2014年河南省中考数学试卷含答案(word版)

合集下载

河南省中招考试数学试卷及答案.docx

河南省中招考试数学试卷及答案.docx

精品文档2014 年河南省中招考试数学试卷及答案解析一、选择题(每小题 3 分,共 24 分)1. 下列各数中,最小的数是()(A). 0(B).1 (C).- 1 (D).-333答案:D解析 :根据有理数的大小比较法则(正数都大于 0,负数都小于 0,正数都大于负数,两个 负数,其绝对值大的反而小)比较即可.解:∵﹣3<- 1 <0< 1,33∴最小的数是﹣ 3,故选 A .2. 据统计, 2013 年河南省旅游业总收入达到 3875.5 亿元 . 若将 3875.5 亿用科学计数法表示为 3.8755 × 10n ,则 n 等于()(A)10 (B) 11 (C).12(D).13答案:B解析 :科学记数法的表示形式为a ×10 n 的形式,其中 1≤|a| < 10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值. 3875.5 亿 =3.8755 × 1011,故选 B.3. 如图,直线 AB 、 CD 相交于 O ,射线 OM 平分∠ AOC,ON ⊥OM,若∠ AOM=350 ,则∠ CON 的度数 为()(A) .35 0(B). 45 0(C) .55(D). 65 0答案:C解析 :根据角的平分线的性质及直角的性质,即可求解.故选 C.∠ CON=90-35 =55 ,4. 下列各式计算正确的是()( A ) a +2a =3a 2 (B )( -a 3) 2=a 6(C ) a 3· a 2=a 6 ( D )(a + b ) 2=a 2 + b 2答案:B解析 :根据同底数幂的乘法;幂的乘方;完全平方公式;同类项加法即可求得; ( -a 3) 2=a 6计算正确,故选B5. 下列说法中,正确的是( )( A )“打开电视,正在播放河南新闻节目”是必然事件( B )某种彩票中奖概率为 10%是指买十张一定有一张中奖 ( C )神州飞船发射前需要对零部件进行抽样检查( D )了解某种节能灯的使用寿命适合抽样调查答案:D解析 :根据统计学知识;(A )“打开电视,正在播放河南新闻节目”是随机事件, ( A )错误。

河南省中考数学试题及答案(解析版)

河南省中考数学试题及答案(解析版)

