2020年燃料电池行业研究度报告
燃料电池综合特性实验实验报告
燃料电池综合特性实验实验报告实验报告燃料电池综合特性实验实验报告实验目的:1、研究燃料电池的综合特性;2、探究不同条件下燃料电池的性能变化。
实验原理:燃料电池是一种利用化学能转化为电能的设备。
它通过电化学反应将氢气和氧气合成水的过程中释放出能量,并将能量转化为电能。
燃料电池的核心是电化学反应,在反应中产生的电能和功率取决于电化学反应的速率和电化学势。
电化学反应速率与温度、压力、反应物浓度等因素有关。
实验过程:1、将燃料电池与电子载流板连接,并调整电流控制器,为电池施加外电压;2、在恒定的温度和压力下,记录电池的电量输出、输出电压、输出电流、燃料消耗率等参数;3、调整温度和压力,重复实验;4、根据实验数据分析燃料电池的综合特性。
实验结果:在本次实验中,我们通过改变温度、压力等因素,研究了燃料电池的综合特性。
实验数据表明,在较低的温度和较高的压力下,燃料电池的性能最优。
同时,随着温度的升高和压力的降低,燃料电池的输出电量、电压和电流都会减少,燃料消耗率却会增加。
这些结果为燃料电池的应用和优化提供了实验依据。
结论:通过本次实验,我们得出了以下结论:1、低温和高压有利于燃料电池的性能提升;2、温度和压力的变化会对燃料电池的输出电量、电压、电流和燃料消耗率产生影响。
实验意义:燃料电池是一种具有广阔应用前景的新型能源设备,其性能的优化对于推广应用至关重要。
本次实验从实验数据的角度回答了一些关键问题,对未来的燃料电池研究和应用提供了参考和依据。
参考文献:1、《燃料电池基础及应用》;2、《燃料电池综合性能研究》。
燃料电池特性综合实验报告
燃料电池特性综合实验报告燃料电池特性综合实验报告燃料电池是一种将化学能直接转化为电能的装置,它具有高效、环保、低噪音等特点,被广泛应用于能源领域。
本次实验旨在研究燃料电池的特性,并探究其在不同条件下的性能表现。
1. 实验目的本次实验的主要目的是通过对燃料电池的特性进行综合实验,了解其工作原理和性能特点,为进一步研究和应用提供基础数据。
2. 实验器材本次实验所使用的器材包括燃料电池、电流电压源、电阻箱、数字万用表、数据采集卡等。
3. 实验步骤3.1 准备工作首先,我们需要检查实验器材的完好性,确保实验的顺利进行。
同时,还需准备好所需的燃料和氧气供应。
3.2 实验过程在实验开始前,我们首先将电流电压源和燃料电池进行连接,并通过电阻箱调节电流的大小。
然后,我们使用数字万用表测量电池的电压和电流,并将数据记录下来。
接下来,我们将改变电流的大小,观察燃料电池的电压变化情况。
最后,我们还可以改变燃料和氧气的供应量,探究其对燃料电池性能的影响。
4. 实验结果与分析通过实验数据的收集和分析,我们可以得出以下结论:4.1 燃料电池的电压-电流特性曲线呈现出非线性关系。
随着电流的增大,电压呈现出逐渐下降的趋势。
这是因为在高电流下,电池内部的电阻会导致电压损失。
4.2 燃料电池的性能受到温度的影响较大。
在较低温度下,电池的性能较差,电压下降明显。
而在较高温度下,电池的性能相对较好,电压下降较小。
4.3 燃料电池的性能也受到燃料和氧气供应量的影响。
当燃料供应量不足时,电池的电压下降明显;而当氧气供应量不足时,电压下降较小。
5. 实验结论通过本次实验,我们对燃料电池的特性有了更深入的了解。
我们发现燃料电池的电压-电流特性曲线呈现非线性关系,受到温度和燃料、氧气供应量的影响较大。
这些研究结果为燃料电池的进一步应用和优化提供了重要的参考。
6. 实验总结本次实验通过对燃料电池的特性进行综合实验,深入了解了其工作原理和性能特点。
燃料电池可行性研究报告
燃料电池可行性研究报告一、引言能源问题一直是全球关注的焦点,随着传统能源的日益枯竭和环境压力的不断增大,寻找清洁、高效、可持续的能源解决方案迫在眉睫。
燃料电池作为一种新型的能源转换技术,具有广阔的应用前景和巨大的发展潜力。
本报告将对燃料电池的可行性进行全面研究和分析。
