概率论大题练习题
概率论与数理统计练习题(含答案)
第一章 随机事件及其概率练习: 1. 判断正误(1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。
(B )(2)事件的发生与否取决于它所包含的全部样本点是否同时出现。
(B )(3)事件的对立与互不相容是等价的。
(B ) (4)若()0,P A = 则A =∅。
(B )(5)()0.4,()0.5,()0.2P A P B P AB ===若则。
(B ) (6)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (7)考察有两个孩子的家庭孩子的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),则P{}1=3两个女孩。
(B )(8)若P(A)P(B)≤,则⊂A B 。
(B ) (9)n 个事件若满足,,()()()i j i j i j P A A P A P A ∀=,则n 个事件相互独立。
(B )(10)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。
(A ) 2. 选择题(1)设A, B 两事件满足P(AB)=0,则©A. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C)A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB) (3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D)A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)若A, B 为两随机事件,且B A ⊂,则下列式子正确的是(A) A. P(A ∪B)=P(A) B. P(AB)=P(A) C. P(B|A)=P(B) D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,则()P AB 等于(B)A. ()a c c + B . 1a c +-C.a b c +- D. (1)b c -(6)假设事件A 和B 满足P(B|A)=1, 则(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂ (7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 则(D)A. 事件A, B 互不相容B. 事件A 和B 互相对立C. 事件A, B 互不独立 D . 事件A, B 互相独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率分别是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。
北方工大概率论期末复习题(大题部分整理)
27.某人下午5:00下班,他所积累的资料表明:
到家时间
5:35~
5:39
5:40~
5:44
5:45~
5:49
5:50~
5:54
迟于
5:54
乘地铁到
家的概率
0.10
0.25
0.45
0.15
0.05
乘汽车到
家的概率
0.30
0.35
0.20
0.10
0.05
某日他抛一枚硬币决定乘地铁还是乘汽车,结果他是5:47到家的。试求他乘地铁 Nhomakorabea家的概率。
23.设有甲、乙两袋,甲袋中装有 只白球、 只红球;乙袋中装有 只白球、 只红球。今从甲袋中任意取一只球放入乙袋中,再从乙袋中任意取一只球。问取到白球的概率是多少?
解:
25.已知男人中有5%是色盲患者,女人中有0.25%是色盲患者,今从男女人数相等的人群中随机挑选一人,恰好是色盲患者,问此人是男性的概率是多少?
解:
5:45 ~ 5:49回家记为A ,且知:
第二章:
解:
解:
第三章:
例3.1.2设二维随机变量的概率密度
解:
第四章:
第七章:
解:
解:
解:
第八章:
解:
解:
概率论练习题(同名15776)
1. 袋中有8红 3白球,从中任取2球,至少有一白球概率为_______2. A.B 为独立事件,且P(AUB )=0.6, P(A)=0.4,则P(B)=_______________3. 若X~P(λ),则P(X)=____________4. 若X~N(2,σμ),则密度f(X)=_____________5.已知事件A 、B 互不相容,且P(AUB)=0.8,P(A)=0.5,则P(B)= ,P(A-B)= .6. 设()0.4,()0.3,()0.6P A P B P A B ===U ,则()P AB = .7. 设随机事件A, B 及其和事件AUB 的概率分别是0.4, 0.3, 0.6, 则)(B A P = ______.8.假设P (A )=0.4,P (A ∪B )=0.7,若A ,B 互不相容,则P (B )= ,若A ,B 相互独立,则P (B )= .9.若事件A 和B 相互独立,且P(A)=0.5,P(B)=0.6,则P(AUB)= ________.10.设事件A 、B 满足P(A)=0.3,P(B)=0.8,P(AB)=0.2,则P(AUB)=________,)(B A P =________.12.设A ,B 两事件满足P (A )=0.8, P (B )=0.6,P (B|A )=0.5,则P (A ∪B )= .13.一射击运动员独立的向同一目标射击n 次,设每次命中的概率为p,则他恰好命中k 次的概率为 .14. 相互独立的,且有相同分布的n 个变量i X 的最小值min F (z)=________________15.设随机变量X 服从参数为2的泊松分布,则E (X ²)=________.16.若随机变量X 服从均值为2,方差为2σ的正态分布,且{24}0.3P X <<=,则{0}P X <= .17.设二维随机变量),(ηξ~N(0,1,1,4,0.5),则ξ~ 分布,D()ηξ+= .18.设()3D X =,31Y X =+,则XY ρ= . 19.设二维随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤=其它,010,20,),(y x cxy y x f , 则=c ____ ,=≤)1(X P ______.20.若随机变量ξ服从U(0,5),则x 2+ξx+1=0有实根的概率为______.21. 某射手每次射击的命中率为p ,现连续射击n 次,则恰好射中k 次的概率为________.23.设随机变量ξ与η相互独立, D(ξ) = 2, D(η) = 4, D(2ξ-η) = _______.24. 已知随机变量X ~N (-3, 1), Y ~N (2, 1 ), 且X 与Y 相互独立, Z = X -2Y, 则Z 的数学期望EZ= , 且Z ~ .25. 设X 和Y 是两个相互独立的随机变量, 且X ~N (0, 1), Y 在[-1, 1]上服从均匀分布, 则),cov(Y X = _______.26.某射手在三次射击中至少命中一次的概率为0.875,则这射手在一次射击中命中的概率为________.27.切比雪夫不等式表示为28. 棣美弗---拉普拉斯定理表明当n →∞时,n X ~B(n, p), 则_____________29.数理统计中的常用分布有三个,分别为___________ _____________ ____________1.设P(A)=0.8, P(B)=0.7, P(B A )=0.8, 则________A. A,B 独立B. A,B 互斥C. A,B 互逆D. A B ⊃2.设X~N(1,1),概率密度为f(x), 则______________A.5.0)0()0(=≥=≤X P X PB.),(),()(+∞-∞∈-=x x f x fC.5.0)1()1(=≥=≤X P X PD. ),(),(1)(+∞-∞∈--=x x F x F3.事件A ,B 为两个任意事件,则( )成立.a. (AUB )-B=A , b. (AUB )-B ⊂A ,c. (A-B)UB=A , d. (A-B)UB ⊂A .4.对于任意二事件,A B ,同时出现的概率()0P AB =,则( )a.,A B 不相容(相斥)b.AB 是不可能事件c.AB 未必是不可能事件d.()0,()0P A P B ==或5.每次试验的成功率为)10(<<p p ,则在3次重复试验中至少失败一次概率为( ).a. 2)1(p -b.21p -c.)1(3p -d.以上都不对6.已知事件A ,B 满足)()(B A P AB P =,且4.0)(=A P ,则=)(B P ( ).a.0.4,b.0.5,c.0.6,d.0.77.设随机变量X 的概率密度为||)(x cex f -=,则c =( ). a.-21 b.0 c.21 d.18.( )不是某个随机变量的概率密度函数.a.⎩⎨⎧≤>=-0x00 x 2)(2x e x f , b.⎩⎨⎧<<=其它0101)(x x f c.⎩⎨⎧<<=其它 01x 0x )(x f ,d.⎪⎩⎪⎨⎧<<=其它020sin )(πx x x f 9.设随机变量ξ,η有:E ξη=E ξE η,则( ).a. D (ξη)=D ξD η, b. D (ξ+η)=D ξ+D η,c. ξ与η独立, d. ξ与η不独立.10. 设二维随机变量(,)X Y 服从G 上的均匀分布,G 的区域由曲线2x y =与x y =所围,则(,)X Y 的联合概率密度函数为( ). a.⎩⎨⎧∈=他其,0),(,6),(G y x y x f ; b.⎩⎨⎧∈=他其,0),(,6/1),(G y x y x f ; c.⎩⎨⎧∈=他其,0),(,2),(G y x y x f ; d.⎩⎨⎧∈=他其,0),(,2/1),(G y x y x f11.对于任意两个随机变量,X Y ,若()E XY EX EY =⋅,则( )a.()D XY DX DY =⋅b.()D X Y DX DY +=+c.,X Y 独立d.,X Y 不独立12.设随机变量,X Y 相互独立,)1,0(~N X ,)1,1(~N Y ,则( ).a.2/1)0(=≤+Y X P ;b.2/1)1(=≤+Y X P ;c.2/1)0(=≤-Y X P ;d.2/1)1(=≤-Y X P .13.设ξ的分布列为⎪⎪⎭⎫ ⎝⎛-949231201,则P(ξ<2|ξ≠0)= . a. 31 b. 73 c. 95 d. 1 14.设二维随机变量(,)X Y 服从G :122≤+y x 上的均匀分布,则(,)X Y 的联合概率密度函数为 .a. ⎩⎨⎧∈=他其,0),(,),(G y x y x f πb. ⎩⎨⎧∈=他其,0),(,/1),(G y x y x f π c.⎩⎨⎧∈=他其,0),(,2),(G y x y x f d. ⎩⎨⎧∈=他其,0),(,2/1),(G y x y x f 15.设10个电子管的寿命i X (10~1=i )独立同分布,且A X D i =)((10~1=i ),则10个电子管的平均寿命Y 的方差=)(Y D ( ).(a)A ; (b)A 1.0; (c)A 2.0; (d)A 10.16.设随机变量()2~,N ξμσ,则当σ增大时,概率{}P ξμσ-<=( ).. a .保持不变 b .单调减少 c .单调增加 d . 增减不定17.设X, Y 是相互独立的两个随机变量, 其分布函数分别为)(),(y F x F Y X ,则Z = min(X, Y)的分布函数是( ).a .)(z F Z = )(z F Xb .)(z F Z = )(z F Yc .)(z F Z = min{)(),(z F z F Y X }d .)(z F Z = 1-[1-)(z F X ][1-)(z F Y ]21.设随机变量X 和Y 独立同分布, 记U = X -Y, V = X + Y, 则U 和V 必然( ).a .不独立b . 独立c .相关系数不为零d .相关系数为零.22.设X 与Y 的相关系数0=ρ,则( ).a .X 与Y 相互独立b .X 与Y 不一定相关c .X 与Y 必不相关d .X 与Y 必相关23.在假设检验中,0H 为原假设,则所谓犯第二类错误指的是( ).a.0H 为真时,接受0H b.0H 不真时,接受0Hc.0H 不真时,拒绝0H d.0H 为真时,拒绝0H24.设n X X X ......,21是总体X~N(0,1)的样本, X ,S 分别为样本均值和样本标准差,则有________ A.X n ~ N(0,1) B. X ~N(0,1) C.)(~212n Xn i i χ∑= D.)1(~-n t S X四、计算题1.一袋中有4白,2红球,从袋取球两次,每次一只,(1)放回(2)不放回,就这两种情况求:1)取到两只都是白球的概率2)取到两只中至少有一白球的概率2.变量x 在[]π,0上服从均匀分布,求:x Y sin =的概率密度3.变量X ~()λe ,求;E ()x ,()x D4. 