2014年河南省中考数学试卷一、选择题(每小题3分,共24分)1.(3分)(2014年河南省)下列各数中,最小的数是()A.0 B.C.﹣D.﹣3考点:有理数大小比较.分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣3,故选:D.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.(3分)(2014年河南省)据统计,2013年河南省旅游业总收入达到约3875.5亿元.若将3875.5亿用科学记数法表示为3.8755×10n,则n等于()A.10 B.11 C.12 D.13考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:3875.5亿=3875 5000 0000=3.8755×1011,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2014年河南省)如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()A.35° B.45° C.55°D.65°考点:垂线;对顶角、邻补角.分析:由射线OM平分∠AOC,∠AOM=35°,得出∠MOC=35°,由ON⊥OM,得出∠CON=∠MON﹣∠MOC得出答案.解答:解:∵射线OM平分∠AOC,∠AOM=35°,∴∠MOC=35°,∵ON⊥OM,∴∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣35°=55°.故选:C.点评:本题主要考查了垂线和角平分线,解决本题的关键是找准角的关系.4.(3分)(2014年河南省)下列各式计算正确的是()A.a+2a=3a2B.(﹣a3)2=a6C.a3•a2=a6D.(a+b)2=a2+b2考点:完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项法则,积的乘方,同底数幂的乘法,平方差公式分别求出每个式子的值,再判断即可.解答:解:A、a+2a=3a,故本选项错误;B、(﹣a3)2=a6,故本选项正确;C、a3•a2=a5,故本选项错误;D、(a+b)2=a2+b2+2ab,故本选项错误,故选B.点评:本题考查了合并同类项法则,积的乘方,同底数幂的乘法,平方差公式的应用,主要考查学生的计算能力.5.(3分)(2014年河南省)下列说法中,正确的是()A.“打开电视,正在播放河南新闻节目”是必然事件B.某种彩票中奖概率为10%是指买十张一定有一张中奖C.神舟飞船反射前需要对零部件进行抽样调查D.了解某种节能灯的使用寿命适合抽样调查考点:随机事件;全面调查与抽样调查;概率的意义.分析:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.不易采集到数据的调查要采用抽样调查的方式,据此判断即可.解答:解:A.“打开电视,正在播放河南新闻节目”是随机事件,本项错误;B.某种彩票中奖概率为10%是指买十张可能中奖,也可能不中奖,本项错误;C.神舟飞船反射前需要对零部件进行全面调查,本项错误;D.解某种节能灯的使用寿命,具有破坏性适合抽样调查.故选:D.点评:本题考查了调查的方式和事件的分类.不易采集到数据的调查要采用抽样调查的方式;必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.(3分)(2014年河南省)将两个长方体如图放置,则所构成的几何体的左视图可能是()A.B.C.D.考点:简单组合体的三视图.分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从左边看,下面是一个矩形,上面是一个等宽的矩形,该矩形的中间有一条棱,故选:C.点评:本题考查了简单组合体的三视图,注意能看到的棱用实线画出.7.(3分)(2014年河南省)如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.11考点:平行四边形的性质;勾股定理.分析:利用平行四边形的性质和勾股定理易求BO的长,进而可求出BD的长.解答:解:∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB⊥AC,AB=4,AC=6,∴BO==5,∴BD=2BO=10,故选C.点评:本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单.8.(3分)(2014年河南省)如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y与x之间函数关系的图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:这是分段函数:①点P在AC边上时,y=x,它的图象是一次函数图象的一部分;②点P在边BC上时,利用勾股定理求得y与x的函数关系式,根据关系式选择图象;③点P在边AB上时,利用线段间的和差关系求得y与x的函数关系式,由关系式选择图象.解答:解:①当点P在AC边上,即0≤x≤1时,y=x,它的图象是一次函数图象的一部分.故C错误;②点P在边BC上,即1<x≤3时,根据勾股定理得AP=,即y=,则其函数图象是y随x的增大而增大,且不是线段.故B、D错误;③点P在边AB上,即3<x≤3+时,y=+3﹣x=﹣x+3+,其函数图象是直线的一部分.综上所述,A选项符合题意.故选:A.点评:本题考查了动点问题的函数图象.此题涉及到了函数y=的图象问题,在初中阶段没有学到该函数图象,所以只要采取排除法进行解题.二、填空题(每小题3分,共21分)9.(3分)(2014年河南省)计算:﹣|﹣2|=1.考点:实数的运算.分析:首先计算开方和绝对值,然后再计算有理数的减法即可.解答:解:原式=3﹣2=1,故答案为:1.点评:此题主要考查了实数的运算,关键是掌握立方根和绝对值得性质运算.10.(3分)(2014年河南省)不等式组的所有整数解的和为﹣2.考点:一元一次不等式组的整数解.分析:先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相加即可求解.解答:解:,由①得:x≥﹣2,由②得:x<2,∴﹣2≤x<2,∴不等式组的整数解为:﹣2,﹣1,0,1.所有整数解的和为﹣2﹣1+0+1=﹣2.故答案为:﹣2.点评:本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.(3分)(2014年河南省)如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为105°.考点:作图—基本作图;线段垂直平分线的性质.分析:首先根据题目中的作图方法确定MN是线段BC的垂直平分线,然后利用垂直平分线的性质解题即可.解答:解:由题中作图方法知道MN为线段BC的垂直平分线,∴CD=BD,∵∠B=25°,∴∠DCB=∠B=25°,∴∠ADC=50°,∵CD=AC,∴∠A=∠ADC=50°,∴∠ACD=80°,∴∠ACB=∠ACD+∠BCD=80°+25°=105°,故答案为:105°.点评:本题考查了基本作图中的垂直平分线的作法及线段的垂直平分线的性质,解题的关键是了解垂直平分线的做法.12.(3分)(2014年河南省)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A 的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为8.考点:抛物线与x轴的交点.分析:由抛物线y=ax2+bx+c的对称轴为直线x=2,交x轴于A、B两点,其中A点的坐标为(﹣2,0),根据二次函数的对称性,求得B点的坐标,再求出AB的长度.解答:解:∵对称轴为直线x=2的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=2对称,∵点A的坐标为(﹣2,0),∴点B的坐标为(6,0),AB=6﹣(﹣2)=8.故答案为:8.点评:此题考查了抛物线与x轴的交点.此题难度不大,解题的关键是求出B点的坐标.13.(3分)(2014年河南省)一个不透明的袋子中装有仅颜色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是.考点:列表法与树状图法.专题:计算题.分析:列表得出所有等可能的情况数,找出第一个人摸到红球且第二个人摸到白球的情况数,即可求出所求的概率.解答:解:列表得:红红白白红﹣﹣﹣(红,红)(白,红)(白,红)红(红,红)﹣﹣﹣(白,红)(白,红)白(红,白)(红,白)﹣﹣﹣(白,白)白(红,白)(红,白)(白,白)﹣﹣﹣所有等可能的情况有12种,其中第一个人摸到红球且第二个人摸到白球的情况有4种,则P==.故答案为:.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.14.(3分)(2014年河南省)如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD 绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为,则图中阴影部分的面积为.考点:菱形的性质;扇形面积的计算;旋转的性质.分析:连接BD′,过D′作D′H⊥AB,则阴影部分的面积可分为3部分,再根据菱形的性质,三角形的面积公式以及扇形的面积公式计算即可.解答:解:连接BD′,过D′作D′H⊥AB,∵在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,∴D′H=,∴S△ABD′=1×=,∴图中阴影部分的面积为+﹣,故答案为:+﹣.点评:本题考查了旋转的性质,菱形的性质,扇形的面积公式,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.15.(3分)(2014年河南省)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为或.考点:翻折变换(折叠问题).分析:连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.解答:解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC 交BC于点P,∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.在RT△END′中,设ED′=a,①当MD′=3时,D′E=5﹣3=2,EN=7﹣CN﹣DE=7﹣3﹣a=4﹣a,∴a2=22+(4﹣a)2,解得a=,即DE=,②当MD′=4时,D′E=5﹣4=1,EN=7﹣CN﹣DE=7﹣4﹣a=3﹣a,∴a2=12+(3﹣a)2,解得a=,即DE=.故答案为:或.点评:本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.三、解答题(本大题共8小题,满分75分)16.(8分)(2014年河南省)先化简,再求值:+(2+),其中x=﹣1.考点:分式的化简求值.专题:计算题.分析:先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解,约分后得到原式=,再把x的值代入计算.解答:解:原式=÷=÷=•=,当x=﹣1时,原式==.点评:本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.17.(9分)(2014年河南省)如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线PA,PB,切点分别为点A,B.(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;(2)填空:①当DP=1cm时,四边形AOBD是菱形;②当DP=﹣1cm时,四边形AOBD是正方形.考点:切线的性质;等腰三角形的判定;菱形的判定;正方形的判定.分析:(1)利用切线的性质可得OC⊥PC.利用同弧所对的圆周角等于圆心角的一半,求得∠ACP=30°,从而求得.(2)①要使四边形AOBD是菱形,则OA=AD=OD,所以∠AOP=60°,所以OP=2OA,DP=OD.②要使四边形AOBD是正方形,则必须∠AOP=45°,OA=PA=1,则OP=,所以DP=OP ﹣1.解答:解:(1)连接OA,AC∵PA是⊙O的切线,∴OA⊥PA,在RT△AOP中,∠AOP=90°﹣∠APO=90°﹣30°=60°,∴∠ACP=30°,∵∠APO=30°∴∠ACP=∠APO,∴AC=AP,∴△ACP是等腰三角形.(2)①1,②.点评:本题考查了切线的性质,圆周角的性质,熟练掌握圆的切线的性质和直角三角形的边角关系是解题的关键.18.(9分)(2014年河南省)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为144°;(2)请补全条形统计图;(3)该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由.考点:条形统计图;用样本估计总体;扇形统计图.专题:图表型.分析:(1)用“经常参加”所占的百分比乘以360°计算即可得解;(2)先求出“经常参加”的人数,然后求出喜欢篮球的人数,再补全统计图即可;(3)用总人数乘以喜欢篮球的学生所占的百分比计算即可得解;(4)根据喜欢乒乓球的27人都是“经常参加”的学生,“偶尔参加”的学生中也会有喜欢乒乓球的考虑解答.解答:解:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案为:144°;(2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120﹣27﹣33﹣20=120﹣80=40人;补全统计图如图所示;(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×=160人;(4)这个说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(9分)(2014年河南省)在中俄“海上联合﹣2014”反潜演习中,我军舰A测得潜艇C的俯角为30°,位于军舰A正上方1000米的反潜直升机B测得潜艇C的俯角为68°,试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数,参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5, 1.7)考点:解直角三角形的应用-仰角俯角问题.分析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,分别在Rt三角形ACD中表示出CD和在Rt三角形BCD中表示出BD,从而利用二者之间的关系列出方程求解.解答:解:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,根据题意得:∠ACD=30°,∠BCD=65°,设AD=x,则BD=BA+AD=1000+x,在Rt三角形ACD中,CD===,在Rt三角形BCD中,BD=CD•tan68°,∴1000+x=x•tan68°解得:x==≈308米,∴潜艇C离开海平面的下潜深度为308米.点评:本题考查了解直角三角形的应用,解题的关键是从题目中抽象出直角三角形并选择合适的边角关系求解.20.(9分)(2014年河南省)如图,在直角梯形OABC中,BC∥AO,∠AOC=90°,点A,B 的坐标分别为(5,0),(2,6),点D为AB上一点,且BD=2AD,双曲线y=(k>0)经过点D,交BC于点E.(1)求双曲线的解析式;(2)求四边形ODBE的面积.考点:反比例函数综合题.专题:综合题.分析:(1)作BM⊥x轴于M,作BN⊥x轴于N,利用点A,B的坐标得到BC=OM=5,BM=OC=6,AM=3,再证明△ADN∽△ABM,利用相似比可计算出DN=2,AN=1,则ON=OA﹣AN=4,得到D点坐标为(4,2),然后把D点坐标代入y=中求出k的值即可得到反比例函数解析式;(2)根据反比例函数k的几何意义和S四边形ODBE=S梯形OABC﹣S△OCE﹣S△OAD进行计算.解答:解:(1)作BM⊥x轴于M,作BN⊥x轴于N,如图,∵点A,B的坐标分别为(5,0),(2,6),∴BC=OM=5,BM=OC=6,AM=3,∵DN∥BM,∴△ADN∽△ABM,∴==,即==,∴DN=2,AN=1,∴ON=OA﹣AN=4,∴D点坐标为(4,2),把D(4,2)代入y=得k=2×4=8,∴反比例函数解析式为y=;(2)S四边形ODBE=S梯形OABC﹣S△OCE﹣S△OAD=×(2+5)×6﹣×|8|﹣×5×2=12.点评:本题考查了反比例函数综合题:熟练掌握反比例函数图象上点的坐标特征、反比例函数k的几何意义和梯形的性质;理解坐标与图形的性质;会运用相似比计算线段的长度.21.(10分)(2014年河南省)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.考点:一次函数的应用;二元一次方程组的应用;一元一次不等式组的应用.分析:(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元;根据题意列出方程组求解,(2)①据题意得,y=﹣50x+15000,②利用不等式求出x的范围,又因为y=﹣50x+15000是减函数,所以x取34,y取最大值,(3)据题意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,分三种情况讨论,①当0<m<50时,y随x的增大而减小,②m=50时,m﹣50=0,y=15000,③当50<m<100时,m﹣50>0,y随x的增大而增大,分别进行求解.解答:解:(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x﹣150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.点评:本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据一次函数x值的增大而确定y值的增减情况.22.(10分)(2014年河南省)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD,BE之间的数量关系为AD=BE.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A 到BP的距离.考点:圆的综合题;全等三角形的判定与性质;等腰三角形的性质;等边三角形的性质;直角三角形斜边上的中线;正方形的性质;圆周角定理.专题:综合题;探究型.分析:(1)由条件易证△ACD≌△BCE,从而得到:AD=BE,∠ADC=∠BEC.由点A,D,E在同一直线上可求出∠ADC,从而可以求出∠AEB的度数.(2)仿照(1)中的解法可求出∠AEB的度数,证出AD=BE;由△DCE为等腰直角三角形及CM为△DCE中DE边上的高可得CM=DM=ME,从而证到AE=2CH+BE.(3)由PD=1可得:点P在以点D为圆心,1为半径的圆上;由∠BPD=90°可得:点P在以BD为直径的圆上.显然,点P是这两个圆的交点,由于两圆有两个交点,接下来需对两个位置分别进行讨论.然后,添加适当的辅助线,借助于(2)中的结论即可解决问题.解答:解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,∴△ACD≌△BCE.∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.故答案为:60°.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE.(2)∠AEB=90°,AE=BE+2CM.理由:如图2,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,∴△ACD≌△BCE.∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.(3)∵PD=1,∴点P在以点D为圆心,1为半径的圆上.∵∠BPD=90°,∴点P在以BD为直径的圆上.∴点P是这两圆的交点.①当点P在如图3①所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E,如图3①.∵四边形ABCD是正方形,∴∠ADB=45°.AB=AD=DC=BC=,∠BAD=90°.∴BD=2.∵DP=1,∴BP=.∵A、P、D、B四点共圆,∴∠APB=∠ADB=45°.∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD.∴=2AH+1.∴AH=.②当点P在如图3②所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,如图3②.同理可得:BP=2AH﹣PD.∴=2AH﹣1.∴AH=.综上所述:点A到BP的距离为或.点评:本题考查了等边三角形的性质、正方形的性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半、圆周角定理、三角形全等的判定与性质等知识,考查了运用已有的知识和经验解决问题的能力,是体现新课程理念的一道好题.而通过添加适当的辅助线从而能用(2)中的结论解决问题是解决第(3)的关键.23.(11分)(2014年河南省)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)利用待定系数法求出抛物线的解析式;(2)用含m的代数式分别表示出PE、EF,然后列方程求解;(3)解题关键是识别出四边形PECE′是菱形,然后根据PE=CE的条件,列出方程求解.解答:解:(1)将点A、B坐标代入抛物线解析式,得:,解得,∴抛物线的解析式为:y=﹣x2+4x+5.(2)∵点P的横坐标为m,∴P(m,﹣m2+4m+5),E(m,﹣m+3),F(m,0).∴PE=|y P﹣y E|=|(﹣m2+4m+5)﹣(﹣m+3)|=|﹣m2+m+2|,EF=|y E﹣y F|=|(﹣m+3)﹣0|=|﹣m+3|.由题意,PE=5EF,即:|﹣m2+m+2|=5|﹣m+3|=|m+15|①若﹣m2+m+2=m+15,整理得:2m2﹣17m+26=0,解得:m=2或m=;①若﹣m2+m+2=﹣(m+15),整理得:m2﹣m﹣17=0,解得:m=或m=.由题意,m的取值范围为:﹣1<m<5,故m=、m=这两个解均舍去.∴m=2或m=.(3)假设存在.作出示意图如下:∵点E、E′关于直线PC对称,∴∠1=∠2,CE=CE′,PE=PE′.∵PE平行于y轴,∴∠1=∠3,∴∠2=∠3,∴PE=CE,∴PE=CE=PE′=CE′,即四边形PECE′是菱形.由直线CD解析式y=﹣x+3,可得OD=4,OC=3,由勾股定理得CD=5.过点E作EM∥x轴,交y轴于点M,易得△CEM∽△CDO,∴,即,解得CE=|m|,∴PE=CE=|m|,又由(2)可知:PE=|﹣m2+m+2|∴|﹣m2+m+2|=|m|.①若﹣m2+m+2=m,整理得:2m2﹣7m﹣4=0,解得m=4或m=﹣;②若﹣m2+m+2=﹣m,整理得:m2﹣6m﹣2=0,解得m=3+或m=3﹣.由题意,m的取值范围为:﹣1<m<5,故m=3+这个解舍去.综上所述,存在满足条件的点P,可求得点P坐标为(﹣,),(4,5),(3﹣,2﹣3).点评:本题是二次函数压轴题,综合考查了二次函数与一次函数的图象与性质、点的坐标、待定系数法、菱形、相似三角形等多个知识点,重点考查了分类讨论思想与方程思想的灵活运用.需要注意的是,为了避免漏解,表示线段长度的代数式均含有绝对值,解方程时需要分类讨论、分别计算.。

