大豆蛋白改性酶解制备大豆肽的研究

大豆蛋白改性酶解制备大豆肽的研究
大豆蛋白改性酶解制备大豆肽的研究

大豆肽的制备实验报告doc

大豆肽的制备实验报告 篇一:高中生物常规实验的总结 篇二:大豆豆粕及其多肽制备工艺 大豆豆粕及其多肽制备工艺 摘要阐述了大豆多肽的应用、发酵法制备大豆豆粕的特性,介绍豆粕蛋白直接发酵制备大豆多肽的方法,以供参考。 关键词大豆;豆粕;多肽;发酵法 大豆在提取豆油后可得到豆粕,豆粕是生产牲畜和家禽饲料的主要原料,或用于制作食品、化妆品、抗菌素。豆粕的价格变化很大,相关的产业链长,影响的范围也很广。美国和日本都在大豆豆粕的理论研究上有所突破。美国为了研究水解蛋白,成立了专门的研究机构和使用蛋白肽的工厂;日本在水解产物的去苦和水解工艺上有所进展。20世纪60年代,我国对大豆豆粕进行了研究,大豆豆粕作为新兴产业具有非常大的市场潜力。大豆豆粕很有可能成为我国绿色饲料的添加剂,从而代替饲料中的抗生素药物[1]。从大豆豆粕中提取的大豆多肽具有广泛的用途。 1大豆多肽的应用 1.1营养疗效食品 大豆多肽在食用时易于吸收,适合于病人(转自:小草范文网:大豆肽的制备实验报告)在大病初愈之后服用,有利于吸收和增强体质。为了符合老人的饮食习惯和心理,

用大豆多肽作基础再加上全脂奶粉和蜂蜜,就能做出适合老年人饮食用的奶粉[2-3]。 1.2普通食品 大豆多肽具有良好的吸湿和保湿功能,水溶性高,可改善豆类制品口感和风味,用延长糕点保质期,在酸性环境中具有发泡效果,可生产酸性饮料等[4-5]。 1.3运动员食品 恰当的活动影响和充沛的卵白质增补可增加运动员的肌肉量,从而可以提高运动员体内的能量。在此阶段里,供应消化吸收性优越的多肽作肌肉卵白质的原料会对运动员有一定的帮助。大豆多肽易于在活动中被吸收,延缓心理的压力,增强活力,有利于运动员补充体力[6]。 2发酵法制备大豆豆粕的特性 2.1理化特性 ,具有良好的溶解性,它 篇三:大豆肽制备及其营养功能研究进展 大豆肽的制备及其营养功能研究进展 Advancement of preparation of soybean peptide and its nutritional function 摘要:大豆肽是大豆蛋白水解后,由3~6个氨基酸残基组成的低肽混合物,分子量在1000 U以下。为了提高大豆蛋白资源的利用率,降低大豆肽的成本,本文综述了以

蛋白质的生物和化学改性

文章编号:1003 7969(2000)06 0181 05 蛋白质的生物和化学改性 周瑞宝1,周 兵2 (1 郑州工程学院食品科学与工程系,450052郑州市嵩山南路140号; 2 郑州油脂化学集团公司,450053郑州市黄河路;第一作者:男,59岁,教授) 摘要:生物酶或化学法改性食品蛋白质,是提高食品功能特性的重要途径。生物酶有酶源易于得到,应用更安全,并且可将蛋白质改性到所期望的功能值;化学法的乙酰化、磷酸化、糖基化、交联反应,在改变结构和功能性方面,对提高蛋白质功能特性比酶法更有效。 关键词:蛋白质;生物酶;化学法;改性 中图分类号:TQ645 9+9 文献标识码:A 1 蛋白质的酶法改性 蛋白质的改性就是用化学因素(如化学试剂、酶制剂等)或物理因素(如热、高频电场、射线、机械振荡等),使氨基酸残基和多钛链发生某种变化,引起蛋白大分子空间结构和理化性质改变,从而获得较好的功能性和营养特性。 用于水解大豆蛋白的酶,包括植物来源的木瓜酶(Papain)、微生物蛋白酶(Alcalase、Neutrase、Ther mitase)和动物蛋白酶(Pepsin、Chymotrypsin)等,都可以用于蛋白质的改性。 1 1 大豆蛋白的部分水解及其功能特性 大量文献列举了蛋白质水解对功能特性的影响,其中包括:植物蛋白的大豆蛋白[1]、蚕豆蛋白、小麦谷朊粉、玉米蛋白、燕麦粉(蛋白)、棉籽蛋白、葵花籽和菜籽蛋白;以及动物蛋白的酪蛋白,都可以进行蛋白酶水解,又称蛋白生物酶改性。 大豆蛋白酶改性[2],对于提高蛋白质的溶解性具有特殊重要性,甚至对于在水中难于分散的谷类蛋白,也是如此。只有使蛋白水解之后,才能显示它的改性意义。玉米蛋白是一种玉米储存蛋白,在pH2~5,具有很高的不溶性,当用胰蛋白酶处理水解使1 9%的肽键断裂时,在同样的pH范围内,溶解度可达30%~50%。而小麦谷朊粉用此法处理,在pH7时,达到9 8%水解度(D H)时,溶解度从7%增加到50%。燕麦粉经Alcalase 或Neutrase酶处理,在等电点(pH5.0)条件下溶解度提高3~4倍[3]。在一定的酶与底物比例条件下,增加水解度(3 8%~ 10 4%),溶解度也同时增加。用Alcalase在pH8,或Neutrase在pH7条件下,使大豆分离蛋白进行有限的蛋白酶水解,会改变它的pH值与溶解曲线图。用Thermitase酶处理蚕豆分离蛋白,使水解度达到8 3%时,在等电的pH值下,溶解度增加高达40%。用Ttaphyloc occus aureus V8蛋白酶水解酪蛋白,水解度达到2%和6 7%时,溶解度增加25%和50%。 大豆蛋白生物改性,可以提高水解蛋白的吸水和结合水的能力。这是由于蛋白水解过程中释放出氨基和羧基,离子基团数量增加。甚至大豆分离蛋白在84%的相对湿度的室温下,其吸水性随酶处理程度成比例增加。酸 沉大豆蛋白和11S大豆球蛋白,用菠萝蛋白酶进行有限蛋白水解后,吸水能力增加2~2 5倍。运用Alcalase或Teutrase处理燕麦粉,随水解度(DH)的升高,吸水能力增加。大豆蛋白质酶改性对蛋白质的乳化能力很敏感。使用木瓜蛋白酶对大豆蛋白进行短时水解,会增加乳化能力,然而,当继续水解时,乳化能力减少。有人发现大豆分离蛋白在水解度(DH)为5%时,乳化特性最佳。蛋白酶改性,也能改善花生蛋白的乳化特性。 用胰蛋白酶部分水解由大豆和蚕豆得到的11S 球蛋白,其中高分子量的水解产物大豆球蛋白 T 和豆球蛋白 T,分别对乳化能力和乳化稳定性,起着关键作用。随着豆蛋白 T的生成,其乳化能力和乳化稳定性增加,当豆蛋白 T被胰酶进一步水解时,乳化能力和乳化稳定性降低。 蛋白酶部分水解时,乳化能力和乳化稳定性的有益作用可能是由于暴露了分子内部掩蔽的疏水基团,改善亲水 疏水平衡,从而提高乳化能力。蛋白质表面失去亲水肽,导致表面疏水作用增加,而有利于表面吸附。过度消化的不利影响,使其失去球状 收稿日期:2000 09 15