变量()k X 2~χ,求: ()()x D x E , 5.变量()y x ,的联合概率密度为()()⎩⎨⎧>>=+-其它,,00y 0,2,2x e y x f y x 6.变量()1,0~N X 求:函数Y=X 2的概率密度7.从总体X 中抽取样本x 1,x 2,x 3证明:1)三个统计量6323211x x x ++=μ),4423212x x x ++=μ),3333213x x x ++=μ) 都是总体均值的无偏估计量2)问哪个估计量更有效8. 变量()y x ,在R :x y x ≤≤≤≤0,10上服从均匀分布求:1)()()()()y D x D y E x E ,,,2)()y x Cov , ()y x R ,9.总体(),~λP X ()未知参数0>λ取样本值x 1x 2........x n 求:λ的最大似然估计值10.在所有两位数10-99中任取一数,求这数能被2或3整除的概率11.变量()y x ,的联合概率密度为()()23,0,0,0,x y Ae x y f x y -+⎧>>⎪=⎨⎪⎩其它 求:1)联合分布函数?2)在R :0,0,236x y x y >>+<内概率12.变量()2~2χX 其概率密度为()⎪⎩⎪⎨⎧≤>=-0,00,212x x e f x x x 求: ()()x D x E ,13、设随机变量ξ的概率密度函数为⎪⎩⎪⎨⎧≤≤-<≤=.,0,21,2,10,)(其它x x x x x f 试求ξ的分布函数,数学期望E ξ和方差D ξ. 14、设随机变量ξ的概率密度函数为+∞<<∞-=-x Ae x f x ,)(.求:(1)常数A ,(2) ξ的分布函数,(3) ξ落在区间]1,1[-内的概率15、若随机变量ξ服从拉普拉斯分布,其密度函数为,,21)(||∞<<∞-=--x e x p x λμλ0>λ.试求ξE ,ξD .16、设二维随机变数),(ηξ有密度函数)25)(16(),(222y x A y x p ++=π, 求常数A 及),(ηξ的分布函数。
概率论与数理统计:概率论练习题1及答案
5 / 8概率论练习题1(本大题共 6 小题,每小题 3 分,共 18 分)1、若当事件A ,B 同时发生时,事件C 必发生,则下列选项正确的是( ) A .()()P C P AB =; B .()()P C P AB ≤; C .()()P C P AB ≥; D .以上答案都不对.2、设随机变量()~X E λ,则下列选项正确的是( )A .X 的密度函数为(),00,0x e x f x x λ-⎧>=⎨≤⎩;B .X 的密度函数为(),00,0x e x f x x λλ-⎧>=⎨≤⎩;C .X 的分布函数为(),00,0x e x F x x λλ-⎧>=⎨≤⎩;D .X 的分布函数为()1,00,0x e x F x x λλ-⎧->=⎨≤⎩.3、设相互独立的连续型随机变量1X ,2X 的概率密度函数分别()1f x ,()2f x ,分布函数分别为()1F x ,()2F x ,则下列选项正确的是( ) A .()()12f x f x +必为某一随机变量的概率密度函数; B .()()12f x f x ⋅必为某一随机变量的概率密度函数; C .()()12F x F x +必为某一随机变量的分布函数; D .()()12F x F x ⋅必为某一随机变量的分布函数.4、设()~,X B n p ,()2~,Y N μσ,则下列选项一定正确的是( ) A .()E X Y np μ+=+; B .()E XY np μ=⋅; C .()()21D X Y np p σ+=-+; D .()()21D XY np p σ=-⋅.5、设随机变量X 与Y 相互独立,且都服从()1,0.2B ,则下列选项正确的是( )6 / 8A .()1P X Y ==;B .()1P X Y ≤=;C .()1P X Y ≥=;D .以上答案都不对. 6、设12,,,,n X X X 为独立的随机变量序列,且都服从参数为()0λλ>的指数分布,当n 充分大时,下列选项正确的是( )A .21nii Xn nλλ=-∑近似服从()0,1N ; Bni X nλ-∑近似服从()0,1N ;C .21ni i X λλ=-∑近似服从()0,1N ; D .1ni i X nnλ=-∑近似服从()0,1N .二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)1、设事件A ,B ,C 相互独立,且()()()P A P B P C ==,()1927P A B C =,则()P A =.2、若()14P A =,()13P B A =,()12P A B =,则()P A B =.3、设()2~10,X N σ,且()10200.3P X <<=,则()010P X <<=.4、设随机变量X 与Y 相互独立,且()~100,0.3X B ,()~4Y P ,则()D X Y -=.5、设平面区域(){},01D x y x y =≤≤≤,二维随机变量(),X Y 在区域D 上服从均匀分布,则(),X Y 的联合分布密度函数为.6、若随机变量X 的分布律为()()2,0,1,2,k P X k ae k -+===,则常数a =.三、解答题(本大题共 6 小题,共 64 分)5 / 81、设盒一装有1支红色笔和2支黑色笔,盒二装有2支红色笔和1支黑色笔,盒三装有3支红色笔和3支黑色笔.现掷一枚匀质骰子,若掷出1点,则从盒一中任取一支笔,若掷出6点,则从盒三中任取一支笔,否则均从盒二中任取一支笔.求取出黑色笔的概率.(10分)2、一盒装有6只灯管,其中有2只次品,4只合格品,随机地抽取一只测试,测试后不放回,直到2只次品都被找出,求所需测试次数X 的概率分布及均值.(10分)3、设连续型随机变量X 的分布密度函数为(),13;0,ax b x f x +<<⎧=⎨⎩其他.,且{}{}23212P X P X <<=-<<,求常数a 和b 的值.(10分)6 / 84、设某工程队完成某项工程所需时间X (天)服从()100,25N .工程队若在100天内完工,可获奖金10万元;若在100~115天内完工,可获奖金3万元;若超过115天完工,则罚款5万元.求该工程队在完成工程时所获奖金的均值(要求用标准正态分布的分布函数值表示).(10分)5、设二维随机变量(),X Y 的概率密度函数为()8,01;,0,xy x y f x y <<<⎧=⎨⎩其他,求关于X 和Y 的边缘分布密度函数()X f x 和()Y f y ,并判别X 与Y 是否相互独立.(10分)5 / 86、设()~,X U a b ,且()0E X =,()13D X =.试确定X 的概率密度函数(6分)7、设随机变量X 服从标准正态分布,求2Y X =的概率密度函数()Y f y .(8分)6 / 8概率论练习题1参考答案一、单项选择题(本大题 6 小题,每小题 3 分,共 18 分) 1、C ; 2、B ; 3、D ; 4、A ; 5、D ; 6、B . 二、填空题(本大题 6 小题,每小题 3 分,共 18 分)1、13; 2、13; 3、0.3; 4、25; 5、()()2,,;,0,x y D f x y ∈⎧⎪=⎨⎪⎩其他.; 6、23e e ---.三、解答题(本大题 6 小题,共 64 分)1、解 设A 表示“取出黑色笔”,iB 表示“从盒i 中取笔”,1,2,3i =.……..2分则()()1316P B P B ==,()246P B =,()123P A B =,()213P A B =,()312P A B =,…………7分故由全概率公式,有()()()31124111563636212iii P A P B P A B ===⋅+⋅+⋅=∑.……………….10分2、解 由题意可知,X 的所有可能取值为2,3,4,5,6,…………….…….2 且{}1215P X ==,{}2315P X ==,{}145P X ==, {}4515P X ==,{}163P X ==,……..7分 所以 ()121411423456151551533E X =⨯+⨯+⨯+⨯+⨯=.……………………10分 3、解 由密度函数的性质()1f x dx +∞-∞=⎰,可得()31421ax b dx a b +=+=⎰,………..3分又由 {}{}23212P X P X <<=-<<,可得()()32212ax b dx ax b dx +=+⎰⎰,即02ab +=,…..7分联立方程,解得11,36a b ==-.………………………………………….10分4、解 方法1 由题设知工程队完成工程所需天数()~100,25X N .设所获奖金为Y 万元,Y 的可能取值为10,3,-5,Y 取各值的概率为()100100{10}{100}(100)00.55P Y P X F -⎛⎫==≤==Φ=Φ= ⎪⎝⎭, ()115100100100{3}{100115}(115)(100)30.555P Y P X F F --⎛⎫⎛⎫==<≤=-=Φ-Φ=Φ- ⎪ ⎪⎝⎭⎝⎭, 115100{5}{115}1(115)11(3)5P Y P X F -⎛⎫=-=>=-=-Φ=-Φ ⎪⎝⎭,…………….8分Y 因此 ()()()()100330.5513E Y =⨯Φ+Φ---Φ⎡⎤⎡⎤⎣⎦⎣⎦()()()100.5330.551383 1.5=⨯+Φ---Φ=Φ-⎡⎤⎡⎤⎣⎦⎣⎦.…………10分方法2 由题设知工程队完成工程所需天数()~100,25X N , 所获奖金10,100;3,100115;5,115.X Y X X ≤⎧⎪=<≤⎨⎪->⎩…………………………………………….2分5 / 8而()100100{10}{100}(100)00.55P Y P X F -⎛⎫==≤==Φ=Φ= ⎪⎝⎭, ()115100100100{3}{100115}(115)(100)30.555P Y P X F F --⎛⎫⎛⎫==<≤=-=Φ-Φ=Φ- ⎪ ⎪⎝⎭⎝⎭, 115100{5}{115}1(115)11(3)5P Y P X F -⎛⎫=-=>=-=-Φ=-Φ ⎪⎝⎭,…….8分因此 ()()()()100330.5513E Y =⨯Φ+Φ---Φ⎡⎤⎡⎤⎣⎦⎣⎦()()()100.5330.551383 1.5=⨯+Φ---Φ=Φ-⎡⎤⎡⎤⎣⎦⎣⎦.…………10分5、解 关于X 的边缘分布密度函数()Xf x :当0x ≤或1x ≥时,(,)0f x y =,所以()(),00Xf x f x y dy dy +∞+∞-∞-∞===⎰⎰,当01x <<时,()()()1212,8441Xxxf x f x y dy xydy xy x x +∞-∞====-⎰⎰,所以,()()241,01;0,X x x x f x ⎧-<<⎪=⎨⎪⎩其他. ………………………….4分关于Y 的边缘分布密度函数()Yf y :当0y ≤或1y ≥时,(,)0f x y =,所以()(),00Yf y f x y dx dx +∞+∞-∞-∞===⎰⎰,当01y <<时,()()230,844yyYf y f x y dx xydx yx y +∞-∞====⎰⎰,所以()34,01;0,Yy y f y ⎧<<⎪=⎨⎪⎩其他..……………………………………………8分于是()()()()32161,01,01;,0,X Y xy x x y f x f y f x y ⎧-<<<<⎪=≠⎨⎪⎩其他,所以X 与Y 不相互独立.……………………………………………10分 6、解 因为()~,X U a b ,所以()2a bE X +=,()()212b a D X -=,于是有()241,2123b a a b -+==,解得 1,3a b =-=,………….…..4分故X 的概率密度函数为()1,13;40,x f x ⎧-<<⎪=⎨⎪⎩其他..………………….6分7、22(0,1),(),.x X N x x ϕ-=-∞<<∞Y 的分布函数为2()()()Y F y P Y y P X y =≤=≤ ……………………2分 当0y ≤时,()()0Y F y P Y y =≤=,从而()0.Y f y = ……………………4分当0y>时,2()(){(YF y P X y P X=≤=≤≤=Φ-Φ…6分从而2()()(((Y Yyf y F yϕϕϕϕ-'''==Φ-Φ==+=7分所以20()0,0-⎧>=≤⎩yYyf yy……………………………………………8分6 / 8。
概率论 练习及参考答案a
B.E(X)=0.5,D(X)=0.25 D.E(X)=2,D(X)=2
8.设随机变量 X 与 Y 相互独立,且 X N(1,4) ,Y N(0,1) ,令 Z=X-Y,则 D(Z)=
07~08 A 练习及参考答案
A.1
B.3
C.5
D.6 C ) D.4
9.已知 D(X)=4,D(Y)=25,Cov(X,Y)=4,则 X Y ( A.0.004 B.0.04 C.0.4
则元件的平均寿命为 225 小时
5
,则 P{X +Y =0}=(
C
)
6.设二维随机变量 (X, Y) 的概率密度为 f ( x , y ) A.