2014河南中招数学试题(解析版含详细答案)Word版

2014河南中招数学试题(解析版含详细答案)Word版

2014年河南省中招数学试卷及答案解析一、选择题(每小题3分,共24分)1.下列各数中,最小的数是 ( ) (A). 0 (B).13 (C).13(D).3- 答案:D解析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.解:∵11333-<-< ∴最小的数是﹣3,故选A .2. 据统计,2013年河南省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.875510n´,则n 等于 ( )(A) 10 (B) 11 (C).12 (D).13 答案:B解析:科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3875.5亿=3.8755×1011,故选B. 3.如图,直线AB CD 、相交于O ,射线OM 平分,,AOC ON OM 衈若 35AOM ??,则C O N Ð的度数为 ( ) (A) .35° (B). 45° (C) 55° (D). 65° 答案:C解析:根据角的平分线的性质及直角的性质,即可求解. ∠CON=90°-35°=55°, 故选C.4.下列各式计算正确的是 ( )(A )223a a a += (B )326)a a -=( (C )326·a a a = (D )222a b a b =+(+) 答案:B解析:根据同底数幂的乘法;幂的乘方;完全平方公式;同类项加法即可求得;(-a 3)2=a 6计算正确,故选B5.下列说法中,正确的是 ( ) (A )“打开电视,正在播放河南新闻节目”是必然事件(B )某种彩票中奖概率为10%是指买十张一定有一张中奖 (C )神州飞船发射前需要对零部件进行抽样检查 (D )了解某种节能灯的使用寿命适合抽样调查 答案:D解析:根据统计学知识;(A )“打开电视,正在播放河南新闻节目”是随机事件,(A )错误。

河南省2014年中招考试数学试卷(解析版)

河南省2014年中招考试数学试卷(解析版)