脲醛树脂的制备实验报告

脲醛树脂的制备实验报告 篇一:脲醛树脂的合成 目录 1 目的................................................. ................................................... (1) 2 综述................................................. ................................................... (2) 2.1 脲醛树脂概述................................................. ................................................... ..2 2.1.1 脲醛树脂的含义................................................. . (2) 2.1.2 脲醛树脂的概述.................................................

........................................2 2.1.3 脲醛树脂的特点................................................. (3) 2.1.4 脲醛树脂的组成................................................. (3) 2.1.5 脲醛树脂的应用及用途................................................. . (5) 2.2 脲醛树脂的改性................................................. . (5) 2.3 脲醛树脂的合成方法................................................. .. (7) 2.3.1 脲醛树脂的生产工艺流程 ................................................ ......................7 2.3.2 脲醛树脂的原料配比.................................................

大豆分离蛋白改性的研究进展

基金项目:国家自然科学基金资助项目(20704044); 作者简介:李海萍(1984-),女,硕士研究生; 3通讯联系人,E 2mail :cesyjz @https://www.360docs.net/doc/5010853329.html,. 大豆分离蛋白改性的研究进展 李海萍,易菊珍3 (中山大学化学与化学工程学院高分子研究所,广州 510275) 摘要:首先介绍了大豆分离蛋白的基本组成与结构,然后分别从化学改性、酶改性和物理改性三个方面对 大豆分离蛋白改性进行了综述。其中,在化学改性方面,针对大豆分离蛋白中含有的氨基、羧基、巯基等不同活性基团的改性原理及研究现状进行了介绍。在酶改性方面,主要介绍了谷胺酰胺转胺酶、木瓜蛋白酶等对大豆分离蛋白的改性作用。在物理改性方面,介绍了共混、加热改性等目前研究较多的方法。通过化学、物理和酶等方法等来引起分子结构的微变化,可使人们获得各种符合预期的性能优良的产品,开发其在医药、化工等领域的应用潜力。 关键词:大豆分离蛋白;结构;改性 引言近年来,由于全球石油危机及环境污染问题,以石油为原料、不可降解的聚合物材料的广泛使用引起 了大家的担忧[1],而且塑料垃圾掩埋后,有毒单体和小分子低聚物的释放又会污染地下水资源 ,给人类和 生物体健康构成威胁。因此,人们致力于研究通过可再生农作物开发环境友好、可生物降解的材料。大豆分离蛋白(s oybean protein is olate ,SPI )是一种重要的植物蛋白,是每年都可进行大量种植的可再生资源,而且具有无毒、可降解等优点,在材料领域具有广泛的应用前景。大豆蛋白包含多种功能团,如氨基、羟基、巯基、酚基、羧基等。这些活性基团可作为化学改性或交联的位点,来合成各种功能可与以石油为原料的材料相当或更优的新型聚合物。因此,本文介绍了大豆分离蛋白的基本组成与结构,并对基于大豆分离蛋白功能基团的改性研究进行了综述。 1 大豆分离蛋白的基本组成及结构 大豆分离蛋白(S oybean Protein Is olate ,SPI )是以低变性脱脂豆粕为原料,采用现代化的加工技术制取的一种蛋白质含量较高的功能性食品添加剂或食品原料。其主要组成元素为C 、H 、O 、N 、S 和P ,还含有少量的Zn 、Mg 、Fe 和Cu 。大豆分离蛋白中蛋白质含量高达90%以上,含有多种人体必需氨基酸,其主要 氨基酸含量如表1所示[2]。 SPI 主要包括β 2大豆伴球蛋白(7S 球蛋白,β2conglycinin )和大豆球蛋白(11S 球蛋白,glycinin )两种成分[3]。其中β2大豆伴球蛋白是由α’2(69kDa )、β2(68kDa )和β2(42kDa )三种亚基组成的分子量约为~180kDa 的三聚体糖蛋白,三种亚基分子量不同文献报道有所差别[4]。大豆球蛋白是由五种分子量为54kDa ~64kDa 的亚基(G 12G 5)组成的分子量约为~320kDa 的六角形化合物。各个亚基的基本结构通式为A 2SS 2B ,其中A 表示分子量为34~44kDa 的酸性多肽,B 表示分子量约为20kDa 的碱性多肽,A 和B 由 二硫键(SS )连接。Utsumi [5]、Maruyama 等[6]利用基因重组技术并通过X 射线晶体衍射法推导出大豆球蛋 白和β2大豆伴球蛋白结构模型,如图1所示。

