抛物线中的切线问题

合集下载

抛物线切线方程

抛物线切线方程

抛物线切线方程抛物线是数学中一个重要的曲线形式,它具有许多特殊的性质和应用。

其中之一是切线方程,用于描述曲线上某点的切线。

下面我们将介绍抛物线切线方程的相关知识。

在数学中,抛物线是一个二次方程的图像,其一般形式可以表示为y = ax^2 + bx + c,其中a,b,c是常数,并且a不等于零。

抛物线通常具有对称轴,对称轴与抛物线的方程有关。

现在考虑抛物线上的一点P(x, y),我们想要找到抛物线在该点的切线方程。

首先,我们需要计算点P处的切线斜率。

切线斜率可以通过求导数来获得,即对抛物线方程y = ax^2 + bx + c进行求导。

求导后的结果是y' = 2ax + b,表示了抛物线在每个点处的切线斜率。

那么点P处的切线斜率就是斜率函数在x = P的值。

将x = P 代入斜率函数,得到切线斜率m = 2aP + b。

现在我们可以使用点斜式方程来建立切线方程。

点斜式方程的一般形式是y - y_1 = m(x - x_1),其中(x_1,y_1)是给定的点,m是切线的斜率。

根据我们之前的计算,切线方程可以写为y - y = (2aP + b)(x - x)。

简化后得到y = (2aP + b)x - 2aPx + y。

进一步简化方程,得到y = 2aPx + (2aP + b)(x - x)。

由于我们已经知道点P的坐标为(x,y),所以可以将这些值代入方程中,得到最终的抛物线切线方程为y = 2aPx + (2aP + b)(x - x)。

这就是抛物线在任意点P(x,y)处的切线方程。

通过这个方程,我们可以计算抛物线在给定点处的切线。

总结起来,抛物线切线方程的求解思路如下:1. 求导,得到斜率函数y' = 2ax + b;2. 计算切线斜率,代入点P的横坐标x;3. 使用点斜式方程,代入点P坐标和切线斜率。

在实际问题中,抛物线切线方程的应用非常广泛。

它可以用于解决物理问题、工程问题和计算问题等。

抛物线的切线方程推导

抛物线的切线方程推导

抛物线的切线方程推导
抛物线y^2=4ax是二次函数,它与直线y=mx+k形成了交叉点。

令f(x)=mx+k,则有以下几个点,(a, 0),(0, k),和(–a, 0);一般来说,m代表抛物线的斜率。

又因为抛物线f(x)=y^2=4ax的导数为dy/dx=2ay, 所以当a!=0 时,我们可以利用导数的概念对抛物线f(x)的切线进行求解。

随后我们可以确定该切线的斜率 m = dy/dx = 2ay, 并考虑得到该切线的方程:
y-y0=2ay(x-x0)
其中,(x0,y0)为抛物线上任一点。

若我们定义:y2=2ay0,又有(x0,y0)=(a,0), 则可以得出:
y-0=2ay(x-a),即y=2ax。

可见,当a 不等于0时,抛物线y^2=4ax在y轴上的切线方程为y=2ax。

以上就是抛物线y^2=4ax的切线方程的推导过程,而它的核心根据的便是对抛物线y^2=4ax的斜率的求解,最后当a不等于0时,抛物线y^2=4ax的切线方程表达式可以确定为 y=2ax。

抛物线外一点做两条切线轨迹方程

抛物线外一点做两条切线轨迹方程

抛物线外一点做两条切线轨迹方程1. 概述抛物线是数学中常见的一种曲线,其在物理学、工程学、计算机图形学等领域有着广泛的应用。

抛物线外一点做两条切线是一个经典的问题,其涉及到抛物线的性质和切线的几何关系。

本文将探讨抛物线外一点做两条切线的轨迹方程,希望能够为读者对此问题的理解提供一些帮助。

2. 抛物线的一般方程一般来说,抛物线的一般方程可以表示为:\[y = ax^2 + bx + c \]其中a、b、c为常数且a不为0。

抛物线的顶点坐标为(-b/2a, c - b^2/4a)。

3. 抛物线外一点做两条切线的条件对于给定的抛物线和一点P(x, y)外,我们希望找到通过点P的两条切线。

根据几何性质,抛物线外一点做两条切线的条件为:点P到抛物线的切线长度相等。

设点P到抛物线的距离为d,则点P到抛物线的两个切点为A和B,过点P作AB的垂线交抛物线于C和D,则PC=PD。

4. 推导轨迹方程我们可以找到切线的一般方程。

设抛物线的方程为y = f(x),点P的坐标为(x, y),则点P到抛物线的距离 \[d = \frac{|y - f(x)|}{\sqrt{1 +f'(x)^2}} \] 其中f'(x)为抛物线的导数。

根据切线的性质,切线的斜率为f'(x)。

由上式我们得到\[d = \frac{|y - f(x)|}{\sqrt{1 + f'(x)^2}} = \frac{|ax^2 + bx + c -f(x)|}{\sqrt{1 + f'(x)^2}} \]根据点到直线的距离公式,我们知道点P到抛物线的切线的距离为d,于是我们得到抛物线外一点做两条切线的轨迹方程。

5. 结论通过以上推导,我们得到了通过抛物线外一点的两条切线的轨迹方程。

这个问题的解决不仅涉及到抛物线的性质,也考虑到切线的几何特性。

抛物线作为数学中的经典曲线,在这个问题中展现了其独特的魅力。

希望读者通过本文能够对抛物线外一点做两条切线的轨迹方程有一个更清晰的认识。

抛物线中的切线问题(推荐完整)

抛物线中的切线问题(推荐完整)
过 A, B 两点的直线方程。(直线 AB 用 x0、y0 的形
式表示)
. .
变式 3 如图,设抛物线方程为 x2 2 py( p 0) ,
M(x0,y0)为 x2 2 py 外任意一点,过 M 引抛物线
的两条切线,切点分别为 A(x1,y1), B(x2,y2).求
过 A, B 两点的直线方程 为: x0 x p( y y0 )



x2
x1x0 x2 x0

p( x12 2p
p( x22 2p

y0 ) y0 )
A、M、B三点的横坐标成等差数列
变式 3 如图,设抛物线方程为 x2 2 py( p 0) ,
M(x0,y0)为 x2 2 py 外任意一点,过 M 引抛物线
的两条切线,切点分别为 A(x1,y1), B(x2,y2).求
抛物线中的切线问题
例题:(山东高考)如图,设抛物线方程为
x2 2 py( p 0) , M 为直线 y 2 p 上任意 一点,过 M 引抛物线的切线,切点分别为 A,B . 求证: A,M,B三点的横坐标成等差数列
变式 1:如图,设抛物线方程为 x2 2 py( p 0) ,
xx0 yy0 r2
2. 设P(x0,
y0
)为椭圆
x2 a2

y2 b2
1上的点,则过该点的切线方程为:
xx0 a2
ቤተ መጻሕፍቲ ባይዱ
yy0 b2
1
3. 设P(
x0
,
y0
)为双曲线
x2 a2

y2 b2
1上的点,则过该点的切线方程为:
xx0 yy0 1

抛物线中的切线问题(解析版)

抛物线中的切线问题(解析版)

