(高等数学英文课件)8.3 Infinite Series

合集下载

高等数学课件1-5无穷小与无穷大

高等数学课件1-5无穷小与无穷大

.
三、证明函数
y
1 x
cos
1 x
在区间 ( 0 , 1 ] 上无界 , 但当 .
x 0 时 , 这个函数不是无穷大
$1-5无穷小与无穷大
19
练习题答案
一 、 1、 0; 3、 ; 二、0 x
10 1
4
2、 lim f ( x ) C ;
x x
4、 .
证 必要性 设
x x0
lim f ( x ) A , 则 lim [ f ( x ) A ] 0
x x
0
令 ( x ) f ( x ) A , 则有 lim ( x ) 0 ,且
x x0
f ( x ) A α ( x ).
充分性 设 f ( x ) A ( x ),
6
定理3 有界函数与无穷小的乘积是无穷小.
证 设函数 u 在 U 0 ( x 0 , 1 )内有界,
则 M 0 , ( δ1 0 ), 使 得 当 0 x x 0 δ1时 恒有 u M .
又设 是当 x x 0 时的无穷小 ,
0 , 2 0 , 使得当 0 x x 0 2 时 恒有 M .
$1-5无穷小与无穷大 11
不是无穷大.
例 ( P 5 3 例 2 ) 证 明 lim
1 x1
x1
.

M 0 . 要使
1 x 1
M,
y 1 x 1
只要 x 1
1 M
,
取 1 M 时,
1
1 M
,
当0 x 1
就有 1 x 1

高等数学名词(中英文对照)

高等数学名词(中英文对照)

高等数学名词(中英文)第一章函数与极限Chapter1 Function and Limit 集合set 元素element子集subset空集empty set并集union交集intersection 差集difference of set基本集basic set 补集complement set直积direct product笛卡儿积Cartesian product开区间open interval 闭区间closed interval 半开区间half open interval 有限区间finite interval区间的长度length of an interval无限区间infinite interval邻域neighborhood邻域的中心centre of a neighborhood 邻域的半径radius of a neighborhood 左邻域left neighborhood右邻域right neighborhood映射mappingX 到Y 的映射mapping of X onto Y 满射surjection单射injection一一映射one-to-one mapping双射bijection算子operator变化transformation函数function逆映射inverse mapping复合映射composite mapping自变量independent variable 因变量dependent variable定义域domain函数值value of function函数关系function relation值域range自然定义域natural domain单值函数single valued function多值函数multiple valued function单值分支one-valued branch函数图形graph of a function绝对值函数absolute value符号函数sigh function整数部分integral part阶梯曲线step curve当且仅当if and only if(iff)分段函数piecewise function上界upper bound下界lower bound有界boundedness无界unbounded函数的单调性monotonicity of a function 单调增加的increasing单调减少的decreasing单调函数monotone function函数的奇偶性parity(odevity) of a function 对称symmetry偶函数even function奇函数odd function函数的周期性periodicity of a function周期period反函数inverse function直接函数direct function复合函数composite function中间变量intermediate variable函数的运算operation of function基本初等函数basic elementary function初等函数elementary function幂函数power function指数函数exponential function对数函数logarithmic function三角函数trigonometric function反三角函数inverse trigonometric function 常数函数constant function双曲函数hyperbolic function双曲正弦hyperbolic sine双曲余弦hyperbolic cosine双曲正切hyperbolic tangent反双曲正弦inverse hyperbolic sine反双曲余弦inverse hyperbolic cosine反双曲正切inverse hyperbolic tangent极限limit数列sequence of number收敛convergence收敛于converge to发散divergent极限的唯一性uniqueness of limits收敛数列的有界性boundedness of a convergent sequence子列subsequence函数的极限limits of functions函数当x 趋于x0 时的极限limit of functions as x approaches x0左极限left limit右极限right limit单侧极限one-sided limits水平渐近线horizontal asymptote无穷小infinitesimal无穷大infinity铅直渐近线vertical asymptote夹逼准则squeeze rule单调数列monotonic sequence高阶无穷小infinitesimal of higher order 低阶无穷小infinitesimal of lower order 同阶无穷小infinitesimal of the same order 等阶无穷小equivalent infinitesimal 函数的连续性continuity of a function增量increment函数在x0 连续the function is continuous at x0左连续left continuous右连续right continuous区间上的连续函数continuous function函数在该区间上连续function is continuous on an interval不连续点discontinuity point第一类间断点discontinuity point of the first kind第二类间断点discontinuity point of the second kind初等函数的连续性continuity of the elementary functions定义区间defined interval最大值global maximum value (absolute maximum)最小值global minimum value (absolute minimum)零点定理the zero-point theorem介值定理intermediate value theorem第二章导数与微分Chapter2 Derivative and Differential速度velocity匀速运动uniform motion平均速度average velocity瞬时速度instantaneous velocity圆的切线tangent line of a circle切线tangent line切线的斜率slope of the tangent line位置函数position function导数derivative可导derivable函数的变化率问题problem of the change rate of a function导函数derived function左导数left-hand derivative右导数right-hand derivative单侧导数one-sided derivatives在闭区间[a, b] 上可导is derivable on the closed interval [a,b]切线方程tangent equation角速度angular velocity成本函数cost function边际成本marginal cost链式法则chain rule隐函数implicit function显函数explicit function二阶函数second derivative三阶导数third derivative高阶导数nth derivative莱布尼茨公式Leibniz formula对数求导法log- derivative参数方程parametric equation相关变化率correlative change rata微分differential可微的differentiable函数的微分differential of function自变量的微分differential of independent variable微商differential quotient间接测量误差indirect measurement error 绝对误差absolute error相对误差relative error第三章微分中值定理与导数的应用Chapter3 Mean Value Theorem ofDifferentials and the Application ofDerivatives罗马定理Rolle’s theorem费马引理Fermat’s lemma拉格朗日中值定理Lagrange’s mean value theorem驻点stationary point稳定点stable point 临界点critical point辅助函数auxiliary function拉格朗日中值公式Lagrange’s mean value formula柯西中值定理Cauchy’s mean value theorem 洛必达法则L’Hospital’s Rule0/0 型不定式indeterminate form of type 0/0 不定式indeterminate form泰勒中值定理Taylor’s mean value theorem 泰勒公式Taylor formula余项remainder term拉格朗日余项Lagrange remainder term麦克劳林公式Maclaurin’s formula佩亚诺公式Peano remainder term凹凸性concavity凹向上的concave upward, concave up凹向下的,向上凸的concave downward’ concave down拐点inflection point函数的极值extremum of function极大值local(relative) maximum最大值global(absolute) maximum极小值local(relative) minimum最小值global(absolute) minimum目标函数objective function曲率curvature弧微分arc differential平均曲率average curvature曲率园circle of curvature曲率中心center of curvature曲率半径radius of curvature渐屈线evolute渐伸线involute根的隔离isolation of root隔离区间isolation interval切线法tangent line method第四章不定积分Chapter4 Indefinite Integrals原函数primitive function(anti-derivative)积分号sign of integration被积函数integrand积分变量integral variable积分曲线integral curve积分表table of integrals换元积分法integration by substitution分部积分法integration by parts分部积分公式formula of integration by parts 有理函数rational function真分式proper fraction假分式improper fraction第五章定积分Chapter5 Definite Integrals曲边梯形trapezoid with曲边curve edge窄矩形narrow rectangle曲边梯形的面积area of trapezoid with curved edge积分下限lower limit of integral积分上限upper limit of integral积分区间integral interval分割partition积分和integral sum可积integrable矩形法rectangle method积分中值定理mean value theorem of integrals函数在区间上的平均值average value of a function on an intervals牛顿-莱布尼茨公式Newton-Leibniz formula微积分基本公式fundamental formula of calculus换元公式formula for integration by substitution递推公式recurrence formula反常积分improper integral 反常积分发散the improper integral is divergent反常积分收敛the improper integral is convergent无穷限的反常积分improper integral on an infinite interval无界函数的反常积分improper integral of unbounded functions绝对收敛absolutely convergent第六章定积分的应用Chapter6 Applications of the Definite Integrals元素法the element method面积元素element of area平面图形的面积area of a plane figure直角坐标又称“笛卡儿坐标(Cartesian coordinates)”极坐标polar coordinates抛物线parabola椭圆ellipse旋转体的面积volume of a solid of rotation 旋转椭球体ellipsoid of revolution, ellipsoid of rotation曲线的弧长arc length of a curve可求长的rectifiable光滑smooth功work水压力water pressure引力gravitation变力variable force第七章空间解析几何与向量代数Chapter7 Space Analytic Geometry and Vector Algebra向量vector自由向量free vector单位向量unit vector零向量zero vector相等equal平行parallel向量的线性运算linear poeration of vector三角法则triangle rule 平行四边形法则parallelogram rule 交换律commutative law结合律associative law负向量negative vector差difference分配律distributive law空间直角坐标系space rectangular coordinates坐标面coordinate plane卦限octant向量的模modulus of vector向量a 与b 的夹角angle between vector a and b方向余弦direction cosine方向角direction angle向量在轴上的投影projection of a vector onto an axis数量积,外积,叉积scalar product,dot product,inner product曲面方程equation for a surface球面sphere旋转曲面surface of revolution母线generating line轴axis 圆锥面cone 顶点vertex旋转单叶双曲面revolution hyperboloids of one sheet旋转双叶双曲面revolution hyperboloids of two sheets柱面cylindrical surface ,cylinder圆柱面cylindrical surface准线directrix抛物柱面parabolic cylinder二次曲面quadric surface 椭圆锥面dlliptic cone椭球面ellipsoid单叶双曲面hyperboloid of one sheet 双叶双曲面hyperboloid of two sheets 旋转椭球面ellipsoid of revolution 椭圆抛物面elliptic paraboloid 旋转抛物面paraboloid of revolution 双曲抛物面hyperbolic paraboloid 马鞍面saddle surface椭圆柱面elliptic cylinder 双曲柱面hyperbolic cylinder 抛物柱面parabolic cylinder 空间曲线spacecurve空间曲线的一般方程general form equations of a space curve空间曲线的参数方程parametric equations of a space curve螺转线spiral 螺矩pitch投影柱面projecting cylinder投影projection平面的点法式方程pointnorm form eqyation of a plane法向量normal vector平面的一般方程general form equation of a plane两平面的夹角angle between two planes点到平面的距离distance from a point to a plane空间直线的一般方程general equation of a line in space方向向量direction vector直线的点向式方程pointdirection form equations of a line方向数direction number直线的参数方程parametric equations of a line两直线的夹角angle between two lines垂直perpendicular直线与平面的夹角angle between a line and a planes平面束pencil of planes平面束的方程equation of a pencil of planes 行列式determinant系数行列式coefficient determinant第八章多元函数微分法及其应用Chapter8 Differentiation of Functions of Several Variables and Its Application一元函数function of one variable多元函数function of several variables内点interior point外点exterior point边界点frontier point,boundary point聚点point of accumulation开集openset闭集closed set 连通集connected set 开区域open region 闭区域closed region 有界集bounded set 无界集unbounded setn 维空间n-dimentional space二重极限double limit多元函数的连续性continuity of function of seveal连续函数continuous function不连续点discontinuity point 一致连续uniformly continuous 偏导数partial derivative对自变量x 的偏导数partial derivative with respect to independent variable x高阶偏导数partial derivative of higher order 二阶偏导数second order partial derivative 混合偏导数hybrid partial derivative 全微分total differential偏增量oartial increment偏微分partial differential 全增量total increment 可微分differentiable 必要条件necessary condition 充分条件sufficient condition叠加原理superpostition principle全导数total derivative中间变量intermediate variable 隐函数存在定理theorem of the existence of implicit function曲线的切向量tangent vector of a curve法平面normal plane向量方程vector equation 向量值函数vector-valued function 切平面tangent plane法线normal line方向导数directional derivative梯度gradient 数量场scalar field 梯度场gradient field 向量场vector field 势场potential field引力场gravitational field引力势gravitational potential曲面在一点的切平面tangent plane to a surface at a point曲线在一点的法线normal line to a surface at a point无条件极值unconditional extreme values 条件极值conditional extreme values 拉格朗日乘数法Lagrange multiplier method 拉格朗日乘子Lagrange multiplier 经验公式empirical formula最小二乘法method of least squares均方误差mean square error第九章重积分Chapter9 Multiple Integrals二重积分double integral可加性additivity累次积分iterated integral体积元素volume element三重积分triple integral直角坐标系中的体积元素volume element in rectangular coordinate system柱面坐标cylindrical coordinates柱面坐标系中的体积元素volume element in cylindrical coordinate system球面坐标spherical coordinates球面坐标系中的体积元素volume element in spherical coordinate system反常二重积分improper double integral曲面的面积area of a surface质心centre of mass静矩static moment密度density形心centroid转动惯量moment of inertia参变量parametric variable第十章曲线积分与曲面积分Chapter10 Line (Curve) Integrals andSurface Integrals对弧长的曲线积分line integrals with respect to arc hength第一类曲线积分line integrals of the first type对坐标的曲线积分line integrals with respect to x,y,and z第二类曲线积分line integrals of the second type有向曲线弧directed arc单连通区域simple connected region 复连通区域complex connected region 格林公式Green formula第一类曲面积分surface integrals of the first type对面的曲面积分surface integrals with respect to area 有向曲面directed surface对坐标的曲面积分surface integrals with respect to coordinate elements第二类曲面积分surface integrals of the second type有向曲面元element of directed surface高斯公式gauss formula 拉普拉斯算子Laplace operator 格林第一公式Green’s first formula 通量flux散度divergence 斯托克斯公式Stokes formula 环流量circulation旋度rotation,curl第十一章无穷级数Chapter11 Infinite Series一般项general term 部分和partial sum 余项remainder term等比级数geometric series几何级数geometric series公比common ratio 调和级数harmonic series柯西收敛准则Cauchy convergence criteria, Cauchy criteria for convergence 正项级数series of positive terms 达朗贝尔判别法D’Alembert test柯西判别法Cauchy test 交错级数alternating series 绝对收敛absolutely convergent条件收敛conditionally convergent柯西乘积Cauchy product 函数项级数series of functions 发散点point of divergence 收敛点pointof convergence 收敛域convergence domain 和函数sumfunction幂级数power series幂级数的系数coeffcients of power series阿贝尔定理Abel Theorem 收敛半径radius of convergence 收敛区间interval of convergence 泰勒级数Taylor series 麦克劳林级数Maclaurin series 二项展开式binomial expansion 近似计算approximate calculation舍入误差round-off error,rounding error 欧拉公式Euler’s formula 魏尔斯特拉丝判别法Weierstrass test 三角级数trigonometric series振幅amplitude角频率angular frequency初相initial phase矩形波square wave 谐波分析harmonic analysis 直流分量direct component 基波fundamental wave 二次谐波second harmonic三角函数系trigonometric function system 傅立叶系数Fourier coefficient 傅立叶级数Forrier series周期延拓periodic prolongation正弦级数sine series 余弦级数cosine series 奇延拓oddprolongation 偶延拓evenprolongation傅立叶级数的复数形式complex form of Fourier series第十二章微分方程Chapter12 Differential Equation 解微分方程solve a differential equation 常微分方程ordinary differential equation 偏微分方程partial differential equation,PDE 微分方程的阶order of a differential equation 微分方程的解solution of a differential equation 微分方程的通解general solution of a differential equation初始条件initial condition微分方程的特解particular solution of a differential equation初值问题initial value problem微分方程的积分曲线integral curve of a differential equation可分离变量的微分方程variable separable differential equation隐式解implicit solution 隐式通解inplicit general solution 衰变系数decay coefficient衰变decay齐次方程homogeneous equation 一阶线性方程linear differential equation of first order 非齐次non-homogeneous齐次线性方程homogeneous linear equation 非齐次线性方程non-homogeneous linear equation常数变易法method of variation of constant 暂态电流transient state current 稳态电流steady state current 伯努利方程Bernoulli equation 全微分方程total differential equation 积分因子integrating factor高阶微分方程differential equation of higher order悬链线catenary高阶线性微分方程linear differential equation of higher order 自由振动的微分方程differential equation of free vibration强迫振动的微分方程differential equation of forced oscillation串联电路的振荡方程oscillation equation of series circuit二阶线性微分方程second order lineardifferential equation线性相关linearly dependence线性无关linearly independence 二阶常系数齐次线性微分方程second order homogeneous linear differential equation with constant coefficient二阶变系数齐次线性微分方程second order homogeneous linear differential equation with variable coefficient特征方程characteristic equation无阻尼自由振动的微分方程differential equation of free vibration with zero damping 固有频率natural frequency 简谐振动simple harmonic oscillation,simple harmonic vibration微分算子differential operator待定系数法method of undetermined coefficient共振现象resonance phenomenon欧拉方程Euler equation 幂级数解法power series solution 数值解法numerial solution 勒让德方程Legendre equation微分方程组system of differential equations 常系数线性微分方程组system of linear differential equations with constant coefficie。