2014年河南省中招考试数学试卷及答案解析一、选择题(每小题3分,共24分)1.下列各数中,最小的数是()(A). 0 (B).13(C).-13(D).-3答案:D解析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.解:∵﹣3<-13<0<13,∴最小的数是﹣3,故选A.2. 据统计,2013年河南省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.8755×10n,则n等于()(A) 10 (B) 11 (C).12 (D).13答案:B解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3875.5亿=3.8755×1011,故选B.3.如图,直线AB、CD相交于O,射线OM平分∠AOC,ON⊥OM,若∠AOM =350,则∠CON 的度数为()(A) .350(B). 450(C) .550(D). 650答案:C解析:根据角的平分线的性质及直角的性质,即可求解.∠CON=900-350=550, 故选C.4.下列各式计算正确的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b2答案:B解析:根据同底数幂的乘法;幂的乘方;完全平方公式;同类项加法即可求得;(-a3)2=a6计算正确,故选B5.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(C)神州飞船发射前需要对零部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查答案:D解析:根据统计学知识;(A)“打开电视,正在播放河南新闻节目”是随机事件,(A)错误。

(B)某种彩票中奖概率为10%是指买十张一定有一张中奖是随机事件,(B)错误。

2014年河南省中招数学答案

2014年河南省中招数学答案

2014年河南省中招考试数学试卷(答案)一、选择题(每题3分,共24分)二、填空题(每题3分,共21分)三、解答题(本大题8分,共75分)16.原式=()()()2x1x12x x1x x1x+-++÷-…………………………………………………4分=()2x1xx x1++=1x1+…………………………………………………………………………6分当时,原式8分17.(1)连接OA,∵PA为⊙O的切线,∴O A⊥PA.……………………………1分在Rt△AOP中,∠AOP=900-∠APO=900-300=600.∴∠ACP=12∠AOP=12×600=300. …………………………………………4分∴∠ACP=∠APO, ∴AC=AP.∴△ACP是等腰三角形.………………………………………………………5分(2)①1;……………………………………………………………………………7分………………………………………………………………………9分18.(l)144:……………………………………………………………………………2分(2)(“篮球”选项的频数为40.正确补全条形统计图):………………………4分(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为1200×40300=160(人):………………………………………………………7分(4)这种说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人。

………9分(注:只要解释合理即可)19.过点C 作C D ⊥AB,交BA 的延长线于点D.则AD 即为潜艇C 的下潜深度. 根据题意得 ∠ACD=300,∠BCD=680. 设AD=x.则BD =BA 十AD=1000+x.在Rt △ACD 中,CD=xtan tan 30AD ACD =∠…………………………………4分在Rt △BCD 中,BD=C D ·tan688∴·tan688………………………………………………………………7分 ∴10003081.7 2.51≈≈⨯- ∴潜艇C 离开海平面的下潜深度约为308米。

河南省2014年中考数学试卷及答案(

河南省2014年中考数学试卷及答案(

2014年河南省中招考试数学试卷一、选择题(每小题 分,共 分)下列各数中,最小的数是( )☎✌✆  ☎✆13☎✆13☎✆ 据统计, 年河南省旅游业总收入达到 亿元 若将 亿用科学计数法表示为 × ⏹,则⏹等于( )(✌✆  ( ✆  ☎✆ ☎✆如图,直线✌、 相交于 ,射线 平分∠✌☠⊥若∠✌  ,则∠ ☠的度数为( )☎✌✆  ☎✆  ☎✆ ( ✆ 下列各式计算正确的是 ( )(✌)♋ ♋ ♋ ( )( ♋ ✆ ♋☎)♋ ·♋ ♋ ( )(♋+♌) ♋  ♌下列说法中,正确的是 ( )(✌)“打开电视,正在播放河南新闻节目”是必然事件( )某种彩票中奖概率为 %是指买十张一定有一张中奖(♍)神州飞船发射前钻要对冬部件进行抽样检查( )了解某种节能灯的使用寿命适合抽样调查将两个长方体如图放皿,到所构成的几何体的左视田可能是( )如图,✌的对角线✌与 相交于点 ✌⊥✌若✌ ✌ 则 的长是( )☎✌✆ ☎✆  ☎✆ ( ) 如图,在 ♦ △✌中,∠  ,✌♍❍, ♍❍,点 从✌出发,以 ♍❍♦的速沿折线✌  ✌运动,最终回到✌点。

设点 的运动时间为⌧(♦),线段✌的长度为⍓(♍❍),则能反映⍓与⌧之间函数关系的图像大致是 ( )二、填空题(每小题 分,共 分)计算:3272-- 不等式组3x6042x0+≥⎧⎨-⎩>的所有整数解的和是 在△✌中,按以下步骤作图:①分别以 、 为圆心,以大于12的长为半径作弧,两弧相交于两点 、☠;②作直线☠交✌于点 ,连接  若 ✌,∠  ,则∠✌的度数为 已知抛物线⍓♋⌧ ♌⌧♍☎♋≠ ✆与⌧轴交于✌、 两点.若点✌的坐标为( ✆,抛物线的对称轴为直线⌧.则线段✌的长为 一个不进明的袋子中装有仅颇色不同的 个红球和 个白球,两个人依次从袋子中随机摸出一个小球不放回,到第一个人摸到红球且第二个人摸到白球的概率是 如图,在菱形✌中 ✌ ∠ ✌ 把菱形✌绕点✌顺时针旋转  得到菱形✌,其中点 的运动能路径为/CC ,则图中阴影部分的面积为 如图,矩形✌中,✌✌点☜为 上一个动点,把△✌☜沿✌☜折叠,当点 的对应点 落在∠✌的角平分线上时, ☜的长为  三、解答题(本大题共 个,满分 分) ☎分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中⌧2  ( 分)如图 是⊙ 的直径,且 ♍❍,点 为 的延长线上一点,过点 作⊙ 的切线 ✌、 ,切点分别为点✌、 ( )连接✌若∠✌=  ,试证明△✌是等腰三角形; ( )填空:①当  ♍❍时,四边形✌是菱形;APO DB②当  ♍❍时,四边形✌是正方形.( 分)某兴趣小组为了解本校男生参加课外体育锻炼情况,随机抽取本校 名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图. 请根据以上信息解答下列问题:☎✆课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为 ; ☎)请补全条形统计图;☎)该校共有 名男生,请估什全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;☎)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为 ×27300”,请你判断这种说法是否正确,并说明理由.( 分)在中俄“海上联合— ”反潜演习中,我军舰✌测得潜艇 的俯角为  .位于军舰✌正上方 米的反潜直升机 侧得潜艇 的俯角为其它篮球羽毛球乒乓球2033275040302010项目人数“经常参加”课外体育锻炼的男生最喜欢的一种项目 条形统计图课外体育锻炼情况 扇形统计图经常参加从不参加 15%偶尔参加45% 试根据以上数据求出潜艇 离开海平面的下潜深度 (结果保留整数。