抛物线中的切线问题一、考情分析对于抛物线特别是抛物线x 2=2py p ≠0 ,可以化为函数y =x 22p,从而可以借组导数研究求性质,这种关联使得可以把抛物线与导数的几何意义交汇,这是圆锥曲线中的一大亮点,也是圆锥曲线解答题的一个热点.二、解题秘籍(一)利用判别式求解抛物线中的切线问题求解直线抛物线相切问题,可以把直线方程与抛物线方程联立整理成一个一元二次方程,然后利用Δ=0求解.【例1】(2023届河南省新未来高三上学期联考)已知抛物线C :y 2=2px p >0 ,直线l 1,l 2都经过点P -p2,0 .当两条直线与抛物线相切时,两切点间的距离为4.(1)求抛物线C 的标准方程;(2)若直线l 1,l 2分别与抛物线C 依次交于点E ,F 和G ,H ,直线EH ,FG 与抛物线准线分别交于点A ,B ,证明:PA =PB .【解析】(1)设经过点P -p 2,0 的直线为l :y =k x +p2 ,由y 2=2px y =k x +p 2消去y ,得k 2x 2+k 2-2 px +k 2p 24=0,Δ=k 2-2 2p 2-4×k 2⋅k 2p 24=4p 2-k 2+1 ,当直线l 与抛物线C 相切时,Δ=0,∵p >0,∴k =±1,所以x 2-px +p 24=0,解得x =p 2,∴切点为p 2,p ,p 2,-p ,又∵两切点间的距离为4,∴2p =4,即p =2,∴抛物线C 的标准方程为y 2=4x ;(2)设点E x 1,y 1 ,F x 2,y 2 ,G x 3,y 3 ,H x 4,y 4 ,设直线l 1:x =k 1y -1,直线l 2:x =k 2y -1,联立y 2=4x x =k 1y -1 消去x ,得y 2-4k 1y +4=0,则y 1y 2=4,同理,y 3y 4=4,故y 1=4y 2,y 4=4y 3,直线EH 的方程为y -y 1y 4-y 1=x -x 1x 4-x 1,令x =-1,得y A -y 1y 4-y 1=1-y 214y 244-y 214,整理得y A =y 1y 4-4y 1+y 4,同理,y B =y 2y 3-4y 2+y 3,所以y A =4y 2⋅4y 3-44y 2+4y 3=4-y 2y 3y 2+y 3=-y B ,∴PA =PB .(二)利用导数几何意义求解抛物线中的切线问题求解抛物线x 2=2py 在其上一点P x 1,y 1 处的切线方程,可先把x 2=2py 化为y =x 22p ,则y =xp,则抛物线x 2=2py 在点P x 1,y 1 处的切线斜率为x 1p ,切线方程为y -y 1=x1px -x 1 .【例2】(2023届湖南省三湘名校教育联盟高三上学期联考)在直角坐标系xoy 中,已知抛物线C :x 2=2py p >0 ,P 为直线y =x -1上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B ,当P 在y 轴上时,OA ⊥OB .(1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值.【解析】(1)当P 在y 轴上时,即P 0,-1 ,由题意不妨设A x 0,y 0 x 0>0 则B -x 0,y 0 ,设过点P 的切线方程为y =kx -1,与x 2=2py 联立得x 2-2pkx +2p =0,由直线和抛物线相切可得Δ=4p 2k 2-8p =0,x 0x 0=x 20=2p ,所以x 0=2p 由x 20=2py 0得y 0=1,∴A 2p ,1 ,B -2p ,1 ,由OA ⊥OB 可得2p ⋅-2p +1×1=0,解得p =12,∴抛物线C 的方程为x 2=y ;(2)x 2=y ,∴y =2x ,设A x 1,y 1 ,B x 2,y 2 ,则y -y 1=2x 1x -x 1 ,又x 21=y 1,所以y -y 1=2x 1x -2y 1即2x 1x =y +y 1,同理可得2x 2x =y +y 2,又P 为直线y =x -1上的动点,设P t ,t -1 ,则2x 1t =t -1+y 1,2x 2t =t -1+y 2,由两点确定一条直线可得AB 的方程为2xt =t -1+y ,即y -1=2t x -12 ,∴直线AB 恒过定点M 12,1 ,∴点O 到直线AB 距离的最大值为OM =12 2+1=52.(三)抛物线中与切线有关的性质过抛物线焦点弦的两端点作抛物线的切线,则(1)切线交点在准线上(2)切线交点与弦中点连线平行于对称轴(3)切线交点与焦点弦的两端点连线垂直(4)切线交点与焦点连线与焦点弦垂直(5)弦AB 不过焦点即切线交点P 不在准线上时,切线交点与弦中点的连线也平行于对称轴.反之:(1)过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点,该点与焦点连线垂直于过两切点的弦(2)过准线上任一点作抛物线的切线,过两切点的弦最短时,即为通径.【例3】已知抛物线C :x 2=2py (p >0)的焦点为F ,过F 的直线l 与C 相交于A ,B 两点,PA ,PB 是C 的两条切线,A ,B 是切点.当AB ∥x 轴时,|AB |=2.(1)求抛物线C 的方程;(2)证明:|PF |2=|AF |⋅|FB |.【解析】(1)由题意,F 0,p 2 ,当AB ∥x 轴时,将y =p2代入x 2=2py 有x 2=p 2,解得x =±p ,又AB =2故2p =2,解得p =1.故抛物线C 的方程为x 2=2y .(2)由(1),设A x 1,y 1 ,B x 2,y 2 ,直线l 的方程为y =kx +12,联立抛物线方程有x 2-2kx -1=0,故x 1+x 2=2k ,x 1x 2=-1.又抛物线方程y =12x 2,故y =x ,故切线PA 的方程为y -12x 21=x 1x -x 1 ,即y =x 1x -12x 21,同理可得切线PB 的方程为y =x 2x -12x 22,联立y =x 1x -12x 21y =x 2x -12x 22可得x 1-x 2 x =12x 21-x 22 ,解得x =12x 1+x 2 ,代入y =x 1x -12x 21有y =12x 1x 1+x 2 -12x 21=12x 1x 2,代入韦达定理可得P k ,-12.故当k =0时有l ⊥PF ,当k ≠0时,因为k FP =-12-12k -0=-1k,故k FP ⋅k l =-1,也满足l ⊥PF .故l ⊥PF 恒成立.又k PA ⋅k PB =x 1x 2=-1,故PA ⊥PB .所以∠PAB +∠PBA =90∘,∠PAF +∠APF =90∘,故∠PBF =∠APF ,故Rt △PBF ∼Rt △APF ,故BFPF=PF AF ,即PF 2=AF ⋅BF ,即得证.【例4】已知直线l 过原点O ,且与圆A 交于M ,N 两点,MN =4,圆A 与直线y =-2相切,OA 与直线l 垂直,记圆心A 的轨迹为曲线C .(1)求C 的方程;(2)过直线y =-1上任一点P 作C 的两条切线,切点分别为Q 1,Q 2,证明:①直线Q 1Q 2过定点;②PQ 1⊥PQ 2.【解析】(1)如图,设A (x ,y ),因为圆A 与直线y =-2相切,所以圆A 的半径为|y +2|.由圆的性质可得|OA |2+|ON |2=|AN |2,即x 2+y 2+4=(y +2)2,化简得x 2=4y .因为O 与A 不重合,所以y ≠0,所以C 的方程为x 2=4y (y ≠0).(2)证明:①由题意可知Q 1,Q 2与O 不重合.如图,设P (t ,-1),Q 1x 1,y 1 ,则x 21=4y 1,因为y =x2,所以切线PQ 1的斜率为x 12,故x12=y 1+1x 1-t,整理得tx 1-2y 1+2=0.设Q 2x 2,y 2 ,同理可得tx 2-2y 2+2=0.所以直线Q 1Q 2的方程为tx -2y +2=0,所以直线Q1Q 2过定点(0,1).②因为直线Q 1Q 2的方程为tx -2y +2=0,由tx -2y +2=0,x 2=4y ,消去y 得x 2-2tx -4=0,所以x 1+x 2=2t ,x 1x 2=-4.又PQ 1 ⋅PQ 2=x 1-t x 2-t +y 1+1 y 2+1=x 1x 2-t x 1+x 2 +t 2+tx 1+22+1 tx 2+22+1 =x 1x 2-t x 1+x 2 +t 2+t 2x 1+2 t2x 2+2 =x 1x 2-t x 1+x 2 +t 2+t24x 1x 2+t x 1+x 2 +4=1+t24x 1x 2+t 2+4=0,所以PQ 1⊥PQ 2.三、跟踪检测1.(2023届云南省名校高三上学期月考)已知抛物线E :x 2=2py p >0 的焦点为F ,斜率为k k ≠0 的直线l 与E 相切于点A .(1)当k =2,AF =5时,求E 的方程;(2)若直线l 与l 平行,l 与E 交于B ,C 两点,且∠BAC =π2,设点F 到l 的距离为d 1,到l 的距离为d 2,试问:d1d 2是否为定值?若是,求出定值;若不是,说明理由.【解析】(1)由x 2=2py 得y =x 22p ,则y =x p,令xp =2,则x =2p ,即x A =2p ,y A =2p 22p=2p 则AF =2p +p2=5,所以p =2,故抛物线E 的方程为x 2=4y .(2)设A 2pt 0,2pt 20 ,B 2pt 1,2pt 21 ,C 2pt 2,2pt 22 ,则切线l 的斜率k =2pt 0p=2t 0,则切线l 的方程为:y -2pt 02=2t 0x -2pt 0 ,即y =2t 0x -2pt 20,k BC =2pt 12-2pt 222pt 1-2pt 2=t 1+t 2.直线l 的方程为y -2pt 21=t 1+t 2 x -2pt 1 ,化简得y =t 1+t 2 x -2pt 1t 2,因为l ∥l ,所以t 1+t 2=2t 0,由∠BAC =π2得2pt 12-2pt 022pt 1-2pt 0⋅2pt 22-2pt 022pt 2-2pt 0=-1,则t 1+t 0 t 2+t 0 =-1,即t 1t 2=-1-3t 20,即l :2t 0x -y +2p +6pt 02=0.由F 0,p 2 ,则d 1=3p 2+6pt 20 4t 20+1=3p 2+6pt 204t 20+1,d 2=-p 2-2pt 204t 20+1=p 2+2pt 204t 20+1,所以d 1d 2=3p 12+2t 20 p 12+2t 20 =3.故d1d 2是定值,定值为3.2.(2023届河南省北大公学禹州国际学校高三上学期月考)已知抛物线C 的顶点在坐标原点,焦点在y 轴的正半轴上,直线l :mx +y -1=0经过抛物线C 的焦点.(1)求抛物线C 的方程;(2)若直线l 与抛物线C 相交于A ,B 两点,过A ,B 两点分别作抛物线C 的切线,两条切线相交于点P ,求△ABP 面积的最小值.【解析】(1)由题意,设抛物线C 的方程为x 2=2py p >0 ,因为直线l :mx +y -1=0经过0,1 ,即抛物线C 的焦点F 0,p2,所以p2=1,解得p =2,所以抛物线C 的方程为x 2=4y .(2)设A x 1,y 1 、B x 2,y 2 ,联立方程组x 2=4y mx +y -1=0 ,整理得x 2+4mx -4=0,因为Δ=16m 2+16>0,且x 1+x 2=-4m ,x 1x 2=-4,y 1+y 2=x 214+x 224=x 1+x 2 2-2x 1x 24=4m 2+2,y 1y 2=x 214×x 224=-4 216=1所以AB =y 1+y 2+p =41+m 2 ,由x 2=4y ,可得y =x 24,则y =x 2,所以抛物线C 经过点A 的切线方程是y -y 1=x 12x -x 1 ,将y 1=x 214代入上式整理得y =x 12x -x 214,同理可得抛物线C 经过点B 的切线方程为y =x 22x -x 224,联立方程组y =x 12x -x 214y =x 22x -x 224,解得x =x 1+x 22,y =x 1x 24,所以x =-2m ,y =-1,所以P -2m ,-1 到直线mx +y -1=0的距离d =m ×-2m -1-1m 2+1=2m 2+1,所以△ABP 的面积S =12AB d =12×4×1+m 2 ×2m 2+1=4m 2+1 32,因为m 2+1≥1,所以S ≥4,即当m =0时,S =4,所以△ABP 面积的最小值为4.3.(2022届浙江省绍兴市高三上学期12月选考)已知抛物线C 的焦点是0,14 ,如图,过点D 22,t(t ≤0)作抛物线C 的两条切线,切点分别是A 和B ,线段AB 的中点为M .(1)求抛物线C 的标准方程;(2)求证:直线MD ⎳y 轴;(3)以线段MD 为直径作圆,交直线AB 于MN ,求|AB |-|MN ||AB |+|MN |的取值范围.【解析】(1)设抛物线的方程为x 2=2py p >0 ,由题意可得p 2=14,所以p =12,所以抛物线方程y =x 2.(2)由(1)y =x 2,因为y =2x ,设A (x 1,y 1),B (x 2,y 2),直线AD 的方程为y =2x 1x -x 21,直线BD 的方程为y =2x 2x -x 22,联立上述两直线方程,得D 点坐标D x 1+x 22,x 1x 2 ,又因为M 点为线段AB 的中点,所以M 点坐标M x 1+x 22,1-x 1x 2 ,因为x D =x M ,所以直线MD ⎳y 轴:(3)因为点D 22,t (t ≤0),所以x 1+x 22=22,x 1x 2=t ,则M 22,1-t ,圆心22,12,直线AB 的斜率为k =x 21-x 22x 1-x 2=x 1+x 2=2,直线AB 方程为y =2x -t ,y =x 2y =2x -t ,得x 2-2x +t =0,Δ=2-4t ,|AB |=1+k 2⋅Δ=6(1-2t ),圆心到直线AB 的距离为d =1-2t 23,半径r =|MD |2=1-2t2,|MN |=2r 2-d 2=63(1-2t ),令1-2t =m ≥1,|AB |-|MN ||AB |+|MN |=3-m 3+m =-1+6m +3在m ≥1时单调递减,|AB |-|MN ||AB |+|MN |∈-1,12 .4.(2022届山东省济宁市高三上学期期末)已知抛物线E :y 2=2px (p >0)上一点C 1,y 0 到其焦点F 的距离为2.(1)求实数p 的值;(2)若过焦点F 的动直线l 与抛物线交于A 、B 两点,过A 、B 分别作抛物线的切线l 1、l 2,且l 1、l 2的交点为Q ,l 1、l 2与y 轴的交点分别为M 、N .求△QMN 面积的取值范围.