原子物理知识点

合集下载

高考物理原子必考知识点总结

高考物理原子必考知识点总结

高考物理原子必考知识点总结在高考物理考试中,原子物理是一个必考的知识点。

了解原子物理的基本概念和相关原理,掌握一些基本计算方法,对于顺利完成物理题目至关重要。

本文将对高考物理原子必考的知识点进行总结。

1. 原子结构原子结构是原子物理的基础。

原子由质子、中子和电子组成。

质子和中子构成了原子核,而电子围绕在原子核外部的轨道上。

2. 质子数和电子数质子数通常等于电子数,一个稳定的原子内,正电荷和负电荷相等,使得原子整体是电中性的。

3. 同位素和质量数同位素是指具有相同质子数但质量数不同的原子。

质量数是指原子核中质子和中子的总数。

4. 原子的电离原子发生电离意味着它失去或获得电子。

当原子失去电子时,它会变成正离子;当原子获得电子时,它会变成负离子。

电离过程对于理解离子化合物的形成和电解质的行为至关重要。

5. 原子核的稳定性原子核的稳定性决定了原子是否具有放射性。

通过了解原子核的稳定性规律,可以判断某个核素是否具有放射性以及它的衰变方式。

6. 放射性衰变放射性衰变是指原子核自发地转变为另一种原子核的过程。

常见的放射性衰变有α衰变、β衰变和γ衰变。

α衰变是指原子核放出一个α粒子,质量数减少4、原子序数减少2;β衰变是指原子核衰变成另一个元素,电子从原子核中发射出来;γ衰变是指原子核释放出γ射线,改变的只是能量状态而不改变原子核本身。

7. 原子能级和能级跃迁原子的电子在不同的能级上存在。

原子的电子可以吸收或释放能量,从一个能级跃迁到另一个能级。

这种能级跃迁是光谱学研究的基础,也是激光产生的原理之一。

8. 粒子的波粒二象性粒子的波粒二象性是指微观粒子既可以表现出粒子性质,又可以表现出波动性质。

通过对粒子的物态描述和双缝干涉实验等现象的解释,可以更好地理解物质微观本质。

9. 干涉和衍射干涉是指两个或多个波的叠加现象。

光的干涉在涉及光的波动性质的实验中经常发生。

衍射是波在穿过障碍物或经过边缘时产生的弯曲和扩散现象。

原子物理知识点总结

原子物理知识点总结

原子物理知识点总结1. 原子的基本结构原子的基本结构由核和电子组成。

原子核位于原子的中心,它由质子和中子组成。

质子带正电荷,中子不带电,它们共同组成原子核的内部结构。

原子核的直径约为10^-15米,但它包含了原子的绝大部分质量。

电子绕着原子核运动,它们带负电荷,质量远小于质子和中子。

电子的外轨道上有固定的能量,可以跃迁到不同的能级,从而导致原子的发光和吸收现象。

2. 原子核原子核是原子的中心部分,它由质子和中子组成。

质子和中子是由夸克组成的基本粒子,它们之间通过强相互作用力相互作用。

质子和中子在原子核中相互聚集,通过核力相互作用,维持着原子核的结构。

原子核的质量集中在原子核的小范围内,并且它带有整数的电荷,这使得原子核可以被外部的电场所控制。

3. 原子的谱线原子的谱线是原子的能级结构在光谱上的体现。

原子的能级是电子在原子轨道上具有的稳定能量,不同的能级对应着不同的波长和频率的电磁波谱线。

当电子从高能级跃迁到低能级时,会放出能量,产生发射谱线。

而当原子吸收能量后,电子会从低能级跃迁到高能级,产生吸收谱线。

通过观察原子的谱线,可以了解原子的能级结构和原子的性质。

4. 原子的量子力学原子的性质可以通过量子力学的理论来解释。

量子力学是一种描述微观粒子运动和相互作用的理论,它通过波函数描述了微观粒子的运动状态和性质。

原子内的电子是以波动形式存在的,它们的轨道运动是由波函数描述的。

波函数是满足薛定谔方程的解,并且它们描述了电子的位置、动量、运动轨道等性质。

量子力学的理论可以解释原子的光谱、化学键、原子的稳定性等现象,为我们理解原子的性质和行为提供了重要的理论基础。

总之,原子物理是研究原子内部结构和性质的重要学科,它对于我们理解物质的性质和行为具有重要的意义。

通过了解原子的基本结构、原子核、原子的谱线和原子的量子力学等知识点,我们可以更深入地理解原子的性质和行为,为相关领域的研究和应用提供理论基础。

希望本文的总结对读者有所帮助,也希望大家能够深入学习原子物理,探索更多有关原子的奥秘。

大学原子物理知识点整理(二)2024

大学原子物理知识点整理(二)2024

大学原子物理知识点整理(二)引言概述:原子物理是研究原子和原子核结构以及它们之间的相互作用的领域。

在大学物理学课程中,学生将学习有关原子物理的基本知识和概念。

本文将整理大学原子物理的知识点,帮助读者加深对这一领域的理解。

正文:一、原子的基本结构1. 原子的组成: 电子、质子和中子2. 布尔模型与量子力学模型的对比3. 原子的核外能级和核内能级4. 电子的波粒二象性和不确定性原理5. 原子的量子态和波函数描述二、能级和谱线1. 原子的能级和跃迁1.1 电子的能级和能级图1.2 能级跃迁的条件与选择定则2. 谱线的产生机制2.1 吸收谱线和发射谱线2.2 碰撞激发和辐射激发3. 原子的光谱和谱线的分类3.1 连续光谱、线状光谱和带状光谱3.2 原子谱、分子谱和固体谱4. 原子光谱的应用4.1 能级分析和元素识别4.2 光谱学在天文学和化学中的应用三、放射性和核衰变1. 放射性的定义和特性2. 放射性衰变的方式2.1 α衰变、β衰变和γ衰变2.2 波尔模型下的放射性衰变2.3 放射性衰变的速率和半衰期3. 放射性排放和辐射剂量3.1 放射性元素的排放方式3.2 辐射剂量和辐射安全4. 应用于医学和工业的放射性同位素 4.1 放射性同位素的检测和成像4.2 放射性同位素的治疗和工业应用四、原子核结构和核反应1. 原子核的组成和性质1.1 原子核的质量和电荷1.2 原子核的尺寸和稳定性2. 核反应和核能的产生2.1 反应堆和核武器的原理2.2 核聚变和核裂变的区别3. 核反应的速率和截面3.1 核反应截面的定义和测定3.2 反应速率方程和反应速率常数4. 放射性同位素的衰变4.1 α衰变、β衰变和γ衰变4.2 放射性同位素的半衰期和活度五、原子物理的前沿研究1. 量子力学和粒子物理学的交叉研究2. 原子和分子的控制和操控3. 高能粒子对物质的作用和产生的效应4. 新型材料和器件的研究和开发5. 双原子分子的电子结构和光谱研究总结:本文梳理了大学原子物理的知识点,包括原子的基本结构、能级和谱线、放射性和核衰变、原子核结构和核反应以及原子物理的前沿研究。