2014年河南省中考数学试卷及答案解析

2014年河南省中考数学试卷及答案解析

2014年河南省中考数学试卷一、选择题(每小题3分,共24分)1.(3分)下列各数中,最小的数是()A.0 B.C.﹣ D.﹣32.(3分)据统计,2013年河南省旅游业总收入达到约3875.5亿元.若将3875.5亿用科学记数法表示为3.8755×10n,则n等于()A.10 B.11 C.12 D.133.(3分)如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()A.35°B.45°C.55°D.65°4.(3分)下列各式计算正确的是()A.a+2a=3a2B.(﹣a3)2=a6C.a3•a2=a6 D.(a+b)2=a2+b25.(3分)下列说法中,正确的是()A.“打开电视,正在播放河南新闻节目”是必然事件B.某种彩票中奖概率为10%是指买十张一定有一张中奖C.神舟飞船发射前需要对零部件进行抽样调查D.了解某种节能灯的使用寿命适合抽样调查6.(3分)将两个长方体如图放置,则所构成的几何体的左视图可能是()A.B.C.D.7.(3分)如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.118.(3分)如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y与x之间函数关系的图象大致是()A.B.C.D.二、填空题(每小题3分,共21分)9.(3分)计算:﹣|﹣2|=.10.(3分)不等式组的所有整数解的和为.11.(3分)如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为.12.(3分)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为.13.(3分)一个不透明的袋子中装有仅颜色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是.14.(3分)如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为,则图中阴影部分的面积为.15.(3分)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE 沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:÷(2+),其中x=﹣1.17.(9分)如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线PA,PB,切点分别为点A,B.(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;(2)填空:①当DP=cm时,四边形AOBD是菱形;②当DP=cm时,四边形AOBP是正方形.18.(9分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为;(2)请补全条形统计图;(3)该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由.19.(9分)在中俄“海上联合﹣2014”反潜演习中,我军舰A测得潜艇C的俯角为30°,位于军舰A正上方1000米的反潜直升机B测得潜艇C的俯角为68°,试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数,参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5, 1.7)20.(9分)如图,在直角梯形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且BD=2AD,双曲线y=(k>0)经过点D,交BC于点E.(1)求双曲线的解析式;(2)求四边形ODBE的面积.21.(10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y 元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.22.(10分)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E 在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.2014年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)下列各数中,最小的数是()A.0 B.C.﹣ D.﹣3【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣3,故选:D.【点评】本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.(3分)据统计,2013年河南省旅游业总收入达到约3875.5亿元.若将3875.5亿用科学记数法表示为3.8755×10n,则n等于()A.10 B.11 C.12 D.13【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:3875.5亿=3875 5000 0000=3.8755×1011,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()A.35°B.45°C.55°D.65°【分析】由射线OM平分∠AOC,∠AOM=35°,得出∠MOC=35°,由ON⊥OM,得出∠CON=∠MON﹣∠MOC得出答案.【解答】解:∵射线OM平分∠AOC,∠AOM=35°,∴∠MOC=35°,∵ON⊥OM,∴∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣35°=55°.故选:C.【点评】本题主要考查了垂线和角平分线,解决本题的关键是找准角的关系.4.(3分)下列各式计算正确的是()A.a+2a=3a2B.(﹣a3)2=a6C.a3•a2=a6 D.(a+b)2=a2+b2【分析】根据合并同类项法则,积的乘方,同底数幂的乘法,平方差公式分别求出每个式子的值,再判断即可.【解答】解:A、a+2a=3a,故A选项错误;B、(﹣a3)2=a6,故B选项正确;C、a3•a2=a5,故C选项错误;D、(a+b)2=a2+b2+2ab,故D选项错误,故选:B.【点评】本题考查了合并同类项法则,积的乘方,同底数幂的乘法,平方差公式的应用,主要考查学生的计算能力.5.(3分)下列说法中,正确的是()A.“打开电视,正在播放河南新闻节目”是必然事件B.某种彩票中奖概率为10%是指买十张一定有一张中奖C.神舟飞船发射前需要对零部件进行抽样调查D.了解某种节能灯的使用寿命适合抽样调查【分析】必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.不易采集到数据的调查要采用抽样调查的方式,据此判断即可.【解答】解:A.“打开电视,正在播放河南新闻节目”是随机事件,故A选项错误;B.某种彩票中奖概率为10%是指买十张可能中奖,也可能不中奖,故B选项错误;C.神舟飞船发射前需要对零部件进行全面调查,故C选项错误;D.解某种节能灯的使用寿命,具有破坏性适合抽样调查,故D选项正确.故选:D.【点评】本题考查了调查的方式和事件的分类.不易采集到数据的调查要采用抽样调查的方式;必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.(3分)将两个长方体如图放置,则所构成的几何体的左视图可能是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看,下面是一个矩形,上面是一个等宽的矩形,该矩形的中间有一条棱,故选:C.【点评】本题考查了简单组合体的三视图,注意能看到的棱用实线画出.7.(3分)如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.11【分析】利用平行四边形的性质和勾股定理易求BO的长,进而可求出BD的长.【解答】解:∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB⊥AC,AB=4,AC=6,∴BO==5,∴BD=2BO=10,故选:C.【点评】本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单.8.(3分)如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y与x之间函数关系的图象大致是()A.B.C.D.【分析】这是分段函数:①点P在AC边上时,y=x,它的图象是一次函数图象的一部分;②点P在边BC上时,利用勾股定理求得y与x的函数关系式,根据关系式选择图象;③点P在边AB上时,利用线段间的和差关系求得y与x的函数关系式,由关系式选择图象.【解答】解:①当点P在AC边上,即0≤x≤1时,y=x,它的图象是一次函数图象的一部分;②点P在边BC上,即1<x≤3时,根据勾股定理得AP=,即y=,则其函数图象是y随x的增大而增大,且不是一次函数.故B、C、D错误;③点P在边AB上,即3<x≤3+时,y=+3﹣x=﹣x+3+,其函数图象是直线的一部分.综上所述,A选项符合题意.故选:A.【点评】本题考查了动点问题的函数图象.此题涉及到了函数y=的图象问题,在初中阶段没有学到该函数图象,所以只要采取排除法进行解题.二、填空题(每小题3分,共21分)9.(3分)计算:﹣|﹣2|=1.【分析】首先计算开方和绝对值,然后再计算有理数的减法即可.【解答】解:原式=3﹣2=1,故答案为:1.【点评】此题主要考查了实数的运算,关键是掌握立方根和绝对值得性质运算.10.(3分)不等式组的所有整数解的和为﹣2.【分析】先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相加即可求解.【解答】解:,由①得:x≥﹣2,由②得:x<2,∴﹣2≤x<2,∴不等式组的整数解为:﹣2,﹣1,0,1.所有整数解的和为﹣2﹣1+0+1=﹣2.故答案为:﹣2.【点评】本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.(3分)如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为105°.【分析】首先根据题目中的作图方法确定MN是线段BC的垂直平分线,然后利用垂直平分线的性质解题即可.【解答】解:由题中作图方法知道MN为线段BC的垂直平分线,∴CD=BD,∵∠B=25°,∴∠DCB=∠B=25°,∴∠ADC=50°,∵CD=AC,∴∠A=∠ADC=50°,∴∠ACD=80°,∴∠ACB=∠ACD+∠BCD=80°+25°=105°,故答案为:105°.【点评】本题考查了基本作图中的垂直平分线的作法及线段的垂直平分线的性质,解题的关键是了解垂直平分线的做法.12.(3分)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为8.【分析】由抛物线y=ax2+bx+c的对称轴为直线x=2,交x轴于A、B两点,其中A 点的坐标为(﹣2,0),根据二次函数的对称性,求得B点的坐标,再求出AB 的长度.【解答】解:∵对称轴为直线x=2的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=2对称,∵点A的坐标为(﹣2,0),∴点B的坐标为(6,0),AB=6﹣(﹣2)=8.故答案为:8.【点评】此题考查了抛物线与x轴的交点.此题难度不大,解题的关键是求出B 点的坐标.13.(3分)一个不透明的袋子中装有仅颜色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是.【分析】列表得出所有等可能的情况数,找出第一个人摸到红球且第二个人摸到白球的情况数,即可求出所求的概率.【解答】解:列表得:红1红2白1白2红1﹣﹣﹣(红2,红1)(白1,红1)(白2,红1)红2(红1,红2)﹣﹣﹣(白1,红2)(白2,红2)白1(红1,白1)(红2,白1)﹣﹣﹣(白2,白1)白2(红1,白2)(红2,白2)(白1,白2)﹣﹣﹣所有等可能的情况有12种,其中第一个人摸到红球且第二个人摸到白球的情况有4种,则P==.故答案为:.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.14.(3分)如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为,则图中阴影部分的面积为.【分析】根据菱形的性质以及旋转角为30°,连接CD′和BC′,可得A、D′、C及A、B、C′分别共线,求出扇形面积,再根据AAS证得两个小三角形全等,求得其面积,最后根据扇形ACC′的面积﹣两个小的三角形面积即可.