【解析】(1)因为点C 1,y 0 到其焦点F 的距离为2,由抛物线的定义知1+p2=2解得p =2(2)由上问可知,抛物线方程E :y 2=4x设A y 214,y 1 ,B y 224,y 2,(y 1≠0,y 2≠0),设l :x =ty +1,联立y 2=4x x =ty +1 ,得y 2-4ty -4=0,判别式Δ=16t 2+16>0,故t ∈R y 1+y 2=4t ,y 1y 2=-4设l 1:y -y 1=k x -y 214联立方程组y 2=4xy -y 1=k x -y 214,消x 得ky 2-4y +4y 1-ky 21=0,所以Δ=16-4k 4y 1-ky 21 =44-4ky 1+k 2y 21 =0所以k =2y 1则l 1:y -y 1=2y 1x -y 214,即y =2y 1x +y 12,令x =0,得M 0,y 12,同理l 2:y =2y 2x +y 22,N 0,y 22,联立y =2y 1x +y12y =2y 2x +y 22,得交点Q 的横坐标为x Q =y 1y 24=-1,∴S △QMN =12MN ⋅x Q =12y 12-y 22×1=14y 1+y 2 2-4y 1y 2=t 2+1≥1∴△QMN 面积的取值范围是1,+∞ .5.(2022届百校联盟高三上学期12月联考)已知曲线C 上任意一点到F 1(-1,0),F 2(1,0)距离之和为433,抛物线E :y 2=2px 的焦点是点F 2.(1)求曲线C 和抛物线E 的方程;(2)点Q x 0,y 0 x 0<0 是曲线C 上的任意一点,过点Q 分别作抛物线E 的两条切线,切点分别为M ,N ,求△QMN 的面积的取值范围.【解析】(1)依题意,曲线C 是以F 1(-1,0),F 2(1,0)为左右焦点,长轴长为433的椭圆,则短半轴长b 有b 2=232-12=13,曲线C 的方程为:x 243+y 213=1,即3x 24+3y 2=1,在y 2=2px 中,p 2=1,即p =2,所以曲线C 的方程为:3x 24+3y 2=1,抛物线E 的方程为:y 2=4x .(2)显然,过点Q 的抛物线E 的切线斜率存在且不为0,设切线方程为:y -y 0=k (x -x 0),由y -y 0=k (x -x 0)y 2=4x消去x 并整理得:k4⋅y 2-y +y 0-kx 0=0,依题意,Δ=1-k (y 0-kx 0)=x 0k 2-y 0k +1=0,设二切线斜率为k 1,k 2,则k 1+k 2=y 0x 0,k 1k 2=1x 0,设斜率为k 1的切线所对切点M (x 1,y 1),斜率为k 2的切线所对切点N (x 2,y 2),因此,y 1=2k 1,y 2=2k 2,于是得M 1k 21,2k 1 ,N 1k 22,2k 2 ,NM =1k 21-1k 22,2k 1-2k 2,直线MN 上任意点P (x ,y ),MP =x -1k 21,y -2k 1,由MP ⎳NM 得:2k 1-2k 2 x -1k 21 -1k 21-1k 22y -2k 1 =0,化简整理得:2x -k 1+k 2k 1k 2y +2k 1k 2=0,则直线MN 的方程为:2x -y 0y +2x 0=0,点Q 到直线MN 的距离d =|4x 0-y 20|4+y 2,|MN |=1k 21-1k 222+2k 1-2k 2 2=1k 1-1k 2 21k 1+1k 22+4 =k 1+k 2k 1k 22-4k 1k 2k 1+k 2k 1k 2 2+4 =(y 20-4x 0)(y 20+4),则△QMN 的面积S △QMN =12|MN |⋅d =12⋅(y 20-4x 0)(y 20+4)⋅|4x 0-y 20|4+y 20=12(y 20-4x 0)32,而点Q x 0,y 0 x 0<0 在曲线C 上,即y 20=13-14x 20,-23≤x 0<0,y 20-4x 0=-14x 20-4x 0+13在x 0∈-23,0 上单调递减,当x 0=0时,(y 20-4x 0)min =13,当x 0=-23时,(y 20-4x 0)max =83,于是有13<y 20-4x 0≤83,则39<(y 20-4x 0)32≤164123,有318<S △QMN ≤84123所以△QMN 的面积的取值范围是318,84123.6.(2022届四川省达州高三上学期诊断)过定点0,1 的动圆始终与直线l :y =-1相切.(1)求动圆圆心的轨迹C 的方程;(2)动点A 在直线l 上,过点A 作曲线C 的两条切线分别交x 轴于B ,D 两点,当△ABD 的面积是32时,求点A 坐标.【解析】(1)设动圆圆心坐标为x ,y ,因为过定点0,1 的动圆始终与直线l :y =-1相切,可得-x 2+y -1 2=y +1 ,化简得x 2=4y ,即动圆圆心的轨迹方程C :x 2=4y .(2)设动点A x 0,-1 ,根据题意过点A 作曲线C 的切线斜率存在,设为k k ≠0 ,所以切线方程为y =k x -x 0 -1,联立方程组x 2=4y ,y =k x -x 0 -1 ,整理得x 2-4kx +4kx 0+4=0,且Δ=k 2-kx 0-1=0,因为k 2-kx 0-1=0有两不等实根,所以有两条切线,斜率分别设为k 1,k 2,所以k 1+k 2=x 0,k 1k 2=-1,切线y =k 1x -x 0 -1交x 轴于点B x 0+1k 1,0 ,切线y =k 2x -x 0 -1交x 轴于点D x 0+1k 2,0 ,所以S △ABD =12x 0+1k 1-x 0-1k 2×1=12k 2-k 1k 1k 2=12k 1+k 22-4k 1k 2k 1k 2=32,即12x 02+41=32,解得x 0=±5,所以点A 坐标为5,-1 或-5,-1 .7.(2022届四川省成都市高三上学期考试)已知抛物线C :x 2=2py p >0 的焦点为F .且F 与圆M :x 2+y +42=1上点的距离的最小值为4.(1)求抛物线的方程;(2)若点P 在圆M 上,PA ,PB 是C 的两条切线.A ,B 是切点,求△PAB 面积的最大值.【解析】(1)抛物线C 的焦点为F 0,p 2 ,FM =p2+4,所以,F 与圆M :x 2+(y +4)2=1上点的距离的最小值为p2+4-1=4,解得p =2;所以抛物线的方程为x 2=4y .(2)抛物线C 的方程为x 2=4y ,即y =x 24,对该函数求导得y =x 2,设点A x 1,y 1 ,B x 2,y 2 ,P x 0,y 0 ,直线PA 的方程为y -y 1=x 12x -x 1 ,即y =x 1x2-y 1,即x 1x -2y 1-2y =0,同理可知,直线PB 的方程为x 2x -2y 2-2y =0,由于点P 为这两条直线的公共点,则x 1x 0-2y 1-2y 0=0x 2x 0-2y 2-2y 0=0,所以,点A 、B 的坐标满足方程x 0x -2y -2y 0=0,所以,直线AB 的方程为x 0x -2y -2y 0=0,联立x 0x -2y -2y 0=0y =x 24,可得x 2-2x 0x +4y 0=0,由韦达定理可得x 1+x 2=2x 0,x 1x 2=4y 0,所以AB =1+x 022⋅x 1+x 22-4x 1x 2=1+x 022⋅4x 20-16y 0=x 20+4 x 20-4y 0点P 到直线AB 的距离为d =x 20-4y 0x 2+4,所以,S △PAB =12AB ⋅d =12x 20+4 x 20-4y 0 ⋅x 20-4y 0x 20+4=12x 20-4y 0 32,∵x 20-4y 0=1-y 0+4 2-4y 0=-y 20-12y 0-15=-y 0+6 2+21,由已知可得-5≤y 0≤-3,所以,当y 0=-5时,△PAB 的面积取最大值12×2032=205.8.(2022届山西省怀仁市高三上学期期中)已知抛物线C :y 2=2px p >0 的焦点为F ,准线与x 轴交于D点,过点F 的直线与抛物线C 交于A ,B 两点,且FA ⋅FB =FA +FB .(1)求抛物线C 的方程;(2)设P ,Q 是抛物线C 上的不同两点,且PF ⊥x 轴,直线PQ 与x 轴交于G 点,再在x 轴上截取线段GE =GD ,且点G 介于点E 点D 之间,连接PE ,过点Q 作直线PE 的平行线l ,证明l 是抛物线C 的切线.【解析】(1)解:设过点F 的直线方程为y =k x -p2,A x 1,y 1 ,B x 2,y 2 ,联立y =k x -p2 y 2=2px,得k 2x 2-pk 2+2p x +k 2p 24=0,则x 1+x 2=pk 2+2p k 2,x 1⋅x 2=p 24,所以FA +FB =x 1+p 2+x 2+p 2=2pk 2+2pk 2,FA ⋅FB =x 1+p 2 x 2+p 2 =p 22+p 2k 2+2 2k 2,因为FA ⋅FB =FA +FB ,所以2pk 2+2p k 2=p 22+p 2k 2+2 2k 2,化简得p 2-2p 1+1k2 =0,所以p =2,当过点F 的直线斜率不存在时,则FA =FB =p ,故FA +FB =2p ,FA ⋅FB =p 2,又因为FA ⋅FB =FA +FB ,则p 2=2p ,所以p =2,综上所述,p =2,所以y 2=4x ;(2)证明:不妨设点P 在第一象限,则P 1,2 ,D -1,0 ,F 1,0 ,设直线PQ 的方程为y -2=m x -1 ,m ≠0,Q x 3,y 3 ,联立y -2=m x -1 y 2=4x ,消元整理得m 24y 2-y -m +2=0,则2+y 3=4m ,即y 3=4-2mm 故x 3=2-m 2m 2,即Q 2-m 2m 2,4-2m m,当y =0时,x =-2m +1,则G -2m+1,0 ,又因GE =GD ,且点G 介于点E 点D 之间,则G 为DE 的中点,所以E -4m+3,0 ,则直线PE 的斜率为24m-2=m2-m ,因为直线PE 平行直线l ,所以直线l 的斜率为m2-m,故直线l 的方程为y -4-2m m =m 2-m x -2-m 2m 2,即y =m 2-m x +2-m m ,联立y =m 2-m x +2-mm y 2=4x,消元整理得m 42-m y 2-y +2-m m =0,Δ=1-4×m 42-m⋅2-mm =0,所以直线l 与抛物线只有一个交点,有直线l 斜率不为0,所以l 是抛物线C 的切线.9.已知抛物线C :x 2=2py ,点M -4,4 在抛物线C 上,过点M 作抛物线C 的切线,交x 轴于点P ,点O 为坐标原点.(1)求P 点的坐标;(2)点E 的坐标为-2,-1 ,经过点P 的直线交抛物线于A ,B 两点,交线段OM 于点Q ,记EA ,EB ,EQ 的斜率分别为k 1,k 2,k 3,是否存在常数λ使得k 1+k 2=λk 3.若存在,求出λ的值,若不存在,请说明理由.【解析】(1)因为M -4,4 在抛物线C 上,所以-4 2=8p ,所以p =2所以抛物线C 的方程为x 2=4y ,即y =14x 2,则y =12x ,所以切线的斜率为12×(-4)=-2,所以过点M 的切线方程为y =-2x +4 +4,即y =-2x -4联立y =-2x -4y =0,解得P 点的坐标为-2,0(2)由题意可知过点P 的直线的斜率存在,设为y =kx +2k ,线段OM 所在的直线为y =-x ,联立y =kx +2k y =-x,解得Q 点坐标为-2k k +1,2kk +1,所以k 3=2k k +1+1-2k k +1+2=3k +12设A x 1,x 214 ,B x 2,x 224,联立y =kx +2kx 2=4y ,得x 2-4kx -8k =0,所以x 1+x 2=4k ,x 1x 2=-8k .则k 1+k 2=x 214+1x 1+2+x 224+1x 2+2=14x 1x 2x 1+x 2 +x 1+x 2 +12x 21+x 22 +4x 1x 2+2x 1+x 2 +4=-8k 2+4k +1216k 2+16k +4-8k +8k +4=12k +44=3k +1所以k 1+k 2=2k 3,即存在λ=2满足条件.10.如图,已知A x 1,y 1 、B x 2,y 2 为二次函数y =ax 2(a >0)的图像上异于顶点的两个点,曲线y =ax 2在点A x 1,y 1 、B x 2,y 2 处的切线相交于点P x 0,y 0 .(1)利用抛物线的定义证明:曲线y =ax 2上的每一个点都在一条抛物线上,并指出这条抛物线的焦点坐标和准线方程;(2)求证:x 1、x 0、x 2成等差数列,y 1、y 0、y 2成等比数列;(3)设抛物线y =ax 2焦点为F ,过P 作PH 垂直准线l ,垂足为H ,求证:∠BPH =∠APF .【解析】(1)证明:令F 0,14a ,直线l :y =-14a,曲线y =ax 2上任意一点P x 0,ax 02,又a >0,则点P x 0,ax 02 到直线l 的距离d =ax 02+14a,则PF =x 02+ax 02-14a 2=x 02+ax 02 2-x 022+14a 2=ax 02 2+x 022+14a 2=ax 02+14a 2=ax 02+14a =ax 02+14a=d ,即曲线y =ax 2上任意一点到点F 0,14a 的距离与到直线l :y =-14a的距离相等,且点F 0,14a 不在直线l :y =-14a上,所以曲线y =ax 2上的每一个点都在一条抛物线上,抛物线的方程即为y =ax 2,焦点坐标为F 0,14a,准线方程为y =-14a;(2)解:对于y =ax 2,则y =2ax ,所以y |x =x 1=2ax 1,y |x =x 2=2ax 2,即过点A x 1,y 1 、B x 2,y 2 的切线方程分别为y -y 1=2ax 1x -x 1 、y -y 2=2ax 2x -x 2 ,又y 1=ax 12,y 2=ax 22,所以y =2ax 1x -ax 12、y =2ax 2x -ax 22,由y =2ax 1x -ax 12y =2ax 2x -ax 22 ,解得x =x 1+x 22y =ax 2x 1,即P x 1+x 22,ax 2x 1 ,即x 0=x 1+x 22,y 0=ax 2x 1,又y 02=a 2x 22x 12=y 1⋅y 2,所以x 1、x 0、x 2成等差数列,y 1、y 0、y 2成等比数列;(3)解:由(2)可知k BP =2ax 2,k AP =2ax 1,F 0,14a ,所以k PF =y 0-14ax 0=ax 2x 1-14a x 1+x 22,如图,设AP ,PF ,PB 与x 轴分别交于点C 、D 、E ,则tan ∠ACx =2ax 1,tan ∠BEx =2ax 2,tan ∠FDx =ax 2x 1-14ax 1+x 22,又∠BPH =π2-π-∠BEx =∠BEx -π2,∠FPA =∠FDx -∠ACx ,所以tan ∠BPH =tan ∠BEx -π2 =-1tan ∠BEx=-12ax 2,tan ∠FPA =tan ∠FDx -∠ACx =tan ∠FDx -tan ∠ACx1+tan ∠FDx tan ∠ACx=ax 2x 1-14a x 1+x 22-2ax11+ax 2x 1-14a x 1+x 22⋅2ax 1=ax 2x 1-14a -2ax 1⋅x 1+x 22x 1+x 22+ax 2x 1-14a ⋅2ax 1=-14a-ax 12x 1+x 22+2a 2x 12x 2-x 12=-14a -ax 12x 22+2a 2x 12x 2=-14a-ax 1212x 2+4a 2x 12x 2 =-1+4a 2x 12 2ax 21++4a 2x 12 =-12ax 2,即tan ∠BPH =tan ∠FPA ,所以∠BPH =∠FPA ;11.