1 4
A
)
B.
1 2
C.2
D.4 D )
7.设随机变量 X 服从参数为 2 的泊松分布,则下列结论中正确的是( A.E(X)=0.5,D(X)=0.5 C.E(X)=2,D(X)=4 ( C )
得 分 评卷人 1 . 设 连 续 型 随 机 变 量 X 的 概 率 密 度 为
Ax , 0 x 1, f ( x) 2 x , 1 x 2, 0, 其他.
3 1 试求(1) A ; (2) X 的分布函数 F ( x ) ; (3) E ; (4) P X 。 2 2
1 3 2 3 1 3 1 2
3e 3 x , x 0; _________。 x 0, 0,
7.设 X B(4, ) ,则 E( X 2 )=_____5______。 8.设 E(X)=2,E(Y)=3,E(XY)=7,则 Cov(X,Y)=____1_______。 9. 设 总 体 X N ( 1 , σ 2 ), x1 , x2 , … , xn 为 来 自 该 总 体 的 样 本 ,
概率论习题全部
概率论习题全部概率论习题全部1习题⼀习题⼀1. ⽤集合的形式写出下列随机试验的样本空间与随机事件A:(1)掷两枚均匀骰⼦,观察朝上⾯的点数,事件A表⽰“点数之和为7”;(2)记录某电话总机⼀分钟内接到的呼唤次数,事件A表⽰“⼀分钟内呼唤次数不超过3次”;(3)从⼀批灯泡中随机抽取⼀只,测试它的寿命,事件A表⽰“寿命在2 000到2 500⼩时之间”.2. 投掷三枚⼤⼩相同的均匀硬币,观察它们出现的⾯.(1)试写出该试验的样本空间;(2)试写出下列事件所包含的样本点:A={⾄少出现⼀个正⾯},B={出现⼀正、⼆反},C={出现不多于⼀个正⾯};(3)如记A={第i枚硬币出现正⾯}(i=1,2,i3),试⽤123A A A表⽰事件A,B,C.,,3. 袋中有10个球,分别编有号码1~10,从中任取1球,设A={取得球的号码是偶数},B={取得球的号码是奇数},C={取得球的号码⼩习题⼀ 2 于5},问下列运算表⽰什么事件:(1)A B ;(2)AB ;(3)AC ;(4)AC ;(5)C A ;(6)B C ;(7)A C -. 4. 在区间上任取⼀数,记112A x x ??=<≤,1342B x x ??=≤≤,求下列事件的表达式:(1)A B ;(2)AB ;(3)AB ,(4)A B .5. ⽤事件A ,B ,C 的运算关系式表⽰下列事件:(1)A 出现,B ,C 都不出现;(2)A ,B 都出现,C 不出现;(3)所有三个事件都出现;(4)三个事件中⾄少有⼀个出现;(5)三个事件都不出现;(6)不多于⼀个事件出现;(7)不多于⼆个事件出现;(8)三个事件中⾄少有⼆个出现.6. ⼀批产品中有合格品和废品,从中有放回地抽取三个产品,设表⽰事件“第次抽到废品”,试⽤的运算表⽰下列各个事件:(1)第⼀次、第⼆次中⾄少有⼀次抽到废品;(2)只有第⼀次抽到废品;(3)三次都抽到废品;]2,0[i A i iA习题⼀3 (4)⾄少有⼀次抽到合格品;(5)只有两次抽到废品.7. 接连进⾏三次射击,设={第i 次射击命中}(i =1,2,3),试⽤表⽰下述事件:(1)A ={前两次⾄少有⼀次击中⽬标};(2)B ={三次射击恰好命中两次};(3)C ={三次射击⾄少命中两次};(4)D ={三次射击都未命中}.8. 盒中放有a 个⽩球b 个⿊球,从中有放回地抽取r 次(每次抽⼀个,记录其颜⾊,然后放回盒中,再进⾏下⼀次抽取).记={第i 次抽到⽩球}(i =1,2,…,r ),试⽤{}表⽰下述事件:(1)A ={⾸个⽩球出现在第k 次};(2)B ={抽到的r 个球同⾊},其中1k r ≤≤.*9. 试说明什么情况下,下列事件的关系式成⽴:(1)ABC =A ;(2)A B C A =.iA 321,,A A A iA iA习题⼆ 3习题⼆1. 从⼀批由45件正品、5件次品组成的产品中任取3件产品,求其中恰有1件次品的概率.2. ⼀⼝袋中有5个红球及2个⽩球.从这袋中任取⼀球,看过它的颜⾊后放回袋中,然后,再从这袋中任取⼀球.设每次取球时⼝袋中各个球被取到的可能性相同.求:(1)第⼀次、第⼆次都取到红球的概率;(2)第⼀次取到红球、第⼆次取到⽩球的概率;(3)两次取得的球为红、⽩各⼀的概率;(4)第⼆次取到红球的概率.3. ⼀个⼝袋中装有6只球,分别编上号码1~6,随机地从这个⼝袋中取2只球,试求:(1)最⼩号码是3的概率;(2)最⼤号码是3的概率.4. ⼀个盒⼦中装有6只晶体管,其中有2只是不合格品,现在作不放回抽样.接连取2次,每次随机地取1只,试求下列事件的概率:(1)2只都是合格品;(2)1只是合格品,⼀只是不合格品;(3)⾄少有1只是合格品.4习题⼆5. 从某⼀装配线上⽣产的产品中选择10件产品来检查.假定选到有缺陷的和⽆缺陷的产品是等可能发⽣的,求⾄少观测到⼀件有缺陷的产品的概率,结合“实际推断原理”解释得到的上述概率结果.6. 某⼈去银⾏取钱,可是他忘记密码的最后⼀位是哪个数字,他尝试从0~9这10个数字中随机地选⼀个,求他能在3次尝试之中解开密码的概率.7. 掷两颗骰⼦,求下列事件的概率:(1)点数之和为7;(2)点数之和不超过5;(3)点数之和为偶数.8. 把甲、⼄、丙三名学⽣随机地分配到5间空置的宿舍中去,假设每间宿舍最多可住8⼈,试求这三名学⽣住在不同宿舍的概率.9. 总经理的五位秘书中有两位精通英语,今偶遇其中的三位秘书,求下列事件的概率:(1)事件A={其中恰有⼀位精通英语};(2)事件B={其中恰有两位精通英语};(3)事件C={其中有⼈精通英语}.10. 甲袋中有3只⽩球,7只红球,15只⿊球,⼄袋中有10只⽩球,6只红球,9只⿊球,习题⼆ 5 现从两个袋中各取⼀球,求两球颜⾊相同的概率.11. 有⼀轮盘游戏,是在⼀个划分为10等份弧长的圆轮上旋转⼀个球,这些弧上依次标着0~9⼗个数字.球停⽌在那段弧对应的数字就是⼀轮游戏的结果.数字按下⾯的⽅式涂⾊:0看作⾮奇⾮偶涂为绿⾊,奇数涂为红⾊,偶数涂为⿊⾊.事件A ={结果为奇数},事件B ={结果为涂⿊⾊的数}.求以下事件的概率:(1))(A P ;(2))(B P ;(3)()P A B ;(4))(AB P .12. 设⼀质点⼀定落在xOy 平⾯内由x 轴,y 轴及直线x +y =1所围成的三⾓形内,⽽落在这三⾓形内各点处的可能性相等,即落在这三⾓形内任何区域上的可能性与这区域的⾯积成正⽐,计算这质点落在直线x =的左边的概率. 13. 甲、⼄两艘轮船都要在某个泊位停靠6h ,假定它们在⼀昼夜的时间段中随机地到达,试求这两艘船中⾄少有⼀艘在停靠泊位时必须等待的概率.14. 已知B A ?,4.0)(=A P ,6.0)(=B P ,求:(1))(),(B P A P ;(2)()P A B ;(3))(AB P ;(4))(),(B A P A B P ;(5))(B A P .316习题⼆15. 设A,B是两个事件,已知P(A)=0.5,P(B)=0.7,()P A B=0.8,试求:P(A-B)与P (B-A).*16. 盒中装有标号为1~r的r个球,今随机地抽取n个,记录其标号后放回盒中;然后再进⾏第⼆次抽取,但此时抽取m个,同样记录其标号,这样得到球的标号记录的两个样本,求这两个样本中恰有k个标号相同的概率.习题三 5习题三1. 已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P 及条件概率8.0)(=A B P ,试求)(AB P 及)(B A P .2. ⼀批零件共100个,次品率为10%,每次从中任取⼀个零件,取出的零件不再放回去,求第三次才取得正品的概率.3. 某⼈有⼀笔资⾦,他投⼊基⾦的概率为0.58,购买股票的概率为0.28,两项投资都做的概率为0.19.(1)已知他已投⼊基⾦,再购买股票的概率是多少?(2)已知他已购买股票,再投⼊基⾦的概率是多少?4. 罐中有m 个⽩球,n 个⿊球,从中随机抽取⼀个,若不是⽩球则放回盒中,再随机抽取下⼀个;若是⽩球,则不放回,直接进⾏第⼆次抽取,求第⼆次取得⿊球的概率.5. ⼀个⾷品处理机制造商分析了很多消费者的投诉,发现他们属于以下列出的6种类型:习题三6如果收到⼀个消费者的投诉,已知投诉发⽣在保质期内,求投诉的原因是产品外观的概率.6. 给定5.0)(=A P ,3.0)(=B P ,15.0)(=AB P ,验证下⾯四个等式:)()(A P B A P =;)()(A P B A P =;)()(B P A B P =;)()(B P A B P =.7. 已知甲袋中装有6只红球,4只⽩球,⼄袋中装有8只红球,6只⽩球.求下列事件的概率:(1)随机地取⼀只袋,再从该袋中随机地取⼀只球,该球是红球;(2)合并两只⼝袋,从中随机地取1只球,该球是红球.8. 设某⼀⼯⼚有A ,B ,C 三间车间,它们⽣产同⼀种螺钉,每个车间的产量,分别占该⼚⽣产螺钉总产量的25%、35%、40%,每个车间成品中次货的螺钉占该车间出产量的百分⽐分别为5%、4%、2%.如果从全⼚总产品中抽取⼀件产品,(1)求抽取的产品是次品的概率;(2)已知得到的是次品,求它依次是车间A ,B ,C ⽣产的概率.9. 某次⼤型体育运动会有1 000名运动员参加,其中有100⼈服⽤了违禁药品.在使⽤者中,假定有90⼈的药物检查呈阳性,⽽在未使⽤者中也有5⼈检验结果显⽰阳性.如果⼀个运习题三 7 动员的药物检查结果是阳性,求这名运动员确实使⽤违禁药品的概率.10. 发报台分别以概率0.6和0.4发出信号“*”和“—”.由于通信系统受到⼲扰,当发出信号“*”时,收报台未必收到信号“*”,⽽是分别以概率0.8和0.2收到信号“*”和“—”.同样,当发出信号“—”时,收报台分别以概率0.9和0.1收到信号“—”和“*”.求:(1)收报台收到信号“*”的概率;(2)当收报台收到信号“*”时,发报台确是发出信号“*”的概率.*11. 甲袋中有4个⽩球6个⿊球,⼄袋中有4个⽩球2个⿊球.先从甲袋中任取2球投⼊⼄袋,然后再从⼄袋中任取2球,求从⼄袋中取到的2个都是⿊球的概率.12. 设事件B A ,相互独⽴.证明:B A ,相互独⽴,B A ,相互独⽴. 13. 设事件A 与B 相互独⽴,且p A P =)(,q B P =)(.求下列事件的概率:(),(),().P A B P A B P A B14. 已知事件A 与B 相互独⽴,且91)(=B A P ,)()(B A P B A P =.求:)(),(B P A P .15. 三个⼈独⽴破译⼀密码,他们能独⽴译出的概率分别为0.25,0.35,0.4,求此密码被译习题三8 出的概率.16. 