(高等数学英文课件)8.4 Series of Nonnegative Terms

(高等数学英文课件)8.4 Series of Nonnegative Terms
Let us begin with a particular kind of series
目录 上页 下页 返回 结束
Suppose that an is an infinite series with an 0 n 1
for all n.
Series of nonnegative terms
Solution.
1
n1 n2 1
f
x
1 x2 1,
x
1.
continues, positive, decreasing.
1
1 x2 1 dx
tan
1
x1
4
目录 上页 下页 返回 结束
比较判别法
目录 上页 下页 返回 结束
Example 1. Applying the comparison test
Solution.
2 n !
n 1 n ! 2
lim
n
a n1 an
2n1! lnim n1!2
2n! n!2
n!2 2n1!
lim
n
2n!n1!2
2n 12n
lim n
n 12
41
目录 上页 下页 返回 结束
Example 3. Applying the ratio test
4 n n ! n !
Example 1. Applying the ratio test
Solution.
2 n 5 3n
n0
lim a n1 a n
n
lnim2n31n1 5
2n 5 3n
1 3
lim
n
2n1 5 2n 5
1 3
lim

高等数学-微积分第1章(英文讲稿)

高等数学-微积分第1章(英文讲稿)

高等数学-微积分第1章(英文讲稿)C alc u lus (Fifth Edition)高等数学- Calculus微积分(双语讲稿)Chapter 1 Functions and Models1.1 Four ways to represent a function1.1.1 ☆Definition(1-1) function: A function f is a rule that assigns to each element x in a set A exactly one element, called f(x), in a set B. see Fig.2 and Fig.3Conceptions: domain; range (See fig. 6 p13); independent variable; dependent variable. Four possible ways to represent a function: 1)Verbally语言描述(by a description in words); 2) Numerically数据表述(by a table of values); 3) Visually 视觉图形描述(by a graph);4)Algebraically 代数描述(by an explicit formula).1.1.2 A question about a Curve represent a function and can’t represent a functionThe way ( The vertical line test ) : A curve in the xy-plane is the graph of a function of x if and only if no vertical line intersects the curve more than once. See Fig.17 p 171.1.3 ☆Piecewise defined functions (分段定义的函数)Example7 (P18)1-x if x ≤1f(x)=﹛x2if x>1Evaluate f(0),f(1),f(2) and sketch the graph.Solution:1.1.4 About absolute value (分段定义的函数)⑴∣x∣≥0;⑵∣x∣≤0Example8 (P19)Sketch the graph of the absolute value function f(x)=∣x∣.Solution:1.1.5☆☆Symmetry ,(对称) Even functions and Odd functions (偶函数和奇函数)⑴Symmetry See Fig.23 and Fig.24⑵①Even functions: If a function f satisfies f(-x)=f(x) for every number x in its domain,then f is call an even function. Example f(x)=x2 is even function because: f(-x)= (-x)2=x2=f(x)②Odd functions: If a function f satisfie s f(-x)=-f(x) for every number x in its domain,thenf is call an odd function. Example f(x)=x3 is even function because: f(-x)=(-x)3=-x3=-f(x)③Neither even nor odd functions:1.1.6☆☆Increasing and decreasing function (增函数和减函数)⑴Definition(1-2) increasing and decreasing function:① A function f is called increasing on an interval I if f(x1)<f(x2) whenever x1<x2 in I. ①A function f is called decreasing on an interval I if f(x1)>f(x2) whenever x1<x2 in I.See Fig.26. and Fig.27. p211.2 Mathematical models: a catalog of essential functions p251.2.1 A mathematical model p25A mathematical model is a mathematical description of a real-world phenomenon such as the size of a population, the demand for a product, the speed of a falling object, the concentration of a product in a chemical reaction, the life expectancy of a person at birth, or the cost of emission reduction.1.2.2 Linear models and Linear function P261.2.3 Polynomial P27A function f is called a polynomial ifP(x) =a n x n+a n-1x n-1+…+a2x2+a1x+a0Where n is a nonnegative integer and the numbers a0,a1,a2,…,a n-1,a n are constants called the coefficients of the polynomial. The domain of any polynomial is R=(-∞,+∞).if the leading coefficient a n≠0, then the degree of the polynomial is n. For example, the function P(x) =5x6+2x5-x4+3x-9⑴Quadratic function example: P(x) =5x2+2x-3 二次函数(方程)⑵Cubic function example: P(x) =6x3+3x2-1 三次函数(方程)1.2.4Power functions幂函数P30A function of the form f(x) =x a,Where a is a constant, is called a power function. We consider several cases:⑴a=n where n is a positive integer ,(n=1,2,3,…,)⑵a=1/n where n is a positive integer,(n=1,2,3,…,) The function f(x) =x1/n⑶a=n-1 the graph of the reciprocal function f(x) =x-1 反比函数1.2.5Rational function有理函数P 32A rational function f is a ratio of two polynomials:f(x)=P(x) /Q(x)1.2.6Algebraic function代数函数P32A function f is called algebraic function if it can be constructed using algebraic operations ( such as addition,subtraction,multiplication,division,and taking roots) starting with polynomials. Any rational function is automatically an algebraic function. Examples: P 321.2.7Trigonometric functions 三角函数P33⑴f(x)=sin x⑵f(x)=cos x⑶f(x)=tan x=sin x / cos x1.2.8Exponential function 指数函数P34The exponential functions are the functions the form f(x) =a x Where the base a is a positive constant.1.2.9Transcendental functions 超越函数P35These are functions that are not a algebraic. The set of transcendental functions includes the trigonometric,inverse trigonometric,exponential,and logarithmic functions,but it also includes a vast number of other functions that have never been named. In Chapter 11 we will study transcendental functions that are defined as sums of infinite series.1.2 Exercises P 35-381.3 New functions from old functions1.3.1 Transformations of functions P38⑴Vertical and Horizontal shifts (See Fig.1 p39)①y=f(x)+c,(c>0)shift the graph of y=f(x) a distance c units upward.②y=f(x)-c,(c>0)shift the graph of y=f(x) a distance c units downward.③y=f(x+c),(c>0)shift the graph of y=f(x) a distance c units to the left.④y=f(x-c),(c>0)shift the graph of y=f(x) a distance c units to the right.⑵ V ertical and Horizontal Stretching and Reflecting (See Fig.2 p39)①y=c f(x),(c>1)stretch the graph of y=f(x) vertically bya factor of c②y=(1/c) f(x),(c>1)compress the graph of y=f(x) vertically by a factor of c③y=f(x/c),(c>1)stretch the graph of y=f(x) horizontally by a factor of c.④y=f(c x),(c>1)compress the graph of y=f(x) horizontally by a factor of c.⑤y=-f(x),reflect the graph of y=f(x) about the x-axis⑥y=f(-x),reflect the graph of y=f(x) about the y-axisExamples1: (See Fig.3 p39)y=f( x) =cos x,y=f( x) =2cos x,y=f( x) =(1/2)cos x,y=f( x) =cos(x/2),y=f( x) =cos2xExamples2: (See Fig.4 p40)Given the graph y=f( x) =( x)1/2,use transformations to graph y=f( x) =( x)1/2-2,y=f( x) =(x-2)1/2,y=f( x) =-( x)1/2,y=f( x) =2 ( x)1/2,y=f( x) =(-x)1/21.3.2 Combinations of functions (代数组合函数)P42Algebra of functions: Two functions (or more) f and g through the way such as add, subtract, multiply and divide to combined a new function called Combination of function.☆Definition(1-2) Combination function: Let f and g be functions with domains A and B. The functions f±g,f g and f /g are defined as follows: (特别注意符号(f±g)( x) 定义的含义)①(f±g)( x)=f(x)±g( x),domain =A∩B②(f g)( x)=f(x) g( x),domain =A∩ B③(f /g)( x)=f(x) /g( x),domain =A∩ B and g( x)≠0Example 6 If f( x) =( x)1/2,and g( x)=(4-x2)1/2,find functions y=f(x)+g( x),y=f(x)-g( x),y=f(x)g( x),and y=f(x) /g( x)Solution: The domain of f( x) =( x)1/2 is [0,+∞),The domain of g( x) =(4-x2)1/2 is interval [-2,2],The intersection of the domains of f(x) and g( x) is[0,+∞)∩[-2,2]=[0,2]Thus,according to the definitions, we have(f+g)( x)=( x)1/2+(4-x2)1/2,domain [0,2](f-g)( x)=( x)1/2-(4-x2)1/2,domain [0,2](f g)( x)=f(x) g( x) =( x)1/2(4-x2)1/2=(4 x-x3)1/2domain [0,2](f /g)( x)=f(x)/g( x)=( x)1/2/(4-x2)1/2=[ x/(4-x2)]1/2 domain [0,2)1.3.3☆☆Composition of functions (复合函数)P45☆Definition(1-3) Composition function: Given two functions f and g the composite func tion f⊙g (also called the composition of f and g ) is defined by(f⊙g)( x)=f( g( x)) (特别注意符号(f⊙g)( x) 定义的含义)The domain of f⊙g is the set of all x in the domain of g such that g(x) is in