【解答】解:连接CD′和BC′,∵∠DAB=60°,∴∠DAC=∠CAB=30°,∵∠C′AB′=30°,∴A、D′、C及A、B、C′分别共线.∴AC=∴扇形ACC′的面积为:=,∵AC=AC′,AD′=AB∴在△OCD′和△OC'B中,∴△OCD′≌△OC′B(AAS).∴OB=OD′,CO=C′O∵∠CBC′=60°,∠BC′O=30°∴∠COD′=90°∵CD′=AC﹣AD′=﹣1OB+C′O=1∴在Rt△BOC′中,BO2+(1﹣BO)2=(﹣1)2解得BO=,C′O=﹣,∴S△OC′B=•BO•C′O=﹣∴图中阴影部分的面积为:S扇形ACC′﹣2S△OC′B=+﹣.故答案为:+﹣.【点评】本题考查了旋转的性质,菱形的性质,扇形的面积公式,勾股定理,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.15.(3分)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE 沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为或.【分析】连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.【解答】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.在Rt△END′中,设ED′=a,①当MD′=3时,AM=7﹣3=4,D′N=5﹣3=2,EN=4﹣a,∴a2=22+(4﹣a)2,解得a=,即DE=,②当MD′=4时,AM=7﹣4=3,D′N=5﹣4=1,EN=3﹣a,∴a2=12+(3﹣a)2,解得a=,即DE=.故答案为:或.【点评】本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:÷(2+),其中x=﹣1.【分析】先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解,约分后得到原式=,再把x的值代入计算.【解答】解:原式=÷=÷=•=,当x=﹣1时,原式==.【点评】本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.17.(9分)如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线PA,PB,切点分别为点A,B.(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;(2)填空:①当DP=1cm时,四边形AOBD是菱形;②当DP=﹣1cm时,四边形AOBP是正方形.【分析】(1)利用切线的性质可得OC⊥PC.利用同弧所对的圆周角等于圆心角的一半,求得∠ACP=30°,从而求得.(2)①要使四边形AOBD是菱形,则OA=AD=OD,所以∠AOP=60°,所以OP=2OA,DP=OD.②要使四边形AOBP是正方形,则必须∠AOP=45°,OA=PA=1,则OP=,所以DP=OP﹣1.【解答】解:(1)连接OA,AC∵PA是⊙O的切线,∴OA⊥PA,在Rt△AOP中,∠AOP=90°﹣∠APO=90°﹣30°=60°,∴∠ACP=30°,∵∠APO=30°∴∠ACP=∠APO,∴AC=AP,∴△ACP是等腰三角形.(2)①DP=1,理由如下:∵四边形AOBD是菱形,∴OA=AD=OD,∴∠AOP=60°,∴OP=2OA,DP=OD.∴DP=1,②DP=,理由如下:∵四边形AOBP是正方形,∴∠AOP=45°,∵OA=PA=1,OP=,∴DP=OP﹣1∴DP=.【点评】本题考查了切线的性质,圆周角的性质,熟练掌握圆的切线的性质和直角三角形的边角关系是解题的关键.18.(9分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为144°;(2)请补全条形统计图;(3)该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由.【分析】(1)用“经常参加”所占的百分比乘以360°计算即可得解;(2)先求出“经常参加”的人数,然后求出喜欢篮球的人数,再补全统计图即可;(3)用总人数乘以喜欢篮球的学生所占的百分比计算即可得解;(4)根据喜欢乒乓球的27人都是“经常参加”的学生,“偶尔参加”的学生中也会有喜欢乒乓球的考虑解答.【解答】解:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案为:144°;(2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120﹣27﹣33﹣20=120﹣80=40人;补全统计图如图所示;(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×=160人;(4)这个说法不正确.理由如下:小明得到的108人是全校经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(9分)在中俄“海上联合﹣2014”反潜演习中,我军舰A测得潜艇C的俯角为30°,位于军舰A正上方1000米的反潜直升机B测得潜艇C的俯角为68°,试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数,参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5, 1.7)【分析】过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,分别在Rt△ACD中表示出CD和在Rt△BCD中表示出BD,从而利用二者之间的关系列出方程求解.【解答】解:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,根据题意得:∠ACD=30°,∠BCD=68°,设AD=x,则BD=BA+AD=1000+x,在Rt△ACD中,CD===,在Rt△BCD中,BD=CD•tan68°,∴1000+x=x•tan68°解得:x=≈≈308米,∴潜艇C离开海平面的下潜深度为308米.【点评】本题考查了解直角三角形的应用,解题的关键是从题目中抽象出直角三角形并选择合适的边角关系求解.20.(9分)如图,在直角梯形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且BD=2AD,双曲线y=(k>0)经过点D,交BC于点E.(1)求双曲线的解析式;(2)求四边形ODBE的面积.【分析】(1)作BM⊥x轴于M,作DN⊥x轴于N,利用点A,B的坐标得到BC=OM=2,BM=OC=6,AM=3,再证明△ADN∽△ABM,利用相似比可计算出DN=2,AN=1,则ON=OA﹣AN=4,得到D点坐标为(4,2),然后把D点坐标代入y=中求出k 的值即可得到反比例函数解析式;(2)根据反比例函数k的几何意义和S四边形ODBE =S梯形OABC﹣S△OCE﹣S△OAD进行计算.【解答】解:(1)作BM⊥x轴于M,作DN⊥x轴于N,如图,∵点A,B的坐标分别为(5,0),(2,6),∴BC=OM=2,BM=OC=6,AM=3,∵DN∥BM,∴△ADN∽△ABM,∴==,即==,∴DN=2,AN=1,∴ON=OA﹣AN=4,∴D点坐标为(4,2),把D(4,2)代入y=得k=2×4=8,∴反比例函数解析式为y=;(2)S四边形ODBE =S梯形OABC﹣S△OCE﹣S△OAD=×(2+5)×6﹣×|8|﹣×5×2=12.【点评】本题考查了反比例函数综合题:熟练掌握反比例函数图象上点的坐标特征、反比例函数k的几何意义和梯形的性质;理解坐标与图形的性质;会运用相似比计算线段的长度.21.(10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y 元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.【分析】(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b 元;根据题意列出方程组求解,(2)①据题意得,y=﹣50x+15000,②利用不等式求出x的范围,又因为y=﹣50x+15000是减函数,所以x取34,y 取最大值,(3)据题意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,分三种情况讨论,①当0<m<50时,y随x的增大而减小,②m=50时,m﹣50=0,y=15000,③当50<m<100时,m﹣50>0,y随x的增大而增大,分别进行求解.【解答】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.【点评】本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据一次函数x值的增大而确定y值的增减情况.22.(10分)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD,BE之间的数量关系为AD=BE.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E 在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.【分析】(1)由条件易证△ACD≌△BCE,从而得到:AD=BE,∠ADC=∠BEC.由点A,D,E在同一直线上可求出∠ADC,从而可以求出∠AEB的度数.(2)仿照(1)中的解法可求出∠AEB的度数,证出AD=BE;由△DCE为等腰直角三角形及CM为△DCE中DE边上的高可得CM=DM=ME,从而证到AE=2CH+BE.(3)由PD=1可得:点P在以点D为圆心,1为半径的圆上;由∠BPD=90°可得:点P在以BD为直径的圆上.显然,点P是这两个圆的交点,由于两圆有两个交点,接下来需对两个位置分别进行讨论.然后,添加适当的辅助线,借助于(2)中的结论即可解决问题.【解答】解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.故答案为:60°.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE.(2)∠AEB=90°,AE=BE+2CM.理由:如图2,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.(3)点A到BP的距离为或.理由如下:∵PD=1,∴点P在以点D为圆心,1为半径的圆上.∵∠BPD=90°,∴点P在以BD为直径的圆上.∴点P是这两圆的交点.①当点P在如图3①所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E,如图3①.∵四边形ABCD是正方形,∴∠ADB=45°.AB=AD=DC=BC=,∠BAD=90°.∴BD=2.∵DP=1,∴BP=.∵∠BPD=∠BAD=90°,∴A、P、D、B在以BD为直径的圆上,∴∠APB=∠ADB=45°.∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD.∴=2AH+1.∴AH=.②当点P在如图3②所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,如图3②.同理可得:BP=2AH﹣PD.∴=2AH﹣1.∴AH=.综上所述:点A到BP的距离为或.【点评】本题考查了等边三角形的性质、正方形的性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半、圆周角定理、三角形全等的判定与性质等知识,考查了运用已有的知识和经验解决问题的能力,是体现新课程理念的一道好题.而通过添加适当的辅助线从而能用(2)中的结论解决问题是解决第(3)的关键.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法求出抛物线的解析式;(2)用含m的代数式分别表示出PE、EF,然后列方程求解;(3)解题关键是识别出当四边形PECE′是菱形,然后根据PE=CE的条件,列出方程求解;当四边形PECE′是菱形不存在时,P点y轴上,即可得到点P坐标.【解答】方法一:解:(1)将点A、B坐标代入抛物线解析式,得:,解得,∴抛物线的解析式为:y=﹣x2+4x+5.(2)∵点P的横坐标为m,∴P(m,﹣m2+4m+5),E(m,﹣m+3),F(m,0).∴PE=|y P﹣y E|=|(﹣m2+4m+5)﹣(﹣m+3)|=|﹣m2+m+2|,EF=|y E﹣y F|=|(﹣m+3)﹣0|=|﹣m+3|.由题意,PE=5EF,即:|﹣m2+m+2|=5|﹣m+3|=|m+15|①若﹣m2+m+2=m+15,整理得:2m2﹣17m+26=0,解得:m=2或m=;②若﹣m2+m+2=﹣(m+15),整理得:m2﹣m﹣17=0,解得:m=或m=.由题意,m的取值范围为:﹣1<m<5,故m=、m=这两个解均舍去.。