已知抛物线x 2=2py (p >0)上的任意一点到P (0,1)的距离比到x 轴的距离大1.(1)求抛物线的方程;(2)若过点(0,2)的直线l 与抛物线交于A ,B 两点,过A ,B 两点分别作抛物线的切线,两条切线交于点Q ,求△QAB 重心G 的轨迹方程.【解析】(1)由抛物线的定义可得p =2,∴抛物线的方程为x 2=4y ;(2)由题意可得直线AB 的斜率存在,设其为k ,设A x 1,y 1 ,B x 2,y 2 ,则直线AB 的方程为y =kx +2;代入抛物线方程得x 2-4kx -8=0,则有x 1+x 2=4k ,x 1x 2=-8,∵y =x 24,∴y=x 2,∴l AQ :y -y 1=x 12x -x 1 ,即y =x 12x -x 214①同理可得l BQ :y =x 22x -x 224②,①-②有x 1-x 22 x =x 21-x 224,得x Q =x 1+x 22=2k ,∴y Q =kx 1-x 214=kx 1-y 1=-2.∴Q (2k ,-2)又y 1+y 2=k x 1+x 2 +4=4k 2+4,设G (x ,y ),则x =x 1+x 2+x Q3=2ky =y 1+y 2+y Q 3=4k 2+23,消k 得y =x 2+23,所以G 的轨迹方程为y =13x 2+23.12.已知抛物线C :x 2=2py p >0 的焦点为F ,点P -2,y 0 为抛物线上一点,抛物线C 在点P 处的切线与y 轴相交于点Q ,且△FPQ 的面积为2.(1)求抛物线的方程.(2)若斜率不为0的直线l 过焦点F ,且交抛物线C 于A ,B 两点,线段AB 的中垂线与y 轴交于点M ,证明:MF AB为定值.【解析】(1)将P -2,y 0 代入x 2=2py 得,y 0=2p 设抛物线的切线方程为y =k (x +2)+2p,代入x 2=2py 整理得:x 2-2pkx -(4pk +4)=0由题知Δ=4p 2k 2+4pk +4=0,解得k =-2p又y Q =2k +2p ,所以FQ =p 2-2k -2p 所以S △FPQ =p 2-2k -2p =p 2+2p=2,解得p =2所以抛物线C 的方程为x 2=4y(2)记AB 中点为N ,A (x 1,y 1),B (x 2,y 2),N (x 3,y 3)设直线AB 方程为y =mx +1,代入x 2=4y 整理得:x 2-4mx -4=0,则x 1+x 2=4m ,x 1x 2=-4所以AB =m 2+1(x 1+x 2)2-4x 1x 2=4(m 2+1)因为N 为AB 中点,所以x 3=x 1+x 22=2m ,y 3=2m 2+1所以直线MN 的方程为y -(2m 2+1)=-1m(x -2m )则y M =2m 2+3所以MF =2m 2+2所以MF AB =2m 2+24(m 2+1)=1213.(2022届新未来4月联考)已知直线l :x -ky +k -1=0与抛物线C :y 2=2px (p >0)交于A ,B 两点,过A ,B 两点且与抛物线C 相切的两条直线相交于点D ,当直线l ⊥x 轴时,|AB |=4.(1)求抛物线C 的标准方程;(2)求|OD |的最小值.【解析】(1)当直线l ⊥x 轴时,x =1,代入y 2=2px 解得y =±2p ,∴|AB |=22p =4,得p =2,∴抛物线C 的标准方程为y 2=4x ;(2)设A x A ,y A ,B x B ,y B ,D x D ,y D .联立x -ky +k -1=0,y 2=4x ,得y 2-4ky +4k -4=0.∴y A +y B =4k ,y A ⋅y B =4k -4①,∵直线l :x -ky +k -1=0恒过点(1,1),且与抛物线有两个交点,点(1,1)在抛物线上,∴k ≠0,当直线AD 和直线BD 斜率存在时,设直线AD :y =mx +n ,联立y =mx +n ,y 2=4x ,∴my 2-4y +4n =0,Δ=16-4m ⋅4n =0,∴m ⋅n =1,∴y A =2m ,同理,设直线BD :y =ax +b ,则ab =1,y B =2a,联立y =mx +n ,y =ax +b , ∴x D =1am ,y D =1a +1m.由①可知2m +2a =4k ,2m ⋅2a =4k -4,∴1m +1a -2ma=2,即y D -2x D =2,∴点D 在直线2x -y +2=0上.当直线AD 或直线BD 斜率不存在时,即直线l 过原点时,k =1,过原点的切线方程为x =0,易知另外一点为(4,4),过点(4,4)的切线方程设为x -4=t (y -4),联立x -4=t (y -4)y 2=4x,得y 2-4ty +16t -16=0,Δ=16t 2-416t -16 =0,解得t =2,即切线方程y =12x +2.此时交点D 的坐标为(0,2),在直线2x -y +2=0上,故OD 的最小值为原点到直线2x -y +2=0的距离,即25=255.14.过原点O 的直线与拋物线C :y 2=2px (p >0)交于点A ,线段OA 的中点为M ,又点P 3p ,0 ,PM ⊥OA .在下面给出的三个条件中任选一个填在横线处,并解答下列问题:①OA =46,②PM =23;③△POM 的面积为62.(1)______,求拋物线C 的方程;(2)在(1)的条件下,过y 轴上的动点B 作拋物线C 的切线,切点为Q (不与原点O 重合),过点B 作直线l 与OQ 垂直,求证:直线l 过定点.注:如果选择多个条件分别解答,按第一个解答计分.【解析】(1)由题意知直线OA 的斜率存在且不为0,设其方程为y =kx k ≠0 ,由y 2=2px ,y =kx 得x =0,y =0 或x =2p k 2,y =2p k,即O 0,0 ,A 2p k 2,2p k所以线段OA 的中点M p k 2,p k.因为PM ⊥OA ,所以直线PM 的斜率存在,k PM =p kpk 2-3p =k1-3k 2.所以k 1-3k2⋅k =-1,解得k =±22,所以直线OA 的方程为x ±2y =0,A 4p ,±22p .若选①,不妨令A 4p ,22p ,由OA =46,得4p2+22p 2=46,解得p =2(舍去p =-2),所以抛物线C 的方程为y 2=4x .若选②,因为PM ⊥OA ,PM =23,所以点P 到直线OA 的距离为23,即3p12+±2 2=23,解得p =2(舍去p =-2),所以抛物线C 的方程为y 2=4x .若选③,不妨令A 4p ,22p ,因为OM =12OA =124p 2+22p 2=6p ,点P 到直线OA 的距离PM =3p12+±22=3p ,所以S △POM =12OM ⋅PM =12×6p ×3p =62,解得p =2(舍去p =-2),所以抛物线C 的方程为y 2=4x .(2)由题意可知切线BQ 的斜率存在且不为0.设B 0,b b ≠0 ,切线BQ 的方程为y =k 1x +b ,由y =k 1x +b ,y 2=4x得k 1y 2-4y +4b =0,(*)所以Δ=-4 2-4×k 1×4b =0,解得k 1=1b,所以方程(*)的根为y =2b ,代入y 2=4x 得x =b 2,所以切点b 2,2b ,于是k OQ =2b b2=2b ,则k l =-b2,所以直线l 的方程为y =-b 2x +b ,即y =-b2x -2 ,所以当b 变化时,直线l 恒过定点2,0 .15.已知抛物线x 2=2py (y >0),其焦点为F ,抛物线上有相异两点A x 1,y 1 ,B x 2,y 2 .(1)若AF ⎳x 轴,且经过点A 的抛物线的切线经过点(1,0),求抛物线方程;(2)若p =2,且|AF |+|BF |=4,线段AB 的中垂线交x 轴于点C ,求△ABC 面积的最大值.【解析】(1)抛物线x 2=2py (y >0),焦点坐标为0,p2,因为AF ⎳x ,所以y A =p 2,所以x A =p ,又y =x 22p ,所以y =x p,所以过A 点的切线的斜率k =1,所以切线方程为y -p 2=x -p ,令y =0得x =p2=1,所以p =2,所以x 2=4y(2)若p =2,则抛物线为x 2=4y ,焦点为0,1 ,准线方程为y =-1,因为|AF |+|BF |=4,所以y A +1+y B +1=4,所以y A +y B =2,设直线AB 的方程为y =kx +m ,联立x 2=4y 得x 2-4kx -4m =0,Δ=16k 2+16m >0所以x 1+x 2=4k ,x 1x 2=-4m ,所以y 1+y 2=kx 1+kx 2+2m =4k 2+2m =2,即m =1-2k 2,所以Δ=16k 2+161-2k 2 >0,解得-1<k <1,当k =0时,直线方程为y =1,则A 2,0 ,B -2,0 ,所以AB 的中垂线恰为y 轴,则C 0,0 ,所以S △ABC =12×4×1=2,当-1<k <1,且k ≠0时,又AB 的中点坐标为x 1+x 22,y 1+y 22 =2k ,1 ,所以AB 的中垂线l 的方程为y =-1kx -2k +1,令y=0得x =3k ,所以C 3k ,0 ,所以C 到AB 的距离d =3k 2+m k 2+1,又AB=k 2+116k 2+16m ,所以S △ABC =12AB d =2k 2+m ×3k 2+m =21-k 2×1+k 2 =21-k 2 1+k 2 2令1-k 2=t ,则t ∈0,1 ,f t =t 2-t 2=t 3-4t 2+4t ,因为f t =3t 2-8t +4=t -2 3t -2 ,所以当t ∈0,23 时f t >0,f t 在0,23 上单调递增,当t ∈23,1 时f t <0,f t 在23,1 上单调递减,所以f t max =f 23 =3227所以S △ABC max =23227=869>2所以S △ABC max =86916.设抛物线C :x 2=2py (p >0)的焦点为F ,点P m ,2 (m >0)在抛物线C 上,且满足PF =3.(1)求抛物线C 的标准方程;(2)过点G 0,4 的直线l 与抛物线C 交于A ,B 两点,分别以A ,B 为切点的抛物线C 的两条切线交于点Q ,求三角形PQG 周长的最小值.【解析】(1)由抛物线定义,得PF =2+p2=3,得p =2,∴抛物线C 的标准方程为x 2=4y ;(2)设A x 1,y 1 ,B x 2,y 2 ,直线l 的方程为y =kx +4,∴联立y =kx +4x 2=4y,消掉x ,得x 2-4kx -16=0,Δ>0,∴x 1+x 2=4k ,x 1x 2=-16,设A ,B 处的切线斜率分别为k 1,k 2,则k 1=x 12,k 2=x22,∴在点A 的切线方程为y -y 1=x 12x -x 1 ,即y =x 1x 2-x 124①,同理,在B 的切线方程为y =x 2x 2-x 224②,由①②得:x Q =x 1+x 22=2k ,代入①或②中可得:y Q =kx 1-x 214=y 1-4-y 1=-4,∴Q 2k ,-4 ,即Q 在定直线y =-4上,设点G 关于直线y =-4的对称点为G ,则G 0,-12 ,由(1)知P 22,2 ,∵PQ +GQ =PQ +G Q ≥G P =251,即P ,Q ,G 三点共线时等号成立,∴三角形PQG 周长最小值为GP +G P =251+23.17.已知圆C :x 2+y -2 2=1与定直线l :y =-1,且动圆M 与圆C 外切并与直线l 相切.(1)求动圆圆心M 的轨迹E 的方程;(2)已知点P 是直线l 1:y =-2上一个动点,过点P 作轨迹E 的两条切线,切点分别为A 、B .①求证:直线AB 过定点;②求证:∠PCA =∠PCB .【解析】(1)依题意知:M 到C 0,2 的距离等于M 到直线y =-2的距离,∴动点M 的轨迹是以C 为焦点,直线y =-2为准线的抛物线,设抛物线方程为x 2=2py p >0 ,则p2=2,则p =4,即抛物线的方程为x 2=8y ,故:动圆圆心M 的轨迹E 的方程为:x 2=8y ;(2)①由x 2=8y 得:y =18x 2,∴y =14x ,设A x 1,18x 21、B x 2,18x 22 ,P t ,-2 ,其中x 1≠x 2,则切线PA 的方程为y -18x 21=x 14x -x 1 ,即y =14x 1x -18x 21,同理,切线PB 的方程为y =14x 2x -18x 22,由y =14x 1x -18x 21y =14x 2x -18x 22 ,解得x =x 1+x 22y =x 1x 28 ,∴t =x 1+x 22-2=x 1x 28,即x 1+x 2=2t x 1x 2=-16 ,∵A x 1,18x 21、B x 2,18x 22 x 1≠x 2 ,∴直线AB 的方程为y -18x 21=18x 22-18x 21x 2-x 1x -x 1 ,化简得y =x 1+x 28x -x 1x 28,即y =t4x +2,故直线AB 过定点0,2 ;②由①知:直线AB 的斜率为k AB =t4,(i )当直线PC 的斜率不存在时,直线AB 的方程为y =2,∴PC ⊥AB ,∴∠PCA =∠PCB ;(ii )当直线PC 的斜率存在时,∵P t ,-2 、C 0,2 ,∴直线PC 的斜率k PC =-2-2t -0=-4t ,∴k AB ⋅k PC =t 4×-4t=-1,∴PC ⊥AB ,∴∠PCA =∠PCB .综上所述:∠PCA =∠PCB 得证.18.设抛物线C :x 2=2py p >0 ,其焦点为F ,准线为l ,点P 为C 上的一点,过点P 作直线l 的垂线,垂足为M ,且MF =FP ,FM ⋅FP=2.(1)求抛物线C 的方程;(2)设点Q 为C 外的一点且Q 点不在坐标轴上,过点Q 作抛物线C 的两条切线,切点分别为A ,B ,过点Q 作y 轴的垂线,垂足为S ,连接AS ,BS ,证明:直线AS 与直线BS 关于y 轴对称.【解析】(1)∵PM =PF =FM ,∴△PFM 为等边三角形,∴∠FMP =∠PFM =60°,又FM ⋅FP=FM ⋅FP cos ∠PFM =FM 2cos60°=2,∴FM =2设直线l 交y 轴于N 点,则在Rt △MNF 中∠NMF =30°,NF =1=p ,∴C 的方程为x 2=2y(2)设点Q a ,b a ≠0,b ≠0 ,A x 1,y 1 ,B x 2,y 2 ,又C 的方程为x 2=2y 可化为y =x 22,∴y =x所以过点A 且与C 相切的直线的斜率为x 1,过点B 且与C 相切的直线的斜率为x 2,所以直线QA 的方程为y-y1=x1x-x1,直线QB的方程为y-y2=x2x-x2.又直线QA与QB均过点Q,b-y1=x1a-x1,b-y2=x2a-x2,又x21=2y1,x22=2y2,∴y1=ax1-b,y2=ax2-b,所以直线AB的方程为y=ax-b,联立方程y=ax-b和x2=2y得方程组x2=2y,y=ax-b,消去y得x2-2ax+2b=0,∵b≠0,∴x1≠0,x2≠0,∵x1x2=2b,又S0,b,则直线AS的斜率k1=y1-bx1;直线BS的斜率k2=y2-bx2,∴k1+k2=x1+x2x1x22-bx1x2,∵x1x22-b=0,∴k1+k2=0,所以直线AS与直线BS关于y轴对称.。