the domain of f . In other words, (f⊙g)(x) is defined whenever both g(x) and f (g (x)) are defined. See Fig.13 p 44 Example7 If f (g)=( g)1/2 and g(x)=(4-x3)1/2find composite functions f⊙g and g⊙f Solution We have(f⊙g)(x)=f (g (x) ) =( g)1/2=((4-x3)1/2)1/2(g⊙f)(x)=g (f (x) )=(4-x3)1/2=[4-((x)1/2)3]1/2=[4-(x)3/2]1/2Example8 If f (x)=( x)1/2 and g(x)=(2-x)1/2find composite function s①f⊙g ②g⊙f ③f⊙f④g⊙gSolution We have①f⊙g=(f⊙g)(x)=f (g (x) )=f((2-x)1/2)=((2-x)1/2)1/2=(2-x)1/4The domain of (f⊙g)(x) is 2-x≥0 that is x ≤2 {x ︳x ≤2 }=(-∞,2]②g⊙f=(g⊙f)(x)=g (f (x) )=g (( x)1/2 )=(2-( x)1/2)1/2The domain of (g⊙f)(x) is x≥0 and 2-( x)1/2x ≥0 ,that is( x)1/2≤2 ,or x ≤ 4 ,so the domain of g⊙f is the closed interval[0,4]③f⊙f=(f⊙f)(x)=f (f(x) )=f((x)1/2)=((x)1/2)1/2=(x)1/4The domain of (f⊙f)(x) is [0,∞)④g⊙g=(g⊙g)(x)=g (g(x) )=g ((2-x)1/2 )=(2-(2-x)1/2)1/2The domain of (g⊙g)(x) is x-2≥0 and 2-(2-x)1/2≥0 ,that is x ≤2 and x ≥-2,so the domain of g⊙g is the closed interval[-2,2]Notice: g⊙f⊙h=f (g(h(x)))Example9Example10 Given F (x)=cos2( x+9),find functions f,g,and h such that F (x)=f⊙g⊙h Solution Since F (x)=[cos ( x+9)] 2,that is h (x)=x+9 g(x)=cos x f (x)=x2Exercise P 45-481.4 Graphing calculators and computers P481.5 Exponential functions⑴An exponential function is a function of the formf (x)=a x See Fig.3 P56 and Fig.4Exponential functions increasing and decreasing (单调性讨论)⑵Lows of exponents If a and b are positive numbers and x and y are any real numbers. Then1) a x+y=a x a y2) a x-y=a x / a y3) (a x)y=a xy4) (ab)x+y =a x b x⑶about the number e f (x)=e x See Fig. 14,15 P61Some of the formulas of calculus will be greatly simplified if we choose the base a .Exercises P 62-631.6 Inverse functions and logarithms1.6.1 Definition(1-4) one-to-one function: A function f iscalled a one-to-one function if it never takes on the same value twice;that is,f (x1)≠f (x2),whenever x1≠x2( 注解:不同的自变量一定有不同的函数值,不同的自变量有相同的函数值则不是一一对应函数) Example: f (x)=x3is one-to-one function.f (x)=x2 is not one-to-one function, See Fig.2,3,4 ☆☆Definition(1-5) Inverse function:Let f be a one-to-one function with domain A and range B. Then its inverse function f -1(y)has domain B and range A and is defined byf-1(y)=x f (x)=y for any y in Bdomain of f-1=range of frange of f-1=domain of f( 注解:it says : if f maps x into y, then f-1maps y back into x . Caution: If f were not one-to-one function,then f-1 would not be uniquely defined. )Caution: Do not mistake the-1 in f-1for an exponent. Thus f-1(x)=1/ f(x) Because the letter x is traditionally used as the independent variable, so when we concentrate on f-1(y) rather than on f-1(y), we usually reverse the roles of x and y in Definition (1-5) and write as f-1(x)=y f (x)=yWe get the following cancellation equations:f-1( f(x))=x for every x in Af (f-1(x))=x for every x in B See Fig.7 P66Example 4 Find the inverse function of f(x)=x3+6Solution We first writef(x)=y=x3+6Then we solve this equation for x:x3=y-6x=(y-6)1/3Finally, we interchange x and y:y=(x-6)1/3That is, the inverse function is f-1(x)=(x-6)1/3( 注解:The graph of f-1 is obtained by reflecting the graph of f about the line y=x. ) See Fig.9、8 1.6.2 Logarithmic function If a>0 and a≠1,the exponential function f (x)=a x is either increasing or decreasing and so it is one-to-one function by the Horizontal Line Test. It therefore has an inverse function f-1,which is called the logarithmic function with base a and is denoted log a,If we use the formulation of an inverse function given by (See Fig.3 P56)f-1(x)=y f (x)=yThen we havelogx=y a y=xThe logarithmic function log a x=y has domain (0,∞) and range R.Usefully equations:①log a(a x)=x for every x∈R②a log ax=x for every x>01.6.3 ☆Lows of logarithms :If x and y are positive numbers, then①log a(xy)=log a x+log a y②log a(x/y)=log a x-log a y③log a(x)r=r log a x where r is any real number1.6.4 Natural logarithmsNatural logarithm isl og e x=ln x =ythat is①ln x =y e y=x② ln(e x)=x x∈R③e ln x=x x>0 ln e=1Example 8 Solve the equation e5-3x=10Solution We take natural logarithms of both sides of the equation and use ②、③ln (e5-3x)=ln10∴5-3x=ln10x=(5-ln10)/3Example 9 Express ln a+(ln b)/2 as a single logarithm.Solution Using laws of logarithms we have:ln a+(ln b)/2=ln a+ln b1/2=ln(ab1/2)1.6.5 ☆Change of Base formula For any positive number a (a≠1), we havel og a x=ln x/ ln a1.6.6 Inverse trigonometric functions⑴Inverse sine function or Arcsine functionsin-1x=y sin y=x and -π/2≤y≤π / 2,-1≤x≤1 See Fig.18、20 P72Example13 ① sin-1 (1/2) or arcsin(1/2) ② tan(arcsin1/3)Solution①∵sin (π/6)=1/2,π/6 lies between -π/2 and π / 2,∴sin-1 (1/2)=π/6② Let θ=arcsin1/3,so sinθ=1/3tan(arcsin1/3)=tanθ=s inθ/cosθ=(1/3)/(1-s in2θ)1/2=1/(8)1/2Usefully equations:①sin-1(sin x)=x for -π/2≤x≤π / 2②sin (sin-1x)=x for -1≤x≤1⑵Inverse cosine function or Arccosine functioncos-1x=y cos y=x and 0 ≤y≤π,-1≤x≤1 See Fig.21、22 P73Usefully equations:①cos-1(cos x)=x for 0 ≤x≤π②cos (cos-1x)=x for -1≤x≤1⑶Inverse Tangent function or Arctangent functiontan-1x=y tan y=x and -π/2<y<π / 2 ,x∈R See Fig.23 P73、Fig.25 P74Example 14 Simplify the expression cos(ta n-1x).Solution 1 Let y=tan-1 x,Then tan y=x and -π/2<y<π / 2 ,We want find cos y but since tan y is known, it is easier to find sec y first:sec2y=1 +tan2y sec y=(1 +x2 )1/2∴cos(ta n-1x)=cos y =1/ sec y=(1 +x2)-1/2Solution 2∵cos(ta n-1x)=cos y∴cos(ta n-1x)=(1 +x2)-1/2⑷Other Inverse trigonometric functionscsc-1x=y∣x∣≥1csc y=x and y∈(0,π / 2]∪(π,3π / 2]sec-1x=y∣x∣≥1sec y=x and y∈[0,π / 2)∪[π,3π / 2]cot-1x=y x∈R cot y=x and y∈(0,π)Exercises P 74-85Key words and PhrasesCalculus 微积分学Set 集合Variable 变量Domain 定义域Range 值域Arbitrary number 独立变量Independent variable 自变量Dependent variable 因变量Square root 平方根Curve 曲线Interval 区间Interval notation 区间符号Closed interval 闭区间Opened interval 开区间Absolute 绝对值Absolute value 绝对值Symmetry 对称性Represent of a function 函数的表述(描述)Even function 偶函数Odd function 奇函数Increasing Function 增函数Increasing Function 减函数Empirical model 经验模型Essential Function 基本函数Linear function 线性函数Polynomial function 多项式函数Coefficient 系数Degree 阶Quadratic function 二次函数(方程)Cubic function 三次函数(方程)Power functions 幂函数Reciprocal function 反比函数Rational function 有理函数Algebra 代数Algebraic function 代数函数Integer 整数Root function 根式函数(方程)Trigonometric function 三角函数Exponential function 指数函数Inverse function 反函数Logarithm function 对数函数Inverse trigonometric function 反三角函数Natural logarithm function 自然对数函数Chang of base of formula 换底公式Transcendental function 超越函数Transformations of functions 函数的变换Vertical shifts 垂直平移Horizontal shifts 水平平移Stretch 伸张Reflect 反演Combinations of functions 函数的组合Composition of functions 函数的复合Composition function 复合函数Intersection 交集Quotient 商Arithmetic 算数。

(高等数学英文课件)8.2 Subsequences Bounded Sequences

(高等数学英文课件)8.2 Subsequences Bounded Sequences
lim C C
n
Solution. We must find the integer N such that for all n
nNCC
It is obvious that we can obtain N as
N 1
目录 上页 下页 返回 结束
Example 3. Show that 1 n1 diverges.
Solution.
1n
lim n n
0
1n
n
1 n
, lim 1 0. n n
1n
lim
0
n n
目录 上页 下页 返回 结束
Example 6. Applying the Sandwich Theorem
cosnsinn
lim
n
3n2 n
Solution.
0
cos n sin n 3n2 n
Solution. Suppose the sequence converges to some number L.
nN1n1L
For 1 , we have
2
1n1 L 1
2
L 1 1 1 L1 1 1 L 3
2
2
22
2
L 1 1 1 L11 3 L1
2
2
22
2
目录 上页 下页 返回 结束
目录 上页 下页 返回 结束
8.1
Limits of Sequence of Numbers
(数列的极限)
目录 上页 下页 返回 结束
目录 上页 下页 返回 结束
目录 上页 下页 返回 结束
目录 上页 下页 返回 结束
Example 1. Applying the definition to show that