原子物理基本概念知识点总结

原子物理基本概念知识点总结

原子物理基本概念知识点总结一、引言原子物理是研究物质的基本粒子——原子及其核心的性质和相互作用规律的学科。

本文将对原子物理的基本概念进行总结,包括原子结构、核结构、粒子相互作用等方面的知识点。

二、原子结构1. 原子的组成原子由原子核和核外电子组成。

原子核是正电荷的集中体,由质子和中子组成;核外电子是负电荷的集中体,绕原子核运动。

2. 原子的大小原子的大小通常用原子半径来描述。

原子半径的大小与原子序数相关,同一周期元素的原子半径随着原子序数的增加而减小,同一族元素的原子半径随着原子序数的增加而增大。

3. 原子的质量原子的质量主要由原子核的质量决定。

原子核质量由质子和中子的质量之和决定,而电子质量较小可以忽略不计。

三、核结构1. 核的组成核由质子和中子组成,质子数决定元素的性质,中子数影响原子是否稳定。

2. 质子数和中子数元素的质子数即为其原子序数,不同元素的质子数不同。

同一元素的质子数在不同的原子中保持不变,但中子数可能不同,这样的原子称为同位素。

3. 核反应和放射性核反应是核内质子和中子的重新组合或分解过程,可以引起核能的释放,包括裂变和聚变两种形式。

某些核素具有不稳定性,会自发地发生放射衰变,释放出射线和粒子,这种性质称为放射性。

四、粒子相互作用1. 电磁相互作用电磁相互作用是电荷间的相互作用,包括静电力和电磁感应力。

原子核内的质子受到静电力的作用,使核能够保持稳定。

2. 核力和弱力核力是质子和质子,中子和中子之间的相互作用力,使得原子核内的粒子能够相互吸引,维持核的结构稳定。

弱力是一种负责放射性衰变的力,可以改变核粒子的类型。

3. 强力强力是原子核内质子和中子之间的相互作用力,是目前已知的最强的相互作用力,使得原子核内的质子和中子能够紧密结合。

五、结论通过本文的总结,我们对原子物理的基本概念有了更深入的了解。

原子结构、核结构和粒子相互作用是原子物理的重要内容,对于研究物质的特性和性质具有重要的意义。

原子物理知识点

原子物理知识点

考点一光电效应1.与光电效应有关的五组概念(1)光子与光电子:光子指光在空间传播时的每一份能量,光子不带电;光电子是金属表面受到光照射时发射出来的电子,其本质是电子。

光子是因,光电子是果。

(2)光电子的动能与光电子的最大初动能:只有金属表面的电子直接向外飞出时,只需克服原子核的引力做功的情况,才具有最大初动能。

(3)光电流和饱和光电流:金属板飞出的光电子到达阳极,回路中便产生光电流,随着所加正向电压的增大,光电流趋于一个饱和值,这个饱和值是饱和光电流,在一定的光照条件下,饱和光电流与所加电压大小无关。

(4)入射光强度与光子能量:入射光强度指单位时间内照射到金属表面单位面积上的总能量。

(5)光的强度与饱和光电流:频率相同的光照射金属产生光电效应,入射光越强,饱和光电流越大,但不是简单的正比关系。

2.对光电效应规律的理解1)光电效应中的“光”不是特指可见光,也包括不可见光。

2)能否发生光电效应,不取决于光的强度和光照时间而取决于光的频率。

任何一种金属都有一个截止频率,入射光的频率低于这个频率则不能使该金属发生光电效应。

3)光电效应的发生几乎是瞬时的。

4)五个关系:最大初动能与入射光频率的关系:E k=hν-W0(光电子的最大初动能与入射光的强度无关).最大初动能与遏止电压U c的关系:E k=eU c,U c可以利用光电管实验的方法测得.逸出功W0与极限频率νc的关系:W0=hνc。

光子频率一定时光照强度与光电流的关系:光照强度大→光子数目多→发射光电子多→光电流大.光子频率与最大初动能的关系:光子频率高→光子能量大→产生光电子的最大初动能大.(5)逸出功的大小由金属本身决定,与入射光无关。

(6)若入射光子的能量恰等于金属的逸出功W0,则光电子的最大初动能为零,入射光的频率就是金属的截止频率。

此,可求出截止频率。

时有hνc=W0,即νc=W0h考点二光电效应的图像问题1.解答光电效应有关图像问题的三个“关键”1)明确图像的种类。

原子物理知识点详细汇总

原子物理知识点详细汇总

百度文库 - 让每个人平等地提升自我第一讲 原 子 物 理自1897年发现电子并确认电子是原子的组成粒子以后,物理学的中心问题就是探索原子内部的奥秘,经过众多科学家的努力,逐步弄清了原子结构及其运动变化的规律并建立了描述分子、原子等微观系统运动规律的理论体系——量子力学。

本章简单介绍一些关于原子和原子核的基本知识。

§ 原子1.1.1、原子的核式结构1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的。

1909年,卢瑟福和他的同事以α粒子轰击重金属箔,即α粒子的散射实验,发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90°,有的甚至被弹回,偏转几乎达到180°。

1911年,卢瑟福为解释上述实验结果而提出了原子的核式结构学说,这个学说的内容是:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间里软核旋转,根据α粒子散射的实验数据可估计出原子核的大小应在10-14nm 以下。

1、1.2、氢原子的玻尔理论 1、核式结论模型的局限性通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。

电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。

由此可得两点结论:①电子最终将落入核内,这表明原子是一个不稳定的系统; ②电子落入核内辐射频率连续变化的电磁波。

原子是一个不稳定的系统显然与事实不符,实验所得原子光谱又为波长不连续分布的离散光谱。

如此尖锐的矛盾,揭示着原子的运动不服从经典理论所表述的规律。

为解释原子的稳定性和原子光谱的离经叛道的离散性,玻尔于1913年以氢原子为研究对象提出了他的原子理论,虽然这是一个过渡性的理论,但为建立近代量子理论迈出了意义重大的一步。