二、燃料电池的工作原理燃料电池是一种通过化学反应将燃料(如氢气、甲烷等)和氧化剂(如氧气)的化学能直接转化为电能的装置。
其工作原理类似于电池,但与电池不同的是,燃料电池只要持续供应燃料和氧化剂,就能不断产生电能。
以氢燃料电池为例,氢气在阳极被催化剂分解为氢离子和电子,电子通过外部电路形成电流,氢离子则穿过电解质膜到达阴极,与氧气结合生成水。
整个过程中,不涉及燃烧,因此能量转化效率高,且几乎不产生污染物。
三、燃料电池的类型目前常见的燃料电池类型主要有质子交换膜燃料电池(PEMFC)、固体氧化物燃料电池(SOFC)、磷酸燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)等。
PEMFC 具有启动速度快、工作温度低、功率密度高等优点,适用于汽车、便携式电源等领域。
SOFC 工作温度高,效率高,适合用于分布式发电和工业应用。
PAFC 和 MCFC 则在大型电站等领域有一定的应用前景。
四、燃料电池的优势1、高效能燃料电池的能量转化效率通常在 40%-60%之间,相比传统内燃机20%-30%的效率有显著提高。
2、清洁环保燃料电池的反应产物主要是水,几乎不产生氮氧化物、硫氧化物和颗粒物等污染物,对环境友好。
3、安静平稳燃料电池运行时噪音低,振动小,提供了更加舒适的使用体验。
4、燃料来源多样除了氢气,燃料电池还可以使用甲醇、天然气等多种燃料,拓宽了能源选择范围。
五、燃料电池的应用领域1、交通运输燃料电池在汽车领域的应用备受关注,氢燃料电池汽车具有续航里程长、加注时间短等优点,有望逐步取代传统燃油汽车。
此外,燃料电池还可应用于船舶、飞机等交通工具。
2、分布式发电燃料电池可用于家庭、企业和社区的分布式发电,提供稳定的电力供应,提高能源自给率。
氢能燃料电池项目可行性研究报告建议书范文
氢能燃料电池项目可行性研究报告建议书范文尊敬的领导:根据公司的发展战略和市场需求,现就氢能燃料电池项目的可行性进行了深入研究。
通过对技术、市场、资金、经济等多方面的综合评估,我们认为该项目具备良好的发展前景和投资价值,特提交可行性研究报告建议如下:一、项目背景和目标本项目旨在建立一座氢能燃料电池研发和生产基地,以满足市场需求,提高国内氢能燃料电池技术水平,推动我国清洁能源产业发展。
二、可行性分析1.技术前景:氢能燃料电池技术已在国内外取得显著进展,在汽车、储能等领域已有商业应用。
我国具备批量生产氢能燃料电池的条件,具备良好的技术基础和研发实力。
2.市场需求:随着我国加大清洁能源发展力度,替代传统燃料的氢能燃料电池市场需求将持续增长。
特别是在汽车、储能等领域,氢能燃料电池具备广阔的市场空间。
3.资金投入:项目初期需要大量投入研发和设备采购,根据初步估算,总投资额约为1亿元人民币。
由于该项目属于国家重点支持的战略性新兴产业,公司可申请政府相关资金和优惠政策支持;同时也可考虑引入合作伙伴或股东共同投资。
4.经济效益:根据市场需求和公司自身能力,合理预估项目年销售收入约为5000万元人民币,利润率可达30%以上,预计项目运营5年后即可收回投资并开始盈利。
同时,该项目有望带动当地经济发展,提供就业机会。
三、建设与运营方案1.建设方案:拟在公司现有生产基地扩建一座氢能燃料电池研发和生产厂房,引进先进设备和技术,组建专业团队进行研发和生产。
2.运营方案:以科研为依托,注重市场导向,不断提升技术创新能力,不断满足市场需求,确保产品质量和供应能力。
同时,积极开展市场推广和销售活动,拓展合作渠道,建立良好的客户关系。
四、风险评估与应对措施1.技术风险:需要面临技术研发周期长、资金投入大的挑战。
应加强研发团队建设,引入优秀人才,持续加大技术研发投入,确保技术先进性和市场竞争力。
2.市场风险:随着竞争对手的增多,市场竞争将会加剧。
氢燃料电池项目可行性研究报告
氢燃料电池项目可行性研究报告摘要:本报告针对氢燃料电池项目进行可行性研究,分析了氢燃料电池技术的发展现状和前景,评估了项目的经济可行性和环境可持续性。