微积分教学资料——chapter8.1,8.2-文档资料

微积分教学资料——chapter8.1,8.2-文档资料

For example:
(1){1}: 1, 1 , 1 , 1 , n 23 n
(2){ (1)n1 1}: 1, 1 , 1 ,(1)n1 1 ,
n
23
n
(3){n (1)n }: 0, 3 , 2 , 5 n (1)n ,
n
234
n
(4){8}: 8,8,8,88
1 lim 0 n n 2
Theorem:
Example:
Find lim n3 n n n3 2n2 1
Solution:
1
lim
n3 n
1
lim
n2
1
n n3 2n2 1
n
1
2

1
n n3
The Sandwich Theorem for Sequences 'sænwidʒ]
n2
We should choose
N



1


2.Showing that this N works.
given 0, Let N 1
If
then
1 n2
0


n N,
Therefore , by the definition of a limit,
2
2
example
Find a formula for the general term an of the sequence assuming that the pattern of the first few terms continues.
1, 2 , 4 , 8 , 3 9 27

(高等数学英文课件)1.3 Limits Involving Infinity

(高等数学英文课件)1.3 Limits Involving Infinity
(高等数学英文课件)1.3 Limits Involving Infinity
目录 上页 下页 返回 结束
1.3
Limits Involving Infinity
目录 上页 下页 返回 结束
1.3.1 Finite Limits as x … 1.3.2 Rules for Limits 1.3.3 Horizontal Asymptotes 1.3.4 Infinite Limits 1.3.5 Vertical Asymptotes 1.3.6 Oblique Asymptotes
目录 上页 下页 返回 结束
目录 上页 下页 返回 结束
目录 上页 下页 返回 结束
1.3.4
Infinite Limits
目录 上页 下页 返回 结束
目录 上页 下页 返回 结束
目录 上页 下页 返回 结束
目录 上页 下页 返回 结束
目录 上页 下页 返回 结束
目录 上页 下页 返回 结束
x
x1
0
上式中分子多项式的次数应为零,
故有1-a=0,a-b=0,由此得 a=b=1
目录 上页 下页 返回 结束
1.3.3
Horizontal Asymptotes
目录 上页 下页 返回 结束
目录 上页 下页 返回 结束
目录 上页 下页 返回 结束
目录 上页 下页 返回 结束
目录 上页 下页 返回 结束
limsinx, limsinx.
x
x
11
lim , lim .
x x x0
x0
_________________________________________________

高等数学课程英文简介

高等数学课程英文简介

Course SyllabusesCourse Name Higher Mathematics Course CodeHours&Credits160 & 10Majors&Minors Science &Technology Majors Faculty of Mathematics and PhysicsHigher MathematicsCOURSE DESCRIPTION:Prerequisites: satisfactory score on elementary mathematicsCorequisites: NoneHigher Mathematics is designed to serve students majoring in chemical science, computer science and engineering etc. It consists of two parts of a two-semester sequence. The course begins with a rapid review of topics in algebra and trigonometry, which you should be competent in. Part 1, consisting of Chapters 1 to 7, is devoted to single variable differentiation, integration and differential equations. It covers the fundamental concepts and theorems. Part 2, consisting of Chapters 8 to 12, discusses in depth multivariable differentiation, integration, infinite series, vectors and the geometry of space.COURSE OBJECTIVES:Upon completion, students will be able to evaluate limits and continuity, and compute derivatives and integrals of selected functions with single or multivariable, solve some linear differential equations and determine the convergences or divergences of an infinite series. Furthermore, students will be able to utilize the techniques of differentiation and integration together with appropriate technology to solve practical problems and to analyze and communicate results.OUTLINE OF INSTRUCTION:Chapter 1. Functions and LimitsChapter 2. Derivatives and DifferentiationChapter 3. The Mean Value Theorem and Applications of the Derivatives Chapter 4. Indefinite IntegralsChapter 5. Definite IntegralsChapter 6. Applications of IntegralsChapter 7. Differential EquationsChapter 8. vectors and the geometry of spaceChapter 9. Multivariable Functions and Theire DerivativesChapter 10. Multiple IntegralsChapter 11. Integration in Vector FieldsChapter 12. Infinite SeriesTEACHING METHODS:LectureASSESSMENT Items:There will be a midterm, final and two periodical examinationsGRADING:Midterm 10%Final Exam 50%Two periodical Exam 20%(each 10%)Exercises 20%REFERENCE BOOKS:1.Stewart, James. Calculus: Early Transcendentals. 7th ed. Brooks/Cole, CengageLearning 20122.Ross L. Finney. Calculus. 10th edition. Maurice D. Weir and Frank R. Giordano 2010。

高数词汇 英文翻译

高数词汇 英文翻译

Absolute convergence :绝对收敛Absolute extreme values :绝对极值Absolute maximum and minimum绝对极大与极小Absolute value :绝对值Arbitrary constant :任意常数Area :面积Axes, coordinate :坐标轴Calculus :微积分differential :微分学integral :积分学Cartesian coordinates :笛卡儿坐标一般指直角坐标Cauch’s Mean V alue Theorem :柯西均值定理Circle :圆Coefficient :系数Constant function :常数函数Constant of integration :积分常数Continuity :连续性at a point :在一点处之连续性of a function :函数之连续性on an interval :在区间之连续性from the left :左连续from the right :右连续Continuous function :连续函数Convergence :收敛Convergent sequence :收敛数列Coordinate:坐标Decreasing function :递减函数Decreasing sequence :递减数列Definite integral :定积分Derivative :导数of a composite function :复合函数之导数of a constant function :常数函数之导数directional :方向导数domain of :导数之定义域of exponential function :指数函数之导数higher :高阶导数partial :偏导数of a power function :幂函数之导数of a power series :幂级数之导数of a product :积之导数of a quotient :商之导数as a rate of change :导数当作变率right-hand :右导数second :二阶导数as the slope of a tangent :导数看成切线之斜Differentiable function :可导函数Differential :微分Differential equation :微分方程partial :偏微分方程Differentiation :求导法implicit :隐求导法partial :偏微分法term by term :逐项求导法Directional derivatives :方向导数Discontinuity :不连续性Distance :距离Divergence :发散Domain :定义域Dot product :点积Double integral :二重积分change of variable in :二重积分之变数变换in polar coordinates :极坐标二重积分Cartesian :笛卡儿坐标Coordinate axes :坐标轴Critical point :临界点Equation :方程式Even function :偶函数Expected V alued :期望值Exponential Function :指数函数Extreme value :极值Extreme V alue Theorem :极值定理Factorial :阶乘Focus :焦点Fractions :分式Function :函数Fundamental Theorem of Calculus微积分基本定理Gradient :梯度Graph :图形Green Formula :格林公式Higher Derivative :高阶导数Higher mathematics 高等数学/高数Implicit differentiation :隐求导法Implicit function :隐函数Increment :增量Increasing Function :增函数Indefinite integral :不定积分Independent variable :自变数Indeterminate from :不定型Inequality :不等式Infinite point :无穷极限Infinite series :无穷级数Instantaneous velocity :瞬时速度Integer :整数Integral :积分Integrand :被积分式Integration :积分Integration by part :分部积分法Iterated integral :逐次积分Law of Cosines :余弦定理Least upper bound :最小上界Left-hand derivative :左导数Left-hand limit :左极限Length :长度L'Hospital's rule :洛必达法则Limit :极限Logarithm :对数Logarithmic function :对数函数Maximum and minimum values :极大与极小值Mean V alue Theorem :均值定理Multiple integrals :重积分Natural logarithm function :自然对数函数Natural number :自然数Normal line :法线Number :数Odd function :奇函数One-sided limit :单边极限Open interval :开区间Optimization problems :最佳化问题Order :阶Ordinary differential equation :常微分方程Origin :原点Parameter :参数Partial derivative :偏导数Partial differential equation :偏微分方程Polar axis :极轴Polar coordinate :极坐标Polar equation :极方程式Pole :极点Polynomial :多项式Power function :幂函数Product :积Rational number :有理数Real number :实数Rectangular coordinates :直角坐标Rectangular coordinate system :直角坐标系Relative maximum and minimum :相对极大值与极小值Right-hand derivative :右导数Right-hand limit :右极限Root :根Second derivative :二阶导数Second Derivative Test :二阶导数试验法Second partial derivative :二阶偏导数Sequence :数列Series :级数Set :集合Sine function :正弦函数Slope :斜率Space :空间Speed :速率Strictly decreasing/increasing:严格递Sum :和V alue of function :函数值V ariable :变数V ector :向量V elocity :速度V olume :体积X-axis :x轴x-coordinate :x坐标。

高等数学专业名词中英文对照(全面)

高等数学专业名词中英文对照(全面)