原子物理学知识点总结

原子物理学知识点总结

原子物理学知识点总结原子物理学是研究原子结构和性质的一门物理学科,它是现代物理学的分支之一。

原子理论自古希腊时代就已经存在,但直到19世纪末到20世纪初,人们才开始对原子的结构和性质有了深入的了解。

本文将介绍原子物理学的基本知识点,包括原子的结构、原子核、原子的性质以及原子与分子之间的相互作用等内容。

1. 原子的结构原子是一切物质的基本单位,它主要由电子、质子和中子组成。

根据基本粒子理论,电子、质子和中子是构成原子的基本粒子。

电子是带负电荷的粒子,质子是带正电荷的粒子,中子是不带电的粒子。

在原子结构模型中,质子和中子集中在原子核中,而电子则绕核轨道运动。

根据量子力学理论,电子在轨道上的运动是离散的,即只能位于某些特定的能级上。

这些能级被称为电子壳层,不同的电子壳层对应不同的能量。

2. 原子核原子核是原子的中心部分,它由质子和中子组成,质子和中子统称为核子。

质子和中子是由夸克组成的,它们之间通过强相互作用相互吸引。

在原子核中,质子带正电,中子不带电,它们通过强相互作用相互结合在一起。

原子核的直径通常在10^-15米的数量级上,而原子的直径通常在10^-10米的数量级上,原子核的大小远远小于原子的大小。

3. 原子的性质原子的性质主要包括原子的质量、原子的电荷、原子的半径、原子的稳定性等。

原子的质量主要取决于原子核中质子和中子的质量,而电子的质量可以忽略不计。

原子的电荷等于质子数减去电子数,因此原子的电荷通常为正数或负数。

原子的半径通常用原子量子半径或科学常数玻尔半径来描述。

原子的稳定性与原子核的内部结构有关,对于较轻的原子来说,稳定的原子核通常满足质子数和中子数之比在1:1附近,而对于较重的原子来说,稳定的原子核通常含有更多的中子以保持稳定。