抛物线中切线问题

抛物线中切线问题

变式 3:如图,设抛物线方程为 x2 2 py( p 0) ,
M(x0,y0)为 x2 2 py 外任意一点,过 M 引抛物线
的两条切线,切点分别为 A(x1,y1), B(x2,y2).求过
A, B 两点的直线方程.(直线 AB 用 x0、y0 的形式
表示)
. .
解:由结论1可知过A(x1, y1), B(x2, y2)的切线 方程分别为:x1x p( y1 y), x2x p( y2 y)
p( x22 2p
-2 p)
-2 p. )
.
整理得x0
=
x1 +x2 2
A、M、B三点的横坐标成等差数列.
变式 2:如图,设抛物线方程为 x2 2 py( p 0) ,
M(x0,y0)为 x2 2 py 外任意一点,过 M 引抛物线 的切线,切点分别为 A,B .问: A,M,B三点的
横坐标成等差数列.
y,
x p

y,
x
x1
x1 p
,同理可得y,
x
x2
x2 p
x12 P
kAM
x1 p
2p 2 x1 x0
,即x12 -2x0 x1-p2
0
x22 P
kBM
x2 p
2p 2
x2
x 0
,即x22 -2x0 x2 -p2
0
x1、x2是方程x2 -2x0 x-p2 =0的两根,
x1x2 =-p2
xx0 =p(y+y0 )
类比拓展:
1. 过圆 x2 y2 r2上一点 M(x0, y0) 的切线方程: xx0 yy0 r 2