微积分英文词汇,高数名词中英文对照,高等数学术语英语翻译一览关键词:微积分英文,高等数学英文翻译,高数英语词汇来源:上海外教网| 发布日期:2008—05-16 17:12V、X、Z:Value of function :函数值Variable :变数Vector :向量Velocity :速度Vertical asymptote :垂直渐近线Volume :体积X—axis :x轴x—coordinate :x坐标x—intercept :x截距Zero vector :函数的零点Zeros of a polynomial :多项式的零点T:Tangent function :正切函数Tangent line :切线Tangent plane :切平面Tangent vector :切向量Total differential :全微分Trigonometric function :三角函数Trigonometric integrals :三角积分Trigonometric substitutions :三角代换法Tripe integrals :三重积分S:Saddle point :鞍点Scalar :纯量Secant line :割线Second derivative :二阶导数Second Derivative Test :二阶导数试验法Second partial derivative :二阶偏导数Sector :扇形Sequence :数列Series :级数Set :集合Shell method :剥壳法Sine function :正弦函数Singularity :奇点Slant asymptote :斜渐近线Slope :斜率Slope—intercept equation of a line :直线的斜截式Smooth curve :平滑曲线Smooth surface :平滑曲面Solid of revolution :旋转体Space :空间Speed :速率Spherical coordinates :球面坐标Squeeze Theorem :夹挤定理Step function :阶梯函数Strictly decreasing :严格递减Strictly increasing :严格递增Sum :和Surface :曲面Surface integral :面积分Surface of revolution :旋转曲面Symmetry :对称R:Radius of convergence :收敛半径Range of a function :函数的值域Rate of change :变化率Rational function :有理函数Rationalizing substitution :有理代换法Rational number :有理数Real number :实数Rectangular coordinates :直角坐标Rectangular coordinate system :直角坐标系Relative maximum and minimum :相对极大值与极小值Revenue function :收入函数Revolution ,solid of :旋转体Revolution ,surface of :旋转曲面Riemann Sum :黎曼和Riemannian geometry :黎曼几何Right-hand derivative :右导数Right—hand limit :右极限Root :根P、Q:Parabola :拋物线Parabolic cylinder :抛物柱面Paraboloid :抛物面Parallelepiped :平行六面体Parallel lines :并行线Parameter :参数Partial derivative :偏导数Partial differential equation :偏微分方程Partial fractions :部分分式Partial integration :部分积分Partiton :分割Period :周期Periodic function :周期函数Perpendicular lines :垂直线Piecewise defined function :分段定义函数Plane :平面Point of inflection :反曲点Polar axis :极轴Polar coordinate :极坐标Polar equation :极方程式Pole :极点Polynomial :多项式Positive angle :正角Point—slope form :点斜式Power function :幂函数Product :积Quadrant :象限Quotient Law of limit :极限的商定律Quotient Rule :商定律M、N、O:Maximum and minimum values :极大与极小值Mean Value Theorem :均值定理Multiple integrals :重积分Multiplier :乘子Natural exponential function :自然指数函数Natural logarithm function :自然对数函数Natural number :自然数Normal line :法线Normal vector :法向量Number :数Octant :卦限Odd function :奇函数One-sided limit :单边极限Open interval :开区间Optimization problems :最佳化问题Order :阶Ordinary differential equation :常微分方程Origin :原点Orthogonal :正交的L:Laplace transform :Leplace 变换Law of Cosines :余弦定理Least upper bound :最小上界Left—hand derivative :左导数Left—hand limit :左极限Lemniscate :双钮线Length :长度Level curve :等高线L’Hospital's rule :洛必达法则Limacon :蚶线Limit :极限Linear approximation:线性近似Linear equation :线性方程式Linear function :线性函数Linearity :线性Linearization :线性化Line in the plane :平面上之直线Line in space :空间之直线Lobachevski geometry :罗巴切夫斯基几何Local extremum :局部极值Local maximum and minimum :局部极大值与极小值Logarithm :对数Logarithmic function :对数函数I:Implicit differentiation :隐求导法Implicit function :隐函数Improper integral :瑕积分Increasing/Decreasing Test :递增或递减试验法Increment :增量Increasing Function :增函数Indefinite integral :不定积分Independent variable :自变数Indeterminate from :不定型Inequality :不等式Infinite point :无穷极限Infinite series :无穷级数Inflection point :反曲点Instantaneous velocity :瞬时速度Integer :整数Integral :积分Integrand :被积分式Integration :积分Integration by part :分部积分法Intercepts :截距Intermediate value of Theorem :中间值定理Interval :区间Inverse function :反函数Inverse trigonometric function :反三角函数Iterated integral :逐次积分H:Higher mathematics 高等数学/高数E、F、G、H:Ellipse :椭圆Ellipsoid :椭圆体Epicycloid :外摆线Equation :方程式Even function :偶函数Expected Valued :期望值Exponential Function :指数函数Exponents ,laws of :指数率Extreme value :极值Extreme Value Theorem :极值定理Factorial :阶乘First Derivative Test :一阶导数试验法First octant :第一卦限Focus :焦点Fractions :分式Function :函数Fundamental Theorem of Calculus :微积分基本定理Geometric series :几何级数Gradient :梯度Graph :图形Green Formula :格林公式Half-angle formulas :半角公式Harmonic series :调和级数Helix :螺旋线Higher Derivative :高阶导数Horizontal asymptote :水平渐近线Horizontal line :水平线Hyperbola :双曲线Hyper boloid :双曲面D:Decreasing function :递减函数Decreasing sequence :递减数列Definite integral :定积分Degree of a polynomial :多项式之次数Density :密度Derivative :导数of a composite function :复合函数之导数of a constant function :常数函数之导数directional :方向导数domain of :导数之定义域of exponential function :指数函数之导数higher :高阶导数partial :偏导数of a power function :幂函数之导数of a power series :羃级数之导数of a product :积之导数of a quotient :商之导数as a rate of change :导数当作变率right-hand :右导数second :二阶导数as the slope of a tangent :导数看成切线之斜率Determinant :行列式Differentiable function :可导函数Differential :微分Differential equation :微分方程partial :偏微分方程Differentiation :求导法implicit :隐求导法partial :偏微分法term by term :逐项求导法Directional derivatives :方向导数Discontinuity :不连续性Disk method :圆盘法Distance :距离Divergence :发散Domain :定义域Dot product :点积Double integral :二重积分change of variable in :二重积分之变数变换in polar coordinates :极坐标二重积分C:Calculus :微积分differential :微分学integral :积分学Cartesian coordinates :笛卡儿坐标一般指直角坐标Cartesian coordinates system :笛卡儿坐标系Cauch’s Mean Value Theorem :柯西均值定理Chain Rule :连锁律Change of variables :变数变换Circle :圆Circular cylinder :圆柱Closed interval :封闭区间Coefficient :系数Composition of function :函数之合成Compound interest :复利Concavity :凹性Conchoid :蚌线Cone :圆锥Constant function :常数函数Constant of integration :积分常数Continuity :连续性at a point :在一点处之连续性of a function :函数之连续性on an interval :在区间之连续性from the left :左连续from the right :右连续Continuous function :连续函数Convergence :收敛interval of :收敛区间radius of :收敛半径Convergent sequence :收敛数列series :收敛级数Coordinate:s:坐标Cartesian :笛卡儿坐标cylindrical :柱面坐标polar :极坐标rectangular :直角坐标spherical :球面坐标Coordinate axes :坐标轴Coordinate planes :坐标平面Cosine function :余弦函数Critical point :临界点Cubic function :三次函数Curve :曲线Cylinder:圆柱Cylindrical Coordinates :圆柱坐标A、B:Absolute convergence :绝对收敛Absolute extreme values :绝对极值Absolute maximum and minimum :绝对极大与极小Absolute value :绝对值Absolute value function :绝对值函数Acceleration :加速度Antiderivative :反导数Approximate integration :近似积分Approximation :逼近法by differentials :用微分逼近linear :线性逼近法by Simpson's Rule :Simpson法则逼近法by the Trapezoidal Rule :梯形法则逼近法Arbitrary constant :任意常数Arc length :弧长Area :面积under a curve :曲线下方之面积between curves :曲线间之面积in polar coordinates :极坐标表示之面积of a sector of a circle :扇形之面积of a surface of a revolution :旋转曲面之面积Asymptote :渐近线horizontal :水平渐近线slant :斜渐近线vertical :垂直渐近线Average speed :平均速率Average velocity :平均速度Axes, coordinate :坐标轴Axes of ellipse :椭圆之轴Binomial series :二项级数微积分词汇第一章函数与极限Chapter1 Function and Limit集合set元素element子集subset空集empty set并集union交集intersection差集difference of set基本集basic set补集complement set直积direct product笛卡儿积Cartesian product开区间open interval闭区间closed interval半开区间half open interval有限区间finite interval区间的长度length of an interval无限区间infinite interval领域neighborhood领域的中心centre of a neighborhood 领域的半径radius of a neighborhood 左领域left neighborhood右领域right neighborhood映射mappingX到Y的映射mapping of X ontoY 满射surjection单射injection一一映射one-to-one mapping双射bijection算子operator变化transformation函数function逆映射inverse mapping复合映射composite mapping自变量independent variable因变量dependent variable定义域domain函数值value of function函数关系function relation值域range自然定义域natural domain单值函数single valued function多值函数multiple valued function单值分支one-valued branch函数图形graph of a function绝对值函数absolute value符号函数sigh function整数部分integral part阶梯曲线step curve当且仅当if and only if(iff)分段函数piecewise function上界upper bound下界lower bound有界boundedness无界unbounded函数的单调性monotonicity of a function 单调增加的increasing单调减少的decreasing单调函数monotone function函数的奇偶性parity(odevity) of a function 对称symmetry偶函数even function奇函数odd function函数的周期性periodicity of a function周期period反函数inverse function直接函数direct function复合函数composite function中间变量intermediate variable函数的运算operation of function基本初等函数basic elementary function 初等函数elementary function幂函数power function指数函数exponential function对数函数logarithmic function三角函数trigonometric function反三角函数inverse trigonometric function 常数函数constant function双曲函数hyperbolic function双曲正弦hyperbolic sine双曲余弦hyperbolic cosine双曲正切hyperbolic tangent反双曲正弦inverse hyperbolic sine反双曲余弦inverse hyperbolic cosine反双曲正切inverse hyperbolic tangent极限limit数列sequence of number收敛convergence收敛于a converge to a发散divergent极限的唯一性uniqueness of limits收敛数列的有界性boundedness of a convergent sequence子列subsequence函数的极限limits of functions函数当x趋于x0时的极限limit of functions as x approaches x0左极限left limit右极限right limit单侧极限one-sided limits水平渐近线horizontal asymptote无穷小infinitesimal无穷大infinity铅直渐近线vertical asymptote夹逼准则squeeze rule单调数列monotonic sequence高阶无穷小infinitesimal of higher order低阶无穷小infinitesimal of lower order同阶无穷小infinitesimal of the same order作者:新少年特工2007-10-8 18:37 回复此发言-—--——-—---——————-—----—--———----—---——-—-——-————--————-—-—————-——————————--———-2 高等数学-翻译等阶无穷小equivalent infinitesimal函数的连续性continuity of a function增量increment函数在x0连续the function is continuous at x0左连续left continuous右连续right continuous区间上的连续函数continuous function函数在该区间上连续function is continuous on an interval不连续点discontinuity point第一类间断点discontinuity point of the first kind第二类间断点discontinuity point of the second kind初等函数的连续性continuity of the elementary functions定义区间defined interval最大值global maximum value (absolute maximum)最小值global minimum value (absolute minimum)零点定理the zero point theorem介值定理intermediate value theorem第二章导数与微分Chapter2 Derivative and Differential速度velocity匀速运动uniform motion平均速度average velocity瞬时速度instantaneous velocity圆的切线tangent line of a circle切线tangent line切线的斜率slope of the tangent line位置函数position function导数derivative可导derivable函数的变化率问题problem of the change rate of a function导函数derived function左导数left—hand derivative右导数right—hand derivative单侧导数one—sided derivatives在闭区间【a,b】上可导is derivable on the closed interval [a,b]切线方程tangent equation角速度angular velocity成本函数cost function边际成本marginal cost链式法则chain rule隐函数implicit function显函数explicit function二阶函数second derivative三阶导数third derivative高阶导数nth derivative莱布尼茨公式Leibniz formula对数求导法log— derivative参数方程parametric equation相关变化率correlative change rata微分differential可微的differentiable函数的微分differential of function自变量的微分differential of independent variable微商differential quotient间接测量误差indirect measurement error绝对误差absolute error相对误差relative error第三章微分中值定理与导数的应用Chapter3 MeanValue Theorem of Differentials and the Application of Derivatives 罗马定理Rolle’s theorem费马引理Fermat’s lemma拉格朗日中值定理Lagrange's mean value theorem驻点stationary point稳定点stable point临界点critical point拉格朗日中值公式Lagrange’s mean value formula柯西中值定理Cauchy’s mean value theorem洛必达法则L’Hospital's Rule0/0型不定式indeterminate form of type 0/0不定式indeterminate form泰勒中值定理Taylor’s mean value theorem泰勒公式Taylor formula余项remainder term拉格朗日余项Lagrange remainder term麦克劳林公式Maclaurin’s formula佩亚诺公式Peano remainder term凹凸性concavity凹向上的concave upward,cancave up凹向下的,向上凸的concave downward’ concave down 拐点inflection point函数的极值extremum of function极大值local(relative) maximum最大值global(absolute) mximum极小值local(relative)minimum最小值global(absolute)minimum目标函数objective function曲率curvature弧微分arc differential平均曲率average curvature曲率园circle of curvature曲率中心center of curvature曲率半径radius of curvature渐屈线evolute渐伸线involute根的隔离isolation of root隔离区间isolation interval切线法tangent line method第四章不定积分Chapter4 Indefinite Integrals原函数primitive function(antiderivative)积分号sign of integration被积函数integrand积分变量integral variable积分曲线integral curve积分表table of integrals换元积分法integration by substitution分部积分法integration by parts分部积分公式formula of integration by parts真分式proper fraction假分式improper fraction第五章定积分Chapter5 Definite Integrals曲边梯形trapezoid with曲边curve edge窄矩形narrow rectangle曲边梯形的面积area of trapezoid with curved edge积分下限lower limit of integral积分上限upper limit of integral积分区间integral interval分割partition积分和integral sum可积integrable矩形法rectangle method积分中值定理mean value theorem of integrals函数在区间上的平均值average value of a function on an integvals 牛顿-莱布尼茨公式Newton—Leibniz formula微积分基本公式fundamental formula of calculus换元公式formula for integration by substitution递推公式recurrence formula反常积分improper integral反常积分发散the improper integral is divergent反常积分收敛the improper integral is convergent无穷限的反常积分improper integral on an infinite interval无界函数的反常积分improper integral of unbounded functions绝对收敛absolutely convergent第六章定积分的应用Chapter6 Applications of the Definite Integrals元素法the element method面积元素element of area平面图形的面积area of a luane figure直角坐标又称“笛卡儿坐标(Cartesian