光纤传输损耗测试实验报告.doc
数据设备光纤传输测试报告
数据设备光纤传输测试报告1. 引言本文档是对数据设备光纤传输测试的报告,旨在总结测试的目的、方法、结果和结论。
2. 测试目的测试的目的是验证数据设备在光纤传输环境下的性能和可靠性。
具体目标包括:- 测试设备的传输速率和时延- 确保数据在光纤传输过程中不丢失或损坏- 验证设备在不同光纤距离下的可靠性3. 测试方法为了达到上述测试目的,我们采用以下测试方法:- 构建光纤传输实验环境,包括选择合适的光纤类型和长度- 使用专业的光纤测试设备对数据设备进行性能测试,包括传输速率、时延和丢包率等指标- 进行多次测试,以确保结果的可靠性和稳定性4. 测试结果我们进行了多次光纤传输测试,并记录了每次的测试结果。
以下是部分测试结果的总结:- 传输速率:平均传输速率为XXX Mbps- 时延:平均时延为XXX ms- 丢包率:平均丢包率为XXX%5. 结论基于以上测试结果,可以得出以下结论:- 数据设备在光纤传输环境下具有较高的传输速率和较低的时延- 数据传输过程中几乎没有丢包或损坏现象- 设备在不同光纤距离下表现出稳定的性能和可靠性6. 建议鉴于测试结果,我们提出以下建议:- 继续监测和测试数据设备的性能和可靠性,以确保其持续达到预期水平- 定期对光纤传输环境进行维护和检修,以免影响数据传输质量7. 后续计划基于测试结果和建议,我们计划进行以下后续工作:- 深入研究和评估数据设备在更复杂光纤网络环境中的性能- 探索其他测试方法和指标,以更全面地评估数据设备的光纤传输性能8. 结束语本测试报告对数据设备光纤传输的性能和可靠性进行了全面的测试和分析,得出了令人满意的结果。
我们将继续努力提升数据设备的传输能力,以满足日益增长的数据传输需求。
光纤损耗的测试实验报告
光纤损耗的测试实验报告实验名称:光纤损耗的测试实验目的:1. 掌握光纤损耗测试方法;2. 了解光纤损耗与光纤实际应用的关系;3. 观察不同因素对光纤损耗的影响。
实验器材:1. 一根光纤;2. 光纤损耗测试仪;3. 光源;4. 光功率计;5. 滤光片;6. 直流电源。
实验步骤:1. 将光源和光功率计与光纤损耗测试仪相连;2. 通过直流电源给光源供电;3. 调整光源的功率以及滤光片的位置,使得光纤输入的光功率稳定在一个合适的范围;4. 将被测光纤连接到光纤损耗测试仪的端口;5. 观察光功率计显示的数值,并记录下来;6. 通过调整光纤的连接方式、弯曲度以及距离等因素,重复步骤5;7. 分别测试不同长度的光纤,如10米、20米、30米等;8. 分析数据并得出结论。
实验结果:在进行实验时,我们观察到以下现象:1. 光纤损耗与光纤的连接方式有关,直插连接方式损耗较小,而弯曲连接方式损耗较大;2. 光纤损耗与光纤的弯曲度有关,弯曲度越大,损耗越大;3. 光纤损耗随着距离的增加而增加,损耗与距离呈线性关系。
实验分析:1. 光纤损耗与连接方式有关,直插连接方式损耗较小的原因是光线能够较直接地通过光纤传输,而弯曲连接方式中光线需要经过弯曲,导致部分光线不被完全传输。
2. 光纤损耗与弯曲度有关的原因是弯曲会引起光纤中光线的折射和反射,从而导致部分光线能量的损失。
3. 光纤损耗与距离增加而增加的原因是光纤本身存在材料吸收和散射的现象,随着光线在光纤中传输的距离增加,这些损耗也会逐渐累积。
实验结论:光纤损耗的大小与光纤的连接方式、弯曲度以及传输距离等因素密切相关。
在实际应用中,应选择合适的连接方式、控制光纤的弯曲度,并根据实际需求合理选择光纤的长度,以降低光纤损耗,保证传输质量。
实验改进:为了进一步完善实验结果,我们可以进行如下改进:1. 增加实验样本数量,对更多不同规格、材质的光纤进行测试,以验证实验结果的一般性;2. 在实验中加入光纤连接头的测试,以了解连接头对光纤损耗的贡献;3. 在实验过程中,控制所有其他因素保持一致,只改变一个因素进行测试,以便更准确地观察不同因素对光纤损耗的影响。
损耗实验报告
一、实验目的1. 了解光纤损耗的定义及其产生原因。
2. 掌握光纤传输损耗的测量方法,包括截断法、插入法等。
3. 熟悉光纤传输损耗的测试仪器及其使用方法。
4. 通过实验,了解不同波长下光纤的损耗特性。
二、实验原理光纤传输损耗是指光纤在传输过程中,光信号能量因各种原因而逐渐减弱的现象。
光纤损耗的产生原因主要有吸收损耗、散射损耗和辐射损耗等。
1. 吸收损耗:光纤材料对光信号的吸收作用,导致光信号能量减弱。
2. 散射损耗:光信号在光纤中传播时,因光纤材料不均匀而引起的散射现象,导致光信号能量减弱。
3. 辐射损耗:光信号在光纤中传播时,部分能量通过光纤的芯层与包层界面辐射到周围介质中,导致光信号能量减弱。
光纤传输损耗的测量方法主要有截断法、插入法等。
本实验采用插入法测量光纤的损耗。
三、实验仪器与设备1. 光纤传输损耗测试仪2. 光功率计3. 光纤跳线一组4. 光无源器件一套(连接器、光耦合器、光隔离器、波分复用器、光衰减器)5. 双踪示波器6. 万用表四、实验步骤1. 将光纤跳线连接到光纤传输损耗测试仪的输入端,并调整光功率计至合适位置。
2. 将光无源器件(连接器、光耦合器、光隔离器、波分复用器、光衰减器)按照实验要求连接到光纤跳线上。
3. 使用光功率计测量光信号在连接器处的输入功率P1。
4. 将光无源器件按照实验要求连接到光纤跳线的另一端,并使用光功率计测量光信号在连接器处的输出功率P2。
5. 计算光纤传输损耗:ΔP = P1 - P2(单位:dB)。
6. 重复步骤3-5,分别测量不同波长下光纤的传输损耗。
五、实验结果与分析1. 不同波长下光纤的传输损耗根据实验数据,绘制不同波长下光纤的传输损耗曲线。
从曲线可以看出,光纤的传输损耗随着波长的增加而逐渐减小。
2. 光纤损耗的主要原因通过实验结果分析,可以得出光纤损耗的主要原因是吸收损耗和散射损耗。
其中,吸收损耗对光纤传输损耗的影响较大。
六、实验结论1. 光纤传输损耗是光信号在光纤中传播过程中能量逐渐减弱的现象,主要由吸收损耗、散射损耗和辐射损耗等引起。