研究结果表明,氢燃料电池项目在技术和市场方面具有广阔的发展前景,并且具备良好的经济和环境效益。
因此,建议深入推动氢燃料电池项目的研发和应用。
一、引言氢燃料电池作为一种清洁能源技术,在减少碳排放和解决能源需求方面具有重要意义。
近年来,全球各国纷纷加大了对氢燃料电池项目的投入,取得了一系列重要的成果。
本研究旨在评估氢燃料电池项目的可行性,为投资者和决策者提供科学依据。
二、技术现状与前景目前,氢燃料电池技术已经相对成熟,应用领域广泛。
以燃料电池汽车为例,已经有多款商业化产品问世,并在部分地区得到了广泛应用。
此外,氢燃料电池还在能源储存、工业生产、航空航天等领域拥有广阔的应用前景。
各国政府也纷纷出台支持政策,加速氢燃料电池技术的发展。
三、经济可行性分析氢燃料电池项目在经济方面具有较好的可行性。
首先,氢燃料电池技术的成本逐步下降,可以提供竞争力的产品价格。
其次,氢燃料电池的续航里程和加氢速度逐渐提高,提升了用户体验,增加了市场需求。
再者,氢燃料电池的维护成本相对较低,降低了用户使用成本。
最后,氢燃料电池的生产和应用也可以带动相关产业链的发展,创造就业机会,促进经济增长。
四、环境可持续性分析氢燃料电池项目在环境方面具有显著的可持续性。
首先,氢燃料电池的排放物主要是水蒸气,几乎不产生污染物和温室气体,对环境影响较小。
其次,氢燃料可以通过再生能源生产,实现能源的可再生和可持续。
再者,氢燃料电池的应用有助于减少对传统石油等化石能源的依赖,实现能源结构的转型升级。
五、风险与挑战氢燃料电池项目在发展过程中也面临一些风险和挑战。
首先,氢燃料电池的整个产业链尚不完善,生产和供应链的稳定性有待提高。
其次,氢气的储存和运输安全是一个难题,需要加强相关技术和管理。
再者,市场需求的不确定性和竞争激烈程度,也对项目的发展带来一定压力。
氢燃料电池技术发展前景与趋势研究报告
氢燃料电池技术发展前景与趋势研究报告氢燃料电池技术是目前世界上最前沿、最具发展前景的技术之一。
它是一种利用氢气和氧气发生化学反应来产生电能的技术,具有零排放、高效节能、低噪音等优点。
近年来,随着全球环境保护意识的加强和清洁能源的追求,氢燃料电池技术迎来了空前的机遇和挑战。
特别是在汽车行业,氢燃料电池车被认为是可持续发展和环保发展的最优解决方案,一直备受关注和研究。
目前,氢燃料电池技术的应用范围主要集中在汽车、航空、船舶、建筑、发电等领域。
其中,汽车领域是氢燃料电池技术应用最广泛的领域之一,各大汽车制造商也都投入了大量的资金和人力研发氢燃料电池车。
未来氢燃料电池技术的发展趋势是什么呢?首先,氢燃料电池材料的研发将成为氢燃料电池领域的核心竞争力。
氢燃料电池材料的研发主要包括电极材料、电解质材料、催化剂材料等方面,这些材料的研究与开发将直接影响到氢燃料电池的效率和稳定性。
其次,氢燃料电池的商业化将是未来的发展方向。
虽然氢燃料电池技术已经有很多成功的应用案例,但其商业化程度仍然较低。
为了推动氢燃料电池技术的商业化发展,政府和企业需要加大投资力度,加强政策导向,推广氢燃料电池技术的广泛应用,从而满足人们对清洁能源和可持续发展的需求。
再次,氢燃料电池技术将向多元化方向发展。
除了在汽车、航空、船舶、建筑、发电等领域的应用外,随着氢燃料电池技术的不断发展,其应用领域也将不断拓展。
例如,氢燃料电池技术可以用于移动电源和备用电源,也可用于工业制氢和储氢等方面。
最后,氢燃料电池技术将与其他清洁能源技术相互融合。
随着清洁能源技术的快速发展,氢燃料电池技术将与太阳能、风能、生物质能、地热能等其他清洁能源技术相结合,形成多能互补的清洁能源体系,从而更好地满足人们对清洁能源的需求。
总之,随着氢燃料电池技术的不断发展和进步,其应用领域将更加广泛,其效率和稳定性也将不断提高。
未来,氢燃料电池技术将成为推动清洁能源发展的重要力量。
生物燃料电池行业现状分析报告及未来五至十年发展趋势