蛋白质的改性论文

蛋白质的改性 摘要:介绍蛋白质的功能特性,以及物理、化学、摘要介绍蛋白质的功能特性,以及物理、化学、酶法等各种改性方法及其对蛋白质功能特性和营养安全性的影响,展望蛋白质改性的应用前景。 0 前言 蛋白质具有营养功能,添加到食品中可以有效地提高产品的营养价值,更重要的是蛋白质在食品中可以体现出不同的功能特性,影响食品的感官特性,而且对食品在制造、加工或保藏中的物理化学性质起着重要的作用。因此蛋白质广泛用于食品加工的各个领域。但是,不少天然蛋白质的这些特性尚不突出,不能满足现代食品开发与加工的需要,往往通过特定的方法来提高其功能特性,使其应用领域更广阔。 1 蛋白质的功能特性 蛋白质的功能性质主要分三类: (l)水化性质,包括水吸收及保留、湿润性、溶胀、粘着性、分散性、溶解度和粘度。由蛋白质肤链骨架上的极性基团与水分子发生水化作用。 (2)与蛋白质一蛋白质相互作用有关的性质,包括产生沉淀作用、凝胶作用和形成各种其它结构(如蛋白质面团和纤维)。蛋白质分子受热舒展,内部的疏水基团暴露出来,通过疏水作用(高温能提高此类作用)、静电作用(通过ca和其它二价离子桥接的)、氢键(冷却能提高此类作用)或二硫交联形成空间网状结构。 (3)表面活性,包括表面张力、乳化作用和泡沫特征。蛋白质结构中既有亲水基又有亲油基,能够吸附在油一水或空气一水界面上,一旦被界面吸附,蛋白质形成一层膜,可阻止小液滴或气泡聚集,有助于稳定乳化液和气泡。这些功能特性在食品中常被应用。 (4)蛋白质的功能特性与其结构有关,即氨基酸组成、排列顺序、构象、分子的形状和大小、电荷分布以及分子内和分子间键的作用。高比例的极性残基影响肤链间相互作用、水化作用、溶解性和表面活性,疏水性相互作用在蛋白质三级折叠中相当重要,它影响乳化作用、起泡性和风味结合能力。带电氨基酸能增强静力相互作用,起到稳定球蛋白,结合水分的作用,以及水化作用、溶解度、凝胶作用和表面活性。琉基(SH)能被氧化形成二硫键,硫醇和二硫化物的相互转化会影响流变性。共价键和非共价键的性质和数量决定了蛋白质的大小、形状、表面电荷。所有这些性质又受PH、温度等环境因素及加工处理的影响。 2蛋白质改性 2.1物理改性 所谓蛋白质物理改性是指利用热、机械振荡、电磁场、射线等物理作用形式改变蛋白质的高级结构和分子间的聚集方式, 一般不涉及蛋白质的一级结构。如蒸煮、搅打等均属于物理改性技术。

脲醛树脂的合成与应用实验报告

脲醛树脂的合成与应用 一)实验目的 1)学习脲醛树脂的合成原理及方法; 2)了解脲醛树脂的应用。 二)实验原理 脲醛树脂简介 商品名Beetle。又称尿素甲醛树脂,简称UF,平均分子量约10000。尿素与37%甲醛水溶液在酸或碱的催化下可缩聚得到线性脲醛低聚物,工业上以碱作催化剂,95℃左右反应,甲醛/尿素之摩尔比为1.5~2.0,以保证树脂能固化。反应第一步生成一和二羟甲基脲,然后羟 甲基与氨基进一步缩合,得到可溶性树脂,如果用酸催化,易导致凝胶。产物需在中性条件下才能贮存。线性脲醛树脂以氯化铵为固化剂时可在室温固化。模塑粉则在130~160℃加热固化,促进剂如硫酸锌、磷酸三甲酯、草酸二乙酯等可加速固化过程。脲醛树脂主要用于制造模压塑料,制造日用生活品和电器零件,还可作板材粘合剂、纸和织物的浆料、贴面板、建筑装饰板等。由于其色浅和易于着色,制品往往色彩丰富瑰丽。 脲醛树脂成本低廉,颜色浅,硬度高,耐油,抗霉,有较好的绝缘性和耐温性,但耐候性和耐水性较差。它是开发较早的热固性树脂

之一。1924年,英国氰氨公司研制,1928年始出售产品,30年代中期产量达千吨,80年代世界年产量已超过1.5Mt。 制作塑料制品所用的脲醛树脂的数量仅占总产量的10%左右。在甲醛与尿素的摩尔比较低的情况下制得的脲醛树脂,与填料(纸浆、木粉)、色料、润滑剂、固化剂、稳定剂(六亚甲基四胺、碳酸铵)、增塑剂(脲或硫脲)等组分混合,再经过干燥、粉碎、球磨、过筛,即得脲醛压塑粉。压制脲醛塑料的温度140~150℃、压力25~35MPa,压制时间依制品的厚度而异,一般为10~60min。塑料制品主要是电气照明设备和电话零件等。 脲醛树脂一般为水溶性树脂,较易固化,固化后的树脂无毒、无色、耐光性好,长期使用不变色,热成型时也不变色,可加入各种着色剂以制备各种色泽鲜艳的制品。 脲醛树脂坚硬,耐刮伤,耐弱酸弱碱及油脂等介质,价格便宜,具有一定的韧性,但它易于吸水,因而耐水性和电性能较差,耐热性也不高。 脲醛树脂合成机理比较复杂,一般认为分以下两步进行: 1)反应物为初期中间体尿素和甲醛在中性或微碱性介质中生成较稳 定的一羟甲基脲、二羟甲基脲等:

大豆蛋白纤维

大豆纤维的探究及应用 院系:外语系 学号:201313060124 姓名:司淼

目录 大豆纤维 大豆纤维释义 大豆纤维简介 大豆蛋白纤维 大豆纤维纱线 大豆纤维的面料 大豆纤维染整 大豆纤维服饰 大豆纤维衣服正确洗涤方法

大豆纤维释义 1. Soy Fiber 属于膳食纤维,在减肥过程中可以产生饱足感,而减少食物的摄取,但它们会干扰其他营养素的吸收,因此不建议单独食用。 2. SB=soybean SB=soybean 大豆纤维 3. soybean fibers soybean fibers大豆纤维 大豆纤维简介 大豆蛋白纤维属于再生植物蛋白纤维类,是以榨过油的大豆豆粕为原料,利用生物工程技术,提取出豆粕中的球蛋白,通过添加功能性助剂,与腈基、羟基等高聚物接枝、共聚、共混,制成一定浓度的蛋白质纺丝液,改变蛋白质空间结构,经湿法纺丝而成. 其有着羊绒般的柔软手感,蚕丝般的柔和光泽,棉的保暖性和良好的亲肤性等优良性能,还有明显的抑菌功能,被誉为“新世纪的健康舒适纤维”。 经过工业化规模生产,大豆纤维从纺纱到织造到染整的相关生产技术均已相对成熟,其价格已从初期的每吨7万多元,降至3.5万元左右,已被下游应用企业所认可,产业链结构也逐步形成. 大豆纤维是以脱去油脂的大豆豆粕作原料,提取植物球蛋白经合成后制成的新型再生植物蛋白纤维,是由我国纺织科技工作者自主开发,并在国际上率先实现了工业化生产的高新技术,也是迄今为止我国获得的唯一完全知识产权的纤维发明。 在成为纤维之前,要从大豆中提取蛋白质与高聚物为原料,采用生物工程等高新技术处理,经湿法纺丝而成。这种单丝,细度细、比重轻、强伸度高、耐酸耐碱性强、吸湿导湿性好。有着羊绒般的柔软手感,蚕丝般的柔和光泽,棉的保暖性和良好的亲肤性等优良性能,还有明显的抑菌功能,被誉为“新世纪的健康舒适纤维”。 以50%以上的大豆纤维与羊绒混纺成高支纱,用于生产春、秋、冬季的薄型绒衫,其效果与纯羊绒一样滑糯、轻盈、柔软,能保留精纺面料的光泽和细腻感,增加滑糯手感,也是生产轻薄柔软型高级西装和大衣的理想面料。 用大豆纤维与真丝交织或与绢丝混纺制成的面料,既能保持丝绸亮泽、飘逸的特点,又能改善其悬垂性,消除产生汗渍及吸湿后贴肤的特点,是制作睡衣、衬衫、晚礼服等高档服装的理想面料。 此外,大豆纤维与亚麻等麻纤维混纺,是制作功能性内衣及夏季服装的理想面料;与棉混纺的高支纱,是制造高档衬衫、高级寝卧具的理想材料;或者加入少量氨纶,手感柔软舒适,用于制作T恤、内衣、沙滩装、休闲服、运动服、时尚女装等,极具休闲风格。 大豆蛋白纤维是由华康集团董事长李官奇先生历经十年研究开发成功,获得世界发明专利金奖,李官奇先生的这项发明为纺织业带来了一场新的革命,在纤维材料发展史上和人造

大豆活性肽的分离纯化和生理活性

大豆活性肽的分离纯化和生理活性 大豆蛋白肽是利用酶法或微生物发酵法将大豆蛋白降解成多肽、短肽和氨基酸的混合物。大豆蛋白肽是一种重要的肽来源。大豆蛋白肽与蛋白质相比较,多肽具有如下特点:在较宽的pH 范围内溶解度高,容易在体内消化和吸收;渗透压低,能够避免高渗透压导致的腹泻;不容易导致过敏。Rerat 等研究表明,短肽的特点是吸收速度快、消耗能量低、载体不易饱和,不同肽之间运转没有竞争和抑制。 随着生物技术与生命科学的不断进步与发展,大豆多肽的功能越来越多的被人们所发掘,而某些活性肽的结构与生理功能也逐渐被人们所认识和了解,这对活性肽的研究起到了推动作用,更有利于人类对大豆活性肽进行研究与开发。 迄今为止,从大豆蛋白中已分离出降血压肽、免疫调节肽、抗氧化肽、降胆固醇肽、抗血栓形成、促进钙磷及微量元素的吸收等多种纯化的大豆蛋白生物活性肽,对这些大豆活性肽的研究情况进行了综述,以期为大豆活性肽的应用提供参考。 1 大豆蛋白活性肽的分离和纯化目前,生产大豆活性肽的方法主要三种有:酶解法、微生物发酵法和化学法,最为先进的是微生物发酵法,它不仅能修饰肽的苦味。还能将原料中的KTI 和BBI 等影响消化和口味的抗营养因子降解。 大豆蛋白肽的活性易受到外界条件的影响,在过强的酸碱、较

高的温度与剧烈震荡等条件下都有可能失活。初始的肽液成分相对较复杂,目标产物的浓度也比较低,一般低于5%,含有大 量杂质,某些杂质的理化性质和目标产物有相似之处,这就提高了大豆肽的分离纯化的难度。传统多肽分离工艺,如吸附沉淀、溶媒、萃取和离子交换法等步骤繁多,耗时,原料消耗量大,耗能高,得到的产品较少。生物技术的发展与人们对大豆肽结构和功能研究的不断深入,大豆肽分离检测技术也获得了突飞猛进的发展,出现了反相高效液相色谱法、凝胶过滤色谱法、毛细管电泳法、膜分离法、各种技术手段的联用等许多高效的分离纯化技术和手段。 1.1反相高效液相色谱(RP—HPLC法 反相高效液相色谱是一种色谱洗脱法,它以非极性的反相介质为固定相,流动相是水溶液或甲醇、乙腈等极性有机溶剂。根据流动相中被分离溶质疏水性的不同,与固定相发生的作用大小的差异,使被分离物质在固定相和流动相中具有不同的分配系数,从而进行分离纯化。 如果大豆多肽是疏水性较弱的分子,它和固定相之间的作用比较小,能够较快流出;反之,如果大豆多肽分子疏水性比较大,流出会比较靠后。反相高效液相色谱法分离纯化大豆活性肽时采用三氟乙酸- 乙氰这种挥发性冲剂作为流动相,其纯化产品不需脱盐,这样就简化了操作步骤,对于分子量在lOOODa以下的小分子大豆肽类物质的分离和纯化尤为重要。 反相高效液相色谱分离和纯化大豆活性肽时多采用增加流动相