设六个相同的元件,如下图所⽰那样安置在线路中.设每个元件不通达的概率为p ,求这个装置通达的概率.假定各个元件通达、不通达是相互独⽴的.*17. (配对问题)房间中有n 个编号为1~n的座位.今有n 个⼈(每⼈持有编号为1~n 的票)随机⼊座,求⾄少有⼀⼈持有的票的编号与座位号⼀致的概率.(提⽰:使⽤概率的性质5的推⼴,即对任意n 个事件12,,,n A A A ,有1121111111()()(1)()(1)().)k k n n k k i j k i j n k k n i i n i i i n P A P A P A A P A A P A A =≤<≤=--≤<<<≤??=-+ +-++-∑∑∑ *18. (波利亚(Pólya )罐⼦模型)罐中有a 个⽩球,b 个⿊球,每次从罐中随机抽取⼀球,观察其颜⾊后,连同附加的c 个同⾊球⼀起放回罐中,再进⾏下⼀次抽取.试⽤数学归纳法证明:第k 次取得⽩球的概率为a a b+(1k ≥为整数).(提习题三 9 ⽰:记{}k A k 第次取得⽩球,使⽤全概率公式1111()=()()+()()k k k P A P A P A A P A P A A 及归纳假设.)19. 甲⼄两⼈各⾃独⽴地投掷⼀枚均匀硬币n 次,试求:两⼈掷出的正⾯次数相等的概率.20. 假设⼀部机器在⼀天内发⽣故障的概率为0.2,机器发⽣故障时全天停⽌⼯作.若⼀周五个⼯作⽇⾥每天是否发⽣故障相互独⽴,试求⼀周五个⼯作⽇⾥发⽣3次故障的概率.21. 灯泡耐⽤时间在1 000 h 以上的概率为0.2,求:三个灯泡在使⽤1 000 h 以后最多只有⼀个坏了的概率.22. 某宾馆⼤楼有4部电梯,通过调查,知道在某时刻T ,各电梯正在运⾏的概率均为0.75,求:(1)在此时刻所有电梯都在运⾏的概率;(2)在此时刻恰好有⼀半电梯在运⾏的概率;(3)在此时刻⾄少有1台电梯在运⾏的概率.23. 设在三次独⽴试验中,事件A 在每次试验中出现的概率相同.若已知A ⾄少出现⼀次的概率等于2719,求事件A 在每次试验中出现的概率)(A P .10习题三*24. 设双胞胎中为两个男孩或两个⼥孩的概率分别为a及b.今已知双胞胎中⼀个是男孩,求另⼀个也是男孩的概率.25. 两射⼿轮流打靶,谁先进⾏第⼀次射击是等可能的.假设他们第⼀次的命中率分别为0.4及0.5,⽽以后每次射击的命中率相应递增0.05,如在第3次射击⾸次中靶,求是第⼀名射⼿⾸先进⾏第⼀次射击的概率.26. 袋中有2n-1个⽩球和2n个⿊球,今随机(不放回)抽取n个,发现它们是同⾊的,求同为⿊⾊的概率.*27. 3个外形相同但可辨别的球随机落⼊编号1~4的四个盒⼦,(1)求恰有两空盒的概率;(2)已知恰有两空盒,求有球的盒⼦的最⼩编号为2的概率.习题四 8习题四1. 下列给出的数列,哪些可作为随机变量的分布律,并说明理由.(1)15ii p =(0,1,2,3,4,5)i =;(2)6)5(2i p i -=(0,1,2,3)i =;(3)251+=i p i (1,2,3,4,5)i =.2. 试确定常数C ,使i C i X P 2)(== (0,1,2,3,4)i =成为某个随机变量X 的分布律,并求:(1)(2)P X >;(2)1522P X ??<<;(3)(3)F (其中F (·)为X 的分布函数).3. ⼀⼝袋中有6个球,在这6个球上分别标有-3,-3,1,1,1,2这样的数字.从这⼝袋中任取⼀球,设各个球被取到的可能性相同,求取得的球上标明的数字X 的分布律与分布函数.4. ⼀袋中有5个乒乓球,编号分别为1,2,3,4,5.从中随机地取3个,以X 表⽰取出的3个球中最⼤号码,写出X 的分布律和分布函数.5. 在相同条件下独⽴地进⾏5次射击,每次射击时击中⽬标的概率为0.6,求击中⽬标的9习题四次数X的分布律.6. 从⼀批含有10件正品及3件次品的产品中⼀件⼀件地抽取产品.设每次抽取时,所⾯对的各件产品被抽到的可能性相等.在下列三种情形下,分别求出直到取得正品为⽌所需次数X的分布律:(1)每次取出的产品⽴即放回这批产品中再取下⼀件产品;(2)每次取出的产品都不放回这批产品中;(3)每次取出⼀件产品后总以⼀件正品放回这批产品中.7. 设随机变量X),6(==XP,XP(=)1B,已知)5~p(求p与)2P的值.(=X8. ⼀张试卷印有⼗道题⽬,每个题⽬都为四个选项的选择题,四个选项中只有⼀项是正确的.假设某位学⽣在做每道题时都是随机地选择,求该位学⽣未能答对⼀道题的概率以及答对9道以上(包括9道)题的概率.9.市120接听中⼼在长度为t的时间间隔内收到的紧急呼救的次数X服从参数为0.5t的泊松分布,⽽与时间间隔的起点⽆关(时间以⼩时计算):习题四10 求:(1)某天中午12点⾄下午3点没有收到紧急呼救的概率;(2)某天中午12点⾄下午5点⾄少收到1次紧急呼救的概率.10.某商店出售某种物品,根据以往的经验,每⽉销售量X服从参数4=λ的泊松分布.问在⽉初进货时,要进多少才能以99%的概率充分满⾜顾客的需要?11. 有⼀汽车站有⼤量汽车通过,每辆汽车在⼀天某段时间出事故的概率为0.000 1.在某天该段时间内有1 000辆汽车通过,求事故次数不少于2的概率.12. 设鸡下蛋数X服从参数为λ的泊松分布,但由于鸡舍是封闭的,我们只能观察到从鸡舍输出的鸡蛋.记Y为观察到的鸡蛋数,即Y的分布与给定>0X的条件下X的分布相同,今求Y 的分布律.(提⽰:()(0),1,2,.对于)P Y k P X k X k===>=13. 袋中有n把钥匙,其中只有⼀把能把门打开,每次抽取⼀把钥匙去试着开门.试在:(1)有放回抽取;(2)不放回抽取两种情况下,求⾸次打开门时试⽤钥匙次数的分布律.习题四11 14. 袋中有a 个⽩球、b 个⿊球,有放回地随机抽取,每次取1个,直到取到⽩球停⽌抽取,X 为抽取次数,求()P X n ≥.15. 据统计,某⾼校在2010年上海世博会上的学⽣志愿者有6 000名,其中⼥⽣3 500名.现从中随机抽取100名学⽣前往各世博地铁站作引导员,求这些学⽣中⼥⽣数X 的分布律.16. 设随机变量X 的密度函数为2,()0,x f x ?=??0,x A <<其他,试求:(1)常数A ;(2))5.00(<17.设随机变量X 的密度函数为()e x f x A -=()x -∞<<+∞,求:(1)系数A ;(2))10(<(3)X 的分布函数. 18.证明:函数22e ,0,()0,0,xc x x f x c x -??≥=??可作为⼀个密度函数.19. 经常往来于某两地的⽕车晚点的时间X(单位:min )是⼀个连续型随机变量,其密度函数为23(25),55,()5000,x x f x ?--<X 为负值表⽰⽕车早到了.求⽕车⾄少晚点2min 的概率.习题四 1220. 设随机变量X 的分布函数为0()1(1)e x F x x -?=?-+?,0,,0,x x ≤>求X 的密度函数,并计算)1(≤X P 和)2(>X P .21. 设随机变量X 在(1,6)上服从均匀分布,求⽅程012=++Xt t 有实根的概率.22. 设随机变量X 在)1,0(上服从均匀分布,证明:对于0,0,1a b a b ≥≥+≤,()P a X b b a ≤≤=-,并解释这个结果.23. 设顾客在某银⾏的窗⼝等待服务的时间X (单位:min )是⼀随机变量,它服从51=λ的指数分布,其密度函数为51e ()50x f x -??=,0,,x >其它.某顾客在窗⼝等待服务,若超过10 min ,他就离开.(1)设某顾客某天去银⾏,求他未等到服务就离开的概率;(2)设某顾客⼀个⽉要去银⾏五次,求他五次中⾄多有⼀次未等到服务⽽离开的概率.24. 以X 表⽰某商店从早晨开始营业起直到第⼀个顾客到达的等待时间(单位:min ),X 的分布函数是0.21e ,0,()0,x x F x -?->=??其他.求:(1)X 的密度函数;(2)P (⾄多等待。
大学概率论习题及答案
《经济应用数学三(概率论)》综合测试题(二)一、单项选择题1.设A,B为两随机事件,且,则下列式子正确的是()。
A.B.C.D.2.从装有2只红球,2只白球的袋中任取两球,记:A=“取到2只白球”则=()。
A.取到2只红球B.取到1只红球C.没有取到白球D.至少取到1只红球3.事件A,B相互独立,且()。
A.0.46B.0.42C.0.56D.0.144.下列函数为正态分布密度的是()。
A.B.C.D.5.设随机变量服从, 其分布密度函数为, 则()。
A.0B.1C.D.6.设随机变量的密度函数为,则。
A.0B.C.1D.7.设随机变量X的可能取值为, 随机变量Y的可能取值为,如果, 则随机变量X 与Y ()。
A.一定不相关B.一定独立C.一定不独立D.不一定独立8.若二维随机变量的联合概率密度为,则系数()。
A.B.C.1D.9.对随机变量来说,如果,则可断定不服从()。
A.二项分布B.指数分布C.泊松分布D.正态分布10.设服从参数为的指数分布,则()。
A.B.C.D.二、填空题1.若事件A与B互斥,P(A)=0.6,P(A∪B)=0.8,则2.随机变量X服从区间 [1,4]上的均匀分布,则P { 0<X<3} = __________。
3.设随机变量的概率分布为,则__________。
4.设二维随机变量(X,Y)的联合分布律为:则a=________,b=________。
5.设服从正态分布,则D(-2X+1)= ________三、计算题1.设某产品的合格率为80% 。
检验员在检验时合格品被认为合格的概率为97%,次品被认为合格的概率为2%。
(1)求任取一产品被检验员检验合格的概率;(2)若一产品通过了检验,求该产品确为合格品的概率。
2.设打一次电话所用时间X(分钟)服从参数为的指数分布,如果某人刚好在你前面走进公用电话亭,求你等待时间在10分钟到20分钟之间的概率。
3.已知随机向量的联合概率分布为(1)求的边缘分布;(2)判断与是否独立;4.设系统由100个相互独立的部件组成, 运行期间每个部件损坏的概率为0.1, 至少有85个部件是完好时系统才能正常工作。
概率论练习题