4. 原子与分子之间的相互作用原子与分子之间的相互作用是原子物理学研究的另一个重要内容。

原子和分子之间存在分子间力,包括范德华力、静电吸引力、静电斥力等。

范德华力是由于分子极化而产生的吸引力,静电吸引力是由于正负电荷之间的相互作用而产生的吸引力,静电斥力则是由于同性电荷之间的相互作用而产生的斥力。

原子物理学知识点笔记整理

原子物理学知识点笔记整理

原子物理学知识点笔记整理1. 原子的基本结构原子是物质的最小单位,由原子核和电子组成。

原子核位于原子的中心,由质子和中子组成,而电子围绕着原子核运动。

2. 原子核原子核是原子中最重要的部分,包含了质子和中子。

质子带有正电荷,中子则是中性的。

质子和中子的质量相近,都远大于电子的质量。

3. 元素的定义元素是由具有相同质子数的原子组成的物质。

元素的特性由其原子核中的质子数决定,称为元素的原子序数。

目前已知的元素有118种。

4. 原子的电子层结构原子的电子围绕在原子核周围的不同能级上,被称为电子层。

第一层最靠近原子核,电子数量最少,而随着能级的增加,电子数量也增多。

5. 原子的电子排布原则原子的电子排布遵循一定的规则,包括:•电子填充顺序:按照能级的增加顺序,依次填充电子。

•电子最大容量:每个能级上的电子数量不能超过规定的最大容量。

•电子填充规则:根据电子的自旋方向填充电子。

6. 原子的价电子原子的价电子指的是位于原子最外层能级上的电子。

价电子决定了原子的化学性质和元素之间的化学反应。

7. 元素周期表元素周期表是将元素按照原子序数排列的表格。

周期表中的每一行称为一个周期,每一列称为一个族。

周期表的排列方式依据元素的电子排布和化学性质。

8. 原子的量子数原子的量子数描述了原子的特性,包括:•主量子数(n):描述电子的能级,数值越大,电子离原子核越远。

•角量子数(l):描述电子的角动量,数值范围从0到n-1。

•磁量子数(m):描述电子在磁场中的取向,数值范围从-l到l。

•自旋量子数(s):描述电子的自旋方向,可以为正或负。

9. 原子的能级跃迁原子的能级跃迁指的是电子从一个能级跃迁到另一个能级的过程。

这种跃迁会伴随着能量的吸收或释放,导致原子的光谱特征。

10. 原子的核衰变原子的核衰变是指原子核自发地发生变化,放出粒子或辐射的过程。

核衰变可以导致原子核的质量和原子序数的变化。

以上是关于原子物理学的一些基本知识点的整理。

高三原子物理知识点总结归纳

高三原子物理知识点总结归纳

高三原子物理知识点总结归纳在高三物理学习中,原子物理是一个重要的知识点。

掌握原子物理的概念和理论对于理解物质的性质和相互作用有着关键作用。

本文将对高三原子物理知识点进行总结归纳,帮助同学们更好地掌握这一内容。

1. 原子结构1.1 原子模型的发展一开始,人们认为原子是不可分割的,但经过实验发现了元素周期性和放射现象,进而提出了原子是由带电粒子构成的结构。

根据电子在原子中的分布,我们有了玻尔模型和量子力学模型,进而解释了原子的稳定性和电子轨道分布。

1.2 原子的基本组成原子主要由质子、中子和电子组成。

质子带有正电荷,中子不带电,电子带有负电荷。

质子和中子集中在原子核中,而电子分布在原子核外的能级上。

2. 量子力学2.1 波粒二象性根据量子力学理论,微观粒子既表现出粒子性也表现出波动性。

根据德布罗意-布洛赫假设,具有动量的粒子也具有波动性质。

2.2 不确定关系海森堡提出了著名的不确定关系,它指出了在量子尺度下,无法同时确定粒子的位置和动量。

不确定关系对于解释微观粒子的行为和测量影响至关重要。

3. 原子光谱和能级结构3.1 原子的能级原子的能级就是原子中电子所具有的能量。

电子在不同能级间跃迁会辐射或吸收特定频率的光,产生光谱线。

3.2 光子的能量与频率根据普朗克的光量子假设,光是由一束束离散的能量等于光频的量子组成的。

光子的能量E与频率ν之间满足E = hν,其中h为普朗克常数。

4. 核物理4.1 放射性衰变核物理研究中,人们发现了放射性元素的衰变现象。

放射性衰变包括α衰变、β衰变和γ衰变,其中核反应的过程涉及质子、中子的变化。

4.2 核能的释放和利用核能是一种巨大的能量资源,核聚变和核裂变都可以释放出巨大的能量。

核能被广泛应用于发电、医学和工业等领域。

5. 原子核的物理性质5.1 原子核的结构原子核由质子和中子组成,质子数相同的原子核构成同位素,中子数相同的原子核构成同质异能素。

原子核的质量与电荷会影响元素的化学性质和核反应的过程。

原子物理知识点总结

原子物理知识点总结

原子物理一、波粒二象性1、热辐射:一切物体均在向外辐射电磁波。

这种辐射与温度有关。

故叫热辐射。

特点:1〕物体所辐射的电磁波的波长分布情况随温度的不同而不同;即同时辐射各种波长的电磁波,但*些波长的电磁波辐射强度较强,*些较弱,分布情况与温度有关。

2〕温度一定时,不同物体所辐射的光谱成分不同。

2、黑体:一切物体在热辐射同时,还会吸收并反射一局部外界的电磁波。

假设*种物体,在热辐射的同时能够完全吸收入射的各种波长的电磁波,而不发生反射,这种物体叫做黑体(或绝对黑体)。

在自然界中,绝对黑体实际是并不存在的,但有些物体可近似看成黑体,例如,空腔壁上的小孔。

注意,黑体并不一定是黑色的。

热辐射特点 吸收反射特点一般物体 辐射电磁波的情况与温度,材料种类及外表状况有关 既吸收,又反射,其能力与材料的种类及入射光波长等因素有关黑体 辐射电磁波的强度按波长的分布只与黑体温度有关 完全吸收各种入射电磁波,不反射黑体辐射的实验规律:1〕温度一定时,黑体辐射的强度,随波长分布有一个极大值。

2〕温度升高时,各种波长的辐射强度均增加。

3〕温度升高时,辐射强度的极大值向波长较短方向移动。

4、能量子:上述图像在用经典物理学解释时与该图像存在严重的不符〔维恩、瑞利的解释〕。

普朗克认为能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做能量子.νεh =)1063.6(34叫普朗克常量s J h ⋅⨯=-。

由量子理论得出的结果与黑体的辐射强度图像吻合的非常完美,这印证了该理论的正确性。

5光电效应:在光的照射下,金属中的电子从金属外表逸出的现象。

发射出来的电子叫光电子。

光电效应由赫兹首先发现。

爱因斯坦指出:① 光的能量是不连续的,是一份一份的,每一份能量子叫做一个光子.光子的能量为ε=h ν,其中h=6.63×10-34 J ·s 叫普朗克常量,ν是光的频率;② 当光照射到金属外表上时,一个光子会被一个电子吸收,吸收的过程是瞬间的〔不超过10-9s 〕。

中考原子物理知识点归纳

中考原子物理知识点归纳

中考原子物理知识点归纳原子物理是物理学中研究原子结构和性质的分支学科,对于中考物理来说,原子物理的知识点主要包括原子结构、原子核结构、原子光谱以及原子的能级等。

以下是中考原子物理知识点的归纳:原子结构原子由原子核和电子组成。

原子核位于原子中心,由质子和中子组成,质子带正电,中子不带电。

电子围绕原子核运动,带负电。

原子核的体积很小,但质量很大,几乎集中了整个原子的质量。

原子核结构原子核由质子和中子组成,质子数决定了元素的类型。

质子数相同的原子称为同位素。

原子核的稳定性与核内质子和中子的比例有关,通常较重的元素更不稳定。

原子光谱原子光谱是原子吸收或发射光时所显示的谱线。

每种元素都有其特定的光谱线,这是由于电子在不同能级间跃迁时释放或吸收特定能量的光子造成的。

光谱分析是研究原子结构的重要手段。

原子的能级电子在原子内按照特定的能级排列,每个能级对应一定的能量。

电子在不同能级间的跃迁伴随着能量的吸收或释放。

能级的概念是量子力学的基础之一。

原子的电离当原子吸收足够的能量时,电子可以从原子中脱离出来,形成带正电的离子。

这个过程称为电离。

电离可以由热、光、电场等多种因素引起。

原子的结合能结合能是指将原子核中的核子(质子和中子)分离所需的能量。

结合能的大小与核子的排列方式有关,通常较重的原子核具有较高的结合能。

放射性衰变某些原子核不稳定,会通过放射性衰变释放能量,转变为更稳定的原子核。

放射性衰变有α衰变、β衰变等多种形式。

结束语原子物理学是物理学中一个重要的分支,它不仅帮助我们理解物质的基本组成和性质,还广泛应用于化学、生物学、医学和材料科学等领域。

掌握原子物理的基本概念和原理,对于深入理解自然界的微观现象具有重要意义。

原子物理知识点

原子物理知识点

原子物理知识点原子物理是物理学的一个重要分支,它研究原子的结构、性质以及原子内部发生的各种过程和现象。

以下是一些关键的原子物理知识点。

一、原子的结构原子由原子核和核外电子组成。

原子核位于原子的中心,带正电荷,由质子和中子构成。

质子带正电,中子不带电。

核外电子带负电,围绕原子核作高速运动。

原子的大小主要由电子云的范围决定。

原子的直径约为 10^(-10) 米,而原子核的直径约为 10^(-15) 米,仅占原子体积的极小部分,但却集中了几乎全部的原子质量。

二、氢原子的能级结构氢原子的能级是量子化的,这意味着电子只能处于特定的能量状态。

这些能量状态可以用能级公式来表示:$E_n =\frac{136}{n^2}eV$,其中 n 是主量子数,n = 1, 2, 3, 当电子从高能级跃迁到低能级时,会发射出光子,其能量等于两个能级的能量差。