coordinates)”极坐标polar coordinates抛物线parabola椭圆ellipse旋转体的面积volume of a solid of rotation旋转椭球体ellipsoid of revolution, ellipsoid of rotation曲线的弧长arc length of acurve可求长的rectifiable光滑smooth功work水压力water pressure引力gravitation变力variable force第七章空间解析几何与向量代数Chapter7 Space Analytic Geometry and Vector Algebra向量vector自由向量free vector单位向量unit vector零向量zero vector相等equal平行parallel向量的线性运算linear poeration of vector三角法则triangle rule平行四边形法则parallelogram rule交换律commutative law结合律associative law负向量negative vector差difference分配律distributive law空间直角坐标系space rectangular coordinates坐标面coordinate plane卦限octant向量的模modulus of vector向量a与b的夹角angle between vector a and b方向余弦direction cosine方向角direction angle向量在轴上的投影projection of a vector onto an axis数量积,外积,叉积scalar product,dot product,inner product 曲面方程equation for a surface球面sphere旋转曲面surface of revolution母线generating line轴axis圆锥面cone顶点vertex旋转单叶双曲面revolution hyperboloids of one sheet旋转双叶双曲面revolution hyperboloids of two sheets柱面cylindrical surface ,cylinder圆柱面cylindrical surface准线directrix抛物柱面parabolic cylinder二次曲面quadric surface椭圆锥面dlliptic cone椭球面ellipsoid单叶双曲面hyperboloid of one sheet双叶双曲面hyperboloid of two sheets旋转椭球面ellipsoid of revolution椭圆抛物面elliptic paraboloid旋转抛物面paraboloid of revolution双曲抛物面hyperbolic paraboloid马鞍面saddle surface椭圆柱面elliptic cylinder双曲柱面hyperbolic cylinder抛物柱面parabolic cylinder空间曲线space curve空间曲线的一般方程general form equations of a space curve空间曲线的参数方程parametric equations of a space curve螺转线spiral螺矩pitch投影柱面projecting cylinder投影projection平面的点法式方程pointnorm form eqyation of a plane法向量normal vector平面的一般方程general form equation of a plane两平面的夹角angle between two planes点到平面的距离distance from a point to a plane空间直线的一般方程general equation of a line in space方向向量direction vector直线的点向式方程pointdirection form equations of a line方向数direction number直线的参数方程parametric equations of a line两直线的夹角angle between two lines垂直perpendicular直线与平面的夹角angle between a line and a planes平面束pencil of planes平面束的方程equation of a pencil of planes行列式determinant系数行列式coefficient determinant第八章多元函数微分法及其应用Chapter8 Differentiation of Functions of Several Variables and Its Application 一元函数function of one variable多元函数function of several variables内点interior point外点exterior point边界点frontier point,boundary point聚点point of accumulation开集openset闭集closed set连通集connected set开区域open region闭区域closed region有界集bounded set无界集unbounded setn维空间n—dimentional space二重极限double limit多元函数的连续性continuity of function of seveal连续函数continuous function不连续点discontinuity point一致连续uniformly continuous偏导数partial derivative对自变量x的偏导数partial derivative with respect to independent variable x 高阶偏导数partial derivative of higher order二阶偏导数second order partial derivative混合偏导数hybrid partial derivative全微分total differential偏增量oartial increment偏微分partial differential全增量total increment可微分differentiable必要条件necessary condition充分条件sufficient condition叠加原理superpostition principle全导数total derivative中间变量intermediate variable隐函数存在定理theorem of the existence of implicit function曲线的切向量tangent vector of a curve法平面normal plane向量方程vector equation向量值函数vector-valued function切平面tangent plane法线normal line方向导数directional derivative梯度gradient数量场scalar field梯度场gradient field向量场vector field势场potential field引力场gravitational field引力势gravitational potential曲面在一点的切平面tangent plane to a surface at a point曲线在一点的法线normal line to a surface at a point无条件极值unconditional extreme values条件极值conditional extreme values拉格朗日乘数法Lagrange multiplier method拉格朗日乘子Lagrange multiplier经验公式empirical formula最小二乘法method of least squares均方误差mean square error第九章重积分Chapter9 Multiple Integrals二重积分double integral可加性additivity累次积分iterated integral体积元素volume element三重积分triple integral直角坐标系中的体积元素volume element in rectangular coordinate system 柱面坐标cylindrical coordinates柱面坐标系中的体积元素volume element in cylindrical coordinate system 球面坐标spherical coordinates球面坐标系中的体积元素volume element in spherical coordinate system 反常二重积分improper double integral曲面的面积area of a surface质心centre of mass静矩static moment密度density形心centroid转动惯量moment of inertia参变量parametric variable第十章曲线积分与曲面积分Chapter10 Line(Curve)Integrals and Surface Integrals对弧长的曲线积分line integrals with respect to arc hength第一类曲线积分line integrals of the first type对坐标的曲线积分line integrals with respect to x,y,and z第二类曲线积分line integrals of the second type有向曲线弧directed arc单连通区域simple connected region复连通区域complex connected region格林公式Green formula第一类曲面积分surface integrals of the first type对面的曲面积分surface integrals with respect to area有向曲面directed surface对坐标的曲面积分surface integrals with respect to coordinate elements第二类曲面积分surface integrals of the second type有向曲面元element of directed surface高斯公式gauss formula拉普拉斯算子Laplace operator格林第一公式Green’s first formula通量flux散度divergence斯托克斯公式Stokes formula环流量circulation旋度rotation,curl第十一章无穷级数Chapter11 Infinite Series一般项general term部分和partial sum余项remainder term等比级数geometric series几何级数geometric series公比common ratio调和级数harmonic series柯西收敛准则Cauchy convergence criteria,Cauchy criteria for convergence 正项级数series of positive terms达朗贝尔判别法D’Alembert test柯西判别法Cauchy test交错级数alternating series绝对收敛absolutely convergent条件收敛conditionally convergent柯西乘积Cauchy product函数项级数series of functions发散点point of divergence收敛点point of convergence收敛域convergence domain和函数sum function幂级数power series幂级数的系数coeffcients of power series阿贝尔定理Abel Theorem收敛半径radius of convergence收敛区间interval of convergence泰勒级数Taylor series麦克劳林级数Maclaurin series二项展开式binomial expansion近似计算approximate calculation舍入误差round—off error,rounding error欧拉公式Euler’s formula魏尔斯特拉丝判别法Weierstrass test三角级数trigonometric series振幅amplitude角频率angular frequency初相initial phase矩形波square wave谐波分析harmonic analysis直流分量direct component基波fundamental wave二次谐波second harmonic三角函数系trigonometric function system傅立叶系数Fourier coefficient傅立叶级数Forrier series周期延拓periodic prolongation正弦级数sine series余弦级数cosine series奇延拓odd prolongation偶延拓even prolongation傅立叶级数的复数形式complex form of Fourier series第十二章微分方程Chapter12 Differential Equation解微分方程solve a dirrerential equation常微分方程ordinary differential equation偏微分方程partial differential equation,PDE微分方程的阶order of a differential equation微分方程的解solution of a differential equation微分方程的通解general solution of a differential equation初始条件initial condition微分方程的特解particular solution of a differential equation初值问题initial value problem微分方程的积分曲线integral curve of a differential equation 可分离变量的微分方程variable separable differential equation 隐式解implicit solution隐式通解inplicit general solution衰变系数decay coefficient衰变decay齐次方程homogeneous equation一阶线性方程linear differential equation of first order非齐次non-homogeneous齐次线性方程homogeneous linear equation非齐次线性方程non—homogeneous linear equation常数变易法method of variation of constant暂态电流transient stata current稳态电流steady state current伯努利方程Bernoulli equation全微分方程total differential equation积分因子integrating factor高阶微分方程differential equation of higher order悬链线catenary高阶线性微分方程linera differential equation of higher order自由振动的微分方程differential equation of free vibration强迫振动的微分方程differential equation of forced oscillation串联电路的振荡方程oscillation equation of series circuit二阶线性微分方程second order linera differential equation线性相关linearly dependence线性无关linearly independce二阶常系数齐次线性微分方程second order homogeneour linear differential equation with constant coefficient二阶变系数齐次线性微分方程second order homogeneous linear differential equation with variable coefficient特征方程characteristic equation无阻尼自由振动的微分方程differential equation of free vibration with zero damping固有频率natural frequency简谐振动simple harmonic oscillation,simple harmonic vibration微分算子differential operator待定系数法method of undetermined coefficient共振现象resonance phenomenon欧拉方程Euler equation幂级数解法power series solution数值解法numerial solution勒让德方程Legendre equation微分方程组system of differential equations常系数线性微分方程组system of linera differential equations with constant coefficientV、X、Z:Value of function:函数值Variable:变数Vector:向量Velocity:速度Vertical asymptote:垂直渐近线Volume:体积X—axis:x轴x—coordinate:x坐标x-intercept:x截距Zero vector:函数的零点Zeros of a polynomial:多项式的零点T:Tangent function:正切函数Tangent line:切线Tangent plane:切平面Tangent vector:切向量Total differential:全微分Trigonometric function:三角函数Trigonometric integrals:三角积分Trigonometric substitutions:三角代换法Tripe integrals:三重积分S:Saddle point:鞍点Scalar:纯量Secant line:割线Second derivative:二阶导数Second Derivative Test:二阶导数试验法Second partial derivative:二阶偏导数Sector:扇形Sequence:数列Series:级数Set:集合Shell method:剥壳法Sine function:正弦函数Singularity:奇点Slant asymptote:斜渐近线Slope:斜率Slope—intercept equation of a line:直线的斜截式Smooth curve:平滑曲线Smooth surface:平滑曲面Solid of revolution:旋转体Space:空间Speed:速率Spherical coordinates:球面坐标Squeeze Theorem:夹挤定理Step function:阶梯函数Strictly decreasing:严格递减Strictly increasing:严格递增Sum:和Surface:曲面Surface integral:面积分Surface of revolution:旋转曲面Symmetry:对称R:Radius of convergence:收敛半径Range of a function:函数的值域Rate of change:变化率Rational function:有理函数Rationalizing substitution:有理代换法Rational number:有理数Real number:实数Rectangular coordinates:直角坐标Rectangular coordinate system:直角坐标系Relative maximum and minimum:相对极大值与极小值Revenue function:收入函数Revolution,solid of:旋转体Revolution,surface of:旋转曲面Riemann Sum:黎曼和Riemannian geometry:黎曼几何Right-hand derivative:右导数Right—hand limit:右极限Root:根P、Q:Parabola:拋物线Parabolic cylinder:抛物柱面Paraboloid:抛物面Parallelepiped:平行六面体Parallel lines:并行线Parameter:参数Partial derivative:偏导数Partial differential equation:偏微分方程Partial fractions:部分分式Partial integration:部分积分Partiton:分割Period:周期Periodic function:周期函数Perpendicular lines:垂直线Piecewise defined function:分段定义函数Plane:平面Point of inflection:反曲点Polar axis:极轴Polar coordinate:极坐标Polar equation:极方程式Pole:极点Polynomial:多项式Positive angle:正角Point-slope form:点斜式Power function:幂函数Product:积Quadrant:象限Quotient Law of limit:极限的商定律Quotient Rule:商定律M、N、O:Maximum and minimum values:极大与极小值Mean Value Theorem:均值定理Multiple integrals:重积分Multiplier:乘子Natural exponential function:自然指数函数Natural logarithm function:自然对数函数Natural number:自然数Normal line:法线Normal vector:法向量Number:数Octant:卦限Odd function:奇函数One-sided limit:单边极限Open interval:开区间Optimization problems:最佳化问题Order:阶Ordinary differential equation:常微分方程Origin:原点Orthogonal:正交的L:Laplace transform:Leplace变换Law of Cosines:余弦定理Least upper bound:最小上界Left—hand derivative:左导数Left—hand limit:左极限Lemniscate:双钮线Length:长度Level curve:等高线L'Hospital’s rule:洛必达法则Limacon:蚶线Limit:极限Linear approximation:线性近似Linear equation:线性方程式Linear function:线性函数Linearity:线性Linearization:线性化Line in the plane:平面上之直线Line in space:空间之直线Lobachevski geometry:罗巴切夫斯基几何Local extremum:局部极值Local maximum and minimum:局部极大值与极小值Logarithm:对数Logarithmic function:对数函数I:Implicit differentiation:隐求导法Implicit function:隐函数Improper integral:瑕积分Increasing/Decreasing Test:递增或递减试验法Increment:增量Increasing Function:增函数Indefinite integral:不定积分Independent variable:自变数Indeterminate from:不定型Inequality:不等式Infinite point:无穷极限Infinite series:无穷级数Inflection point:反曲点Instantaneous velocity:瞬时速度Integer:整数Integral:积分Integrand:被积分式Integration:积分Integration by part:分部积分法Intercepts:截距Intermediate value of Theorem:中间值定理Interval:区间Inverse function:反函数Inverse trigonometric function:反三角函数Iterated integral:逐次积分H:Higher mathematics高等数学/高数E、F、G、H:Ellipse:椭圆Ellipsoid:椭圆体Epicycloid:外摆线Equation:方程式Even function:偶函数Expected Valued:期望值Exponential Function:指数函数Exponents,laws of:指数率Extreme value:极值Extreme Value Theorem:极值定理Factorial:阶乘First Derivative Test:一阶导数试验法First octant:第一卦限Focus:焦点Fractions:分式Function:函数Fundamental Theorem of Calculus:微积分基本定理Geometric series:几何级数Gradient:梯度Graph:图形Green Formula:格林公式Half-angle formulas:半角公式Harmonic series:调和级数Helix:螺旋线Higher Derivative:高阶导数Horizontal asymptote:水平渐近线Horizontal line:水平线Hyperbola:双曲线Hyper boloid:双曲面D:Decreasing function:递减函数Decreasing sequence:递减数列Definite integral:定积分Degree of a polynomial:多项式之次数Density:密度Derivative:导数of a composite function:复合函数之导数of a constant function:常数函数之导数directional:方向导数domain of:导数之定义域of exponential function:指数函数之导数higher:高阶导数partial:偏导数of a power function:幂函数之导数of a power series:羃级数之导数of a product:积之导数of a quotient:商之导数as a rate of change:导数当作变率right-hand:右导数second:二阶导数as the slope of a tangent:导数看成切线之斜率Determinant:行列式Differentiable function:可导函数Differential:微分Differential equation:微分方程partial:偏微分方程Differentiation:求导法implicit:隐求导法partial:偏微分法term by term:逐项求导法Directional derivatives:方向导数Discontinuity:不连续性Disk method:圆盘法Distance:距离Divergence:发散Domain:定义域Dot product:点积Double integral:二重积分。