光纤的测量实验报告
一、实验目的1. 了解光纤的基本特性和测量方法。
2. 掌握光纤光功率计的使用方法。
3. 学习光纤连接器的安装与调试技术。
4. 通过实验,加深对光纤传输特性的理解。
二、实验原理光纤是一种传输光信号的介质,具有低损耗、高带宽、抗电磁干扰等优点。
本实验主要研究光纤的以下特性:1. 光纤的衰减特性:光纤的衰减是指光信号在传输过程中由于光纤本身的材料特性、连接质量等因素引起的能量损失。
本实验通过测量不同长度光纤的衰减,了解光纤的衰减特性。
2. 光纤的连接特性:光纤的连接质量直接影响光纤系统的性能。
本实验通过连接器安装与调试,掌握光纤连接器的正确使用方法。
3. 光纤的反射特性:光纤的反射特性是指光信号在光纤与连接器、光纤与光纤之间的反射现象。
本实验通过测量光纤的反射损耗,了解光纤的反射特性。
三、实验仪器与设备1. 光纤光功率计2. 光纤跳线3. 光纤连接器(ST、SC、FC等)4. 光纤熔接机5. 光纤衰减器6. 光纤清洁工具四、实验步骤1. 光纤衰减特性测量1.1 将光纤跳线的一端连接到光纤光功率计的输入端口,另一端连接到待测光纤的一端。
1.2 将光纤光功率计的输出端口连接到光纤跳线的另一端。
1.3 测量不同长度光纤的输出功率,记录数据。
1.4 根据公式计算光纤的衰减系数。
2. 光纤连接器安装与调试2.1 清洁光纤连接器与光纤端面。
2.2 将光纤连接器与光纤端面紧密对接。
2.3 使用光纤熔接机对光纤连接器进行熔接。
2.4 测量熔接后光纤的输出功率,确保连接质量。
3. 光纤反射特性测量3.1 将光纤衰减器连接到光纤光功率计的输入端口。
3.2 将光纤连接器连接到光纤衰减器的一端。
3.3 测量光纤连接器的反射损耗。
3.4 改变光纤连接器的方向,再次测量反射损耗。
五、实验结果与分析1. 光纤衰减特性通过实验,可以得到不同长度光纤的衰减系数,分析光纤的衰减特性。
2. 光纤连接特性通过实验,可以掌握光纤连接器的安装与调试技术,确保连接质量。
光线损耗测试实验报告
光线损耗测试实验报告实验目的本实验旨在通过光线损耗测试,研究光纤传输系统中的光信号损耗情况,了解光纤传输的性能及可靠性。
实验设备和材料- 光纤传输系统(包括光纤、光纤连接器、光纤跳线等)- 发光源- 光功率计- 连接线- 计算机实验原理在光纤传输过程中,光信号会发生衰减,这种衰减被称为光纤损耗。
光纤损耗的主要原因包括衰减、散射、弯曲等。
本实验通过使用发光源产生光信号,通过光功率计测量经过不同光纤距离后的光功率,从而计算光纤传输系统的光线损耗。
实验步骤1. 连接光纤传输系统:将发光源通过连接线与光纤传输系统相连。
2. 清洁光纤接口:使用纯净的酒精棉球清洁光纤连接器,确保连接器表面干净,没有灰尘或油脂。
3. 设置发光源参数:根据实验要求,设置发光源的输出功率、光波长等参数。
4. 连接光功率计:使用光纤跳线将光功率计与光纤传输系统中的光纤连接器相连。
5. 设置光功率计参数:根据实验要求,设置光功率计的波长、检测范围等参数。
6. 测量光功率:打开发光源和光功率计,记录光功率计所测量到的光功率值。
7. 更改光纤距离:改变光纤传输系统中的光纤长度,如增加或减少光纤跳线的长度。
8. 重复步骤6和步骤7,测量不同光纤长度下的光功率。
数据处理和分析根据实验测得的光功率数据,可以得到光纤传输系统中不同光纤长度下的光功率值。
通过计算光功率的差值,即可得到光纤传输中的光线损耗。
实验数据示例:光纤长度(m)光功率(dBm)-10 -3.520 -6.230 -9.040 -12.8根据上述数据,可以绘制出光功率随光纤长度变化的曲线图。
根据实验数据,我们可以看到随着光纤长度的增加,光功率呈线性下降的趋势,这表明光纤传输系统中存在光线损耗。
实验结果和讨论根据实验结果,可以得到光纤传输系统在不同光纤长度下的光线损耗。
通过分析实验数据,可以确定光纤传输系统的衰减特性,进一步评估光纤传输系统的性能及可靠性。
在实际应用中,光纤传输系统的光线损耗会对数据传输速率和传输距离产生影响,因此减少光纤传输系统的光线损耗对于提升系统的性能十分重要。
光纤测量实验报告
光纤测量实验报告1、掌握光功率计的原理及使用方法2、利用光功率计测量1310nm及1550nm光纤的损耗二、实验装置ld激光器,光功率计,直径相同的圆柱型物体若干,光纤跳线若干。
1、ld激光器半导体激光器是以一定的半导体材料做工作物质而产生激光的器件。
.其工作原理是通过一的定的鞭策方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(山吉或信士)能级之间,同时实现非均衡载流子的粒子数探底回升,当处在粒子数探底回升状态的大量电子与空穴无机时,便产生受激发射促进作用。
电注入式半导体激光器,通常就是由砷化镓(gaas)、硫化镉(cds)、磷化铟(inp)、硫化锌(zns)等材料做成的半导体面结型二极管,沿正向偏压转化成电流展开鞭策,在结平面区域产生受激发射。
2、光功率计光功率计是指用于测量绝对光功率或通过一段光纤的光功率相对损耗的仪器。
在光纤系统中,测量光功率是最基本的,非常像电子学中的万用表;在光纤测量中,光功率计是重负荷常用表。
通过测量发射端机或光网络的绝对功率,一台光功率计就能够评价光端设备的性能。
用光功率计与稳定光源组合使用,则能够测量连接损耗、检验连续性,并帮助评估光纤链路传输质量。
3、直径不同的圆柱型物体分别存有笔芯、针管、胶棒等圆柱型物体,如下图右图。
如下图所示,连接好实验装置后,首先将光纤拉直,在不进行缠绕的情况下测得初始光功率,再将光纤在不同的圆柱型外缠绕不同的圈数,分别记录下此时的光功率计显示的损耗值,列表分析数据并画出损耗曲线。
四、实验数据及结果分析1、波长值为1310nm(初始光功率值为5.37dbm)2、波长值1550nm(起始光功率值2.40dbm)(1)直径d=5mm(3)直径d=17mm(4)直径d=19mm(5)直径d=30mm1、相同波长的光在光电切换中会存有相同的效率2、光纤的弯曲会为光的传输带来损耗,这个损耗与光纤弯曲的曲率半径以及缠绕的圈数有关。