概率论练习题(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《概率论》练习题一、单项选择题1. A 、B 为两事件,则B A ⋃=( )A .B A ⋃ B .A ∪BC .A BD .A ∩B 2.对任意的事件A 、B ,有( )A .0)(=AB P ,则AB 不可能事件 B .1)(=⋃B A P ,则B A ⋃为必然事件C .)()()(B P A P B A P -=-D .)()()(AB P A P B A P -=⋂ 3.事件A 、B 互不相容,则( )A .1)(=⋃B A P B .1)(=⋂B A PC .)()()(B P A P AB P =D .)(1)(AB P A P -= 4.设A 为随机事件,则下列命题中错误..的是( ) A .A 与A 互为对立事件吗 B .A 与A 互不相容C .Ω=⋃A A D .A A =5.任意抛一个均匀的骰子两次,则这两次出现的点数之和为8的概率为( )A .363B .364C .365D .3626.已知A 、B 、C 两两独立,21)()()(===C P B P A P ,51)(=ABC P ,则)(C AB P 等于( )A .401B .201C .101D .417.事件A 、B 互为对立事件等价于( )(1)A 、B 互不相容 (2)A 、B 相互独立(3)Ω=⋃B A (4)A 、B 构成对样本空间的一个剖分、B 为两个事件,则)(B A P -=( )A .)()(B P A P - B .)()(AB P A P -C .)()(B P A P -D .)(A B P - 9.1A 、2A 、3A 为三个事件,则( )A .若321,,A A A 相互独立,则321,,A A A 两两独立;B .若321,,A A A 两两独立,则321,,A A A 相互独立;C .若)()()()(321321A P A P A P A A A P =,则321,,A A A 相互独立;D .若1A 与2A 独立,2A 与3A 独立,则1A 与3A 独立10.设A 与B 相互独立,2.0)(=A P ,4.0)(=B P ,则=)(B A P ( ) A . B . C . D .11.同时抛掷3枚均匀的硬币,则恰好三枚均为正面朝上的概率为( )C. 设A 、B 为任意两个事件,则有( )A.(A ∪B )-B=AB.(A-B)∪B=AC.(A ∪B)-B ⊂A D .(A-B)∪B ⊂A 13.设A ,B 为两个互不相容事件,则下列各式错误..的是( ) A .P (AB )=0B .P (A ∪B )=P (A )+P (B )C .P (AB )=P (A )P (B )D .P (B-A )=P (B )14.设事件A ,B 相互独立,且P (A )=31,P (B )>0,则P (A|B )=( ) A .151 B .51 C .154 D .31 15.设事件A 与B 互不相容,且P (A )>0,P (B ) >0,则有( )A .P (AB )=l B .P (A )=1-P (B )C .P (AB )=P (A )P (B )D .P (A ∪B )=1 16.设A 、B 相互独立,且P (A )>0,P (B )>0,则下列等式成立的是( ) A .P (AB )=0 B .P (A -B )=P (A )P (B ) C .P (A )+P (B )=1 D .P (A |B )=0 17.同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为( ) A . B . C . D .18.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( )A .A 1A 2B .21A AC .21A AD .21A A19.某人每次射击命中目标的概率为p (0<p <1),他向目标连续射击,则第一次未中第二次命中的概率为( )A .p 2B .(1-p )2C .1-2pD .p (1-p )20.已知P (A )=,P (B )=,且A ⊂B ,则P (A |B )=( ) A .0 B . C . D .121.一批产品中有5%不合格品,而合格品中一等品占60%,从这批产品中任取一件,则该件产品是一等品的概率为( )A .B .C .D .22.X 的密度为⎩⎨⎧∈=其它,0],0[,2)(A x x x f ,则A=( )A .41B .21C .1D .223.离散型随机变量X 的分布列为其分布函数为)(x F ,则=)3(F ( )A . 0B .3.0C .8.0D .124.随机变量X 的密度函数⎩⎨⎧∈=其它]1,0[)(4x cx x f 则常数c =( ) A .51 B .41C .4D .525.离散型随机变量X 的分布列为其分布函数为)(x F ,则=)1(F ( ) A .4.0 B .2.0 C .6.0 D .126.设随机变量X 服从参数为3的指数分布,其分布函数记为)(x F ,则=)31(F ( )A .e 31 B .3e C .11--e D .1311--e 27.设随机变量X 的概率密度为⎩⎨⎧≤≤=,,0,10,)(3其他x ax x f 则常数=a ( )A .41B .31 C .3 D .428.设随机变量X 与Y 独立同分布,它们取-1,1两个值的概率分别为41,43,则{}=-=1XY P ( )A .161 B .163 C .41 D .83 29.设三维随机变量),(Y X 的分布函数为),(y x F ,则=∞+),(x F ( ) A .0 B .)(x F X C .)(y F Y D .130.设随机变量X 和Y 相互独立,且)4,3(~N X ,)9,2(~N Y ,则~3Y X Z -=( )A .)21,7(NB .)27,7(NC .)45,7(ND .)45,11(N31.设随机变量X 的概率密度为f(x)=⎪⎩⎪⎨⎧≤<-≤<.,0;2x 1,x 2;1x 0,x 其它 则P{<X<}的值是( )A .5.0B .6.0C .66.0D .7.032.某人射击三次,其命中率为,则三次中至多击中一次的概率为( )A.027.0B.081.0 设二维随机变量(X,Y)的联合分布函数为F(x,y). 其联合概率分布为( )则F (0,1)=( )A.2.0B.6.0C.7.0 设二维随机变量(X ,Y )的联合概率密度为f(x,y)=⎩⎨⎧≤≤≤≤+.,0;1y 0,2x 0),y x (k 其它则k=( )A.41B.31C.21D.3235.设随机变量X 在[-1,2]上服从均匀分布,则随机变量X 的概率密度f (x )为( )A .⎪⎩⎪⎨⎧≤≤-=.,0;21,31)(其他x x fB .⎩⎨⎧≤≤-=.,0;21,3)(其他x x fC .⎩⎨⎧≤≤-=.,0;21,1)(其他x x fD . ⎪⎩⎪⎨⎧≤≤--=.,0;21,31)(其他x x f36.设随机变量X ~ B ⎪⎭⎫ ⎝⎛31,3,则P{X ≥1}=( ) A .271 B .278 C .2719 D .272637则A .51 B .103 C .21 D .53 38.设二维随机变量(X ,Y )的概率密度为 ⎩⎨⎧≤≤≤≤=,,0;10,10,4),(其他y x xy y x f则当0≤y ≤1时,(X ,Y )关于Y 的边缘概率密度为f Y ( y )= ( ) A .x21B .2xC .y 21D .2y39.设函数f (x )在[a ,b ]上等于sin x ,在此区间外等于零,若f (x )可以作为某连续型随机变量的概率密度,则区间[a ,b ]应为( )A .[0,2π-] B.[2π,0] C .]π,0[ D .[23π,0] 40.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤<-≤<其它021210x xx x ,则P <X<=( ) A . B . C . D .41.设在三次独立重复试验中,事件A 出现的概率都相等,若已知A 至少出现一次的概率为19/27,则事件A 在一次试验中出现的概率为( )A .61 B .41 C .31 D .21 42.设随机变量X ,Y 相互独立,其联合分布为则有( )A .92,91==βα B .91,92==βαC .32,31==βαD .31,32==βα43.设随机变量X 的分布律为X0 1 2 P则P {X <1}=( )A .0B .C .D .44.下列函数中可作为某随机变量的概率密度的是( ) A .⎪⎩⎪⎨⎧≤>100,0,100,1002x x xB .⎪⎩⎪⎨⎧≤>0,0,0,10x x xC .⎩⎨⎧≤≤-其他,0,20,1x D .⎪⎩⎪⎨⎧≤≤其他,0,232121x ,45.随机变量X 服从二项分布)2.0,10(B ,则( ) A .==DX EX 2 B .==DX EX 6.1 C .=EX 2,=DX 6.1 D .=EX 6.1,=DX 246.X 可取无穷多个值 ,2,1,0,其概率分布为普阿松分布)3(P ,则( )A .DX EX ==3B .DX EX ==31C .EX =3,DX =31D .EX =31,DX =9147.随机向量),(Y X 有25,36==DY DX ,协方差12=XY σ,则)()(=-Y X DA .1B .37C .61D .8548.设X~B(10, 31), 则=)X (E )X (D ( ) A.31B.32 D.310 49.已知随机变量X 的分布函数为F(x)=⎩⎨⎧>--.0;0x e 1x 2其它则X 的均值和方差分别为( )(X)=2, D(X)=4 (X)=4, D(x)=2 (X)=41,D(X)=21(X)=21, D(X)=4150.设随机变量X 的E (X )=μ,D(X)=2σ,用切比雪夫不等式估计≥σ≤-)3|)X (E X (|P ( )A.91B.31C.9851则E (XY )=( A .91- B .0 C .91 D .3152.已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为( )A .-2B .0C .21D .253.设n μ是n 次独立重复试验中事件A 出现的次数,P 是事件A 在每次试验中发生的概率,则对于任意的0>ε,均有}|{|lim εμ>-∞→p nP nn ( )A .=0B .=1C .> 0D .不存在54.设随机变量X 与Y 相互独立,X 服从参数为2的指数分布,Y ~B (6,21),则E(X-Y)=( )A .25-B .21C .2D .5 二、填空题1. A 、B 为两事件,8.0)(=⋃B A P ,2.0)(=A P ,4.0)(=B P ,则=-)(A B P 。
概率论练习题与解析.
十、概率论与数理统计一、填空题1、设在一次试验中,事件A 发生的概率为p 。