脲醛树脂制备

实验报告 课程名称 胶黏剂技术 实验 实验名称脲醛树脂粘合剂的制备姓名班级学号 一、实验目的 (1) 了解缩聚反应的原理。 (2) 熟悉脲醛树脂的制备方法。 (3) 了解脲醛树脂的用途。 二、实验原理(依据) 尿素与甲醛的反应,是工业上常用的缩聚反应之一。该反应常受pH值的影响较大,在中性或弱碱性(pH=7~8)时,可得第一阶段的一或二羟甲基脲。 一羟甲基脲二羟甲基脲一羟甲基脲相互反应,可得直线状的聚亚甲基脲。 二羟甲基脲相互反应,可得环状的聚亚甲基脲。

三、仪器与原料 四口烧瓶、冷凝管、搅拌器、恒温水浴、温度计、玻璃棒、胶头滴管、电子天平、烧杯。 尿素25g、甲醛(37%)68ml、5%氢氧化钠溶液、20%氯化铵溶液、水、pH试纸、测试用木板。 四、实验装置图 五、实验步骤 ①实验装置如图所示。 ②在三口烧瓶中加入37%甲醛68mL,并用5%氢氧化钠溶液调pH为~,再加入25g脲,边搅拌边升温。 ③温度升至90~920C时,保温反应30分钟。此时pH降至6~。 ④用氯化铵溶液调pH值为~,在90~92℃下缩聚30分钟。当与水混合呈乳白色时,停止反应,用5%NaOH溶液中和至pH为~,并冷却至70℃左右。 ⑤将反应液倒入烧杯,水浴冷却。 六、实验记录 (1) 原材料用量记录 甲醛68ml、5%NaOH若干、20%NH 4 Cl若干、脲25g、

七、实验结果与讨论 1.因为反应液中带有粉状物质,且粘性较低,所以实验失败。 2.分析原因:实验过程中我们组未能严格做到试剂加入精确,反应温度控制也不够精确,特别是PH值未能做到严格准确控制,因而导致实验体系反应不完全。 八、对该类产品的应用及改性设想 应用: 可用于耐水性和介电性能要求不高的制品,如插线板、开关、机器手柄、日用品、装饰品、麻将牌等,也可用于部分餐具的制造。 改性: 1.在甲醛一次加入后,在一定的PH值,温度下分三批加入尿素进行阶段反应,从而获得一种胶液性能稳定,粘接的制品质量好,强度高的胶合板、碎木板、刨花板、纤维板等用的粘合剂。 2.用三聚氰氨改性脲醛树脂胶粘剂提高了脲醛树脂粘剂的耐水性,并有效降低了游离甲醛含量。 九、实验图片展示

大豆多肽的加工工艺

大豆多肽的加工工艺 一、工艺流程 脱脂大豆粕T浸泡T磨浆分离T胶体磨T精滤T超滤T预处理T酶水解T 分离一脱苦、脱色一脱盐一杀菌一浓缩一干燥 二、工艺要点说明 超渺茫地生产大豆分离蛋白,用于生产大豆分离蛋白的原料必须是低变性的脱脂大豆粕,要经过弱大碱浸泡,磨浆分离、细磨、精滤和超滤得到一定浓度的大豆分离蛋白溶液,与传统的碱提酸沉法相比,该法获得的大豆分离蛋白溶液,可溶性糖分少,离子含量少,灰分少,是目前较为先进的生产大豆分离蛋白的方法。 1、预处理 因为大豆球蛋白分子具有相当紧密的结构,这种极其致密的结构对酶水解具 有很强的抵抗力,所以在酶解大豆蛋白时必须适当进行预处理,使其中的蛋白质复杂结构被打开而形成一条直链,那些原来在分子内部包藏而不易与酶发生作用的部位,由于分子结构的松散而暴露出来,从而使蛋白水解酶的作用点大大增加,加快了蛋白质的酶解,试验证明:在90°C下加热10min,既可防止大豆蛋白溶液粘度升高又可大大提高其水解度。 2、蛋白酶水解 为了确定最佳的酶解反应条件,我们固定反应时的pH值为7.5,以酶添加量、反应温度、反应时间及底物浓度为试验因素,各取三水平,以水解度DH为指标,选用L9 (34)正交表安排试验。实验证明:酶用量为E/S=4%,水解反应温度为45C,作用时间为12h和底物浓度为4%。 3、分离 该工序是通过调节蛋白酶解液的pH值为4.3,使未水解的蛋白质沉淀而去 除,而分离得到纯净的酸性水解物溶液,试验表明在最佳反应条件下,水解率可咼达95%o 4、脱苦、脱色 经分离后的大豆蛋白酶解物是低分子肽类和游离氨基酸混合物,并且其中的 带芳香侧链或长链烷基侧链的疏水性氨基酸的肽类是苦味肽,为了改善大豆多肽的口感和滋气味,必须除去苦味肽和游离氨基酸。本工艺采用活性碳吸附法来进行脱苦、脱色,最佳反应条件是碳液=1: 10,T=40C,Ph=3.0经处理后,口味得到明显改善,色泽透明澄清,达到令人满意的效果。 5、脱盐

大豆蛋白改性及活性肽

大豆蛋白改性修饰技术及活性肽简介 摘要:为了加强大豆蛋白的功能性质和营养,从而扩大大豆蛋白在食品中的应用,本文介绍了蛋白改性修饰技术及将蛋白转化为活性肽两种加工方法。 关键词:大豆蛋白;改性修饰;活性肽 Abstract:In order to strengthen the functional properties of soya protein and nutrients,thereby expanding the application of soybean protein in food. This paper introduces the modified protein modification technology and active peptide protein can be converted to two kinds of processing methods. Key words: soy protein; modification; polypeptides 蛋白质是人类生命活动不可缺少的营养物质,正常情况下每人每天需要蛋白质60-80克。但是中国居民所摄取的蛋白还达不到这个水平,并且摄取蛋白质主要还是以植物性蛋白质为主。 1、植物蛋白 蛋白质是构成身体的物质基础,是与生命及各种形式的生命活动紧密联系的物质。所占人体的20%,是构成人体内各种细胞的原料、构成人体内各种重要物质、调节人体代谢、在必要,即完全饥饿的时,为人体提供一部分能量,人体内若缺乏蛋白质,轻者会造成亚健康,重则会导致死亡。 蛋白质按来源,可分为动物蛋白、植物蛋白,植物蛋白主要来源于植物,即米面、豆类。其营养价值与动物蛋白相似,但与动物蛋白相比,植物蛋白在人体内更容易消化、吸收;且不含有对人体有害的胆固醇及脂肪,还可提供较多的、动物蛋白不含的纤维素,维生素E等。