反之,当电子吸收光子时,可以从低能级跃迁到高能级。

三、电子的轨道根据玻尔理论,电子在原子中的轨道是特定的,并且是稳定的。

这些轨道的角动量是量子化的,即$L = n\hbar$,其中$\hbar$ 是约化普朗克常数。

然而,现代量子力学的观点认为,电子并不是在确定的轨道上运动,而是以概率云的形式分布在原子核周围。

电子在空间某点出现的概率可以通过波函数来描述。

四、原子的光谱当原子中的电子发生能级跃迁时,会发射或吸收特定频率的光,形成原子光谱。

原子光谱分为发射光谱和吸收光谱。

发射光谱是原子从高能级向低能级跃迁时产生的,表现为一系列明亮的谱线。

吸收光谱则是原子从低能级吸收特定频率的光跃迁到高能级时形成的,表现为一系列暗线。

每种元素的原子都有其独特的光谱特征,通过对光谱的分析,可以确定物质的组成成分。

五、泡利不相容原理在一个原子中,不可能有两个或两个以上的电子具有完全相同的四个量子数。

这意味着每个原子轨道最多只能容纳两个电子,且这两个电子的自旋方向必须相反。

六、原子的磁矩电子绕原子核运动以及电子的自旋都会产生磁矩。

原子物理高考必背知识点归纳总结

原子物理高考必背知识点归纳总结

原子物理高考必背知识点归纳总结在准备高考物理考试时,原子物理是一个重要的知识点。

了解原子结构、放射性衰变、核能和核辐射等内容,对于解答试题是至关重要的。

本文将对原子物理考点进行归纳总结,帮助考生系统地掌握这些知识。

一、原子结构1. 原子的组成:原子由电子、质子和中子组成。

电子带有负电荷,质量极小;质子带有正电荷,质量较大;中子不带电,质量与质子相近。

2. 原子核的结构:原子核由质子和中子组成,质子数决定了元素的属性。

3. 原子的电荷状态:正负电荷的数量相等时,原子呈中性;带有正电荷时,称为正离子;带有负电荷时,称为负离子。

二、放射性衰变1. 放射性衰变的概念:放射性衰变是指不稳定核自发地转变成稳定核的过程,伴随着放射性衰变产物的释放。

2. 放射性衰变的种类:包括α衰变、β衰变和γ衰变。

α衰变是指放射出α粒子,改变了核的质量数和原子序数;β衰变是指放射出β粒子,改变了核的质量数,但不改变原子序数;γ衰变是指放射出γ射线,不改变核的质量数和原子序数。

3. 放射性衰变的应用:放射性同位素在医学诊疗、工业上有广泛应用,如碘-131用于治疗甲状腺疾病,辐射消毒灯可用于杀菌消毒等。

三、核能1. 核反应的能量变化:核反应中,质量可以转化为能量。

根据爱因斯坦的质能方程E=mc²,质量变化Δm对应的能量变化ΔE=Δmc²。

2. 核聚变和核裂变:核聚变是指轻核聚合成重核的过程,如太阳能的产生;核裂变是指重核分裂成轻核的过程,如核电站的反应堆。

3. 核能的应用:核能可以用于发电、提供热能等,但同时也存在核废料处理和环境影响的问题,需要合理利用和管理。

四、核辐射1. 核辐射的定义:核辐射是指放射性核和高能粒子通过空气、物质等传播的现象。

2. 核辐射的种类:包括α粒子、β粒子、γ射线等。

α粒子带有正电荷,质量较大,穿透能力较弱;β粒子带有负电荷,质量比较小,穿透能力较强;γ射线为电磁辐射,穿透能力最强。

高三原子物理知识点总结

高三原子物理知识点总结

高三原子物理知识点总结原子物理是高中物理学习的重要内容之一,它主要研究原子的结构、性质以及原子核的变化等方面。

下面是对高三原子物理知识点的总结:1. 原子结构原子由原子核和绕核电子构成。

原子核由质子和中子组成,质子带正电荷,中子带中性,两者质量几乎相同。

绕核电子带负电荷,绝大多数原子中,电子数等于质子数。

2. 量子理论量子理论是解释原子结构的基础理论。

根据量子理论,电子在原子中存在特定的能级,每个能级包含一定数量的电子。

当电子从低能级跃迁到高能级,吸收一定能量;当电子从高能级跃迁到低能级,放出一定能量。

3. 波粒二象性根据波粒二象性原理,物质既可以表现出波动性,也可以表现出粒子性。

电子也具备波粒二象性,既可以看作粒子,也可以看作波动。

4. 环境量子化环境量子化指的是原子核外电子的运动状态的量子化。

电子绕核运动的轨道不是连续的,而是分立的。

不同轨道对应不同的能级,其中最内层轨道对应基态,其他轨道对应激发态。

5. 原子光谱原子光谱是原子发射光线经光谱仪分析后得到的谱线。

原子光谱可以分为发射光谱和吸收光谱。

原子发射光谱是指在高温下,原子被激发后放出光线,而原子吸收光谱是指原子吸收特定波长的光线后激发到高能级。

6. 玻尔理论玻尔理论是描述氢原子结构的模型,根据该理论,原子的能级为E=-13.6/n^2电子伏特(n为主量子数)。

该理论可以解释氢原子光谱线的位置和能级跃迁的原理。

7. 电磁辐射电磁辐射是原子中电子从高能级跃迁到低能级时释放出来的能量。

电子从一个能级跃迁到另一个能级时,释放的能量以光子的形式传播出来,构成辐射。

8. 半衰期原子核在放射性衰变过程中,其数量会随时间而减少。

半衰期是指在该过程中,原子核衰变一半所需的时间。

半衰期可以用来评估放射性元素的稳定性和衰变速度。

以上是对高三原子物理知识点的简要总结。

通过对这些知识的学习和理解,我们可以更好地理解原子的内部结构和性质,为日后的学习和研究打下坚实的基础。

原子物理知识点总结全

原子物理知识点总结全

原 子 物 理一、卢瑟福的原子模型——核式构造1.1897年,_________发现了电子.他还提出了原子的______________模型.2.物理学家________用___粒子轰击金箔的实验叫__________________。

3.实验结果: 绝大局部α粒子穿过金箔后________;少数α粒子发生了较大的偏转; 极少数的α粒子甚至被____.4.实验的启示:绝大多数α粒子直线穿过,说明原子部存在很大的空隙; 少数α粒子较大偏转,说明原子部集中存在着对α粒子有斥力的正电荷;极个别α粒子反弹,说明个别粒子正对着质量比α粒子大很多的物体运动时,受到该物体很大的斥力作用. 5.原子的核式构造:卢瑟福依据α粒子散射实验的结果,提出了原子的核式构造:在原子中心有一个很小的核,叫________, 原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核旋转.例1:在α粒子散射实验中,卢瑟福用α粒子轰击金箔,以下四个选项中哪一项属于实验得到的正确结果: A.α粒子穿过金箔时都不改变运动方向 B.极少数α粒子穿过金箔时有较大的偏转,有的甚至被反弹 C.绝大多数α粒子穿过金箔时有较大的偏转 D.α粒子穿过金箔时都有较大的偏转. 例2:根据α粒子散射实验,卢瑟福提出了原子的核式构造模型。