现进行n 次独立试验,则A 至少发生一次的概率为np )1(1--;而事件A 至多发生一次的概率为1)1()1(--+-n n p np p 。
2、 三个箱子,第一个箱子中有4个黑球1个白球,第二个箱子中有3个黑球3个白球,第三个箱子有3个黑球5个白球。
现随机地取一个箱子,再从这个箱子中取出1个球,这个球为白球的概率等于 。
已知取出的球是白球,此球属于第二个箱子的概率为 。
解:用iA 代表“取第i 只箱子”,i =1,2,3,用B 代表“取出的球是白球”。
由全概率公式⋅=⋅+⋅+⋅=++=12053853163315131)|()()|()()|()()(332211A B P A P A B P A P A B P A P B P由贝叶斯公式⋅=⋅==5320120536331)()|()()|(222B P A B P A P B A P3、 设三次独立试验中,事件A 出现的概率相等。
若已知A 至少出现一次的概率等于19/27,则事件A 在一次试验中出现的概率为 。
解:设事件A 在一次试验中出现的概率为)10(<<p p ,则有2719)1(13=--p ,从而解得31=p4、已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P 及条件概率8.0)|(=A B P ,则和事件B A 的概率)(B A P = 。
7.08.05.06.05.0)|()()()()()()()(=⨯-+=-+=-+=A B P A P B P A P AB P B P A P B A P5、 甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5。
现已知目标被命中,则它是甲射中的概率为 。
用A 代表事件“甲命中目标”,B 代表事件“乙命中目标”,则B A 代表事件“目标被命中”,且8.06.05.06.05.0)()()()()()()()(=⨯-+=-+=-+=B P A P B P A P AB P B P A P B A P所求概率为 75.08.06.0)()()|(===B A P A P B A A P 6、 设随机事件A ,B 及其和事件B A 的概率分别是0.4,0.3和0.6。
概率高中练习题及讲解
概率高中练习题及讲解### 概率高中练习题及讲解#### 练习题一:掷骰子问题题目:一个公平的六面骰子被掷两次,求至少出现一次6点的概率。
解题思路:1. 首先确定总的可能结果数,即掷两次骰子的所有组合。
2. 然后确定至少出现一次6点的组合数。
3. 使用古典概型概率公式求解。
解答:- 总的可能结果数为 \(6 \times 6 = 36\) 种。
- 至少出现一次6点的组合数为 \(6 + 6 - 1 = 11\) 种(第一次出现6点,第二次出现6点,以及第一次和第二次都出现6点的组合)。
- 概率 \( P = \frac{11}{36} \)。
#### 练习题二:生日问题题目:在一个有30人的班级中,求至少有两人生日相同的概率。
解题思路:1. 考虑一年有365天,忽略闰年。
2. 使用生日问题的经典解法,即计算所有人都有不同生日的概率,然后用1减去这个概率。
解答:- 所有人都有不同生日的概率为 \( \frac{365}{365} \times\frac{364}{365} \times ... \times \frac{336}{365} \)。
- 至少有两人生日相同的概率为 \( 1 - \frac{365 \times 364\times ... \times 336}{365^{30}} \)。
#### 练习题三:独立事件问题题目:一个袋子里有5个红球和5个蓝球。
第一次随机取出一个球,不放回,然后第二次再取出一个球。
求第二次取出红球的概率。
解题思路:1. 确定第一次取出球后,第二次取球的总可能数和有利结果数。
2. 使用条件概率公式求解。
解答:- 第一次取出红球的概率为 \( \frac{5}{10} = 0.5 \),此时第二次取红球的概率为 \( \frac{4}{9} \)。
- 第一次取出蓝球的概率也为 \( 0.5 \),此时第二次取红球的概率为 \( \frac{5}{9} \)。
- 总概率为 \( 0.5 \times \frac{4}{9} + 0.5 \times \frac{5}{9} = \frac{9}{18} = 0.5 \)。
大学概率论期末复习题七套
试题(一)一、填空题1.设 A 、B 、C 是三个随机事件。
试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生3)A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。
则P(B )A =3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(AB)=0.7,则α=4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为二、选择题1. 设A,B 为两随机事件,且B A ⊂,则下列式子正确的是 (A )P (A+B) = P (A); (B )()P(A);P AB =(C )(|A)P(B);P B = (D )(A)P B -=()P(A)P B -2. 以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为 (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销” (C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销”。
3. 袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球。
则第二人取到黄球的概率是(A )1/5 (B )2/5 (C )3/5 (D )4/5 4. 对于事件A ,B ,下列命题正确的是 (A )若A ,B 互不相容,则A 与B 也互不相容。
(B )若A ,B 相容,那么A 与B 也相容。
(C )若A ,B 互不相容,且概率都大于零,则A ,B 也相互独立。
(D )若A ,B 相互独立,那么A 与B 也相互独立。
5. 若()1P B A =,那么下列命题中正确的是(A )A B ⊂ (B )B A ⊂ (C )A B -=∅ (D )()0P A B -=三、计算题1. 10把钥匙中有3把能打开门,今任意取两把,求能打开门的概率。
概率论第5、6、7、8章真题练习
概率论第5、6、7、8章真题练习(总20页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2013年4月2012年10月6.设X 1,X 2,…,X n …为相互独立同分布的随机变量序列,且E (X 1)=0,D (X 1)=1,则1lim 0n i n i P X →∞=⎧⎫≤=⎨⎬⎩⎭∑7.设x 1,x 2,…,x n 为来自总体N (μ,σ2)的样本,μ,σ2是未知参数,则下列样本函数为统计量的是 A.1ni i x μ=-∑B.211nii x σ=∑C. 211()ni i x n μ=-∑ D. 211n i i x n =∑ 8.对总体参数进行区间估计,则下列结论正确的是 A.置信度越大,置信区间越长 B.置信度越大,置信区间越短 C.置信度越小,置信区间越长D.置信度大小与置信区间长度无关9.在假设检验中,H 0为原假设,H 1为备择假设,则第一类错误是 A. H 1成立,拒绝H 0 成立,拒绝H 0 成立,拒绝H 1成立,拒绝H 110.设一元线性回归模型:201(1,2,),~(0,)i i i i y x i n N ββεεσ=++=…,且各i ε相互独立.依据样本(,)(1,2,,)i i x y i n =…得到一元线性回归方程01ˆˆˆy x ββ=+,由此得i x 对应的回归值为ˆi y,i y 的平均值11(0)ni i y y y n ==≠∑,则回归平方和S 回为 A .21(-)ni i y y =∑B .21ˆ(-)ni i i y y=∑C .21ˆ(-)ni i yy =∑ D .21ˆni i y=∑ 21.设m 为n 次独立重复试验中事件A 发生的次数,p 为事件A 的概率,则对任意正数ε,有lim n m P p n ε→∞⎧⎫-<⎨⎬⎩⎭=____________.22.设x 1,x 2,…,x n 是来自总体P (λ)的样本,x 是样本均值,则D (x )=___________.23.设x 1,x 2,…,x n 是来自总体B (20,p )的样本,则p 的矩估计ˆp=__________. 24.设总体服从正态分布N (μ,1),从中抽取容量为16的样本,u α是标准正态分布的上侧α分位数,则μ的置信度为的置信区间长度是_________.25.设总体X ~N (μ,σ2),且σ2未知,x 1,x 2,…,x n 为来自总体的样本,x 和S 2分别是样本均值和样本方差,则检验假设H 0:μ =μ0;H 1:μ≠μ0采用的统计量表达式为_________.四、综合题(本大题共2小题,每小题12分,共24分)28.某次抽样结果表明,考生的数学成绩(百分制)近似地服从正态分布N (75,σ2),已知85分以上的考生数占考生总数的5%,试求考生成绩在65分至85分之间的概率.五、应用题(10分)30.某种产品用自动包装机包装,每袋重量X~N(500,22)(单位:g),生产过程中包装机工作是否正常要进行随机检验.某天开工后抽取了9袋产品,测得样本均值x=502g. 问:当方差不变时,这天包装机工作是否正常(α=(附:=2012年4月9.设总体2~(2,3),X N x 1,x 2,…,x n 为来自总体X 的样本,x 为样本均值,则下列统计量中服从标准正态分布的是( ) A.23x - B.29x -10.设样本x 1,x 2,…,x n 来自正态总体2(,)N μσ,且2σ未知.x 为样本均值,s 2为样本方差.假设检验问题为01:1,:1H H μμ=≠,则采用的检验统计量为( )xx21.设随机变量X ~N (1,1),应用切比雪夫不等式估计概率{}P ()2X E X -≥≤______.22.设总体X 服从二项分布B (2,,x 为样本均值,则()E x =______. 23.设总体X ~N (0,1),123x x x ,,为来自总体X 的一个样本,且2222123~()x x x n χ++,则n =______.24.设总体~(1)X N μ,,12x x ,为来自总体X 的一个样本,估计量1121122x x μ=+,2121233x x μ=+,则方差较小的估计量是______. 25.在假设检验中,犯第一类错误的概率为,则在原假设H 0成立的条件下,接受H 0的概率为______.四、综合题(本大题共2小题,每小题12分,共24分)29.设总体X 的概率密度(1),01,(;)0,x x f x θθθ⎧+<<=⎨⎩ 其他,其中未知参数>1,θ-12,,,n x x x ⋯是来自该总体的一个样本,求参数θ的矩估计和极大似然估计.2012年1月10. 从一个正态总体中随机抽取n= 20 的一个随机样本,样本均值为17. 25,样本标准差为,则总体均值μ的95%的置信区间为( )。