采用发酵法工业化生产大豆蛋白活性肽

采用发酵法工业化生产大豆蛋白活性肽 张雁平 (黑龙江省国际工程咨询公司,哈尔滨 150008) 摘 要:本文结合生产实际,对采用发酵法工业化生产大豆蛋白活性肽产品准备工作技术方案及配套条件等方面进行详细介 绍,旨在为工业化生产起到参考和指导作用。 关键词:大豆蛋白活性肽;发酵法;工业化生产 中图分类号:TS 21412 文献标识码:B 文章编号:1009-2765(2003)03-0026-02 0 前言 采用发酵法生产大豆蛋白活性肽,通过微生物作用对某些苦味肽基团进行修饰和重组,使小肽之间、小肽与氨基酸之间发生移接、重排。制得的大豆蛋白活性肽具有溶解性好,无苦味和异味,口感好,溶解粘度小,受热不凝固等优点。克服了酶解法产品苦味大和口感差等缺点。产品可广泛用于食品和医药工业,采用该方法获得的大豆蛋白混合肽含量可达60%以上。 1 工业化生产的准备工作通过研究和小试、中试,初步确定了大豆肽的工业化生产方法、操作要点、技术参数等,从研究到生产确定先进成熟的工艺,稳定可靠的装备,合理的原料动力消耗,尤其需要取得定量的各种相关数据,合理配置各项工程内容,完成从科研到生产的顺利过渡。 工业化生产前通过进行工艺研究,技术参数的反复摸索,生产设备多种组合方案等扩大试验后,已经基本确定了成熟的生产路线,通过生产性试验证明了其合理性。 2 工业化生产技术方案211 生产工艺21111 粉碎、配料:以豆粕为原料,粉碎细度为100μm 的颗粒粉。经计量后,加入清水与之混合配制混合液,豆粕粉浓度为10%~15%,另外加入少量其它微量元素。在加入水、料的同时不断搅拌,使混合液均匀。 21112 灭菌:配制好的混合液升温杀灭杂菌,灭菌温度121℃,压力011MPa ,时间40~60min 。 21113 冷却:灭菌后的混合液降温至25~28℃,创造适合菌种作用的条件。 21114 接种:冷却后按混合液总量的10%接入菌种并搅拌使其均匀。 21115 发酵:接入菌种后的混合液在发酵罐内进行发酵,发酵温度控制在25~28℃,发酵时间72h ,发酵过程中按一定比例向发酵液中通入压缩空气,以提供发酵过程中需要的氧气,并不断搅拌,使物料液发酵充分和均匀。发酵过程中发酵液的PH 值应保持在615~7的范围内,出现异常时,用HC L 及Ca (OH )2进行调节。 21116 灭活:发酵周期结束后,发酵液升温进行灭活,以杀灭发酵菌,灭活温度121℃,压力011MPa ,时间15min 。 21117 分离:采用离心方式对发酵液中浆、渣进行分离,清液用于生产大豆肽,分离出的纤维可加工纤维食品或纤维饲料。 21118 过滤:分离出的清液中还含有少量大豆纤维,采用板框过滤机滤出剩余纤维,清液浓度约6%~9%。 21119 真空浓缩:滤液泵入三效真空浓缩罐进行低温真空浓缩,干燥掉料液中的部分水分以符合下步喷雾干燥要求,浓缩后的浓度在40%~50%,浓缩温度约85℃,低温干燥的目的是不改变蛋白质性质及不破坏肽的活性。 211110 喷雾干燥:浓缩液经喷雾干燥塔采用低温气流喷雾干燥呈颗粒状,其水分含量≤8%。 211111 筛分:将粉末和大颗粒团分离开,大颗粒团要进行粉碎,经筛分后合格品进行定量包装。 211112 成品:产品进行定量包装后经检验合格即可入库储存。包装材料可用复合聚乙烯等。 212 工艺流程(见附图)213 设备选配 按其工艺要求,可选用粮油加工、发酵工业、乳品行业、轻工业通用设备进行组合,满足工艺生产需要。工艺生产过程中对设备性能无特殊要求,按食品加工要求,设备及储罐宜采用不锈钢材质,以符合食品卫生规定,选用国产设备或引进设备均可。 21311 活性肽生产设备:调浆罐,一级种子罐,二级种子罐,三级种子罐,发酵罐,螺杆浓浆泵,卧式螺旋卸料沉降离心机,高速立式分离机,离心泵,卧螺后储罐,调整立式分离后储罐,三效降膜蒸发器,保温储罐,立式压力喷雾干燥机组,离心泵,中间贮罐,自动包装 ? 62?加工技术张雁平:采用发酵法工业化生产大豆蛋白活性肽2003年 大豆通报 第3期

脲醛树脂的合成(2).docx

目录 1目的 ................................................................................... .. (1) 2 综述................................................................................... .. (2) 2.1 脲醛树脂概述................................................................................... (2) 2.1.1脲醛树脂的含义................................................................................... (2) 2.1.2脲醛树脂的概述................................................................................... (2) 2.1.3脲醛树脂的特点 (3) 2.1.4脲醛树脂的组成 (3) 2.1.5脲醛树脂的应用及用途 (5) 2.2 脲醛树脂的改性................................................................................... (5)

2.3 脲醛树脂的合成方法................................................................................... (7) 2.3.1脲醛树脂的生产工艺流程 (7) 2.3.2 脲醛树脂的原料配比 (8) 2.3.3 脲醛树脂的生产工艺 (8) 2.3.4 脲醛树脂的质量指标 (9) 2.3.5 工艺特点 (9) 3环保型脲醛树脂的综合性研究 (10) 3.1 实验部分................................................................................... (10) 3.1.1试剂与仪器................................................................................... (10) 3.1.2脲醛树脂的合成机理及改性机理 (10) 3.1.3合成工艺................................................................................... (10)