2014河南中招数学试题解析版含详细答案Word版精要

2014河南中招数学试题解析版含详细答案Word版精要

Pzb2014 年河南省中招数学试卷及答案分析一、选择题(每题 3 分,共 24 分)1.以下各数中,最小的数是()1 (C).1(A). 0(B).(D). - 333答案: D分析:依占有理数的大小比较法例(正数都大于 0,负数都小于 0,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.解:∵-3<-1<13 3∴最小的数是﹣ 3,应选 A .2. 据统计, 2013 年河南省旅行业总收入达到3875.5 亿元 . 若将 3875.5 亿用科学计数法表示为n ()3.8755 ′ 10,则 n 等于(A)10 (B) 11(C).12(D).13答案: B分析:科学记数法的表示形式为a ×10n的形式,此中 1≤|a < 10,n 为整数,表示时重点要正确确立a 的值以及 n 的值. 3875.5 亿=3.8755×1011,应选 B.3.如图,直线 AB 、 CD 订交于 O ,射线 OM 均分 衈AOC, ON OM ,若? AOM35?,则 DCON 的度数为()C(A) .35 °(B). 45 °(C) 55°(D). 65°MN答案: C分析:依据角的均分线的性质及直角的性质,即可求解. AOB ∠ CON=90 ° - 35° =55° , 应选 C.4.以下各式计算正确的选项是()D( A ) a + 2a = 3a 2( B )3) 2= a 6(- a32= a 622+ b 2(C ) a ·a (D )( a + b ) = a答案: B分析:依据同底数幂的乘法;幂的乘方;完好平方公式;同类项加法即可求得;( -a 3)2=a 6 计算正确,故选 B5.以下说法中,正确的选项是( )( A ) “翻开电视,正在播放河南新闻节目”是必定事件( B )某种彩票中奖概率为 10%是指买十张必定有一张中奖 ( C )神州飞船发射前需要对零零件进行抽样检查( D )认识某种节能灯的使用寿命合适抽样检查 答案: D分析:依据统计学知识;( A ) “翻开电视,正在播放河南新闻节目”是随机事件,( A )错误。

2014年河南省中考数学试卷-答案

2014年河南省中考数学试卷-答案
当原数的绝对值≥10 时,n 为正整数,n 等于原数的整数位数减 1;当原数的绝对值<1 时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位上的零), 3 875.5亿 3.875 51011 ,所以
n 11,故选 B. 【考点】科学记数法. 3.【答案】C 【 解 析 】 因 为 OM 平 分 A O C, AOM 35 , 所 以 COM 35 , 因 为 O N O M, 所 以 C O N9 0 3 5 5,5 故选 C. 【考点】角平分线的性质及垂线的性质. 4.【答案】B 【解析】 a 2a 3a , (a3 )2 a6 , a3 a2 a5 , (a b)2 a2 2ab b2 ,故选 B.
【考点】整式的计算. 5.【答案】D 【解析】A 为不确定事件,故错误;概率是从大量事件总结出的规律,小范围内不一定成立,故 B 错误; 神舟飞船发射前需要对所有零部件进行全面检查,故 C 错误;节能灯的使用寿命适合抽样调查,故选 D. 【考点】统计与概率. 6.【答案】C 【解析】两个长方体如图放置,其左视图为 C 选项,故选 C. 【提示】由于审题不清看成主视图而选 A 或实线与虚线混淆而选 D. 【考点】简单几何体的三视图.
河南省 2014 年普通高中招生考试
数学答案解析
第Ⅰ卷
一、选择题 1.【答案】D 【解析】将各数表示在数轴上,数轴上右边的点所表示的数比左边的点表示的数大;正数大于 0,0 大于负 数,所以最小的数是 3 ,故选 D. 【考点】有理数的大小比较. 2.【答案】B 【解析】科学记数法是将一个数写成 a 10n 的形式,其中1≤ a <10 ,n 为整数.其中 a 是只有一位整数的数;
在 Rt△AOP 中, AOP 90 APO 90 30 60 ,

(完整word版)2014年河南省中招考试数学试卷及答案

(完整word版)2014年河南省中招考试数学试卷及答案

2014年河南省中招考试数学试卷一、选择题(每小题3分,共24分)1.下列各数中,最小的数是()(A). 0 (B).13(C).-13(D).-32. 据统计,2013年河南省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.8755×10n,则n等于()(A) 10 (B) 11 (C).12 (D).133.如图,直线AB、CD相交于O,射线OM平分∠AOC,O N⊥OM,若∠AOM =350,则∠CON的度数为()(A) .350(B). 450(C) .550(D). 6504.下列各式计算正确的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b25.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(c)神州飞船发射前钻要对冬部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查6:将两个长方体如图放皿,到所构成的几何体的左视田可能是()7.如图,Y ABCD的对角线AC与BD相交于点O,AB⊥AC.若AB =4,AC =6,则BD的长是()(A)8 (B) 9 (C)10 (D)118.如图,在Rt △ABC中,∠C=900,AC=1cm,BC=2cm,点P从A出发,以1cm/s的速沿折线AC CB BA运动,最终回到A点。