概率论考试题及答案
概率论考试题及答案在学习概率论的过程中,一场考试是检验学生掌握程度的重要方式。
下面将为大家介绍一些概率论考试题及其答案,希望能够帮助大家更好地复习和准备考试。
1. 选择题1.1 在一副标准扑克牌中,抽取一张牌,观察到它是黑桃的情况下,再次从该扑克牌中抽取一张牌,观察该牌是红桃的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/3答案:D. 1/31.2 掷一枚骰子,观察到一个正整数出现的情况下,再次掷骰子,观察到另一个正整数出现的概率是多少?A. 1/12B. 1/6C. 1/36D. 1/18答案:B. 1/62. 计算题2.1 有一个有12个不同数字的骰子,抛出两次。
求两次得到的和是偶数的概率。
答案:一共有6 * 6 = 36 种可能的结果。
其中,和为偶数的情况有:(1,1), (1,3), (1,5), (2,2), (2,4), (2,6), (3,1), (3,3), (3,5), (4,2), (4,4), (4,6), (5,1), (5,3), (5,5), (6,2), (6,4), (6,6) 共计18种。
因此,所求概率为18/36 = 1/2。
2.2 一副扑克牌中,黑桃、红桃、梅花、方块各有13张,从中抽取五张牌,求至少有一张黑桃的概率。
答案:总共抽取5张牌,共有C(52,5)种取法。
不抽取黑桃的情况有C(39,5)种取法。
因此,至少有一张黑桃的情况有C(52,5) - C(39,5) 种取法。
所求概率为[C(52,5) - C(39,5)] / C(52,5)。
3. 应用题3.1 有甲、乙两个工人分别制作产品A和产品B,已知甲的合格率为85%,乙的合格率为90%。
如果随机抽查一件产品是合格的,求这件产品是乙制作的概率。
答案:假设事件A为产品合格,事件B为产品由乙制作。
根据题意,可得P(A|B) = 90%,P(A|B') = 85%,P(B) = 1/2,P(B') = 1/2。
《概率论与数理统计》考试练习题及参考答案
《概率论与数理统计》考试练习题及参考答案一、单选题1. 设X~N(2,9),Y~N(2,1),E(XY)=6,则D(X-Y)之值为A 、14B 、6C 、12D 、4答案:B2. 设X,Y的方差存在,且不等于0,则D(X+Y)=DX+DY是X,YA 、不相关的充分条件,但不是必要条件B 、独立的必要条件,但不是充分条件C 、不相关的必要条件,但不是充分条件D 、独立的充分必要条件答案:B3. 已知P(A)=0.3 ,P(B)=0.5 ,P(A∪B)=0.6,则P(AB)=A 、0.2B 、0.1C 、0.3D 、0.4答案:A4. 已知随机变量X服从二项分布,且EX=2.4,DX=1.44,则二项分布中的参数n,p的值分别为A 、n=4 ,p=0.6B 、n=6 ,p=0.4C 、n=8 ,p=0.3D 、n=24 ,p=0.1答案:B5. 若随机变量X与Y的方差D(X), D(Y)都大于零,且E(XY)=E(X)E(Y),则有A 、X与Y一定相互独立B 、X与Y一定不相关C 、D(XY)=D(X)D(Y)D 、D(X-Y)=D(X)-D(Y)答案:B6. 同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是A 、1/8B 、1/6C 、1/4D 、1/2答案:D7. 将长度为1的木棒随机地截成两段,则两段长度的相关系数为A 、1B 、1/2C 、2D 、-1答案:D8. 假设一批产品中一、二、三等品各占60% 、30% 、10%,今从中随机取一件产品,结果不是三等品,则它是二等品的概率为A 、1/3B 、1/2C 、2/3D 、1/4答案:A9. 袋中有50个乒乓球,其中20个黄球,30个白球,甲、乙两人依次各取一球,取后不放回,甲先取,则乙取得黄球的概率为A 、2/5B 、3/5C 、1/5D 、4/5答案:A10. 设随机变量X服从正态分布N(1 ,4) ,Y服从[0 ,4]上的均匀分布,则E(2X+Y )=A 、1B 、2C 、3D 、4答案:D11. 某电路由元件A 、B 、C串联而成,三个元件相互独立,已知各元件不正常的概率分别为:P(A)=0.1 ,P(B)=0.2 ,P(C)=0.3,求电路不正常的概率A 、0.496B 、0.7C 、0.25D 、0.8答案:A12. 一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1 ,2 ,3 ,4 ,5顺序的概率为A 、1/120B 、1/60C 、1/5D 、1/2答案:B13. 设随机变量X与Y独立同分布,记随机变量U=X+Y ,V=X-Y,且协方差Cov(U.V)存在,则U和V必然A 、不相关B 、相互独立C 、不独立D 、无法判断答案:A14. 设P(A)>0,P(B)>0,则下列各式中正确的是A 、P(A-B)=P(A)-P(B)B 、P(AB)=P(A)P(B)C 、P(A+B)=P(A)+P(B)D 、P(A+B)=P(A)+P(B)-P(AB)答案:D15. 随机变量X的所有可能取值为0和x ,且P{X=0}=0.3,E(X)=1,则x=A 、10/7B 、4/5C 、1D 、0答案:A16. 已知人的血型为O 、A 、B 、AB的概率分别是0.4;0.3;0.2;0.1。
概率论五套练习题及答案
《概率论与数理统计》同步练习册学号________姓名________专业________班级________广东省电子技术学校继续教育部二O一O年四月练习一一、选择题1.设A,B,C表示三个随机事件,则A B C表示<A)A,B,C中至少有一个发生; <B)A,B,C都同时发生;<C)A,B,C中至少有两个发生; <D)A,B,C都不发生。
2.已知事件A,B相互独立,且P(A>=0.5,P(B>=0.8,则P<A B)=(A> 0.65 。
(B> 1.3。
(C>0.9。
(D>0.3。
b5E2RGbCAP3.设X~B<n,p),则有<A)E<2X-1)=2np;<B)E<2X+1)=4np+1;<C)D<2X+1)=4np<1-p)+1;<D)D<2X-1)=4np<1-p)。
4.X的概率函数表<分布律)是xi -1 0 1pi 1/ 4 a 5/12则a=< )<A)1/3;<B)0;<C)5/12;<D)1/4。
5.常见随机变量的分布中,数学期望和方差一定相等的分布是<A)二项分布;<B)标准正态分布;<C)指数分布;<D)泊松分布。
二、填空题6.已知:A={x|x<3} ,B={x|2<x<5}.则A B=__________________, A-B=_____________________。
. 7.已知电路由电池A与两个并联电池B和C串联而成,各电池工作与否相互独立。
设电池A,B,C损坏的概率均为0.2。
则整个电路断电的概率是______________________.p1EanqFDPw三、证明题8.设随机变数具有对称的分布密度函数,即证明:对任意的有<1);<2)P<;<3)。
概率大题练习题及讲解高中
概率大题练习题及讲解高中概率论是高中数学中的一个重要分支,它涉及到随机事件及其发生的可能性。
以下是一些概率大题的练习题及简要讲解,供高中生参考和练习。
练习题1:一个袋子里有5个红球和3个蓝球,随机从袋子中取出一个球,观察其颜色。
求取出红球的概率。
解答:总共有8个球,其中5个是红球。
取出红球的概率为红球数除以总球数,即:\[ P(\text{红球}) = \frac{5}{8} \]练习题2:一个班级有50名学生,其中30名男生和20名女生。
现在随机抽取3名学生,求至少有1名女生的概率。
解答:首先计算没有女生的概率,即抽取的3名学生都是男生的概率。
从30名男生中抽取3名,总共有\[ C_{30}^{3} \]种组合,而从50名学生中抽取3名,总共有\[ C_{50}^{3} \]种组合。
因此,没有女生的概率为:\[ P(\text{无女生}) = \frac{C_{30}^{3}}{C_{50}^{3}} \]至少有1名女生的概率为1减去没有女生的概率:\[ P(\text{至少1名女生}) = 1 - P(\text{无女生}) \]练习题3:一个工厂生产的零件中,有2%是次品。
现在随机抽取10个零件进行检查,求至少有1个次品的概率。
解答:这是一个二项分布问题。
次品的概率为0.02,非次品的概率为0.98。
使用二项分布公式计算至少有1个次品的概率:\[ P(\text{至少1个次品}) = 1 - P(\text{0个次品}) - P(\text{1个次品}) \]其中,\( P(\text{0个次品}) \)和\( P(\text{1个次品}) \)分别使用二项分布公式计算。
练习题4:一个骰子有6个面,每个面上的数字是1到6。
投掷骰子两次,求两次投掷结果之和为7的概率。
解答:两次投掷结果之和为7的情况有(1,6)、(2,5)、(3,4)、(4,3)、(5,2)、(6,1)六种。
每次投掷有6种可能,所以总共有\[ 6 \times 6 \]种可能的组合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)的置信区间是:
12. 设总体是的样本,是样本值,试求的矩估计。
学院
专业
班级
姓名
任课教师姓名
学号
密
封
线
内
不
得
答
题
13. 设 是的样本,用作为的无偏估计量,试确定,,使最有效,其中。
14. 设总体的概率分布为:
其中为未知参数.现抽得一个样本,求的矩估计值.