生物燃料电池行业现状分析报告及未来五至十年发展趋势一、引言生物燃料电池作为一种新兴的清洁能源技术,具有减少碳排放、无污染、高能效等优势,备受关注。
本文将对生物燃料电池行业的现状进行全面分析,并展望未来五至十年的发展趋势。
二、生物燃料电池行业现状分析1. 市场规模及发展态势生物燃料电池行业在过去几年实现了快速发展,市场规模不断扩大。
据统计,2019年全球生物燃料电池市场规模已达到XX亿美元,预计到2025年将增长至XX亿美元。
充分说明了生物燃料电池行业具有巨大的发展潜力。
2. 技术创新与进展生物燃料电池技术在过去几年也取得了重要突破。
目前,主流的生物燃料电池技术包括酶催化燃料电池、微生物燃料电池和光合作用燃料电池等。
这些技术的不断革新与进步,提高了生物燃料电池的能量转化效率和使用寿命,加速了其商业化进程。
3. 市场应用领域及商业化进展生物燃料电池在农业、交通、能源等领域具有广阔应用前景。
目前,生物燃料电池已在一些地区开始商业化应用。
例如,在农村地区,生物燃料电池被用于发电和供暖,解决了能源供应问题。
随着技术的进一步成熟和成本的降低,生物燃料电池的市场应用将进一步扩大。
4. 发展挑战与问题虽然生物燃料电池行业取得了一定的成就,但仍面临一些挑战。
首先,生物燃料电池的成本较高,限制了其规模化应用。
其次,生物燃料电池技术仍存在一定的不稳定性和可持续性问题,需要进一步改进。
此外,在政策和法规方面,对生物燃料电池的支持力度还需加大。
三、未来五至十年发展趋势展望1. 技术创新与突破未来五至十年,生物燃料电池技术将持续创新与突破。
例如,通过改进材料、提高催化效率和稳定性,进一步提高生物燃料电池的性能。
此外,新型生物燃料电池技术的涌现也将推动生物燃料电池行业的发展。
2. 成本降低与商业化随着技术的进步和规模化生产,生物燃料电池的成本将逐渐降低。
这将使得生物燃料电池更具竞争力,进一步推动其商业化进程。
预计未来五至十年,生物燃料电池将在更多领域得到应用。
2020年中国燃料电池行业市场前景及投资研究报告
集电器又称作双极板,具有收集电流、分隔氧化剂与还原剂、疏导反应气体等之功用, 集电器的性能主要取决于其材料特性、流场设计及其加工技术。
PAGE 6
燃料电池分类
类型 电解液
PEMFC
质子交换 膜
运行温 度
(℃)
50-100
催化剂 比功率 发电效 (W/Kg) 率 (%)
铂金
目录
Contents
2.燃料电池市场发展环境
相关政策支持 先商后乘的发展路径明确 国内生产总值稳步增长 工业经济发展情况 新能源汽车产量下降 新能源汽车销量下降 国内电池燃料技术离国际水平仍有差距 我国煤制氢技术成熟
5.燃料电池行业发展前景
燃料电池产量预测 燃料电池未来发展趋势
3.燃料电池市场分析
全球燃料汽车及加氢站规划 中国燃料电池汽车产销量 我国加氢站建设规模 燃料电池发展现状 我国燃料电池出货量 氢燃料电池系统各组成成本
室效应是十分重要的。另外,由于燃料电池的燃料气在反应前必须脱硫,而且按电化学原理发电,没有 高
温燃烧过程,因此几乎不排放氮和硫的氧化物,减轻了对大气的污染。
比能量高
液氢燃料电池的比能量是镍镉电池的800倍,直接甲醇燃料电池的比能量比锂离子电池(能量密度最高 的
充电电池)高10倍以上。目前,燃料电池的实际比能量尽管只有理论值的10%,但仍比一般电池的实际 比
1959年
培根制造出能够工作的燃 料电池,是一部燃料电池 的5kW的焊接机。 Allis-Chalmers公司推出 了第一部以燃料电池为动
力的农用拖拉机。
1973年
磷酸燃料电池、熔融碳酸 盐电池以及将固体氧化物 燃料电池作为电站或分散 式电站相继问世。
2023年氢能源行业研究报告
2022年氢能源行业研究报告1000字随着全球对环境保护和资源利用的关注度不断提升,氢能源技术也越来越受到重视,成为未来能源发展的趋势之一。
预计到2022年,氢能源行业的发展将迎来新的突破。
下面是针对2022年氢能源行业的研究报告。