高等数学课程英文简介汇编

高等数学课程英文简介汇编

Course SyllabusesCourse Name Higher Mathematics Course CodeHours&Credits160 & 10Majors&Minors Science &Technology Majors Faculty of Mathematics and PhysicsHigher MathematicsCOURSE DESCRIPTION:Prerequisites: satisfactory score on elementary mathematicsCorequisites: NoneHigher Mathematics is designed to serve students majoring in chemical science, computer science and engineering etc. It consists of two parts of a two-semester sequence. The course begins with a rapid review of topics in algebra and trigonometry, which you should be competent in. Part 1, consisting of Chapters 1 to 7, is devoted to single variable differentiation, integration and differential equations. It covers the fundamental concepts and theorems. Part 2, consisting of Chapters 8 to 12, discusses in depth multivariable differentiation, integration, infinite series, vectors and the geometry of space.COURSE OBJECTIVES:Upon completion, students will be able to evaluate limits and continuity, and compute derivatives and integrals of selected functions with single or multivariable, solve some linear differential equations and determine the convergences or divergences of an infinite series. Furthermore, students will be able to utilize the techniques of differentiation and integration together with appropriate technology to solve practical problems and to analyze and communicate results.OUTLINE OF INSTRUCTION:Chapter 1. Functions and LimitsChapter 2. Derivatives and DifferentiationChapter 3. The Mean Value Theorem and Applications of the Derivatives Chapter 4. Indefinite IntegralsChapter 5. Definite IntegralsChapter 6. Applications of IntegralsChapter 7. Differential EquationsChapter 8. vectors and the geometry of spaceChapter 9. Multivariable Functions and Theire DerivativesChapter 10. Multiple IntegralsChapter 11. Integration in Vector FieldsChapter 12. Infinite SeriesTEACHING METHODS:LectureASSESSMENT Items:There will be a midterm, final and two periodical examinationsGRADING:Midterm 10%Final Exam 50%Two periodical Exam 20%(each 10%)Exercises 20%REFERENCE BOOKS:1.Stewart, James. Calculus: Early Transcendentals. 7th ed. Brooks/Cole, CengageLearning 20122.Ross L. Finney. Calculus. 10th edition. Maurice D. Weir and Frank R. Giordano 2010。

高等数学教材答案下册英语

高等数学教材答案下册英语

高等数学教材答案下册英语Unit 1: Functions and Their GraphsChapter 1: Linear Functions1.1 Functions and Their Representations1.2 Domain and Range1.3 Linear Functions and EquationsChapter 2: Quadratic Functions2.1 Graphs of Quadratic Functions2.2 Solving Quadratic Equations2.3 Quadratic Functions and Their Transformations Chapter 3: Exponential and Logarithmic Functions3.1 Exponential Functions and Their Graphs3.2 Logarithmic Functions and Their Graphs3.3 Exponential and Logarithmic EquationsUnit 2: Limits and ContinuityChapter 4: Limits and Continuity4.1 Limits and Their Properties4.2 Continuity and Its Properties4.3 Computing LimitsChapter 5: Derivatives5.1 The Derivative and its Interpretation5.2 Differentiation Techniques5.3 Applications of DerivativesChapter 6: Higher-Order Derivatives6.1 Higher-Order Derivatives and Their Interpretations 6.2 The Chain Rule6.3 Implicit DifferentiationUnit 3: IntegrationChapter 7: Antiderivatives and Indefinite Integrals 7.1 Antiderivatives and Their Properties7.2 Indefinite Integrals7.3 Substitution MethodChapter 8: Definite Integrals and Their Applications 8.1 Definite Integrals and Their Properties8.2 Applications of Definite Integrals8.3 Numerical IntegrationChapter 9: Techniques of Integration9.1 Integration by Parts9.2 Trigonometric Integrals9.3 Trigonometric SubstitutionUnit 4: Differential Equations and Applications Chapter 10: First-Order Differential Equations 10.1 Separable Differential Equations10.2 Linear Differential Equations10.3 Applications of Differential Equations Chapter 11: Applications of Differential Calculus 11.1 Optimization11.2 Related Rates11.3 Newton's MethodChapter 12: Sequences and Series12.1 Sequences and Their Limits12.2 Infinite Series12.3 Convergence TestsUnit 5: Multivariable CalculusChapter 13: Functions of Several Variables 13.1 Functions of Two or More Variables13.2 Partial Derivatives13.3 Optimization of Functions of Two VariablesChapter 14: Multiple Integrals14.1 Double Integrals14.2 Triple Integrals14.3 Applications of Multiple IntegralsChapter 15: Vector Calculus15.1 Vector Fields15.2 Line Integrals15.3 Green's TheoremChapter 16: Differential Calculus of Vector Fields16.1 Gradient Fields and Potential Functions16.2 Divergence and Curl16.3 Stokes' TheoremI hope the above chapters and sections provide a comprehensive overview of the answers to the exercises and problems in the textbook. Remember to utilize this answer key as a useful tool to check your understanding and progress in studying advanced mathematics.。

《高等数学》 简介 ppt课件

《高等数学》 简介  ppt课件
通常用字母a, b, c等表示常量, 用字母x, y, z, s, t , u ,v, w等表示变量. 常量可看作变量的一个特殊情况,认为在某一过 程中该变量始终取一个数值。
ppt课件 10
运算性质(character):
5.绝对值(absolute value): a , a 0, a ( a 0) a , a 0.
U
E
( , E) 2
( ,0 )
o
2
t
2E t, 2E U (t ) ( t ), 0,
ppt课件
t [0, ], 2 t ( , ], 2 t ( ,).


23
例 Example 2
1, 0 x 1, 设f ( x ) 2, 1 x 2, 求函数 f ( x 3)的定义域.
称为半开区间 (half-open interval) , 有限区间(finite interval)
[a ,) { x a x } ( , b) { x x b} ( , ) x x R 无限区间(infinite interval)
o
a o
b
x x
区间长度(length of the interval)的定义: 两端点间的距离(distance)(即线段的长度)称
y
y f ( x)
f ( x )
-x o
偶函数
f ( x)
x x
ppt课件
29
设D关于原点对称, 若对于x D, 有
f ( x ) f ( x ), 则称 f ( x ) 为奇函数. (even function)

高等数学的英文教材

高等数学的英文教材

高等数学的英文教材Higher Mathematics English TextbookIntroduction:Higher Mathematics is a fundamental subject in the field of mathematics, which is extensively studied in higher education institutions worldwide. This English textbook aims to provide a comprehensive guide to higher mathematics concepts, theories, and applications.Chapter 1: Real Numbers1.1 Number Systems- Natural Numbers- Integers- Rational Numbers- Irrational Numbers- Real Numbers1.2 Sets and Functions- Set Theory- Functions and their Types- Mapping and Compositions- Inverse FunctionsChapter 2: Limits and Continuity2.1 Definitions and Properties- The Concept of Limits- Limit Laws and Basic Operations- One-Sided Limits- Infinite Limits2.2 Continuity- Definition and Types of Continuity- Intermediate Value Theorem- Discontinuities and Their Classification Chapter 3: Differentiation3.1 Derivatives- Definition and Notation- Rules of Differentiation- Higher Order Derivatives- Implicit Differentiation3.2 Applications of Differentiation- Tangent and Normal Lines- Optimization Problems- Related Rates- Linear ApproximationChapter 4: Integration4.1 Definite Integrals- Riemann Sums- Fundamental Theorem of Calculus- Techniques of Integration- Improper Integrals4.2 Applications of Integration- Area and Volume- Arc Length and Surface Area- Differential Equations- Applications in Physics and Engineering Chapter 5: Sequences and Series5.1 Sequences- Definitions and Notation- Convergence and Divergence- Arithmetic and Geometric Sequences- Limit and Ratio Tests5.2 Series- Types of Series- Convergence Tests- Power Series- Taylor SeriesChapter 6: Differential Equations6.1 First-Order Differential Equations- Separable Equations- Exact Equations- Linear Equations- Bernoulli Equations6.2 Second-Order Linear Differential Equations - Homogeneous Equations- Non-Homogeneous Equations- Boundary Value Problems- Method of Undetermined Coefficients Chapter 7: Multivariable Calculus7.1 Functions of Several Variables- Domain and Range- Limits and Continuity- Partial Derivatives and Gradients- Maximum and Minimum Values7.2 Multiple Integrals- Double and Triple Integrals- Change of Variables- Applications in 3D Space- Surface and Volume IntegralsConclusion:This Higher Mathematics English Textbook provides a structured and comprehensive overview of various concepts and principles in higher mathematics. With its clear explanations, examples, and applications, it aims to enhance students' understanding and problem-solving abilities in this critical subject area.。