2.
设P(
x0

抛物线的切线

抛物线的切线
线AM,BM有何位置关系? 解:由结论2可知:经过 AB两点的直线方程为:
p xx (y ) 0 p 2 设 A ( x , y ), B ( x , y )
1 1 2 2
联立方程:
p xx p ( y ) 0 2 2 x 2py
由 x 2 py ,得 y
2
2 2 得: x 2 xx p 0 0
解题方法研究
解: (1)依题意可得 MA (2 x,1 y) ,
MB (2 x,1 y)
| MA MB | (2 x) 2 (2 2 y) 2 , OM (OA OB) ( x, y ) (0, 2) 2 y
2 2 由已知得 (2 x) (2 2 y ) 2 y 2 ,
是y
解题方法研究
x0 t 1 t 1 1 ,存在 x0 (2, 2) ,使得 , 2 2 2 2 即 l 与直线 PA 平行,故当 1 t 0 时不符合题意 x 1 t x t 1 1 0 , 1 0 ,所以 l 与直线 PA,PB 一定 ②当 t 1 时, 2 2 2 2
F A B
O
P
阿基米德三角形的性质
性质 6 若直线 l 与抛物线没有公共点,以 l 上的点为顶点的阿基米德三角形的底边过定 点. 证明:如上图,设 l 方程为
ax by c 0 ,且 A( x2 , y2 ) ,弦 AB 过点 C ( x0 , y0 ) ,由
①当 1 t 0 时, 1
t 1 y xt 2 , 相交,分别联立方程组 2 y x0 x x0 2 4
1 t y xt 2 , 2 y x0 x x0 2 4

抛物线的切线方程和切点弦方程

抛物线的切线方程和切点弦方程

抛物线的切线方程和切点弦方程
本文将探讨抛物线的切线方程和切点弦方程两个重要的概念。

切线方程的推导
我们知道,抛物线的一般式方程为 y=ax^2+bx+c,对其求导得到 y'=2ax+b, y' 即为切线斜率。

假设某一点的坐标为 (x0, y0),则该点处的切线斜率为 y'=2ax0+b。

但是仅仅知道切线斜率并不能唯一确定切线方程,我们还需要另一个已知条件。

我们可以利用该点的坐标 (x0, y0) 推导出该点的切线方程。

已知某点坐标为 (x0, y0),切线斜率为 k,则其切线方程为 y-y0=k(x-x0)。

将 k=y',即得到切线方程:y-y0=(2ax0+b)(x-x0)。

切点弦方程的推导
切点弦方程也称作法向弦方程,它表示的是过切点且垂直于切线的直线方程。

我们可以通过该点的切线方程推导出该点的切点弦方程。

对于切线方程 y-y0=(2ax0+b)(x-x0),其中切点坐标为 (x0, y0),斜率为 k=2ax0+b。

由于切点弦垂直于切线,则其斜率 k' = -1/k。

切点弦过点 (x0, y0),另一端点为 (x, y),设切点弦方程为 y = k'(x-x0) + y0。

将 k' 代入得到 y = (-1/(2ax0+b))(x-x0) + y0,整理得到切点弦方程 y+((x-x0)/(2a)(y-y0)) = x/2a + (x0^2)/(2a)+y0。

以上即为抛物线的切线方程和切点弦方程的推导及表达方式。

【圆锥曲线】11抛物线切线(含经典题型+答案)

【圆锥曲线】11抛物线切线(含经典题型+答案)

抛物线切线的性质例1:点M (2,1)是抛物线x 2=2py 上的点,则以点M 为切点的抛物线的切线方程为 .解:将点M (2,1)代入抛物线得:p =2,故以点M 为切点的切线方程为()122+=y x ,即01=--y x例2:过点A (0,2)且和抛物线C :y 2=6x 相切的直线l 方程为 .解:设直线与抛物线切于点()00,y x P ,故有()003x x yy +=代入点A (0,2)得:0032x y =,与抛物线方程联立得:⎩⎨⎧==⎪⎩⎪⎨⎧==⇒=⎪⎭⎫⎝⎛004386230000020y x y x x x 或,故切线方程为0843=+-y x 或0=x 。

例3:直线l 经过点(0,2)且与抛物线y 2=8x 只有一个公共点,满足这样条件的直线l 有 条.解:设直线与抛物线切于点()00,y x P ,故有()004x x yy +=代入点A (0,2)得:002x y =,与抛物线方程联立得:()⎩⎨⎧==⎩⎨⎧==⇒=4200820000020y x y x x x ,或,故存在两条切线,还有一条直线2=y 与抛物线只有一个公共点,故答案为3条。

1.在曲线y=x 2上切线的倾斜角为的点的坐标为 .2.过抛物线C :x 2=2y 的焦点F 的直线l 交抛物线C 于A 、B 两点,若抛物线C 在点B 处的切线斜率为1,则线段|AF|=( )A .1 B .2 C .3 D .4 3.抛物线2x y =在点M(21,41)处的切线的倾斜角是( ) A.30° B.45° C.60° D.90° 4.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( )A.12-B.12C.1D.1- 5.函数24x y =在点P (2, 1)处的切线方程为__________________________.6.抛物线x 2=4y 的准线l 与y 轴交于点P ,若直线l 绕点P 以每秒弧度的角速度按逆时针方向旋转t 秒钟后,恰与抛物线第一次相切,则t= .7.过点(2,﹣1)引直线与抛物线y=x 2只有一个公共点,这样的直线共有 条.8.过点P (3,4)作抛物线x 2=2y 的两条切线,切点分别为A 、B ,则直线AB 的斜率为 . 9.(2014•辽宁)已知点A (﹣2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于 点B ,记C 的焦点为F ,则直线BF 的斜率为( )A .B .C .D .10.已知点A 为抛物线C :x 2=4y 上的动点(不含原点),过点A 的切线交x 轴于点B ,设抛物线C 的焦点为F ,则△ABF ( )A .一定是直角 B .一定是锐角C .一定是钝角 D .上述三种情况都可能11.抛物线x 2=y 在第一象限内图象上一点(a i ,2a i 2)处的切线与x 轴交点的横坐标记为a i+1,其中i ∈N *,若a 2=32,则a 2+a 4+a 6等于( )A .64 B .42C .32D .2112抛物线C 1:x 2=2py (p >0)的焦点与双曲线C 2:﹣y 2=1的左焦点的连线交C 1于第二象限内的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p=( )A .B .C .D .13.已知抛物线C 的方程为y x 42=,焦点为F ,准线为l ,直线m 交抛物线于两点A 、B.过点A 的抛物线C 的切线y 轴交于点D ,求证;︱AF ︱=︱DF ︱;14.已知抛物线C :x 2=2py (p >0)的焦点为F ,抛物线上一点A 的横坐标为x 1(x 1>0),过点A 作抛物线C 的切线l 1交x 轴于点D ,交y 轴于点Q ,交直线于点M ,当|FD|=2时,∠AFD=60°.(1)求证:△AFQ 为等腰三角形,并求抛物线C 的方程;(2)若B 位于y 轴左侧的抛物线C 上,过点B 作抛物线C 的切线l 2交直线l 1于点P ,交直线l 于点N ,求△PMN 面积的最小值,并求取到最小值时的x 1值.15如图所示,抛物线C :y 2=2px (p >0)与直线AB :y=x+b 相切于点A .(1)求p ,b 满足的关系式,并用p 表示点A 的坐标;(2)设F 是抛物线的焦点,若以F 为直角顶角的Rt △AFB 的面积等于25,求抛物线C 的标准方程. 例4:已知点P (﹣3,2)在抛物线C :y 2=2px (p >0)的准线上,过点P 的直线与抛物线C 相切于A ,B 两点,则直线AB 的斜率为( )A .1B .C .D .3解:P (﹣3,2)在抛物线C :y 2=2px (p >0)的准线上,故p =6,抛物线C :y 2=12x ,根据秘籍中的性质(1)可知,AB 中点的纵坐标与P 点纵坐标相等(如图),即20=y ,且AB 过抛物线的焦点;设AB 方程为3+=ky x ,代入抛物线方程得:036122=--ky y ,312621221021=⇒==+=⇒=+k k y y y k y y ,故直线AB 的斜率为3。

抛物线切线方程推导过程

抛物线切线方程推导过程

抛物线切线方程推导过程引言抛物线是一条受物理规律支配的曲线,在数学和物理中都有着重要的应用。

抛物线的切线是与抛物线曲线相切且方向相同的一条直线。

推导抛物线的切线方程是解决与抛物线相关问题的关键步骤之一。

本文将详细介绍抛物线切线方程的推导过程。

一级标题概述首先,我们先来回顾一下抛物线的定义和性质。

抛物线是一类曲线,其定义可以由以下方程表示:y=ax2+bx+c其中,a、b、c为常数,x和y分别为抛物线上的点的横纵坐标。

抛物线的特点是以顶点为对称轴,两边呈开口形状。

抛物线的切线切线是曲线上一点的一条特殊直线,与曲线相切于该点且方向相同。

要推导抛物线的切线方程,我们需要找到抛物线上某一点的切线斜率。

二级标题寻找切线斜率的方法为了寻找抛物线上某一点的切线斜率,我们可以借助导数的概念。

在数学中,导数表示函数在某一点的切线斜率。

因此,我们需要先求得抛物线的导数。

求导对于一般形式的抛物线方程y=ax2+bx+c,我们可以通过求导来得到抛物线的切线斜率。

求导的过程如下:1.对方程两边同时求导:dy dx =d(ax2+bx+c)dx2.求导后,使用常见的导数公式:dydx=2ax+b3.得到抛物线的导数后,我们可以任选一个x值,计算对应的导数值。

这个x值即为我们想要求切线的点的横坐标。

求切线方程有了切线斜率和切线上的一点,我们就可以得到切线的方程了。

一条直线的方程可以表示为y=mx+b,其中,m为斜率,b为截距。

1.切线斜率已经通过求导的过程得到,将该值代入直线方程中,得到:y=(2ax+b)x+c2.将我们想要求切线的点的横坐标代入上式,得到切线上的纵坐标。

3.最终,我们得到切线方程的一般形式为:y=2ax2+bx+c三级标题例子为了更好地理解抛物线切线方程的推导过程,我们来看一个具体的例子。

例子:已知抛物线方程为y=2x2+3x−5,求抛物线在点(1,0)处的切线方程。

解:1.求导得到抛物线的导数:dy=4x+3dx2.将横坐标x=1代入导数式中,求得切线斜率:dy|x=1=4(1)+3=7dx3.将切线斜率和切线上的一点(1,0)代入切线方程y=mx+b中,可得:0=7(1)+bb=−74.得到切线方程为y=7x−7。