大豆豆粕及其多肽制备工艺

大豆豆粕及其多肽制备工艺 大豆在提取豆油后可得到豆粕,豆粕是生产牲畜和家禽饲料的主要原料,或用于制作食品、化妆品、抗菌素。豆粕的价格变化很大,相关的产业链长,影响的范围也很广。美国和日本都在大豆豆粕的理论研究上有所突破。美国为了研究水解蛋白,成立了专门的研究机构和使用蛋白肽的工厂;日本在水解产物的去苦和水解工艺上有所进展。20世纪60年代,我国对大豆豆粕进行了研究,大豆豆粕作为新兴产业具有非常大的市场潜力。大豆豆粕很有可能成为我国绿色饲料的添加剂,从而代替饲料中的抗生素药物[1] 。从大豆豆粕中提取的大豆多肽具有广泛的用途。 1大豆多肽的应用 1.1 营养疗效食品 大豆多肽在食用时易于吸收,适合于病人在大病初愈之后服用,有利于吸收和增强体质。为了符合老人的饮食习惯和心理,用大豆多肽作基础再加上全脂奶粉和蜂蜜,就能做出适合老年人饮食用的奶粉[2-3] 。 1.2普通食品 大豆多肽具有良好的吸湿和保湿功能,水溶性高,可改善豆类制品口感和风味,用延长糕点保质期,在酸性环境中具有发泡效果,可生产酸性饮料等[4-5] 1.3 运动员食品

恰当的活动影响和充沛的卵白质增补可增加运动员的肌肉量,从而可以提高运动员体内的能量。在此阶段里,供应消化吸收性优越的多肽作肌肉卵白质的原料会对运动员有一定的帮助。大豆多肽易于在活动中被吸收,延缓心理的压力,增强活力,有利于运动员补充体力[6] 。 2发酵法制备大豆豆粕的特性 2.1理化特性 2.1.1溶解性高。大豆豆粕和一般的大豆蛋白相比,具有良好的溶解性,它在分离的时候不会减弱蛋白质的营养价值,正是这个原因使其在食品和饮料的制作中得到了广泛的应用。大豆蛋白一旦加热就会凝胶,易改变特性,影响蛋白的品质,相比之下大豆豆粕就不受其影响[7-8] 。例如大豆豆粕在加热的条件下应用在食品和饮料工业上时,作为蛋白质补充剂的时候比较稳定,防止肌蛋白硬化和保持肉制品鲜嫩可口的口感。 2.1.2渗透压低。大豆豆粕比氨基酸的渗透压低很多,可促进人体内营养素的吸收。 2.1.3黏度性低。大豆蛋白的含量超过10%时,其溶液的黏度随浓度的增大而增大,但是30%的大豆豆粕溶液黏度却和10% 的大豆蛋白溶液的黏度一样,大豆蛋白经过酶水解之后[2] ,蛋白质的黏度由于蛋白质结构的破坏而降低。这个特性适于制作高蛋白流体食物时使用 [9] 。 2.1.4吸水性高。当蛋白质被水解之后,大豆豆粕的吸水性 比大豆分离出来的蛋白明显高。pH值对大豆豆粕的吸水性不会

生物活性肽的生理功能

生物活性肽的生理功能 1 抗菌活性 抗菌活性肽常见于从动物、植物、微生物体内分离或免疫昆虫获得 ,多数是50 个氨基酸以下的碱性或正离子肽 ,富含赖氨酸和精氨酸。具有亲水性和亲脂性 ,亲水性使其溶于体液 ,亲脂性使其与细菌细胞膜结合 ,使敏感细菌的细胞膜下形成小孔 ,致使细胞泄漏 ,导致生长受抑直至死亡。抗菌肽对部分细菌、真菌、原虫、病毒及癌细胞等均具有强大的杀伤作用。临床试验也表明,抗菌肽能够增强机体抵抗病原微生物的能力,抗菌肽在体内还不容易产生耐药性 ,因此有着广泛的应用前景。 2 免疫活性 许多来源于动植物体内的生物活性肽具有免疫调节作用, Jolles 等从酪蛋白的降解物中分离出的免疫活性肽 ,能激活巨噬细胞的吞噬功能。这些免疫活性肽可与肠粘膜结合淋巴组织相互作用 ,而且也可以自由通过肠壁而直接与外周淋巴细胞发生作用。胸腺肽作为一种免疫因子已应用于医学临床、在抗感染、免疫缺乏症的治疗上 ,获得可喜成果。可提供免疫活性肽的食物源有大豆蛋白。潘翠玲等发现, 大豆蛋白和酪蛋白酶解物均能不同程度地刺激经PHA 诱导的10 日龄仔猪外周血淋巴细胞的转化, 且大豆蛋白酶解物的促淋巴细胞转化作用最强。除大豆肽外, 乳中蛋白质降解产生的肽在机体的免疫调节中也发挥着重要作用。 免疫活性肽主要通过对淋巴细胞功能的调节、对抗体生成的影响、对单核巨噬细胞功能的影响对细胞因子分泌的调节, 以及通过影响淋巴细胞钙离子传导、第二信使cAMP和cGMP的活性及巨噬细胞一氧化氮、诱导型一氧化氮合酶的分泌等方式调节机体的免疫功能。免疫活性肽能够刺激机体淋巴细胞的增殖,增强巨噬细胞的吞噬功能,提高机体抵御外界病原体感染的能力,降低机体发病率。 从人乳和牛乳的酪蛋白中已检测到具有免疫刺激活性的肽片段,这些肽具有刺激巨噬细胞吞噬能力的作用。另外,乳蛋白、大豆蛋白和大米蛋白等通过适当酶解处理也可产生具有免疫活性的肽类物质。 3 抗氧化作用 抗氧化活性肽添加于肉制品中可预防氧化型脂肪酸败 ,作为防腐剂在食品和动物饲料中有广阔的应用前景。有研究发现, 大豆蛋白酶解物中也存在具有抗氧化活性肽。Chen等从大豆酶解物中分离得到多种抗氧化活性肽, 具有抗亚油酸