如图1-1所示表示了原子核式构造模型的α粒子散射图景。

图中实线表示α粒子的运动轨迹。

其中一个α粒子在从a 运动到b 、再运动到c 的过程中〔α粒子在b 点时距原子核最近〕,以下判断正确的选项是〔 〕 A .α粒子的动能先增大后减小B .α粒子的电势能先增大后减小C .α粒子的加速度先变小后变大D .电场力对α粒子先做正功后做负功 二 玻尔的原子模型 能级1.玻尔提出假说的背景——原子的核式构造学说与经典物理学的矛盾:⑴按经典物理学理论,核外电子绕核运动时,要不断地辐射电磁波,电子能量减小,其轨道半径将不断减小,最终落于原子核上,即核式构造将是不稳定的,而事实上是稳定的.⑵电子绕核运动时辐射出的电磁波的频率应等于电子绕核运动的频率,由于电子轨道半径不断减小,发射出的电磁波的频率应是连续变化的,而事实上,原子辐射的电磁波的频率只是某些特定值。

原子物理前三章总结知识点

原子物理前三章总结知识点

原子物理前三章总结知识点第一章:原子结构原子是物质的基本单位,由原子核和围绕核运动的电子构成。

原子核由质子和中子组成,质子带正电荷,中子不带电荷。

电子带负电荷,其质量远小于质子和中子。

根据量子力学的原理,电子围绕原子核运动的轨道是分立的,不同轨道对应不同能级,每个轨道能容纳不同数量的电子。

原子的质量主要来自于原子核,而原子的大小和化学性质则主要由外部的电子决定。

第二章:原子核的特性原子核是原子的中心部分,其质子数和中子数决定了元素的化学性质和同位素的特性。

原子核的直径约为10^-15米,其密度非常大,几乎占据整个原子的质量。

原子核的质子数和中子数决定了原子的质量数,而元素的化学性质主要由其质子数决定。

原子核还具有强相互作用力和弱相互作用力,它们决定了原子核的稳定性和放射性衰变特性。

第三章:基本粒子的性质在原子物理中,我们还需要了解一些基本粒子的性质。

目前已知存在六种夸克,它们是构成质子和中子的基本粒子。

另外,还存在三种带电轻子,它们是电子、μ子和τ子。

此外,还存在四种中微子,它们几乎没有质量和电荷,对弱相互作用起主要作用。

基本粒子的性质对于我们理解物质的基本结构和相互作用有重要意义。

总结以上讨论,原子物理是一门涉及原子和基本粒子结构、性质及相互作用的重要学科。

通过对原子结构、原子核的特性和基本粒子的性质的研究,我们可以更深入地了解物质的本质和相互作用规律。

这对于解决一些基本问题,如能源供给、材料制备和环境保护等具有重要意义。

希望通过学习原子物理的知识,我们能更好地理解自然界的规律,推动科学技术的发展和人类社会的进步。

原子物理知识点

原子物理知识点

原子物理知识点原子物理指的是关于原子和分子的物理学研究。

原子是由带有正电荷的原子核和带有负电荷的电子组成的,其大小约为 10^-10 米。

原子物理研究的主要内容包括原子结构、核物理,以及原子和分子的物理和化学性质等方面。

1. 原子结构原子的结构主要由原子核和电子组成。

原子核由带有正电荷的质子和带有负电荷的中性子组成,质子和中性子合称为核子。

中性的原子核直径约为 10^-15 米,比原子半径约大10^4 倍。

电子是质量极小的粒子,其轨道围绕在原子核外部,根据波粒二象性理论可以将电子看做既有粒子特征,也有波动特征的物体。

电子的轨道可以用量子力学的波函数来描述,其中每个轨道对应一定的能量,越靠近原子核的轨道能量越低。

原子结构的核心概念是能级,即原子中的电子具有可以带有的能量级别。

2. 原子核物理原子核中带有正电荷的质子之间的相互作用力是比较复杂的,其力源来自于电荷和核力。

电荷相互作用力是简单的静电相互作用,但是在α衰变中,则是核力从中发挥作用,并且质子与中性子的相互作用也需要核力的作用。

此外,核力对于比质子和中子的数量更大的物体来说也非常重要。

核物质的质量密度所需要距离或所占的体积十分的小,因此核物质对于能量传输具有高度的效率。

核物理学中的原子核反应是指两个或多个原子核相互作用以形成新型核的过程。

这类反应可以具有放出大量的核能,可以用于核能的利用。

3. 原子和分子的物理和化学性质原子和分子在物理和化学性质上都具有非常关键的作用。

许多材料的不同物理性质,通常可以通过原子和分子之间的相互作用来解释并预测。

例如,材料的熔化温度和固化温度、晶体的结构和性质、某些分子的光学性质等。

在化学过程中,原子和分子参与了大量的化学反应过程。

化学反应通常涉及原子之间的共用电子对,所谓的化学键。

不同的元素之间的结合方式可以改变物质的性质和成分。

例如,将氧气和氢气转化为水,可以使能量在不同的形式之间传递。

同时,原子和分子之间的化学反应也广泛地应用于多种工程和生物学领域。

关于原子物理的知识点总结

关于原子物理的知识点总结

关于原子物理的知识点总结1. 原子结构原子是物质的基本单位,它由原子核和围绕原子核运动的电子构成。

根据量子力学的理论,电子围绕原子核的轨道是量子化的,即电子只能占据特定的能级。

这些能级又被称为原子的轨道,它们分别对应着不同的能量。

根据波尔理论,原子轨道的能量级数由主量子数决定,而轨道的形状由角量子数和磁量子数决定。

此外,每个轨道还有自旋量子数。

原子的轨道可以分为s、p、d、f等不同的子壳,每个子壳又可以分为不同的轨道。

2. 原子核原子核是原子的中心部分,它由质子和中子组成。

质子和中子有着相同的质量,但是它们的电荷正负相反。

根据现代原子模型,质子和中子是由更小的粒子——夸克构成的。

原子核的直径大约只有10^-15米,而原子整体的直径则大约为10^-10米,因此原子核是原子的重要组成部分。

原子核的结构是非常复杂的,其中包含着大量的核子相互作用和核力。

在原子核中,质子和中子之间的作用力非常强大,能够保持原子核的稳定性。

3. 元素周期表元素周期表是化学中的重要工具,它将所有已知的元素按照其原子序数和化学性质排列在一张表格上。