抛物线的切线问题

抛物线的切线问题

探究抛物线的切线问题教学设计一.教学目标1.掌握抛物线的切线方程的求法,巩固“坐标法”在解决直线与抛物线线位置关系问题的应用.2.培养学生的运算能力和思维能力,让学生进一步体会数形结合、化归与转化的数学思想.3.通过问题的探究,培养学生勇于探索的精神,使学生经历一个发现问题,研究问题,解决问题的思维过程,从中领悟其过程所蕴涵的数学思想,体验数学发现和创造的历程,培养学生的创新精神.二.教学重点和难点抛物线的切线问题的情景下,用“坐标法”解决直线与抛物线的位置关系问题.三.教学过程(一)引入在近几年高考中,解析几何题出现了以抛物线的切线为载体的直线与圆锥曲线的位置关系问题,如2019全国卷文Ⅲ,2017全国卷文Ⅰ,2012全国卷、2006全国卷II,2013广东,2008山东,2009浙江等试题中的解析几何题都以抛物线的切线形式出现,所以我们有必要研究这些题目,希望通过研究它们来进一步提高我们对直线与抛物线的位置关系的认识,提高我们的解题能力。

一.知识链接1.直线与抛物线的位置关系相离相切相交注意:不能以直线与抛物线交点个数判定切线。

当直线与抛物线的对称轴平行或重合时有一个交点,是相交不是相切。

2.抛物线的切线问题的处理思路:∆=;思路1:联立直线方程与抛物线方程,得到一元二次方程,判别式0思路2:导数法,将抛物线方程化为函数,利用导数法求出函数在点处的切线方程,特别是焦点在y轴的抛物线上常用此法求切线.抛物线的切线问题要根据曲线不同,选择不同的方法.二.典例剖析例题:已知抛物线2:x 2C y =.(1)点()2,2D ,则过点D 且与抛物线C 仅有一个交点的直线方程为______________ ____.(2)点10,2D ⎛⎫- ⎪⎝⎭,过D 作C 的切线,则切线方程为___________________________________.变式1:(2019年高考全国卷3,文科21(1)) 已知曲线D x y C ,2:2=为直线21-=y 上的动点,过D 作C 的两条切线,切点分别为B A ,. 证明:直线AB 过定点.分析(1)可设11(,)A x y ,22(,)B x y ,1(,)2D t -然后求出A ,B 两点处的切线方程,比如AD :1111()2y x x t +=-,又因为BD 也有类似的形式,从而求出带参数直线AB 方程,最后求出它所过的定点. (1) 证明:设1(,)2D t -,11(,)A x y ,则21112y x =。

抛物线上某一点的切线方程

抛物线上某一点的切线方程

抛物线上某一点的切线方程抛物线上某一点的切线方程,这听起来是不是有点儿复杂?但是啊,别担心,我们今天就轻松愉快地聊聊这个话题。

咱们得知道,抛物线就像是一个大大的笑脸,开口向上或者向下,具体看它的方程。

如果你知道一条抛物线的方程,比如说 ( y = ax^2 + bx + c ),那么它的形状就立马浮现在眼前。

想象一下,咱们站在这个笑脸的某个点上,这个点就像是你在朋友家聚会时找到的那个最舒服的沙发。

你坐下去的时候,感觉特别稳,对吧?咱们现在要做的,就是在这个点上画一条线,这条线就叫切线。

切线是什么呢?简单说就是在你坐的那个点,沿着你当前的方向,画一条小直线。

想象一下,你在沙发上微微倾斜一下,想和旁边的朋友聊聊天,那个角度就是切线的方向。

为了找到这条线,我们得先知道这个点的坐标,假设我们有点 ( P(x_0, y_0) ),那么切线的斜率就得算出来。

要算斜率,咱们需要导数,没错,就是那个看似很高深的东西。

别怕,其实导数就是求一个函数在某个点的“瞬时变化率”。

就像是你在比赛中冲刺的那一瞬间,速度有多快。

好啦,咱们回到切线。

通过导数的计算,咱们就能得到切线的斜率 ( m = f'(x_0) )。

知道斜率之后,就能用点斜式来写出切线的方程啦!点斜式听起来很复杂,但其实就是那么简单,公式是 ( y y_0 = m(x x_0) )。

你看看,这个公式就像是在跟你聊天一样,特别亲切。

只要把 ( x_0 ) 和 ( y_0 ) 代进去,再加上斜率 ( m ),哗啦一下,切线的方程就出来了。

看到这个过程,你会觉得数学真是个奇妙的东西,像是个魔法师,把一个复杂的图形变成了一条简单的直线。

就像你在厨房里做饭,调料一加,味道立马变得鲜美无比,数学也是如此,变化无穷。

抛物线的每个点都有属于自己的切线,想想看,是不是很神奇?咱们再来聊聊切线的一些应用。

比如说,你在设计一个滑梯,想让小朋友们从顶端滑下来,滑梯的形状就可以用抛物线来表示。

抛物线的两条切线垂直的条件

抛物线的两条切线垂直的条件

抛物线的两条切线垂直的条件1. 你知道抛物线的两条切线垂直的一个重要条件是什么吗?就好像两个人在拔河,必须力量相当才能僵持住呀!比如抛物线y=x²,在某点的两条切线就是这样垂直的呢!2. 想不想知道抛物线的两条切线垂直到底需要怎样的特殊情况呀?这就如同走钢丝要保持平衡一样关键呢!像抛物线y=2x²+3 就有这种情况哦!3. 嘿,你有没有思考过抛物线的两条切线垂直的条件到底隐藏着什么秘密呀?好比一场刺激的赛车比赛,要满足特定条件才能决出胜负!比如对于抛物线y=3x²-1 就是如此呢!4. 哎呀呀,抛物线的两条切线垂直的条件可是很神奇的哟!就像魔术里的神奇变化一样让人惊叹!例如抛物线 y=-x²+5 中就能发现呢!5. 你难道不好奇抛物线的两条切线垂直的条件是怎么回事吗?这简直就像解开一个神秘的密码锁一样让人兴奋!像抛物线y=4x²-2 就存在这样的垂直切线哦!6. 喂喂喂,你可别小瞧了抛物线的两条切线垂直的条件呀!这好比是武林高手过招,必有其诀窍呢!看看抛物线y=0.5x²+1 就懂啦!7. 嘿,朋友,抛物线的两条切线垂直的条件可有意思啦!就像搭积木要搭得稳稳当当一样需要条件呢!比如抛物线 y=-2x²+4 就有这样的条件满足哟!8. 哇塞,你能猜到抛物线的两条切线垂直的条件是什么样的吗?这就好像猜谜语一样有趣!就像抛物线y=0.25x²-3 中就有体现呢!9. 哟呵,抛物线的两条切线垂直的条件绝对会让你眼前一亮呢!如同发现宝藏一样惊喜!例如抛物线y=6x²+2 就有这种特别之处!10. 哈哈,抛物线的两条切线垂直的条件其实很简单啦,但又不简单哦!就像解一道难题,解开后超有成就感!像抛物线 y=-3x²+6 就存在这样让人着迷的垂直切线条件呀!我的观点结论就是:抛物线的两条切线垂直的条件很奇妙,通过具体例子能更好地理解和感受它们的独特之处。

高中数学抛物线中的切线问题

高中数学抛物线中的切线问题
3
变式 1:如图,设抛物线方程为 x2 2 py( p 0) ,
M 为抛物线外任意一点,过 M 引抛物线的切线,切
点分别为 A,B .设 A(x1,y1).试用 x1,y1 表示过 A
的切线方程
解: x2 2 py 得 y x2 ,得 y x
2p
p
y'
x x1
x p
x x1
x1 p
过A( x1 ,
的两条切线,切点分别为 A(x1,y1), B(x2,y2).求 过 A, B 两点的直线方程。
.
10
.
变式 3 如图,设抛物线方程为 x2 2 py( p 0) ,
M(x0,y0)为 x2 2 py 外任意一点,过 M 引抛物线
的两条切线,切点分别为 A(x1,y1), B(x2,y2).求
过 A, B 两点的直线方程 为: x0 x p( y y0 )
11
结论2:
1.P(x0 , y0 )是抛物线x2 =2py外一点,过P点作抛物 线的两条切线,切点分别为A(x1, y1), B(x2 , y2 ),则
直线AB的方程为: x0 x=p(y+y0 )
12
变式4:设抛物线方程为 x2 2 py( p 0) ,若 M(x0, p )是抛物线准线l上任意一点,焦点为F,
y1)的切线方程为:y-y1
x1 p
(x
x1 )
即: py py1 x1x x12 x1x 2 py1
4
变式 1:如图,设抛物线方程为 x2 2 py( p 0) , M(x0,y0)为抛物线外任意一点,过 M 引抛物线的切 线,切点分别为 A,B .设 A(x1,y1).试用 x1,y1 表
6

【圆锥曲线】12抛物线切线2(含经典题型+答案)

【圆锥曲线】12抛物线切线2(含经典题型+答案)

抛物线切线的性质2 秒杀秘籍:切点弦性质定理1:设过点P 与抛物线对称轴平行的直线交抛物线于M ,交切点弦于点Q ,则Q 点平分切点弦AB 。

(无论点P 在曲线的什么位置,上述结论均成立)。

且M 处的切线平行于抛物线的切点弦。

(图1,3) 定理2:直线:l y kx m =+上一动点Q 引抛物线两切线,QA QB ,则过两切点的直线AB 必过定点G (图2,4)如图1,点()00,y x P 为抛物线py x 22=外任意一点,过点P 作抛物线两条切线分别切于A 、B 两点,AB 的中点为Q ,直线PQ 交抛物线于点M ,求证:(1)()轴上的截距在为直线,y AB m m y x x G -==00;且直线AB 方程为()00y y p xx +=;(2)设点M 处的切线l ,求证AB //l 。