光纤的测试实验报告
光纤的测试实验报告
《光纤的测试实验报告》
光纤是一种用于传输光信号的先进技术,其在通信、医疗、工业控制等领域都
有着广泛的应用。
为了确保光纤传输的稳定性和可靠性,我们进行了一系列的
测试实验,并将结果进行了报告。
首先,我们对光纤的损耗进行了测试。
通过在不同长度的光纤上发送光信号,
并测量接收端的光功率,我们得出了光纤在不同长度下的损耗曲线。
实验结果
表明,光纤的损耗随着长度的增加而增加,但在一定范围内保持在可接受的范
围内。
其次,我们对光纤的带宽进行了测试。
通过发送不同频率的光信号,并测量接
收端的带宽,我们得出了光纤在不同频率下的传输性能。
实验结果表明,光纤
的带宽在高频率下会有所减小,但在常规通信频率范围内能够满足需求。
此外,我们还对光纤的折射率进行了测试。
通过测量光纤中不同位置的折射率,并进行数据分析,我们得出了光纤的折射率分布规律。
实验结果表明,光纤的
折射率在不同位置有所差异,但整体上符合设计要求。
最后,我们对光纤的耐压性进行了测试。
通过在光纤上施加不同程度的压力,
并测量光纤的传输性能,我们得出了光纤在不同压力下的稳定性。
实验结果表明,光纤能够在一定范围内承受压力,并且不会对传输性能产生明显影响。
综合以上实验结果,我们得出了光纤的测试实验报告,证明了光纤在传输性能、稳定性和可靠性方面都具有良好的表现。
这些实验结果为光纤的应用提供了有
力的支持,也为光纤技术的进一步发展提供了重要参考。
光纤的测试实验报告
光纤的测试实验报告光纤的测试实验报告一、引言光纤作为一种重要的信息传输媒介,广泛应用于通信、医疗、工业等领域。
为了确保光纤传输的可靠性和性能,对光纤进行测试是必不可少的。
本实验报告旨在介绍光纤测试的方法和结果,以及对测试结果的分析和讨论。
二、实验目的本次实验的主要目的是测试光纤的传输损耗、带宽和衰减等性能指标,以评估光纤的质量和性能。
三、实验装置和方法1. 实验装置:本次实验使用的实验装置包括光纤测试仪、光源、光功率计、光纤连接器等。
2. 实验方法:(1)传输损耗测试:将光源与光纤连接,通过光功率计测量光纤的输入功率和输出功率,计算传输损耗。
(2)带宽测试:采用频域反射法(FDR)进行带宽测试,通过测量光纤的频率响应曲线,计算带宽。
(3)衰减测试:使用光源和光功率计,测量光纤在不同长度下的输出功率,计算衰减值。
四、实验结果与分析1. 传输损耗测试结果:经过多次测试,得到光纤的传输损耗为0.5 dB/km。
传输损耗越低,表示光纤的质量越好,传输距离越远。
2. 带宽测试结果:通过频域反射法测试,得到光纤的带宽为10 Gbps。
带宽越高,表示光纤的传输速率越快,能够支持更高的数据传输需求。
3. 衰减测试结果:在不同长度下进行衰减测试,得到光纤的衰减值为0.2 dB/km。
衰减值越低,表示光纤的信号损耗越小,传输距离越远。
五、实验讨论通过对实验结果的分析,可以得出以下结论:1. 本次测试的光纤传输损耗较低,说明光纤的质量较好,适合用于长距离传输。
2. 光纤的带宽达到了10 Gbps,能够满足目前大部分数据传输需求。
3. 光纤的衰减值较小,表明光纤的信号传输效果良好,适用于高质量的数据传输。
六、实验总结本次实验通过对光纤的传输损耗、带宽和衰减等性能指标进行测试,得到了相应的结果。
通过对实验结果的分析和讨论,可以评估光纤的质量和性能,为光纤的应用提供参考依据。
光纤作为一种重要的信息传输媒介,在现代社会中扮演着重要的角色,对其进行测试和评估具有重要意义。
光纤传输实验报告
光纤传输实验报告光纤传输实验报告引言在现代科技的快速发展中,光纤传输技术成为了信息传输领域的重要组成部分。
光纤传输具有高速、大容量、低损耗等优势,被广泛应用于通信、数据传输、医疗设备等领域。
本实验旨在通过实际操作,验证光纤传输的原理和性能,并了解其在实际应用中的局限性。
实验一:光纤传输原理验证实验目的:验证光纤传输的原理,了解光纤的基本结构和工作原理。
实验步骤:1. 准备一根光纤,将其两端分别连接到光源和接收器。
2. 打开光源,观察接收器是否能够接收到光信号。
3. 通过改变光源的强度和频率,观察接收器对光信号的响应情况。
实验结果与分析:在实验中,我们观察到当光源工作时,接收器能够接收到光信号,并且随着光源强度和频率的变化,接收器对光信号的响应也相应变化。
这说明光纤传输是通过光信号的传输来实现的。
光信号在光纤中以全内反射的方式传播,通过光纤的折射和反射,实现信号的传输。
实验二:光纤传输性能测试实验目的:测试光纤传输的带宽、传输距离和传输速率。
实验步骤:1. 准备一根长度为100米的光纤,将其两端分别连接到光源和接收器。
2. 设置测试仪器,记录光纤传输的带宽、传输距离和传输速率。
3. 通过改变光源的强度和频率,观察带宽、传输距离和传输速率的变化情况。
实验结果与分析:在实验中,我们测试了光纤传输的带宽、传输距离和传输速率。
结果显示,光纤传输具有较大的带宽,能够支持高速数据传输。
传输距离方面,光纤传输的损耗较小,可以支持较长的传输距离。
传输速率方面,光纤传输速率高,能够满足大容量数据传输的需求。
实验三:光纤传输的局限性实验目的:了解光纤传输在实际应用中的局限性。
实验步骤:1. 将光纤连接到一个强光源和一个接收器。
2. 改变光纤的弯曲程度,观察光信号的传输情况。
3. 改变光纤连接的角度,观察光信号的传输情况。
实验结果与分析:在实验中,我们观察到当光纤被弯曲或连接角度改变时,光信号的传输会受到影响。
光纤传输需要保持较小的弯曲半径和恰当的连接角度,以确保光信号的传输质量。
实验七-多模光纤衰减测试实验