元素周期表的排列方式使得化学家可以快速地找到元素之间的联系和规律。

元素周期表以不断重复的周期性性质为基础,其中每个周期都代表一种化学行为规律。

原子序数自然地反映了元素的电子排布和原子结构。

元素周期表的周期性规律性质是由原子结构和电子排布的规律性所决定的,因此元素周期表的排列方式和元素的性质之间存在着内在的联系。

4. 原子激发和原子能级当原子受到外部能量的激发时,其电子可能会跃迁到更高能级的轨道上,这种现象被称为原子的激发。

原子的激发能够产生出各种不同的现象,比如光子的辐射和吸收,原子光谱和激光等。

原子的能级结构是由原子内部的电子排布所决定的,不同的能级对应着不同的轨道和能量。

当电子从高能级跃迁到低能级时,会释放出一定的能量。

这些特定的能量级被称为原子的能级,它是原子物理研究的重要内容之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、光电效应现象1、光电效应:光电效应:物体在光(包括不可见光)的照射下发射电子的现象称为光电效应。

2、光电效应的研究结论:①任何一种金属,都有一个极限频率,入射光的频率必须大于这个极限频率................,才能产生光电效应;低于这个频率的光不能产生光电效应。

②光电子的最大初动........能与入射光的强度无关..........,只随着入射光频率的增大..而增大..。

注意:从金属出来的电子速度会有差异,这里说的是从金属表面直接飞出来的光电子。

③入射光照到金属上时,光电子的发射几乎是瞬时的............,一般不超过10-9s;④当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比。

3、光电效应的应用:光电管:光电管的阴极表面敷有碱金属,对电子的束缚能力比较弱,在光的照射下容易发射电子,阴极发出的电子被阳极收集,在回路中形成电流,称为光电流。

注意:①光电管两极加上正向电压,可以增强光电流。

②光电流的大小跟入射光的强度和正向电压有关,与入射光的频率无关。

入射光的强度越大,光电流越大。

③遏止电压U0。

回路中的光电流随着反向电压的增加而减小,当反向电压U 0满足:2max21eUmv=,光电流将会减小到零,所以遏止电压与入射光的频率有关。

4、波动理论无法解释的现象:①不论入射光的频率多少,只要光强足够大,总可以使电子获得足够多的能量,从而产生光电效应,实际上如果光的频率小于金属的极限频率,无论光强多大,都不能产生光电效应。

②光强越大,电子可获得更多的能量,光电子的最大初始动能应该由入射光的强度来决定,实际上光电子的最大初始动能与光强无关,与频率有关。

③光强大时,电子能量积累的时间就短,光强小时,能量积累的时间就长,实际上无论光入射的强度怎样微弱,几乎在开始照射的一瞬间就产生了光电子.二、光子说1、普朗克常量普郎克在研究电磁波辐射时,提出能量量子假说:物体热辐射所发出的电磁波的能量是不连续的,只能是hv的整数倍,hv称为一个能量量子。

即能量是一份一份的。

其中v辐射频率,h是一个常量,称为普朗克常量。

2、光子说在空间中传播的光的能量不是连续的,而是一份一份的,每一份叫做一个光子,光子的能量ε跟光的频率ν成正比。

hv=ε,其中:h是普朗克常量,v是光的频率。

三、光电效应方程1、逸出功W: 电子脱离金属离子束缚,逸出金属表面克服离子引力做的功。

2、光电效应方程:如果入射光子的能量hv 大于逸出功W 0,那么有些光电子在脱离金属表面后还有剩余的动能——根据能量守恒定律,入射光子的能量hv 等于出射光子的最大初动能与逸出功之和,即02max 21W mv hv += 其中2max 21mv 是指出射光子的最大初动能。

3、 光电效应的解释:①极限频率:金属内部的电子一般一次只能吸收一个光子的能量,只有入射光子的能量hv 大于或者等于逸出功W 0 即:hWv 0≥时,电子才有可能逸出,这就是光电效应存在极限频率的原因。

②遏制电压:由02max 21W mv hv +=和02max 21eU mv =有:00W eU hv +=,所以遏制电压只与入射光频率有关,与入射光的强度无关,这就是光电效应存在遏制电压的原因。

四、康普顿效应(表明光子具有动量)1、康普顿效应:用X 射线照射物体时,一部分散射出来的X 射线的波长会变长,这个现象叫康普顿效应。

康普顿效应是验证光的波粒二象性的重要实验之一。

2、康普顿效应的意义:证明了爱因斯坦光子假说的正确性,揭示了光子不仅具有能量,还具有动量。

光子的动量为λh p =3、现象解释:碰撞前后光子与电子总能量守恒,总动量也守恒。

碰撞前,电子可近似视为静止的,碰撞后,电子获得一定的能量和动量, X 光子的能量和动量减小,所以X 射线光子的波长λ变长。

高考考点:原子物理考点分析一、历史人物及相关成就1、 汤姆生:发现电子,并提出原子枣糕模型 ——说明原子可再分2、 卢瑟福:α粒子散射实验——说明原子的核式结构模型 发现质子3、 查德威克:发现中子4、 约里奥.居里夫妇:发现正电子5、 贝克勒尔:发现天然放射现象——说明原子核可再分6、 爱因斯坦:质能方程2mc E =,2mc E ∆=∆ 7、 玻尔:提出玻尔原子模型,解释氢原子线状光谱 8、 密立根:油滴实验——测量出电子的电荷量提醒:1、核反应过程一般都是不可逆的,所以核反应方程只能用单箭头表示反应方向,不能用等号连接。

2、核反应的生成物一定要以实验事实为基础,不能凭空只依据两个守恒定律杜撰出生成物来写出核反应方程3、核反应遵循质量数守恒而不是质量守恒,遵循电荷数守恒三、三种射线比较提醒:半衰期:表示原子衰变一半所用时间1、半衰期由原子核内部本身的因素据顶,跟原子所处的物理状态(如压强、温度)或化学状态(如单质、化合物)无关2、半衰期是大量原子核衰变时的统计规律,个别原子核经多长时间衰变无法预测,对个别或极少数原子核,无半衰期而言。