氢能源的概述氢能源是指使用氢作为燃料的能源形式,它具有清洁、高效、可再生等优点。
氢能源的应用领域非常广泛,可以应用于交通运输、电力、制造等领域。
随着技术的不断发展,氢能源的成本也不断下降,这也为其在未来的应用和普及奠定了基础。
2022年氢能源行业的市场趋势据市场研究机构的分析,2022年氢能源行业将有以下市场趋势:1. 生产成本将持续下降。
随着技术的不断进步和成本的不断下降,氢能源的生产成本将进一步降低,这也将推动其在市场上的更广泛应用。
2. 氢燃料电池车市场逐渐扩大。
目前,氢燃料电池车已经在一些地区得到了推广,未来随着技术的提升和生产成本的下降,氢燃料电池车市场将进一步扩大。
3. 汽车制造商将加快氢燃料电池车的研发和应用。
目前,包括丰田、本田、日产等在内的汽车制造商已经推出了氢燃料电池车,并且在不断加快其研发和应用,未来将进一步推动氢燃料电池车的普及。
4. 政府政策将进一步推动氢能源产业的发展。
德国、日本、美国等国家已经出台了一系列支持氢能源产业发展的政策,未来,政府也将继续加强对氢能源产业的支持,从而为氢能源发展提供更好的政策环境。
5. 燃料电池的技术不断提升。
燃料电池作为氢能源的重要组成部分,其技术的不断提升将为氢能源发展提供更好的技术支持,同时也将进一步推动其应用范围的扩大。
结语综上所述,未来氢能源将成为能源行业的一个主要方向,其应用领域将逐渐扩大。
但同时,也存在一些技术难题和市场风险,需要全社会共同努力解决。
我们相信,在全社会的共同推动下,氢能源一定会在未来发展壮大,成为人类21世纪的重要能源来源。
氢燃料电池研究报告
氢燃料电池研究报告一、氢燃料电池的结构和工作原理氢燃料电池主要由电解质、阳极、阴极和电子导体四个组成部分构成。
其中,电解质是氢离子的传递介质,可以是固态、液态或者是质子交换膜;阳极是氧化剂,阴极是还原剂;电子导体连接阴极和阳极,形成电路。
氢气通入阳极,经过催化剂的催化,分解成质子和电子;在电解质的带动下,质子穿过电解质,到达阴极,与电子结合,产生水和电流,电流可以驱动任何电子设备工作。
氢燃料电池的反应方程式如下:阳极:H2->2H+ + 2e-整个反应过程中的热效率高达60%以上,不仅可用于动力设备的驱动,还可以用于定点电力供应等领域。
二、氢燃料电池的应用现状三、氢燃料电池存在的问题尽管氢燃料电池具有很好的发展前景和广泛的应用领域,但是它目前还存在一些问题。
首先,目前氢燃料电池的制氢成本和储氢技术的限制是制约其商业化应用的主要因素之一。
制氢成本高和储氢技术尚不成熟,导致氢燃料电池的成本相对传统能源高。
其次,安全问题也是氢燃料电池发展的瓶颈。
氢气具有极高的燃爆性,一旦技术出现问题,可能对环境和人的安全造成严重威胁。
在运输、储存和使用氢气时,需要高度的安全控制。
最后,氢燃料电池技术还需要进一步完善和优化。
目前氢燃料电池的效率和稳定性还有提高的空间。
同时,催化剂和膜的寿命和稳定性等问题也需要更多的研究。
四、氢燃料电池的发展前景氢燃料电池是未来的绿色能源之一,在能源转型和环境保护方面具备巨大的潜力。
随着氢燃料电池技术的不断进步和成本的逐步降低,氢燃料电池将逐渐被推广到更多的领域,成为新能源的重要组成部分之一。
同时,氢燃料电池也有望成为解决社会诸多问题(如环境污染、气候变化等)的有效途径。
燃料电池行业周观点:燃料电池企业队伍扩大,山东氢能发展提速
万联证券证券研究报告|化工燃料电池企业队伍扩大,山东氢能发展提速强于大市(维持)——燃料电池行业周观点日期:2020年08月31日市场回顾:⚫ 上周燃料电池板块上涨0.39%,同期沪深300上涨2.66%,同期落后大盘2.27个百分点。
其中,科融环境(45.70%)、坚瑞沃能(26.79%)、富瑞特装(20.95%)、杭氧股份(13.24%)、金通灵(12.56%)分别位列涨幅前五,跌幅前五分别是:ST 力帆(-18.76%)、福田汽车(-11.54%)、首航高科(-9.03%)、骆驼股份(-8.61%)、新筑股份(-7.27%)。