光纤光缆传输特性测试实验实验七多模光纤衰减测试实验一、实验目的1、了解光纤损耗的定义2、学会用插入法测量多模光纤的损耗二、实验内容1、测量多模光纤的衰减2、测量多模光纤的弯曲损耗三、预备知识1、了解多模光纤的特点、特性四、实验仪器1、ZY12OFCom13BG3型光纤通信原理实验箱1台2、850nm光发端机 1个3、FC接口光功率计1台4、万用表1台5、ST/PC-FC/PC多模光跳线1根6、FC/PC-FC/PC多模光跳线1根7、扰模器1台8、小可变衰减器(或2km光纤)1个9、连接导线 20根五、实验原理1、损耗机理本实验研究无源器件多模光纤的损耗。
对于光纤来说,产生损耗的原因较复杂,光能在光纤中传输时,除了由于吸收、散射而使光能损失外,由于成缆敷设造成的光纤微弯和宏弯曲,光纤的耦合和接续,都会使光能产生附加的损失。
归纳起来,产生衰减的原因大致可以分为三大类:吸收损耗,散射损耗,附加损耗,具体如下:(1)纤芯和包层物质的吸收损耗,包括石英材料的本征吸收和杂质吸收;(2)纤芯和包层材料的散射损耗,包括瑞利散射损耗以及光纤在强光场作用下诱发的受激喇曼散射和受激布里渊散射;(3)由于光纤表面的随机畸变或粗糙所产生的波导散射损耗;(4)光纤弯曲所产生的辐射损耗;(5)外套损耗。
这些损耗可以分为两种不同的情况:一是石英光纤的固有损耗机理,像石英材料的本征吸收和瑞利散射,这些机理限制了光纤所能达到的最小损耗;二是由于材料和工艺所引起的非固有损耗,它可以通过提纯材料或改善工艺而减小甚至消除其影响,如杂质的吸收、波导散射等。
光纤中平均光功率沿长度减少的规律为:()10()(0)10Z P Z P α-= (7-1)其中P(Z)和P(0)分别为轴向距离Z 处和Z =0处的光功率,α为光纤的衰减系数,定义为单位长度光纤引起的光功率衰减,单位是dB/km 。
当Z=L 时,()()10log (0)L P Z P αλ=- dB/km (7-2) 这里()αλ表示在波长λ处的衰减系数。
光纤传输损耗测试-实验报告
光纤传输损耗测试-实验报告华侨大学工学院 实验报告学 院: _____________ 工学院专业班级: __________ 13光电姓 名: ______________ 林洋 _____学 号: 1395121026 课程名称:实验项目名称: 光通信技术实验 实验1光纤传输损耗测试指导教师:__________ 王达成____2016年05月日预习报告一、实验目的1)了解光纤损耗的定义2)了解截断法、插入法测量光纤的传输损耗二、实验仪器20MHz双踪示波器万用表光功率计电话机光纤跳线一组光无源器件一套(连接器,光耦合器, 光隔离器,波分复用器,光衰减器)三、实验原理光纤在波长处的衰减系数为(),其含义为单位长度光纤引起的光功率衰减,单位是dB/km 。
当长度为L 时,ITU-T G.650、G.651规定截断法为基准测量方法,背向散射法(OTDR 法)和插入法为替代测量方法。
本实验采用插入法测量光纤的 损耗。
(1)截断法:(破坏性测量方法)截断法是一个直接利用衰减系数定义的测量方法。
在不改变注入条件下,分别测出长光纤的输出功率 P 2()和剪断后约2m 长度短光纤的输出图1.1截断法定波长衰减测试系统装置(2)插入法插入法原理上类似于截断法,只不过用带活接头的连接软线代替短 纤进行参考测量,计算在预先相互连接的注入系统和接受系统之间(参 考条件)由于插入被测光纤引起的功率损耗。
显然,功率 P 、P 2的测量没有截断法直接,而且由于连接的损耗会给测量带来误差,精度比截断 法差一些。
所以该方法不适用于光纤光缆制造长度衰减的测量。
但由于 它具有非破坏性不需剪断和操作简便的优点,用该方法做成的便携式仪 表,非常适用于中继段长总衰减的测量。
图1.2示出了两种参考条件下的 测试原理框图。
10.T lg 器(dB/km) (公式1.1)功率R (),按定义计算出()。
该方法测试精度最高。
参考条件(a)(b)图1.2典型的插入损耗法测试装置图1.2 (a)情况下,首先将注入系统的光纤与接收系统的光纤相连,测出功率R然后将待测光纤连到注入系统和接收系统之间,测出功率P2,则被测光纤段的总衰减A可由下式给出A 10lg[R()/F2()] C r C i C2(dB)(公式1.2)式中C r、C i、C2分别是在参考条件、实验条件下光纤输入端、输出端连接器的标称平均损耗值(dB )。
光纤损耗实验报告
光纤损耗实验报告光纤损耗实验报告引言:光纤通信作为现代通信技术的重要组成部分,其高速、大容量和低损耗的特点使其在通信领域得到广泛应用。
在光纤通信系统中,光信号在传输过程中会遇到一定的损耗,这些损耗对于信号的传输质量和距离限制起着重要作用。
本实验旨在通过实际测量,了解光纤损耗的原因和特性。
一、实验目的本实验的主要目的是测量光纤的损耗,并分析其原因。
通过实验,我们将探究光纤损耗与波长、纤芯直径、光纤长度等因素之间的关系,并验证光纤损耗与传输功率的指数关系。
二、实验原理光纤损耗是指光信号在光纤中传输过程中所遭受的能量损失。
光纤损耗主要包括吸收损耗、散射损耗和弯曲损耗。
1. 吸收损耗:光纤材料对特定波长的光有一定的吸收能力,当光信号通过光纤时,部分能量会被光纤材料吸收,从而导致能量损失。
2. 散射损耗:光在光纤中传输时,会与材料的微观不均匀性或杂质发生散射,使光信号的能量散失,从而产生散射损耗。
3. 弯曲损耗:当光纤被弯曲时,光信号会在弯曲处发生反射和折射,导致能量损失。
三、实验步骤1. 准备实验所需材料:光纤、光源、光功率计等。
2. 将光纤连接到光源和光功率计上。
3. 设置光源的波长和功率,并记录下初始的光功率值。
4. 通过调节光源的功率,记录不同功率下的光功率值。
5. 改变光纤的长度,记录不同长度下的光功率值。
6. 改变光纤的纤芯直径,记录不同直径下的光功率值。
7. 结束实验,整理实验数据。
四、实验结果与分析通过实验测量得到的数据,我们可以绘制出光功率与波长、光纤长度、纤芯直径之间的关系曲线。
根据实验结果,我们可以得出以下结论:1. 光纤损耗与波长成正比关系:随着波长的增加,光纤的吸收损耗也会增加。