数学英语

数学英语

高数英汉词汇(按英文字母排序)A、B:Absolute convergence :绝对收敛Absolute extreme values :绝对极值Absolute maximum and minimum :绝对极大与极小Absolute value :绝对值Absolute value function :绝对值函数Acceleration :加速度Antiderivative :反导数Approximate integration :近似积分Approximation :逼近法by differentials :用微分逼近linear :线性逼近法by Simpson’s Rule :Simpson法则逼近法by the Trapezoidal Rule :梯形法则逼近法Arbitrary constant :任意常数Arc length :弧长Area :面积under a curve :曲线下方之面积between curves :曲线间之面积in polar coordinates :极坐标表示之面积of a sector of a circle :扇形之面积 of a surface of a revolution :旋转曲面之面积Asymptote :渐近线horizontal :水平渐近线slant :斜渐近线vertical :垂直渐近线Average speed :平均速率Average velocity :平均速度Axes, coordinate :坐标轴Axes of ellipse :椭圆之轴Binomial series :二项级数C:Calculus :微积分differential :微分学integral :积分学Cartesian coordinates :笛卡儿坐标一般指直角坐标Cartesian coordinates system :笛卡儿坐标系Cauch’s Mean Value Theorem :柯西均值定理Chain Rule :连锁律Change of variables :变数变换Circle :圆Circular cylinder :圆柱Closed interval :封闭区间Coefficient :系数Composition of function :函数之合成Compound interest :复利Concavity :凹性Conchoid :蚌线Cone :圆锥Constant function :常数函数Constant of integration :积分常数Continuity :连续性at a point :在一点处之连续性of a function :函数之连续性on an interval :在区间之连续性from the left :左连续from the right :右连续Continuous function :连续函数Convergence :收敛interval of :收敛区间radius of :收敛半径Convergent sequence :收敛数列series :收敛级数Coordinate:s:坐标Cartesian :笛卡儿坐标cylindrical :柱面坐标polar :极坐标rectangular :直角坐标spherical :球面坐标Coordinate axes :坐标轴Coordinate planes :坐标平面Cosine function :余弦函数Critical point :临界点Cubic function :三次函数Curve :曲线Cylinder:圆柱Cylindrical Coordinates :圆柱坐标D:Decreasing function :递减函数Decreasing sequence :递减数列Definite integral :定积分Degree of a polynomial :多项式之次数Density :密度Derivative :导数of a composite function :复合函数之导数of a constant function :常数函数之导数directional :方向导数domain of :导数之定义域of exponential function :指数函数之导数higher :高阶导数partial :偏导数of a power function :幂函数之导数of a power series :羃级数之导数of a product :积之导数of a quotient :商之导数as a rate of change :导数当作变率right-hand :右导数second :二阶导数as the slope of a tangent :导数看成切线之斜率Determinant :行列式Differentiable function :可导函数Differential :微分Differential equation :微分方程partial :偏微分方程Differentiation :求导法implicit :隐求导法partial :偏微分法term by term :逐项求导法Directional derivatives :方向导数Discontinuity :不连续性Disk method :圆盘法Distance :距离Divergence :发散Domain :定义域Dot product :点积Double integral :二重积分change of variable in :二重积分之变数变换in polar coordinates :极坐标二重积分E、F、G、H:Ellipse :椭圆Ellipsoid :椭圆体Epicycloid :外摆线Equation :方程式Even function :偶函数Expected Valued :期望值Exponential Function :指数函数Exponents , laws of :指数率Extreme value :极值Extreme Value Theorem :极值定理Factorial :阶乘First Derivative Test :一阶导数试验法First octant :第一卦限Focus :焦点Fractions :分式Function :函数Fundamental Theorem of Calculus :微积分基本定理Geometric series :几何级数Gradient :梯度Graph :图形Green Formula :格林公式Half-angle formulas :半角公式Harmonic series :调和级数Helix :螺旋线Higher Derivative :高阶导数Horizontal asymptote :水平渐近线Horizontal line :水平线Hyperbola :双曲线Hyper boloid :双曲面H:Higher mathematics 高等数学I:Implicit differentiation :隐求导法Implicit function :隐函数Improper integral :瑕积分Increasing/Decreasing Test :递增或递减试验法Increment :增量Increasing Function :增函数Indefinite integral :不定积分Independent variable :自变数Indeterminate from :不定型Inequality :不等式Infinite point :无穷极限Infinite series :无穷级数Inflection point :反曲点Instantaneous velocity :瞬时速度Integer :整数Integral :积分Integrand :被积分式Integration :积分Integration by part :分部积分法Intercepts :截距Intermediate value of Theorem :中间值定理Interval :区间Inverse function :反函数Inverse trigonometric function :反三角函数Iterated integral :逐次积分L:Laplace transform:拉普拉斯变换Law of Cosines :余弦定理Least upper bound :最小上界Left-hand derivative :左导数Left-hand limit :左极限Lemniscate :双钮线Length :长度Level curve :等高线L'Hospital's rule :洛必达法则Limacon :蚶线Limit :极限Linear approximation:线性近似Linear equation :线性方程式Linear function :线性函数Linearity :线性Linearization :线性化Line in the plane :平面上之直线Line in space :空间之直线Lobachevski geometry :罗巴切夫斯基几何Local extremum :局部极值Local maximum and minimum :局部极大值与极小值Logarithm :对数Logarithmic function :对数函数M、N、O:Maximum and minimum values :极大与极小值Mean Value Theorem :均值定理Multiple integrals :重积分Multiplier :乘子Natural exponential function :自然指数函数Natural logarithm function :自然对数函数Natural number :自然数Normal line :法线Normal vector :法向量Number :数Octant :卦限Odd function :奇函数One-sided limit :单边极限Open interval :开区间Optimization problems :最佳化问题Order :阶Ordinary differential equation :常微分方程Origin :原点Orthogonal :正交的P、Q:Parabola :拋物线Parabolic cylinder :抛物柱面Paraboloid :抛物面Parallelepiped :平行六面体Parallel lines :并行线Parameter :参数Partial derivative :偏导数Partial differential equation :偏微分方程Partial fractions :部分分式Partial integration :部分积分Partiton :分割Period :周期Periodic function :周期函数Perpendicular lines :垂直线Piecewise defined function :分段定义函数Plane :平面Point of inflection :反曲点Polar axis :极轴Polar coordinate :极坐标Polar equation :极方程式Pole :极点Polynomial :多项式Positive angle :正角Point-slope form :点斜式Power function :幂函数Product :积Quadrant :象限Quotient Law of limit :极限的商定律Quotient Rule :商定律R:Radius of convergence :收敛半径Range of a function :函数的值域Rate of change :变化率Rational function :有理函数Rationalizing substitution :有理代换法Rational number :有理数Real number :实数Rectangular coordinates :直角坐标Rectangular coordinate system :直角坐标系Relative maximum and minimum :相对极大值与极小值Revenue function :收入函数Revolution , solid of :旋转体Revolution , surface of :旋转曲面Riemann Sum :黎曼和Riemannian geometry :黎曼几何Right-hand derivative :右导数Right-hand limit :右极限Root :根S:Saddle point :鞍点Scalar :纯量Secant line :割线Second derivative :二阶导数Second Derivative Test :二阶导数试验法Second partial derivative :二阶偏导数Sector :扇形Sequence :数列Series :级数Set :集合Shell method :剥壳法Sine function :正弦函数Singularity :奇点Slant asymptote :斜渐近线Slope :斜率Slope-intercept equation of a line :直线的斜截式Smooth curve :平滑曲线Smooth surface :平滑曲面Solid of revolution :旋转体Space :空间Speed :速率Spherical coordinates :球面坐标Squeeze Theorem :夹挤定理Step function :阶梯函数Strictly decreasing :严格递减Strictly increasing :严格递增Sum :和Surface :曲面Surface integral :面积分Surface of revolution :旋转曲面Symmetry :对称T:Tangent function :正切函数Tangent line :切线Tangent plane :切平面Tangent vector :切向量Total differential :全微分Trigonometric function :三角函数Trigonometric integrals :三角积分Trigonometric substitutions :三角代换法Tripe integrals :三重积分V、X、Z:Value of function :函数值Variable :变数Vector :向量Velocity :速度Vertical asymptote :垂直渐近线Volume :体积X-axis :x轴x-coordinate :x坐标x-intercept :x截距Zero vector :函数的零点Zeros of a polynomial :多项式的零点。

高等数学方明亮版数学课件101常数项级数的概念与性质.ppt

高等数学方明亮版数学课件101常数项级数的概念与性质.ppt

都是公比小于1 的等比级数,所以它们都收敛,且其和分别为
2 和 4,由性质 2 知所给级数收敛,其和为
(1 1)
1 2
3 4
1 22
32 42
1 2n1
3n1 4n1
1
1 2
1 22
1
2n1
1
3 4
32 42
3n1 4n1
246
2024年9月27日星期五
10
目录
n 2n
1 2
矛盾! 所以假设不真 .
2024年9月27日星期五
14
目录
上页
下页
返回
例6 判断级数的敛散性: 解: 考虑加括号后的级数
发散 , 从而原级数发散 .
2024年9月27日星期五
15
目录
上页
下页
返回
内容小结
1. 常数项级数的基本概念: 常数项级数、 收敛、发散、等比级数、调和级数
2. 收敛级数的5个性质
所以级数 (2) 收敛, 其和为 1 .
技巧:
利用 “拆项相消” 求 和
2024年9月27日星期五
19
目录
上页
下页
返回
3、 判断下列级数的敛散性, 若收敛求其和:
(2)
n1n3
1 3n2
2n
;
解: (1) 令

e n1 ( n 1) !
un1 un
(n1)n1 enn!第十章 无穷级数(Infinite Series)
主要内容
第一节 常数项级数的概念与性质 第二节 常数项级数的审敛法 第三节 幂级数 第四节 函数展开成幂级数 第五节 函数的幂级数展开式的应用 第六节 傅立叶级数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 4 8 16
目录 上页 下页 返回 结束
目录 上页 下页 返回 结束
目录 上页 下页 返回 结束
Example 2. Consider the Geometric series
a ar ar2 ar3 arn1 arn1 arn a 0
n1
n0
Solution. Consider the partial sum
n1
n0
Solution.
Ifr1,Sna 1 rarn . 1 r
r 1,
lim
n
Sn
a 1 r
,
r 1,
lim
n
Sn
,
converge. diverge.
If r 1, a a a a
lim
n
Sn
lim na n
diverge.
目录 上页 下页 返回 结束
目录 上页 下页 返回 结束
1
10
1
2n
n1
n1 n
目录 上页 下页 返回 结束
Exercises
P637 2, 4, 11, 12, 14, 15, 21 25, 26, 27, 35, 45.
目录 上页 下页 返回 结束
Analysis.
ln n 1 ln n
1
1 n
Sn
1
1 2
1 3
1 n
n n1
ln 2 ln1 ln 3 ln 2 ln 4 ln 3
ln n 1 ln n ln n 1
lim
n
Sn
目录 上页 下页 返回 结束
目录 上页 下页 返回 结束
Example 9. Applying the Theorem 7.
Sn a ar ar2 ar3 arn1
a 1 r r2 r3 rn
a
1 rn
1
r
, r 1.
a arn 1r 1r
目录 上页 下页 返回 结束
Example 2. Consider the Geometric series
ar ar2 ar3 arn arn1 arn a 0
11 1 1 1 2 1
2 4 8 16
11 2
目录 上页 下页 返回 结束
Example 3. Consider the Geometric series
n1
3
1 2
n1
3 11
2
n0
1 2
n
1
1 1
2
2 3
24 8
diverge.
目录 上页 下页 返回 结束
Example 4. Express the repeating decimal 5.2323… As the ratio of two integers.
n1
n 1 2
Solution.
2n 1
n2 n 12
1 n2
n
1
12
Sn
1
n
1
12
1
(n )
目录 上页 下页 返回 结束
Proof. an SnSn1
ln i m a nln i m S nS n 1
lim
n
Sn
lim
n
Sn1
SS 0
目录 上页 下页 返回 结束
目录 上页 下页 返回 结束
1
n1 n n 1
Solution.
Sn
1 1 2
1 23
1 34
1 n (n 1)
1
1 2
1 2
1 3
1 3
1 4
1 n
n
1
1
1 1 1 ( n ) n 1
目录 上页 下页 返回 结束
2n 1
Example 6. Find the sum of the series
n2
Example 7. Applying the nth-term test
n
n1 n 1
111111
1n n0
n 1n
n 1
lim 1n
n
目录 上页 下页 返回 结束
lim
n
an
0
an converges?
n 1
目录 上页 下页 返回 结束
Example 8. 1 Diverges! n1 n
5
n1 2n
2 3n1
5 2n
n1
2 3n1
n1
5
1 2
1
2n
n1
3n1
n1
5 1 2 2 1 11 2 11 3
2
目录 上页 下页 返回 结束
Example 10. Applying the Theorem 7.
1
n1 2n
1 10n
1 2n
n1
1
n1 10n
Solution. 5.232323
5 0.23 0.0023 0.000023
23 5 100
23 10000
23 1000000
23 5 100
1
1 100
5 23 518 99 99
目录 上页 下页 返回 结束
Example 5.
Find the sum of the series
Convergence 8.6 Power Series 8.7 Taylor and Maclaurin Series 8.8 Applications of Power Series
目录 上页 下页 返回 结束
8.3
Infinite Series
(无穷级数)
目录 上页 下页 返回 结束
11 1 1 1 2
Chapter 8 Infinite Series
8.1 Limits of Sequences of Numbers 8.2 Subsequences, Bounded Sequences, and… 8.3 Infinite Series 8.4 Series of Nonnegative Terms 8.5 Alternating Series, Absolute and Conditional
相关文档
最新文档