投资要点:⚫ 燃料电池:工信部于25日发布了《道路机动车辆生产企业及产品公告》(第336批),其中申报燃料电池产品的共14户企业合计25个型号。
从产品类型看,此次参与申报的燃料电池产品中依然以客车为主;值得注意的是,从生产企业和配套来看,申报燃料电池类产品的企业中,有安徽华菱汽车、河北微风新能源汽车、清极能源等数家为首次申报,这些首次申报的企业均是在各自领域中实力强劲、具有代表性的“选手”。
毫无疑问,他们的加入定将为我国燃料电池行业带来更大的发展动力。
⚫ 氢能:近日,山东氢能又有新动态。
淄博市宣布首批20辆氢燃料电池公交车即将投入使用,同时淄博市也正在推进建设新区公交枢纽加氢站,为深化构建绿色公共交通体系助力。
潍坊市首座加气加氢合建站已完成联合调试具备使用条件,水发能源集团也宣布拟在潍坊市布局氢能综合开发基地项目,主要投资建设可再生能源发电制氢、氢气存储及运输、氢气加注、氢能终端综合利用及相关装备制造等。
待该项目建成,除能够满足潍坊市及周边地区的氢气需求外,还有望通过海运方式出口日本、韩国等国家和地区,实现高纯氢气出口的突破。
⚫ 投资建议:近来,我国加入燃料电池汽车及配套电池生产研发的企业队伍逐渐发展壮大。
各省市燃料电池商用车普及进程的加速就是我国燃料电池行业正在快速发展的最好证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年燃料电池行业研究度报告一、背景:政策、成本推动下,FCV 开启放量降本1. 车辆电动化大势所趋,燃料电池为商用车电动化的优选方案电动化趋势下锂电技术路线率先突围,尤其带动了乘用车的电动化浪潮。
相较之下,重载运输领域的电动化进程却略显缓慢。
从市场规模看,2019 年国内重卡销量 117 万辆,远不及乘用市场庞大,但其能源消耗大,污染严重,电动化意义不亚于乘用车。
2019 年国内汽车销量 2577 万辆,其中重卡仅 117 万,占比不足 5%。
从保有量看,截止 2020 年上半年国内汽车保有量 2.7 亿辆,其中载货汽车不足 3000 万辆,远不及乘用车等载客车辆。
然而重卡等货运车型负荷重,运营时间长,燃油消耗量大,对推动节能环保意义重大。
FCV 在重载、长续航领域优势明显,加氢更为便捷,成为商用车电动化的优选。
商用场景下随续航里程增长,锂电车辆电池质量占比快速提升,造成车辆运载能力下降。
相较锂电,燃料电池能量密度更高,相同续航里程下,FCV 在自重方面的优势将增加有效荷载。
除此之外,FCV 能够在 10- 15min 内完成氢气加注,而对纯电车型,快充桩充电时长仍需 1 小时上下,慢充近十小时。
由于商用运营强度更高,FCV 成为其电动化的优选方案。
2. 政策、成本交替推动下,产业分两阶段实现快速成长◼第一阶段:政策补贴阶段(2020-2024):2020 年 9 月,财政部等五部委发布《关于开展燃料电池汽车示范应用的通知》,暂定4 年示范期,采取以奖代补、城市群申报的扶持方案,推动 FCV 产业化进程。
方案契合燃料电池技术特征和国内产业现状,据补贴方案内容,测算在政策落地后的 4 年补贴期间,FCV 全周期成本可以持平或低于燃油车,调动下游整车运营方的积极性,市场化需求逐步形成带动产销放量。
补贴阶段政策是主要推动,产业链国产化进程持续推进,补贴期末 FCV 产销规模达到十万辆上下,市场规模千亿,燃料电池系统成本降至 2 元/W 附近,商用车为主要放量车型。
◼第二阶段:后补贴阶段(2025 年以后):补贴阶段 FCV 产销量将迅速扩张,产业降本驱动力由“国产化”为主向“国产化+规模化”双重驱动转变,燃料电池核心部件、氢气成本将快速下降。
预计 2025 年前后,在国内氢气资源优势地区,燃料电池整车有望实现全生命周期成本持平甚至低于燃油车,届时成本成为产业发展的主要推动,氢燃料电池产业将更加趋于市场化,加速在重卡等商用车领域的替代进程,并向乘用车拓展,2030 年前后整车市场规模达到百万辆,市场规模达到万亿,系统成本降至 1 元/W 以下。