这是由于光纤材料对不同波长的光吸收能力不同所导致的。
2. 光纤损耗与光纤长度成正比关系:当光信号在光纤中传输时,光的能量会随着传输距离的增加而逐渐减少。
这是由于光在光纤中的传输过程中,会与材料发生吸收和散射,从而导致能量损失。
光纤特性测量实验报告
(4)记录光纤测试仪显示的输出功率和传输时间。
(5)将光衰减器连接到光纤跳线的另一端。
(6)调整光衰减器的衰减值。
(7)记录光纤测试仪显示的输出功率和传输时间。
(8)计算光纤的色散。
五、实验数据与分析
1. 光纤跳线损耗
测试结果:跳线损耗为0.5dB。
2. 光纤传输损耗
(3)调整信号发生器的输出功率。
(4)记录光纤测试仪显示的输出功率。
(5)将光衰减器连接到光纤跳线的另一端。
(6)调整光衰减器的衰减值。
(7)记录光纤测试仪显示的输出功率。
(8)计算光纤的传输损耗。
3. 测量光纤色散
(1)将信号发生器连接到光纤测试仪的输入端口。
(2)将光纤跳线连接到信号发生器和光纤测试仪的输出端口。
3. 光功率计
4. 光衰减器
5. 光纤连接器
6. 信号发生器
7. 示波器
四、实验步骤
1. 测试光纤跳线损耗
(1)将光纤跳线插入光纤测试仪的输入端口。
(2)调整测试仪的测试模式为“跳线损耗”。
(3)记录测试仪显示的跳线损耗值。
2. 测量光纤传输损耗
(1)将信号发生器连接到光纤测试仪的输入端口。
(2)将光纤跳线连接到信号发生器和光纤测试仪的输出端口。
1. 实验过程中,注意安全操作,避免设备损坏。
2. 测量时,确保光纤连接牢固,避免信号泄露。
3. 实验数据应准确记录,以便后续分析。
4. 实验过程中,注意观察现象,分析实验结果。
通过本次实验,我们不仅掌握了光纤特性测量的方法,还提高了对光纤技术的认识。在今后的学习和工作中,我们将继续关注光纤技术的发展,为我国光纤通信事业贡献力量。
实验八-单模光纤损耗测试实验
光纤光缆传输特性测试实验实验八单模光纤损耗测试实验一、实验目的1.学习单模光纤损耗的定义2.掌握单模光纤弯曲损耗测试方法二、实验内容1.测量单模光纤不同弯曲半径的损耗三、预备知识1.了解单模光纤的特点、特性四、实验仪器1.ZY12OFCom13BG3型光纤通信原理实验箱1台2.FC接口光功率计1台3.万用表1台4.FC/PC-FC/PC单模光跳线1根5.扰模器(可选)1台6.连接导线 20根五、实验原理在单模光纤中只传输LP01模, 没有多模光纤中各种模变换、模耦合及模衰减等问题, 因此其测量方法也与多模光纤有些不同。
对于单模光纤而言, 随着波长的增加, 其弯曲损耗也相应增大, 因此对1550nm波长的使用, 要特别注意弯曲损耗的问题。
随着光纤通信工程的发展, 最低衰减窗口1550nm波长区的通信必将得到广泛的运用。
CCITT对G.652光纤和G.653光纤在1550nm波长的弯曲损耗作了明确的规定:对G.652光纤, 用半径为37.5mm松绕100圈, 在1550nm波长测得的损耗增加应小于1dB;对G.653而言, 要求增加的损耗小于0.5dB。
图8-1 单模光纤弯曲损耗测试实验框图此处可不用扰模器, 可其它东西实现光纤的弯曲也可。
弯曲损耗的测量, 要求在具有较为稳定的光源条件下, 将几十米被测光纤耦合到测试系统中, 保持注入状态和接收端耦合状态不变的情况下, 分别测出松绕100圈前后的输出光功率P1和P2, 弯曲损耗可由下式计算得出。
)lg(1021P P A(8-1) 相同光纤, 传输相同波长光波信号, 弯曲半径不同时其损耗也必定不同, 同样, 对于相同光纤, 弯曲半径相同时, 传输不同光波信号, 其损耗也不同。
由于按照CCITT 标准, 光纤的弯曲损耗比较小, 在实验中采用减小弯曲半径的办法提高实验效果的明显性。
实验测试框图如图8-1所示。
即先测量1310nm 光纤通信系统光纤跳线没有进行缠绕时输出光功率P0, 再测单模光纤跳线按照图8-2中两种方法进行缠绕时的光功率P1和P2, 即可得到单模光纤传输1310nm 光波时的相对损耗值;同样, 组成1550nm 光纤传输系统, 重复上述操作即可得到单模光纤传输1550nm 光波时的相对损耗值。
光纤参数测量实验报告(3篇)
第1篇一、实验目的1. 熟悉光纤的基本特性和结构。
2. 掌握光纤参数测量的基本原理和方法。
3. 了解光纤连接、衰减、色散等关键参数的测量方法。
4. 培养实验操作技能和数据分析能力。
二、实验原理光纤作为一种传输信息的介质,其性能参数直接关系到光通信系统的质量和效率。
本实验主要测量以下光纤参数:1. 光纤长度:通过光时域反射仪(OTDR)测量光纤的长度。
2. 光纤衰减:通过插入损耗测试仪测量光纤在特定波长下的衰减。
3. 光纤色散:通过色散分析仪测量光纤在特定波长下的色散。
4. 光纤连接损耗:通过插入损耗测试仪测量光纤连接器的插入损耗。
三、实验仪器与材料1. 光纤测试仪:包括光时域反射仪(OTDR)、插入损耗测试仪、色散分析仪等。
2. 光纤跳线:用于连接测试仪和被测光纤。
3. 被测光纤:用于测试的光纤。
4. 光纤连接器:用于连接被测光纤和跳线。
四、实验步骤1. 光纤长度测量- 将被测光纤连接到OTDR上。
- 启动OTDR,进行光纤长度测量。
- 记录测量结果。
2. 光纤衰减测量- 将被测光纤连接到插入损耗测试仪上。
- 选择测试波长,设置测试参数。
- 进行衰减测量,记录结果。
3. 光纤色散测量- 将被测光纤连接到色散分析仪上。
- 选择测试波长,设置测试参数。
- 进行色散测量,记录结果。
4. 光纤连接损耗测量- 将被测光纤连接到跳线上,再将跳线连接到插入损耗测试仪上。
- 进行连接损耗测量,记录结果。
五、实验数据与分析1. 光纤长度测量结果- 测量结果:X米- 分析:与理论值基本一致,说明被测光纤长度准确。
2. 光纤衰减测量结果- 测量结果:Y dB- 分析:与理论值基本一致,说明被测光纤衰减符合要求。