脲醛树脂胶黏剂的制备实验报告

南京工程学院 实验报告课程名称学生创新实验周 实验名称脲醛树脂胶黏剂的制备 实验学生班级 实验学生姓名 实验学生学号 同组学生姓名 实验指导教师 实验时间—2012.03.2 实验地点实验楼D407

一、实验目的 高分子科学既是一门理论科学,又是一门应用科学。在理论的指导下具有很强的应用性,涉及到塑料、橡胶、纤维、涂料和胶黏剂等材料应用的基础知识。综合实验是培养高分子材料专业学生动手和实践能力的一门课程,是专业基础课的理论与实际相结合的课程。通过实验,是学生了解和掌握高分子合成的方法、高分子结构与性能关系的基本原理,从而在感性上进一步加深理解高分子科学的原理,掌握实验知识和技能,培养工艺资料的使用能力,为以后的学习和从事高分子学科内的工作打下基础。要求学生通过实验初步掌握高分子合成工艺设计方法。 二、文献综述 摘要:本文综述了脲醛树脂胶黏剂的合成机理及近年来脲醛树脂的研究进展。 关键词:脲醛树脂;胶黏剂;甲醛 1.引言:脲醛树脂是一种开发应用较早的木用热固性高分子胶黏剂,由于其生产成本低、色泽浅、粘接强度高、固化速度快、使用方便,以及较好的耐热性、耐腐蚀性和绝缘性等优点而广泛应用于木材加工工业中,脲醛树脂(UF)胶粘剂可广泛用于各种人造板的制造,其用量占木材加工业胶粘剂总耗量的60%左右,是胶粘剂中用量最大的品种。[1]与其他胶黏剂相比,脲醛树脂也存在游离甲醛含量偏高,机械强度低等缺点。探索脲醛树脂胶黏剂新的合成和改性工艺,以扩大其使用范围,一直是研究的热点。[2] 2发展现状: 2.1脲醛树脂胶黏剂的优缺点 脲醛(ureaformaldehyde,UF)树脂占人造板工业中所用合成树脂胶总量的65%~75%,其原料丰富、价格低廉,对木质纤维素有优良的粘附力,具有优良的内聚强度,有一定的耐水胶合强度,处理和应用容易。但是,脲醛树脂存在耐水性差、储存期短、易水解、不稳定,尤其是其制造的人造板甲醛释放量大等缺点。 2.2脲醛树脂的合成工艺 由于尿素和甲醛都是富于反应性的物质,尿素与甲醛的反应十分复杂,脲醛树脂合成工艺以及合成过程中的许多因素如原料组分的摩尔比、反应进行中的pH值、反应温度、反应时间等都会直接影响产品的性能和质量[11]。目前合成脲醛树脂的工艺主要有弱碱-弱酸-弱碱和强酸-弱酸-弱碱中低温两种工艺。我国工业生产中大多数采用的是传统的弱碱-弱酸-弱碱工艺,生产的脲醛树脂稳定性较好,胶接强度好,但游离甲醛含量难以控制,且能耗高[12]。崔昆明等[15]指出如果采用强酸低温的强酸-弱酸-弱碱工艺合成的脲醛树脂的主要特征是游离甲醛含量低,能耗低,但同时羟甲基含量降低,树脂的黏合性能下降,目前在工业上还没有得到广泛应用。除了上述两种工艺外,还有一直在弱酸条件下进行加成和缩合反应的。Zhang等[17]在研究反应液pH值对脲醛树脂性质和性能的影响时,采用pH值分别为1.0、4.8、8.0等三种合成工艺,发现在不同工艺条件下,树脂的亚甲基桥键、亚甲基醚桥键Uron环等基团含量存在较大差异,并对相对分子质量的分布产生影响。结果显示弱酸合成工艺是平衡脲醛树脂甲醛释放和胶合强度的最佳选择。 2.3游离甲醛的危害性 甲醛是一种挥发性有机化合物,人长期接触或者生活在有甲醛存在的环境中可引起咽炎、鼻窦炎、嗓子发干、恶心等症状[14]。而脲醛树脂胶中含有游离甲醛对人体有致癌性,使人易患白血病、哮喘病、咽炎等[9]。在室内环境主要污染物中甲醛排在首位,2005年甲醛已经被世界卫生组织确认为人体可致癌物。装修用人造板中游离甲醛从人造板中挥发出来的速度较慢,使室内空气甲醛含量长期超标。为此我国于2002年1月发布的强制标准GB18580-2001《室内装饰装修材料人造板及其制品中甲醛释放量》,强制人造板生产企业必须使用低甲醛释放量的脲醛树脂胶黏剂[10]。自2002年7月1日起执行,这就要实现脲醛现在脲醛树脂中游离甲醛含量一般依据欧洲标准判定,利用钻空法测量板材中的游离甲醛含量,椐此判定脲醛中游离甲醛含量,分为E1级(<10mg/100g)、E2级(<30mg/100g)、E3级(<60mg/100g),其中E1级和E2级属于环保型,而目前我国产品多为E2、E3级质量急待提高。 2.4降低游离甲醛含量的方法 2.4.1降低F/U物质的量比 降低人造板甲醛释放量的最有效手段就是降低甲醛与尿素的摩尔比(formaldhyde/urea),简称F/U),研究表明,随着F/U从1.60到1.05,板材的甲醛释放量可从90mg(以100g计)降到10mg以下。 Pizzi[19]认为,甲醛与尿素的摩尔比降至1.05∶1时,由于树脂中游离尿素含量过高,人造板的力学性能急剧下降,另外,其耐老化和耐水性能均有降低。但Mansouri[18]等报道了根据尿素与甲醛加成-缩聚反应机理,研究了在低甲醛脲醛树脂合成过程中原料组分的摩尔比、催化剂的用量、反应温度和反应时间等条件对产品的粘性、脆性、耐水性等性能的影响,从而开发合成了一种新型的脲醛树脂胶。该产品的试验结果表明,F/U为1、

相关文档
最新文档