证明:(1) 点()11,y x A ()22,y x B 在抛物线上∴2221212;2py x py x ==求导得px p x y =='22;在点()11,y x A ()22,y x B 的切线方程为:()()⎪⎪⎩⎪⎪⎨⎧-=--=-222111x x p x y y x x p x y y 即()()()()⎩⎨⎧+=+=212211y y p xx y y p xx ()()12-得:()1212)(y y p x x x -=-,即222)(12212212x x x p x p x p x x x +=⇒⎪⎪⎭⎫ ⎝⎛-=-∴Q x x x x =+=2120 将点Q ),2(012y x x +代入切线方程得:()0211011222py x x y y p x x x =⇒+=+令AB 方程为y kx m =+,代入22x py =得:0222=--pm pkx x 02122py pm x x =-=∴所以直线AB 过定点(0,0y -);故AB方程为()()0000x y x y xx p y y p=+-⇒=+ (2)p x k pk x x x pm pkx x 012022022=⇒=+=⇒=--,M 点坐标为⎪⎪⎭⎫ ⎝⎛p x x 2,200,以M 点为切点的切线斜率为px p x y 0022==',故AB //l 。

抛物线切线方程二级结论

抛物线切线方程二级结论

抛物线切线方程二级结论抛物线是几何学研究中的一个重要研究内容,它是由曲线和凸出的半月轮组成的,这种曲线是从右边开始的。

抛物线的形状,在任何给定的点上,都能够定义一条切线。

切线也称作渐近线,它是表示两个点之间的连线。

因此,抛物线切线方程是关于两点之间切线方程结论的一个重要研究内容。

要定义一条抛物线切线方程,我们首先需要定义一个抛物线,可以把它写成 y=ax2 + bx + c形式,其中 a,b,c 为常数。

接着,我们可以求出该抛物线上两个点(x1,y1)和(x2,y2)之间的切线方程结论。

首先,我们可以把切线方程写成 y-y1=m(x-x1)形式,其中 m示斜率。

把 x=x1 x=x2 代入方程,可以得到 m = (y2-y1)/(x2-x1)。

m 值代入切线方程 y-y1=m (x-x1),就可以得到该抛物线上两个点(x1,y1)和(x2,y2)之间的切线方程结论:y - y1 = (y2 - y1) / (x2 - x1) (x - x1)维基百科中,抛物线切线方程的定义是:如果两个点(x1,y1)和(x2,y2)在抛物线上,那么,他们之间的一条切线方程就可以写成 y - y1 = (y2 - y1) / (x2 - x1) (x - x1)。

接下来,我们可以讨论抛物线切线方程的一些更复杂的应用。

比如我们可以用抛物线切线方程来进行线性规划,以便实现最优的解决方案。

比如说,我们有一个包含三个变量的优化问题。

如果我们使用抛物线切线方程,可以用抛物线来连接这三个变量,再在抛物线上找到极值,以此来求解问题。

此外,抛物线切线方程还可以用来研究多个抛物线之间的关系,从而找出最适合的结论。

例如,我们可以用抛物线切线方程来研究两个抛物线之间的交点,进而得出最佳的结论。

总之,抛物线切线方程是一个重要的数学概念,可以用来解决多种问题,进而帮助人们更好地理解抛物线的特性和研究它们之间的关系。

利用导数求抛物线切线方程的三种问题类型

利用导数求抛物线切线方程的三种问题类型

利用导数求抛物线切线方程的三种问题类型问题类型一:已知抛物线上一点求切线方程已知抛物线方程为 $y=ax^2+bx+c$,且已知抛物线上一点为$(x_1, y_1)$,求该点处的切线方程。

解题步骤如下:1. 求出抛物线方程的导数 $\frac{dy}{dx}$。

2. 将已知点 $(x_1, y_1)$ 代入导数 $\frac{dy}{dx}$ 中,求出切线的斜率 $k$。

3. 使用点斜式来表示切线方程,即 $y-y_1=k(x-x_1)$。

问题类型二:已知切线斜率求切线方程已知抛物线方程为$y=ax^2+bx+c$,且已知切线的斜率为$k$,求切线方程。

解题步骤如下:1. 求出抛物线方程的导数 $\frac{dy}{dx}$。

2. 将切线的斜率 $k$ 代入导数 $\frac{dy}{dx}$ 中,得到一个方程。

3. 解方程,求出该方程对应的横坐标 $x$。

4. 将求得的横坐标 $x$ 代入抛物线方程中,求出纵坐标 $y$。

5. 使用点斜式来表示切线方程,即 $y-y=k(x-x_1)$,其中 $(x_1, y_1)$ 为切点坐标。

问题类型三:已知抛物线与切线重合求切点坐标已知抛物线方程为$y=ax^2+bx+c$,且已知抛物线与切线重合,求切点的坐标。

解题步骤如下:1. 求出抛物线方程的导数 $\frac{dy}{dx}$。

2. 将导数$\frac{dy}{dx}$ 与抛物线方程相等,得到一个方程。

3. 解方程,求出该方程对应的横坐标 $x$。

4. 将求得的横坐标 $x$ 代入抛物线方程中,求出纵坐标 $y$。

5. 切点的坐标为 $(x, y)$。

以上是利用导数求抛物线切线方程的三种问题类型及解题步骤。

希望对你有所帮助!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M(x0,y0)为 x2 2 py 外任意一点,过 M 引抛物线 的切线,切点分别为 A,B .
问: A,M,B三点的横坐标是否仍成等差数列?
解:由结论1可知过A(x1, y1), B(x2, y2)的切线 方程分别为:x1x p( y1 y), x2x p( y2 y)
Q
两切线过点M
例题:(2008 山东高考)如图,设抛物线方程为
x2 2 py( p 0) , M 为直线 y 2 p 上任意 一点,过 M 引抛物线的切线,切点分别为 A,B . 求证: A,M,B 三点的横坐标成等差数列
刚才证明中有何 发现?
变式 2 如图,设抛物线方程为 x2 2 py( p 0) ,
y1)的切线方程为:y-y1
x1 p
(x
x1 )
即: py py1 x1x x12 x1x 2 py1
变式 1:如图,设抛物线方程为 x2 2 py( p 0) ,
M(x0,y0)为抛物线外任意一点,过 M 引抛物线的切
线,切点分别为 A,B .设 A(x1,y1).试用 x1,y1 表
因此直线 MA 的方程为
直线 MB 的方程为 y
所以
x12 2p
2p
x1 p
( x1
y 2
2 p
x0 )
p x1 (
x2
p (x
p

x x0 )
x0
)
x22 2p
2p
x2 p
( x2
x0 )
.②
. .
由①、②得
x1
x2 2
x1
x2
x0 ,因此 2x0
x1
x2
证明:
直线 MA
y0
的方程为 y x12 x1
x12 2p
x1 p
2p
(x0
p
x1 )
(x
x1 )
x02 2p
x12 2p
x1 p
( x0
x1 )
x12 2x0 x1 x02 0
同理x22 2x0 x2 x02 0 x1, x2是方程x2 2x0 x x02 0两根
因此 2x0 x1 x2
.
.
解:由结论1可知过A(x1, y1), B(x2, y2)的切线 方程分别为:x1x p( y1 y), x2x p( y2 y)
抛物线中的切线问题
例题:如图,设抛物线方程为 x2 2 py( p 0) ,M 为直线 y 2 p 上任意一点,过 M 引抛物线的切 线,切点分别为 A,B . 求证: A,M,B三点的横坐标成等差数列


例题:如图,设抛物线方程为 x2 2 py( p 0) ,M 为直线 y 2 p 上任意一点,过 M 引抛物线的切 线,切点分别为 A,B . 求证: A,M,B三点的横坐标成等差数列
过 A, B 两点的直线方程 为: x0 x p( y y0 )
结论2:
1.P(x0 , y0 )是抛物线x2 =2py外一点,过P点作抛物
线的两条切线,切点分别为A(x1, y1), B(x2 , y2 ),则
直线AB的方程为: x0 x=p(y+y0 )
变式4:设抛物线方程为 x2 2 py( p 0) ,若 M(x0, p )是抛物线准线l上任意一点,焦点为F,
的两条切线,切点分别为 A(x1,y1), B(x2,y2).求 过 A, B 两点的直线方程。
. .
变式 3 如图,设抛物线方程为 x2 2 py( p 0) ,
M(x0,y0)为 x2 2 py 外任意一点,过 M 引抛物线
的两条切线,切点分别为 A(x1,y1), B(x2,y2).求
变式5:如图,设抛物线方程为 x2 2 py( p 0) , 若M(x2 过 M 引抛物线的切线,切点分别为A(x1,y1)、
B(x2,y2),你能得到哪些结论?
小结: 1.我们从一高考题出发,挖掘了抛物线与其 切线的内在联系,运用从特殊到一般的数学 归纳思想,得到了切线公式,切点弦公式。对 抛物线的切线问题进行深入研究,数形结合, 合理猜想,探究了切线与相交弦之间的关 系,加深对抛物线中切线应用的理解
x1x0 p( y1
x2
x0
p( y2
(x0 , y0 ) yy00))
x1x0 x2 x0
p( x12 2p
p( x22 2p
y0 ) y0 )
整理可得 : 2x0 x1 x2
变式 3 如图,设抛物线方程为 x2 2 py( p 0) ,
M(x0,y0)为 x2 2 py 外任意一点,过 M 引抛物线
示过 A 点的切线方程为: xx1=p(y+y1)
问 1:设 B(x2,y2),过 B 的切线方程?
xx2 =p(y+y2 )
问2:你能得到一般的结 论吗?
结论1:
P(x0, y0 )是抛物线x2 =2py(p>0)上一点,过P点 作抛物线的切线,则切线方程为:x0x=p(y+y0 )
类比圆: P(x0, y0 )是圆x2 y2 r2上一点,过P 点作圆的切线则切线方程为:x0x+y0 y=r2
2.坐标法是解析几何最重要的思想方法,是 解决直线与圆锥曲线的综合问题的有效方法
3.在解题的探索过程,培养了学生发现能力, 钻研能力.
作业:
证明:由题意设
A
x1,2x1p2
,B
x2,2x2p2
,x1
x2,M
(x0,
2
p)
由 x2
2 py
,得 y
x p
,所以 kMA
x1 p

kMB
x2 p
2 过 M 引抛物线的切线,切点分别为 A,B
问:A,B,F三点是否共线?
几何画板
变式5:如图,设抛物线方程为 x2 2 py( p 0) , 若M(x0, p )是抛物线准线l上任意一点,焦点为F,
2 过 M 引抛物线的切线,切点分别为 A,B .问: 直
线AM,BM有何位置关系?
几何画板
变式 1:如图,设抛物线方程为 x2 2 py( p 0) ,
M 为抛物线外任意一点,过 M 引抛物线的切线,切
点分别为 A,B .设 A(x1,y1).试用 x1,y1 表示过 A
的切线方程
解: x2 2 py 得 y x2 ,得 y x
2p
p
y'
x x1
x p
x x1
x1 p
过A( x1 ,
Q 两切线过点P(x0 , y0 )
x1x0 x2 x0
p( y1 y0 ) p( y2 y0 )
A(x1, y1), B(x2 , y2 )都是直线x0x p( y y0 )上的点
直线AB方程为: x0x p( y y0 )
. .
谢谢观看! 2020
相关文档
最新文档