3. 光纤色散测量结果- 测量结果:Z ps/nm·km- 分析:与理论值基本一致,说明被测光纤色散符合要求。
4. 光纤连接损耗测量结果- 测量结果:A dB- 分析:与理论值基本一致,说明被测光纤连接器质量良好。
光纤测试检查报告
光纤测试检查报告一、引言光纤是一种用于传输光信号的导波结构,广泛应用于通信、数据传输等领域。
为了确保光纤系统的正常运行,我们进行了光纤测试检查,并撰写本报告,以总结测试结果并提出相应的建议。
二、测试目的本次光纤测试检查的目的是验证光纤系统的性能和质量,确保其满足设计要求。
具体测试目标包括:1. 测试光纤的传输损耗;2. 测试光纤的链接质量;3. 测试光纤的反射损耗。
三、测试方法为了实现上述测试目标,我们采用了以下测试方法:1. 使用光源和光功率计进行光纤传输损耗测试;2. 使用光源和光功率计进行光纤链接质量测试;3. 使用光源和光功率计进行光纤反射损耗测试。
四、测试结果及分析1. 光纤传输损耗测试结果如下:- 测试样本1:传输损耗为0.5 dB/km;- 测试样本2:传输损耗为0.8 dB/km。
根据测试结果,两个样本的传输损耗均小于设计要求的1.5 dB/km,说明光纤的传输性能良好。
2. 光纤链接质量测试结果如下:- 测试链接1:传输损耗为1.2 dB;- 测试链接2:传输损耗为1.5 dB。
通过与设计要求进行对比,可知两个测试链接的传输损耗均在可接受范围内,连接质量良好。
3. 光纤反射损耗测试结果如下:- 测试样本1:反射损耗为-30 dB;- 测试样本2:反射损耗为-25 dB。
根据测试结果,两个样本的反射损耗均小于-20 dB的设计要求,反射性能良好。
五、改进建议基于以上测试结果,我们对光纤系统提出以下改进建议:1. 当选择光纤时,应注重其传输性能,尽量选择传输损耗较低的光纤;2. 在建设光纤链接时,应严格控制传输损耗,避免过高的信号损耗影响系统传输质量;3. 对于高要求的应用场景,如数据中心等,应注重光纤的反射损耗,确保反射性能达到要求。
六、结论通过本次光纤测试检查,我们发现光纤系统的传输性能、链接质量和反射性能均符合设计要求,系统正常运行。
同时,根据测试结果,我们提出了一些建议,以进一步提升光纤系统的性能和可靠性。
光纤测试实验
一、实验目的
1.了解光纤损耗的定义
2.学会用插入法测量光纤的损耗
1.
二、实验原理
传输损耗是光纤很重要的一项光学性质,它在很大程度上决定着传输系统中的中继距离。损耗的降低依赖于工艺的提高和对石英材料的研究。
对于光纤来说,产生损耗的原因较复杂,主要由以下因素造成:
1.纤芯和包层物质的吸收损耗,包括石英材料的本征吸收和杂质吸收;
1.首先在连接处D作临时接头;
2.在光纤连接后的尾端C处测得接收光功率P3;
3.在临时接头后的B点(相距D点约几厘米)切断光纤,测得光功率为P2;
4.在临时接头前的A点切断光纤,测得光功率为P1;
5.在连接处D点将光纤作永久性连接,然后在C点重新测得光功率为P4。
则此永久性连接的附加损耗为:
(2)
光纤弯曲损耗的测量框图如图5所示,:
3.比较相同弯曲半径,不同波长的弯曲损耗。
六、注意事项
1.光源,光跳线的插头属易损件,应轻拿轻放,使用时切忌用力过大。
2.测量光纤弯曲损耗时,光纤在扰模器上缠绕不可拉得过紧。
3.不可带电拔插光电器件,要拔插光电器件,须先关闭电源后进行。
七、思考题
1.分析用剪断法测量光纤损耗中扰模器的作用,若不使用扰模器,则会对实验结果有何影响。
2.传输相同波长信号时,为什么不同弯曲半径下光纤的损耗不同?
3.相同弯曲半径时,为什么光纤传输不同波长信号损耗不同?
4.测量光纤损耗时,对光纤稍微用力拉紧,比较此时测得的光纤损耗的变化,并分析其原因。
测量光纤损耗的方法很多,CCITT(国际电报、电话咨询委员会)建议以剪断法为参考,插入法为第一替代法,背向散射法为第二替代法。
测量光纤损耗时,只要测出光纤输入端的光功率P1和输出光功率P2,即可得到光纤总的平均损耗,则光纤损耗为:
测光纤损耗实验报告
一、实验目的1. 理解光纤损耗的定义及其影响因素。
2. 掌握光纤损耗的测量方法。
3. 通过实验验证光纤损耗的理论知识。
二、实验原理光纤损耗是指光信号在光纤中传输过程中由于散射、吸收、辐射等原因而造成的能量损失。
光纤损耗的主要影响因素包括材料、结构、长度、波长等。
光纤损耗的测量方法有插入法、截断法、背向散射法等。
本实验采用插入法测量光纤损耗。
插入法是将光功率计、光纤跳线和光无源器件连接起来,通过测量不同位置的光功率,计算出光纤损耗。
三、实验仪器1. 光功率计2. 万用表3. 双踪示波器4. 光纤跳线一组5. 光无源器件一套(连接器、光耦合器、光隔离器、波分复用器、光衰减器)四、实验步骤1. 将光功率计、光纤跳线和光无源器件连接起来,组成测试系统。
2. 将光功率计设置在测量光功率的频率上。
3. 在测试系统中,将光功率计置于光纤的起始端,记录光功率值P1。
4. 将光功率计置于光纤的末端,记录光功率值P2。
5. 根据公式P2/P1 = 10lg(损耗)计算光纤损耗。
五、实验数据及结果1. 光纤长度:2km2. 光功率计测量频率:1550nm3. 测试系统光功率值:- 起始端:P1 = -10dBm- 末端:P2 = -30dBm根据公式计算光纤损耗:P2/P1 = 10lg(损耗)(-30dBm)/(-10dBm) = 10lg(损耗)3 = 10lg(损耗)lg(损耗) = 0.3损耗= 10^0.3 ≈ 2.00dB六、实验结果分析通过实验测量,得到光纤损耗约为2.00dB。
与理论计算值基本一致,说明本实验结果可靠。
七、实验结论1. 本实验成功验证了光纤损耗的定义及其影响因素。
2. 插入法是一种简单、有效的光纤损耗测量方法。
3. 实验结果与理论计算值基本一致,说明实验方法可靠。
八、实验注意事项1. 在连接光纤跳线和光无源器件时,注意清洁光纤端面,避免灰尘和污垢对实验结果的影响。
2. 在测量光功率时,确保光功率计设置在正确的频率上。
光纤传输实验实验报告
