:强相互作用、短程力,作用范围1.5×10-15
m 之内 3、核能
(1)质能方程:一定的能量和一定的质量相联系,物体的总能量和他的质量成正比。

即2
mc E = 含义:物体具有的能量与他的质量之间存在简单的正比关系,物体的能量增大,质量也增大,物体的能量减小,质量也减小。

(2)核子在结合成核子时出现质量亏损m ∆,吸收的能量也要相应减小。

2
mc E ∆=∆ 原子核分解成核子时要吸收一定的能量,相应的质量增加m ∆,吸收能量2mc E ∆=∆ (4) 获得方式:重核裂变和轻核聚变
聚变反应比裂变反应平均每个核子放出的能量大约要大3-4倍。

1 -13.61
2 -3.40
3 -1.51
4 -0.85
5 -0.54 ∞ 0 n E /eV
图3。

相关文档
最新文档