◼平价阶段:远期氢燃料电池系统成本将持续下降,除车用外将逐步打开轨交、船舶、储能、发电等应用市场,进入平价阶段。
◼系统成本及氢气价格是决定 FCV 经济性的关键因素。
FCV 前期主要在商用领域推广,包含购置成本及营运费用的全生命周期成本成为衡量 FCV 经济性的有效指标。
目前系统占整车成本达到 60%以上,而运营阶段费用构成以氢气为主,因此系统单价及氢气售价是影响 FCV 全生命周期经济性的主要因素。
◼系统降本由“国产化”主导向“国产化+规模化”驱动转变。
2017~2019 年国内 FCV 产销量快速增长但整体规模尚小,核心部件国产化为降本主要贡献。
政策引导下未来 4 年 FCV 产销将由千辆向万辆、十万辆跨越,同时大功率重卡趋势下,系统装机量增速超过整车产销量,规模化、国产化共同推动系统等部件成本下行。
预计未来 5 燃料电池系统成本再降 60%至 2 元/W 合理可期,届时100kW 系统售价做到约 20 万元,49t 燃料电池重卡售价由目前140~150 万降至 60 万元上下。
◼氢气成本随用量下行。
氢气成本主要由制氢成本、运氢成本、加氢站固定成本三大成本构成。
从制氢环节看,虽然目前国内东部沿海地区副产氢资源充足,但受限 FCV 整体用氢规模尚小,大部分副产氢资源并未形成规模化供应,造成氢气终端售价偏高。
从储运加氢环节看,供氢设备利用率越高则分摊至每公斤氢气的投资、费用越低。
◼ FCV 放量拉动氢气需求,氢气售价将逐步下调。
政策扶持下FCV 快速放量,预计 2025 年国内氢气年消耗量将接近 150 万吨。
燃料电池氢气用量大幅提升,推动各地具备副产氢资源的企业逐步构建完整的供氢方案,保障供氢体系高效运转,氢气售价将持续下行。
二、需求:燃料电池技术成本中枢,2030 年市场规模 350 亿1. 膜电极是燃料电池的核心部件,在燃料电池成本占比超 30%燃料电池主要包括电堆、氢气系统,其中电堆以膜电极(MEA)、双极板为主。
氢气系统以空压机、增湿器、氢循环泵、高压氢瓶为主。
MEA 是燃料电池的技术和成本中枢。
MEA 是燃料电池发生电化学反应的场所,为反应气体、尾气和液态水的进出提供通道,主要由催化剂、质子交换膜、气体扩散层构成。
氢气通过阳极气体扩散层扩散至阳极催化层,在阳极催化层的作用下生成氢离子和电子,电子由催化剂中的导电物质传递到阳极气体扩散层向外电路传递,质子(氢离子)由阳极催化层通过质子交换膜传导至阴极催化层,外电路的电子经由阴极气体扩散层向阴极催化层传递,在阴极催化剂的作用下电子、质子、氧气在阴极催化层生成 H2O,H2O 通过阴极催化剂扩散至阴极气体扩散层。
理想的 MEA 需要良好的气体扩散能力、液态水管理能力、质子传导能力。
从成本构成来看,膜电极占燃料电池成本大头。
FCV 主要成本构成包括燃料电池系统、车载供氢系统、动力电池、车架等其他传统车辆部件。
其中系统为 FCV 的核心部件,在整车成本占比超 60%。
系统包含电堆、空压机、氢循环泵等,其中膜电极作为电堆核心部件,在整个系统成本占比约 30%。
2. 需求:整车放量拉动膜电极需求,2030 年市场规模将接近350 亿元◼ FCV 市场开启放量,2030 年有望达到百万产销。
政策正式落地将加速国内 FCV 产销,2025 年国内 FCV 产销量有望突破十万辆。
规模化、国产化推动下,燃料电池成本将快速下降,补贴期末 FCV 将在部分地区实现无补贴条件下对标燃油车平价,经济性优势驱动下,FCV 将持续放量,2030 年产销规模达到百万。
2030 年膜电极需求接近千万平米,对应市场规模超 350 亿元。
假设 2021、 2025、2030 年燃料电池车需求达 1.5 辆、10 万辆、100 万辆,考虑燃料电池重卡放量,单车系统额定容量将由此前 30kW 为主逐步提升至 100kW 左右。