光纤传输实验实验报告光纤传输实验实验报告引言光纤传输技术作为一种高速、高带宽、低损耗的通信传输方式,已经广泛应用于各个领域。
本实验旨在通过实际操作,探究光纤传输的原理和特性,并对其性能进行测试和评估。
一、实验设备和方法1. 实验设备本实验采用的设备包括光纤传输装置、光源、光探测器、光纤衰减器等。
2. 实验方法首先,将光源与光纤传输装置连接,通过调节光源的功率,观察光纤传输的亮度和稳定性。
然后,将光探测器与光纤传输装置连接,记录光探测器输出的信号强度。
最后,通过调节光纤衰减器,模拟不同距离下的光纤传输损耗情况。
二、实验结果和分析1. 光源功率调节通过调节光源的功率,我们观察到光纤传输的亮度和稳定性会有所变化。
当光源功率较低时,光纤传输的亮度较暗,且容易受到外界干扰而不稳定;当光源功率较高时,光纤传输的亮度较亮,但也容易产生过度饱和的现象。
因此,在实际应用中,需要根据具体需求调节光源功率,以保证光纤传输的稳定性和适当的亮度。
2. 光探测器输出信号强度将光探测器与光纤传输装置连接后,我们记录了光探测器输出的信号强度。
实验结果显示,随着光源功率的增加,光探测器输出的信号强度也相应增加。
这表明光纤传输的信号强度与光源功率存在一定的正相关关系。
此外,我们还发现,当光源功率过高时,光探测器输出的信号强度会达到一个饱和值,进一步增加光源功率并不会显著提高信号强度。
因此,在实际应用中,需要根据光纤传输的距离和信号要求,选择适当的光源功率。
3. 光纤传输损耗通过调节光纤衰减器,我们模拟了不同距离下的光纤传输损耗情况。
实验结果显示,随着光纤传输距离的增加,光纤传输的信号强度会逐渐减弱。
这是由于光在光纤中的传输过程中会发生一定的损耗,导致信号衰减。
此外,我们还观察到,当光纤传输距离较长时,信号强度的衰减速度会更快。
因此,在实际应用中,需要根据光纤传输的距离和信号要求,选择合适的光纤衰减器,以保证信号的传输质量。
三、实验结论通过本实验,我们对光纤传输的原理和特性有了更深入的了解。
光纤传输实验_实验报告
一、实验目的1. 了解光纤传输的基本原理和特点。
2. 掌握光纤传输实验的基本操作步骤和注意事项。
3. 通过实验验证光纤传输系统的性能指标。
二、实验原理光纤传输是利用光导纤维传输光信号的一种通信技术。
光纤具有传输损耗低、频带宽、抗干扰能力强等优点,是现代通信技术的重要组成部分。
光纤传输实验主要包括光源、光纤、光电探测器等部分。
三、实验仪器与设备1. 光源:LED光源、激光光源等。
2. 光纤:单模光纤、多模光纤等。
3. 光电探测器:光电二极管、雪崩光电二极管等。
4. 光功率计:用于测量光功率。
5. 光时域反射仪(OTDR):用于测量光纤长度、损耗等。
6. 光纤连接器:用于连接光纤。
7. 光纤测试架:用于固定光纤和仪器。
四、实验内容1. 光源与光纤的连接(1)将光源与光纤连接器连接,确保连接牢固。
(2)将连接好的光纤插入光纤测试架。
2. 光功率测量(1)将光功率计与光源输出端连接。
(2)开启光源,调整光功率计,记录光功率值。
3. 光纤损耗测量(1)将光纤的另一端连接光电探测器。
(2)开启光源,调整光功率计,记录光纤输入端的光功率值。
(3)将光纤连接器拔掉,记录光纤输出端的光功率值。
(4)计算光纤损耗:光纤损耗 = (光纤输入端光功率 - 光纤输出端光功率) / 光纤输入端光功率。
4. 光纤长度测量(1)将光纤的另一端连接光电探测器。
(2)使用OTDR测量光纤长度。
5. 光纤传输性能测试(1)将光纤连接器拔掉,记录光纤输出端的光功率值。
(2)调整光源功率,观察光功率变化。
(3)调整光纤长度,观察光功率变化。
五、实验结果与分析1. 光源与光纤的连接牢固,无光泄露现象。
2. 光功率测量结果符合实验原理,光功率值稳定。
3. 光纤损耗测量结果符合实验原理,光纤损耗较低。
4. 光纤长度测量结果符合实验原理,光纤长度准确。
5. 光纤传输性能测试结果表明,随着光源功率和光纤长度的增加,光功率逐渐降低。
六、实验总结通过本次实验,我们了解了光纤传输的基本原理和特点,掌握了光纤传输实验的基本操作步骤和注意事项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华侨大学工学院
实验报告
课程名称:光通信技术实验
实验项目名称:实验 1 光纤传输损耗测试
学院:工学院
专业班级:13 光电
姓名:林洋
学号:1395121026
指导教师:王达成
2016 年05月日
预习报告
一、实验目的
1)了解光纤损耗的定义
2)了解截断法、插入法测量光纤的传输损耗
二、实验仪器
20MHz双踪示波器
万用表
光功率计
电话机
光纤跳线一组
光无源器件一套(连接器,光耦合器,光隔离器,波分复用器,光衰减器)
三、实验原理
光纤在波长处的衰减系数为( ) ,其含义为单位长度光纤引起的光功率衰减,单位是 dB/km 。
当长度为 L 时,
( ) 10
lg
P(L)
(dB / km) (公式 1.1 )L P(0)
ITU-T G. 650 、 G.651 规定截断法为基准测量方法,背向散射法
(OTDR 法)和插入法为替代测量方法。
本实验采用插入法测量光纤的损耗。
(1 )截断法:(破坏性测量方法)
截断法是一个直接利用衰减系数定义的测量方法。
在不改变注入条件下,分别测出长光纤的输出功率P2 ( ) 和剪断后约2m长度短光纤的输出功率 P1( ) ,按定义计算出() 。
该方法测试精度最高。
偏置电路
包层模被测光纤
光源滤模器剥除器
注入系统检测器
放大器
电平测量
图 1.1截断法定波长衰减测试系统装置
(2 )插入法
插入法原理上类似于截断法,只不过用带活接头的连接软线代替短纤进行参考测量,计算在预先相互连接的注入系统和接受系统之间(参考条
件)由于插入被测光纤引起的功率损耗。
显然,功率P
1、
P
2的测量没有
截断法直接,而且由于连接的损耗会给测量带来误差,精度比截断法差一些。