3、 放射性同位素的应用:(1)工业、摊上、农业、医疗等(2)作为示踪原子 四、原子结构1、 原子的核式结构模型 (1)α粒子散射实验结果:绝大多数α粒子穿过金箔后仍沿原来的方向前进,少数α粒子发生了较大偏转,极少数α粒子甚至被反弹回来。

(2)原子的核式结构模型:在原子中心有一个很小的原子核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。

(3)原子核的尺度:原子核直径的数量级为10-15m ,原子直径的数量级约为10-10m 。

(4)原子核的组成:原子核是由质子和中子组成的,原子核的电荷数等于核内的质子数。

2、玻尔原子模型(1)原子只能处于一系列能量不连续的状态中,具有确定能量的未定状态叫定态。

原子处于最低能级的状态叫基态,其他的状态叫激发态。

(2)频率条件:高能m 到低能m 态:辐射光子λchE E hv n m =-=(3)原子的不同能量状态对应于电子的不同运行轨道。

五、氢原子光谱(1) 氢原子能级图: 提醒:A 、 原子跃迁条件:n m E E hv -=,只适用于光子和原子作用而使原子在各定态之间跃迁的情况。

对于光子和原子作用而使原子电离时,只要入射光的能量eV E 6.13≥,原子就能吸收,对于实物粒子与原子作用使原子激发时,粒子能量大于或等于能级差即可。

B 、 原子跃迁发出的光谱线条数2)1(2-==n n C N n ,是一群氢原子,而不是一个,因为某一个氢原子有固定的跃迁路径。

六、核力与核能1、核力:原子核内核子间存在的相互作用力2、特点:强相互作用、短程力,作用范围1.5×10-15m 之内3、核能(1)质能方程:一定的能量和一定的质量相联系,物体的总能量和他的质量成正比。

即2mc E =含义:物体具有的能量与他的质量之间存在简单的正比关系,物体的能量增大,质量也增大,物体的能量减小,质量也减小。

(2)核子在结合成核子时出现质量亏损m ∆,吸收的能量也要相应减小。

2mc E ∆=∆ 原子核分解成核子时要吸收一定的能量,相应的质量增加m ∆,吸收能量2mc E ∆=∆ (2) 获得方式:重核裂变和轻核聚变聚变反应比裂变反应平均每个核子放出的能量大约要大3-4倍。

1 -13.612 -3.403 -1.514 -0.855 -0.54 ∞ 0 n E /eV图3波粒二象性、原子结构和原子核一、单项选择题1.(云南省昆明八中2012届高三上学期期中考试)氢原子辐射出一个光子后,根据玻尔理论,下述说法中正确的是( )A .电子绕核旋转的半径增大B .氢原子的能量增大C .氢原子的电势能增大D .氢原子核外电子的速率增大 2.(云南省部分名校2012届高三上学期联考理综卷)某光电管的阴极为金属钾制成的,它的逸出功为2.21 eV ,如图所示是氢原子的能级图,一群处于n = 4能级的氢原子向低能级跃迁时,辐射的光照射到该光电管的阴极上,这束光中能使金属钾发生光电效应的光谱线条数是( )A.2条B.4条C.5条D.6条3.图1所示为氢原子的四个能级,其中E 为基态,若氢原子A 处于激发态E 2,氢原子B 处于激发态E 3,则下列说法正确的是 ( ) A .原子A 可能辐射出3种频率的光子 B .原子B 可能辐射出3种频率的光子C .原子A 能够吸收原子B 发出的光子并跃迁道能级E 4D .原子B 能够吸收原子A 发出的光子并跃迁道能级E 44.(北京市朝阳区2012届高三上学期期中统考)下列核反应方程中属于β衰变的是( )A .235114489192056360U+n Ba Kr+3n →+ B .131131053541I Xe e -→+C .4141712781He+N O H →+D .238234492902U Th+He →5.(福建省福州八中2012届高三上学期质检物理试卷)用光照射某种金属,有光电子从金属表面逸出,如果光的频率不变,而减弱光的强度,则( )A .逸出的光电子数减少,光电子的最大初动能不变B .逸出的光电子数减少,光电子的最大初动能减小C .逸出的光电子数不变,光电子的最大初动能减小D .光的强度减弱到某一数值,就没有光电子选出了6.(云南省昆明八中2012届高三上学期期中考试)下面列出的是一些核反应方程( )A .X 是质子,Y 是中子,Z 是正电子B .X 是正电子,Y 是质子,Z 是中子XS P +→i 30143015YB H Be +→+1052194ZLi He He +→+734242E 4E 3 E 2E 1 图1C .X 是中子,Y 是正电子,Z 是质子D .X 是正电子,Y 是中子,Z 是质子 7.(2011年广州模拟)仔细观察氢原子的光谱,发现它只有几条分离的不连续的亮线,其原因是( )A .氢原子只有几个能级B .氢原子只能发出平行光C .氢原子有时发光,有时不发光D .氢原子辐射的光子的能量是不连续的,所以对应的光的频率也是不连续的8.(甘肃省河西五市部分高中2012届高三上学期联考试题)下列说法正确的是( )A .天然放射现象说明原子核内部具有复杂结构B .α粒子散射实验说明原子核内部具有复杂结构C .原子核能发生β衰变说明原子核内存在电子D .氢原子从定态n =3跃迁到n =2,再跃迁到n =l 定态,则后一次跃迁辐射出的光子波长比前一次的长9.(山西省忻州一中2012届高三上学期月考试题)核电站核泄漏的污染物中含有碘131和铯137。

碘131的半衰期约为8天,会释放β射线;铯137是铯133的同位素,半衰期约为30年,发生衰变时会辐射γ射线。

下列说法正确的是( )A .碘131释放的β射线由氦核组成B .铯137衰变时辐射出的γ光子能量小于可见光光子能量C .与铯137相比,碘131衰变更慢D .铯133和铯137含有相同的质子数 10.(甘肃省兰州五十五中2012届高三上学期月考试题)放射性同位素钍232经α、β衰变会生成氡,其衰变方程为βαRn Th 2208623290y x ++→,其中( )A.x =1,y =3B.x =2,y =3 C .x =3,y =1 D.x =3,y =2 11.(2011届·南京调研)下列叙述中不正确的有________.A .光的粒子性被光电效应和康普顿效应所证实B .在α粒子散射实验的基础上,卢瑟福提出了原子的核式结构模型C .红外线照射某金属表面时发生了光电效应,则紫外线也一定可以使该金属发生光电效应D .普朗克为了解释光电效应的规律,提出了光子说。

相关文档
最新文档