膜电极功率密度由目前1W/cm2 逐步升至 1.5W/cm2 以上,对应 2030 年膜电极需求接近 1 千万平米,对应 2030 年市场规模在 350 亿元上下。
三、技术:耐久性>功率密度>成本从技术本身看:膜电极行业技术壁垒高,率先实现技术突破的企业有望脱颖而出。
2016 年 10 月,汽车工程学会发布《节能与新能源汽车技术路线图》,提出了 MEA 各项核心参数的规划路线,逐步实现高性能、高可靠性、低成本。
目前国内膜电极性能、成本基本达到 2020 年规划参数,但与最终目标尚有一定差距,考虑行业技术壁垒较高,未来率先实现技术突破的企业有望在行业内脱颖而出。
1. 质子交换膜:海外企业供应为主,突破点在于超薄兼顾高耐久性◼质子交换膜性能决定电池性能、寿命。
质子交换膜在燃料电池的主要功能是实现质子快速传导,同时也阻隔氢气氧气和氮气在阴阳极间的渗透。
质子交换膜性能的好坏直接决定着燃料电池的性能和使用寿命。
理想的质子交换膜需要具备高质子传导率,低电子导电率,气体渗透性低,化学、电化学、热稳定性好。
◼全氟磺酸膜是主流质子交换膜。
1)质子交换膜根据含氟情况进行分类主要包括全氟磺酸膜、部分氟化聚合物质子交换膜、复合质子交换膜和非氟化聚合物质子交换膜。
2)其中由于全氟磺酸聚合物具有聚四氟乙烯结构,其碳-氟键的键能高,使其力学性能、化学稳定性、热稳定性佳,使用寿命远好于其他膜材料的使用寿命,同时由于分子支链上存在亲水性磺酸基团,具有优秀的离子传导特性,全氟磺酸膜成为目前主流质子交换膜方案研究聚焦于超薄型、高机械强度、高耐久性质子交换膜。
降低质子交换膜的厚度可以大幅提升膜电极性能,但可能造成其机械强度、耐久性降低。
目前质子交换膜的研究主要聚焦于超薄型、高机械强度、耐久性好。
目前国内主流膜电极厂商采用交换膜厚度在15μm 上下,丰田 Mirai 搭载质子交换膜已降至10μm 以下。
2. 催化剂:低铂载&高性能&高耐久性仍是技术难点阳极催化剂层和阴极催化剂层是膜电极最重要的部分,阳极使用催化剂促进氢氧化反应,涉及氧化反应、气体扩散、电子运动、质子运动、水的迁移等多种过程;阴极使用催化剂促进氧还原反应,涉及氧气的还原、氧气扩散、电子运动、质子运动、反应生成的水的排出等。
良好的催化剂应该具有良好的催化活性、高质子传导率、高电子传导率和良好的水管理能力、气体扩散能力。
提高耐久性为当前关键,未来低铂载为研发方向。
1)燃料电池在车辆运行工况下,催化剂性能会发生衰减,如在动电位作用下会发生 Pt 纳米颗粒的团聚、迁移、流失,在开路、怠速及启停过程产生氢空界面引起的高电位导致的催化剂碳载体的腐蚀,从而引起催化剂流失。
2)目前最优催化剂仍是 Pt 和 Pt 基催化剂,常用的商业催化剂为 Pt/C,由 Pt 纳米颗粒分散到碳粉载体上的担载型催化剂。
使用 Pt 催化剂将会受资源与成本的限制,目前 Pt 用量已从10 年前 0.8~1.0gPt/kW 降至现在的 0.3gPt/kW 左右,未来有希望进一步降低,使其催化剂用量达到传统内燃机尾气净化器贵金属用量水平(<0.05gPt/kW)。
降低铂载的研究途径主要有二:1)提高催化剂的催化活性来实现 Pt 用量降低。
主要研究方向包括:①Pt 合金催化剂(利用过度金属催化剂提高其稳定性、质量比活性,包括 Pt-Co/C、Pt-Fe/C、Pt-Ni/C 等二元合金催化剂);②Pt 单原子层催化剂(Pt 单原子层的核壳结构,);③Pt 核壳催化剂(以非 Pt 材料为支撑核、表面壳为贵金属,由金属合金通过化学或电化学反应,去除活性较高的金属元素,保留活性较低的 Pt 元素。
该方法降低 Pt 载量,提升催化剂活性);④纳米结构 Pt 催化剂(以碳纳米管为催化剂载体的催化剂,是高度有序的催化层,质子、电子、气体可以更快传输)。
2)寻找替代 Pt 的催化剂,其研究主要包括过度金属原子簇合物、过渡金属氮化物等。
学术上低铂载膜电极技术不断突破。
如今,膜电极催化层中Pt 载量已经由常规的 0.2mg/cm2不断降低,进一步加快燃料电池产业化进程。