所以该方法不适用于光纤光缆制造长度衰减的测量。
但由于它具有非破坏性不需剪断和操作简便的优点,用该方法做成的便携式仪表,非常适用于中继段长总衰减的测量。
图 1.2示出了两种参考条件下的测试原理
框图。
调制器
包层模剥除器包层模剥除器
1 2
光源注入系统MF MF 检测器
滤模器12 滤模器
测量系统
参考条件
(a)
调制器
光源注入系统检测器
测量系统
参考系统
MF
(b )
图 1.2 典型的插入损耗法测试装置
图 1.2 ( a)情况下,首先将注入系统的光纤与接收系统的光纤相连,
测出功率 P1然后将待测光纤连到注入系统和接收系统之间,测出功率P2,则被测光纤段的总衰减 A 可由下式给出
12 r 1 2
(dB ) (公式
1.2
)
A 10lg[ P ( ) / P ( )] C C C
式中 C r、 C1、 C2分别是在参考条件、实验条件下光纤输入端、输出端连接器的标称平均损耗值(dB )。
图 1.2 ( b )情况下,首先将参考系统连在注入系统和接收系统之间,测出功率 P ,然后如图(a)一样,测出功率P ,则被测光纤段的总衰减
1 2
可由下式给出
A 10lg[ P1 ( ) / P2 ( )]( dB) (公式 1.3 )
情形( a )中,由于连接器的质量可能会影响测试精度;情形( b )中,采用了光学系统进行精密耦合,代替了连接器的耦合,可以得到精确的测量结果,当只需要知道光纤的实际衰减时,它比较合适。
当被测光纤段带有连接器而且需要和其它元件串在一起时,情形( a )的测试结果更有意义。
1.3 所
试验平台中我们采用了插入法测量光纤的损耗,试验框图如
示:
方波信号输入数字S R 数字
光发光纤跳线光收TP102
(a )
待测光纤
扰模器
(b )
图 1.3 插入损耗测试框图
(3 )光时域反射计( OTDR )测试
背向散射法是通过光纤中后向散射光信号来提取光纤衰减及其他信
息的,诸如光纤光缆的光学连续性、物理缺陷、接头损耗和光纤长度等。
它是一种间接地测量均匀样品衰减的方法。
下面分析背向散射法的测量原理。
将光功率为 P0,脉冲宽度为 T0的窄带光脉冲注入光纤,由于衰减,在传输距离 Z 之后,光功率 P( Z) 为
P(Z ) P010 ( Z /10) (公式 1.4 )
式中,是衰减系数。
由于瑞利散射的作用,在 Z 处的光功率总有一部分背向散射回光纤输入端。
Z 处的背向散射光功率为
P bs (Z ) P(Z ) (Z)10 ( Z /10) P(0) (Z )10 2( Z /10) (公式 1.5 )式中,(Z) 是在 Z 处光纤的瑞利背向散射系数,定义Z 为
(Z ) (V g T0 / 2) R S (公式 1.6 )
式中,R是瑞利散射系数;V g是光在光纤中的群速度;S 代表背向散射功率与瑞利散射总功率之比,它与光纤结构参数(芯径、相对折射率差)
有关。
设 Z0 处的背向散射光功率为
P bs(0) P0 (0) (公式 1.7 )
由公式( 1.7 )和式( 1.5 ),可得 0 ~ Z 之间的平均衰减系数为
5 [lg P bs (0) (0)
(公式 1.8 )
Z
lg ] P bs (Z ) (Z )
如果光纤轴向不均匀,不是常数,则公式( 1.8 )表示的衰减系数包含了一项与结构参数有关的待定项,这样,直接从背向散射曲线上求得的并不能代表实际的衰减系数,这也就是该方法的缺点所在。
假定光纤的结构参数沿轴向均匀时,(0)(Z),则0 ~ Z间的平均衰减系数为
5
lg P bs (0) (公式 1.9 )
Z P bs (Z )
这时就可以从背向散射曲线求得实际的平均衰减系数了。
图 1.4 是一个典型的背向散射法测试系统框图。
这里不再介绍各部分的
作用和要求。
利用背向散射原理制成的仪表称为光时域反射计,简称OTDR 。
图 1.5 示出了在对数坐标上的一条典型OTDR曲线,曲线上A-B 间的衰减是
A AB() 1
(V A V B) (公式 1.10 )2
式中, V A、 V B是以对数刻度的背向散射功率电平,平均衰减系数为
A AB() V A V B
(公式 1.11 )
L 2L
式中, L 是待测光纤的长度。
若光纤轴向不均匀时,取从两端测量的平均值作为平均衰减系数,从而消除了公式( 1.8 )中的待定项。
背向散射法虽属替代方法,可是它被广泛的用在光纤光缆的研制、生产以及光通信工程的施工维护中。
光源光学系统耦合器件光学系统
光学系统
示波器
放大器
光检测器信号处理器
数据获
取系统
图 1.4背向散射法测试曲线
①
V A
②
V B
图 1.5典型OTDR曲线
四、实验内容及步骤③
⑤
④
本实验采用插入法测试光纤的传输损耗系数,
仪 OTDR ,则可采用背向散射法。
如果配置了光时域反射
1 )如图 1.3(a) 所示,选择光发模块A,通过开关 KP10
2 选择数字
光源驱动电路, KP101 选择“数字”。
实验平台加电并复位系统后(复位
用来使系统从最初状态开始运行,复位键按下后,液晶屏上将出现提示:
“欢迎你”,“请选择”等字样,之后便可输入操作者的选择),从键盘输入方波,此时用光功率计测试S 点(即光发送机的FC 连接头)的输出功率 P1,此值定为光纤的入射功率。
2 )按图 1.3(b) 连接好待测光纤,将 S 点输出的光信号输入扰模器,经过待测光纤后,测出光功率P2,光纤的总损耗 A=P 2-P 1 (dBm) ,然后就可粗略的估算出每公里光纤的损耗值。
3 )调节 RP103 ,改变光发送模块 A 数字信号的发送功率,重复步骤 1 )和 2 )
4 次,计算每公里光纤的损耗值。
注:此实验的开设必须具备扰模器和 2 公里以上的光纤(需另外配置)
实验报告
五、实验原始数据
功率大小
P2( ) ( )
P1( )
实验次数 A
1
2
3
4
5
指导老师签名:
时间:
六、数据处理
实验报告
七、实验结论及分析讨论
预习报告成绩实验报告成绩实验操作成绩总成绩。