第七章练习题
1. 某车间用一台包装机包装葡萄糖, 包得的每袋糖重是一个 随机变量, 假定它服从正态分布.当机器正常时, 其均值为 0.5千克, 标准差为=0.015千克.某日开工后为检验包装机是否 正常, 随机地抽取它所包装的糖9袋, 称得净重为(千克):
0.497 0.506 0.518 0.524 0.498 0.511 0.520 0.515
去分析影响股票价格的基本因素,比如利率的变化.现假设人
们经分析估计利率下调的概率为60%,利率不变的概率为40%.
根据经验,人们估计,在利率下调的情况下,该支股票价格上
涨的概率为80%,而在利率不变的情况下,其价格上涨的概率
为40%,求该支股票将上涨的概率.
6. 设甲袋中有2只白球,4只红球,乙袋中有3只白球,2只红球,今从甲
20. 设随机变量服从正态分布,求随机变量的概率密度函数.
第三章练习题
1. 设随机变量和的联合分布律如下表:
01
0
1
(1)求随机变量和的边缘分布律;(2)问随机变量和是否 相互独立? (3)求.
2.设服从参数为的指数分布,随机变量
求与的联合分布律。 3. 设有下表
X Y0 0 1
试求与的联合分布律及。 4. 设随机变量与的联合密度为 试判定与是否独立。
1. 随机地取8只活塞环,测得它们的直径为(以㎜计): 试求总体均值均值及方差的矩估计. 2. 设滚珠轴承直径服从正态分布,从某天的产品里随机的抽出5个,量 得直径(单位㎜)如下:14.6,15.1,14.9,15.2,15.1。若知道直径 的方差是0.05,试找出平均直径的置信度为0.05的置信区间。(已知 3. 设有一批零件,其长度~,为了估计参数今从中抽取9件,测得样本 均值,样本方差,求的置信度为95%的置信区间.() 4. 设总体的概率密度,其中未知参数为α.,设为其样本值,试求α的 极大似然估计和矩估计, 5. 设总体的概率密度,其中为未知参数,是总体的样本值,求的极大 似然估计。 6. 设是来自参数为的指数分布的总体的概率密度,其中未知参数为, 试求的极大似然估计和矩估计。 7. 总体的概率分布为
电阻
15 18 19 21 22.6 23.6 26
求关于的线性回归方程,计算用到的中间数据为:
台确实发出信号“__”的概率.
2. 甲乙丙车间生产同一种螺钉,每个车间产量分别占产量的
25%,35%,40%,若每个车间成品中的次品率分别占产量的
5%,4%,2%,
(1)全部产品中任意抽出一螺钉,试问它是次品的概率是多
少?
(2)全部产品中任意抽出恰好是次品 ,试问这个次品是甲车间
生产的概率是多少
3. 在电源电压不超过200V、200-240V、超过240V三种情况下,某电子
第四章练习题
1. 假设10只同种元件中有2只次品,从中任取一只,若是次品,则扔掉 重取一只;若仍是次品,则扔掉再取一只。试求在取到正品前,取出的 次品数的分布律及方差。 2. 设流水线上生产的某零件内径,已知销售利润与内径有如下关 系:
求销售一个零件的平均利润。
3. 设随机变量的概率密度为,已知,求:(1)的值; (2).
而由公式得
13. 设随机变量的概率密度函数为的概率密度函数
解:当时:
Hale Waihona Puke 当时:所以:例14. 设X~的概率密度,
解 当时,
15. 已知随机变量的概率密度函数则的分布函数
( 解:随机变量的分布函数 当 当 故的分布函数 16.设随机变量的概率密度函数为求随机变量的概率密度函数 解:由定义有: 故所求的概率密度函数 17. 设~的概率密度,(2)求的概率密度, 18. 设,,试求的概率密度。 19. 设 ,,试求的概率密度。
元件损坏的概率分别为0.1、0.001、0.2,假设电压,试求电子元件损坏
的概率()。
4.
三人同时向一敌机独立射击,击中的概率都是0.5,一人击中
vvvvvvvvvvvvvvv,敌机被击落的概率为0.2;二人击中,敌机被击
落的概率为0.6;三人击中,敌机必被击落,试求敌机被击落的概率。
5. 人们为了解一只股票未来一定时期内价格的变化,往往会
0.512
问在显著性水平下,检验机器是否正常? (,)
2. 某批矿砂的5个样品中的镍含量,经测定为(%):3.25,3.27, 3.24,3.26,3.24;设测定值总体服从正态分布,问在下能否接受假 设:这批矿砂的镍含量均值为3.25。( 3. 设考生成绩服从正态分布,抽得36位考生成绩,平均分为66.5分, 标准差为15分,问在水平0.05下,是否可认为平均成绩为70分?给出检 验过程。参考数据如下表所示。(1998考研数学1)
第二章练习题
1. 设连续型随机变量的分布函数为 其中试求(1)常数,(2)求(3)求的概率密度 2 设随机变量~求:(1)常数,(2) 的分布函数,(3)落在区间的概 率。 3 设随机变量的概率密度试求(1)随机变量落在区间内的概率,(2) 的分布函数
4. 设随机变量的概率密度为试求(1)系数的分布函数,(3)内的概 率。 5. 用表示某商店从早晨开始营业起到第一个顾客到达的等待时间(以 分计),的分布函数是 (1)求 (2)求(3)求概率密度 6. 已知的概率密度为试求(1)未知系数,(2) 的分布函数(3) 落在区间内 取值的概率。
1
2
1
0
2
1
(1) 求的边缘分布律。 (2)求的条件下的条件分布律及的条件下的条件分布律。
13. 设令求的联合概率分布。 在一只箱子中有12只开关,其中2只是次品,在其中取两次,每次任取一 只,考虑两种试验:(1)放回抽样;(2)不放回抽样,我们定义随机变 , 如下:
试分别就(1)、(2)两种情况,写出和的联合分布律.并问随机变量 和是 否相互独立?
1 1
5. 设二维随机变量的概率密度为(1)求随机变量的密度 (2)求概 率,
解:(1)当时, 例4图 当时, 故 (2)如图 6. 一仪器由二个部件构成,以和分别表示二个部件的寿命(单位:千 小时),已知和的联合分布函数(1990考研数学4) (1)与是否独立?(2)两个部件的寿命都超过100小时的概率 7. 设随机变量 的概率密度函数为:(1)求,(2)问是否相互独立? 8. 设二维随机变量的概率密度函数为(1)求常数的边缘概率密度。 (3) 9. 设随机变量的联合密度 试求(1)常数;(2) 10.随机变量的分布函数为=. 求:(1)的概率密度;(2)边缘概率密度.(3)随机变量与是否独 立? 11. 设二维随机变量的概率密度函数为 = 求边缘概率密度. 12. 设二维随机变量的概率分布如下表:
4. 一工厂生产的某种设备的寿命(以年计)服从指数分布,概率密度为 工厂规定,出售的设备若在售出一年之内损坏可予以调换,若工厂售出 一台设备获毛利100元,调换一台设备厂方需化费300元.试求厂方出售 一台设备净赢利的数学期望. 5. 设随机变量的概率密度分别为:求.(2)又设相互独立,求 6. 设随机变量相互独立,其概率率密度分别为:求 7. 设随机变量的概率密度为求: 8. 设随机变量服从某一期间上的均匀分布,且 (1)求的概率密度。(2)求;(3)求 9. 设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天就 停止工作,若一周5个工作日里无故障,可获利润10万元,发生一次故 障仍可获利润5万元,发生二次故障可获利润0万元,发生三次或三次以 上故障就要亏损2万元,求一周内期望利润是多少?
0.95 0.975
35
1.68962.0301
36
1.68832.0282
4. 设在木材中抽出100根,得到样本平均数为问该批木材的直径能否认
为在12㎝以上?(已知标准正态分布函数。
第九章练习题
1. 在钢线碳含量对于电阻的效应研究中,得如下数据: 碳含量(%) 0.1 0.3 0.40 0.55 0.70 0.80 0.95
7. 设连续型随机变量的概率密度为
,
学院
专业
姓名
任课教师姓名
班级
学号
密
封
线
内
不
得
答
题
求:(1)未知系数;(2)的分布函数;(3)的概率。
8. 设随机变量的分布函数为
,试求:
学院
专业
班级
姓名
任课教师姓名
学号
密
封
线
内
不
得
答
题
(1)常数的值;(2);
(3)概率密度;(4)。
9设随机变量的概率密度为:试求:(1)系数的分布函数。
第五章练习题
1. 设总体~均未知,已知样本容量,样本均值 解:由于未知,需用统计量,由104页定理4, 2.在正态总体中抽取2个独立样本,样本均值分别为,又样本容量分别 为10,15,则理工大02级试题)
注:~~独立。, 3.在正态总体中抽取16个独立样本,均未知,为样本方差,则 注:
第六章练习题
0
1
2
3
其中是未知参数,利用总体的如下样本值3,1,3,0,3,1,2,3。求 的极大似然估计和矩估计 8. 设总体~,样本观察值: 求总体均值的置信度为0.95的置信区间 (1)已知 (2)未知 9. 设总体~,现从总体取得容量为4的样本值:1.2, 3.4, 0.6, 5.6, (1)若已知,求μ的置信水平为99%的置信期间2)若已知σ未知,求 μ的置信水平为95%的置信期间。 10. 设是取自总体的样本,试证明:样本方差是未知参数的无偏估计 量。 11. 设 0.5,1.25,0.80,2.00是来自总体的样本值,已知,