设点P的运动时间为x(s),线段AP的长度为y(cm),则能反映y与x之间函数关系的图像大致是()二、填空题(每小题3分,共21分)9.计算:3272--= .10.不等式组3x6042x0+≥⎧⎨-⎩>的所有整数解的和是.11.在△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于12BC的长为半径作弧,两弧相交于两点M、N;②作直线MN交AB于点D,连接CD. 若CD=AC,∠B=250,则∠ACB的度数为.12.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点.若点A的坐标为(-2,0),抛物线的对称轴为直线x=2.则线段AB的长为.13.一个不进明的袋子中装有仅颇色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,到第一个人摸到红球且第二个人摸到白球的概率是 .14.如图,在菱形ABCD 中,AB =1,∠DAB=600,把菱形ABCD 绕点A 顺时针旋转300得到菱形AB'C'D',其中点C 的运动能路径为¼/CC,则图中阴影部分的面积为 . 15.如图,矩形ABCD 中,AD=5,AB=7.点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D /落在∠ABC 的角平分线上时,DE 的长为 . 三、解答题(本大题共8个,满分75分) 16.(8分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中x=2-1 17.(9分)如图,CD 是⊙O 的直径,且CD=2cm ,点P 为CD 的延长线上一点,过点P 作⊙O 的切线PA 、PB ,切点分别为点A 、B.(1)连接AC,若∠APO =300,试证明△ACP 是等腰三角形; (2)填空:①当DP= cm 时,四边形AOBD 是菱形;②当DP= cm 时,四边形AOBP 是正方形.18.(9分)某兴趣小组为了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为 ; (2)请补全条形统计图;(3)该校共有1200名男生,请估什全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27300=108”,请你判断这种说法是否正确,并说明理由.其它篮球羽毛球乒乓球2033275040302010项目人数“经常参加”课外体育锻炼的男生最喜欢的一种项目 条形统计图课外体育锻炼情况 扇形统计图经常参加从不参加 15%偶尔参加45%A PO D B19.(9分)在中俄“海上联合—2014”反潜演习中,我军舰A测得潜艇C的俯角为300.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为680.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数。

河南省2014年中考数学真题试题(含答案)

河南省2014年中考数学真题试题(含答案)

2014年河南省中招考试数学试卷注意事项:1. 本试卷分试题卷和答题卡两部分。

试题卷共4页,三个大题,满分120分,考试时间100分钟.2. 试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上,答在试题卷上的答案无效.3. 答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置上.参考公式:二次函数y=ax2+bx+c(a≠0)图象的顶点坐标为 .一、选择题(每小题3分,共24分)1.下列各数中,最小的数是()(A). 0 (B).13(C).-13(D).-32. 据统计,2013年河南省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.8755×10n,则n等于()(A) 10 (B) 11 (C).12 (D).133.如图,直线AB、CD相交于O,射线OM平分∠AOC,ON⊥OM,若∠AOM =350,则∠CON的度数为()(A) .350 (B). 450 (C) .550(D). 6504.下列各式计算正确的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b25.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(c)神州飞船发射前钻要对冬部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查6:将两个长方体如图放置,则所构成的几何体的左视图可能是()7.如图,ABCD的对角线AC与BD相交于点O,AB⊥AC.若AB =4,AC =6,则BD的长是()(A)8 (B) 9 (C)10 (D)118.如图,在Rt △ABC中,∠C=900,AC=1cm,BC=2cm,点P从A出发,以1cm/s的速沿折线AC →CB →BA运动,最终回到A点。

设点P的运动时间为x(s),线段AP的长度为y(cm),则能反映y 与x之间函数关系的图像大致是()二、填空题(每小题3分,共21分)9.2-= . 10.不等式组3x 6042x 0+≥⎧⎨-⎩>的所有整数解的和是 .11.在△ABC 中,按以下步骤作图:①分别以B 、C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M 、N ;②作直线MN 交AB 于点D ,连接CD. 若CD=AC ,∠B=250,则∠ACB 的度数为 .12.已知抛物线y=ax 2+bx+c(a ≠0)与x 轴交于A 、B 两点.若点A 的坐标为(-2,0),抛物线的对称轴为直线x=2.则线段AB 的长为 .13.一个不进明的袋子中装有仅颇色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,到第一个人摸到红球且第二个人摸到白球的概率是 .14.如图,在菱形ABCD 中,AB =1,∠DAB=600,把菱形ABCD 绕点A 顺时针旋转300得到菱形AB'C'D',其中点C 的运动能路径为/CC ,则图中阴影部分的面积为 . 15.如图,矩形ABCD 中,AD=5,AB=7.点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D /落在∠ABC 的角平分线上时,DE 的长为 . 三、解答题(本大题共8个,满分75分) 16.(8分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中17.(9分)如图,CD 是⊙O 的直径,且CD=2cm ,点P 为CD 的延长线上一点,过点P 作⊙O 的切线PA 、PB ,切点分别为点A 、B.(1)连接AC,若∠APO =300,试证明△ACP 是等腰三角形; (2)填空:①当DP= cm 时,四边形AOBD 是菱形;②当DP= cm 时,四边形AOBP 是正方形.18.(9分)某兴趣小组为了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为 ; (2)请补全条形统计图;(3)该校共有1200名男生,请估什全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27300=108”,请你判断这种说法是否正确,并说明理由.19.(9分)在中俄“海上联合—2014”反潜演习中,我军舰A 测得潜艇C 的俯角为300.位于军舰A 正上方1000米的反潜直升机B 侧得潜艇C 的俯角为680.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数。

2014年河南省中招考试数学试卷及答案(解析版)

2014年河南省中招考试数学试卷及答案(解析版)

2014年河南省中招考试数学试卷及答案解析一、选择题(每小题3分,共24分)1。

下列各数中,最小的数是()(A)。

0 (B)。

13(C)。

-13(D).-3答案:D解析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.解:∵﹣3<-13<0<13,∴最小的数是﹣3,故选A.2. 据统计,2013年河南省旅游业总收入达到3875。

5亿元。

若将3875.5亿用科学计数法表示为3.8755×10n,则n等于()(A) 10 (B) 11 (C).12 (D)。

13答案:B解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3875.5亿=3.8755×1011,故选B.3。

如图,直线AB、CD相交于O,射线OM平分∠AOC,ON⊥OM,若∠AOM =350,则∠CON的度数为 ( )(A)。

350(B)。

450(C) .550(D)。

650答案:C解析:根据角的平分线的性质及直角的性质,即可求解.∠CON=900—350=550,故选C。

4。

下列各式计算正确的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b2答案:B解析:根据同底数幂的乘法;幂的乘方;完全平方公式;同类项加法即可求得;(—a3)2=a6计算正确,故选B5。

下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目"是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(C)神州飞船发射前需要对零部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查答案:D解析:根据统计学知识;(A)“打开电视,正在播放河南新闻节目”是随机事件,(A)错误。

(B)某种彩票中奖概率为10%是指买十张一定有一张中奖是随机事件,(B)错误.(C)神州飞船发射前需要对零部件进行抽样检查要全面检查.(D)了解某种节能灯的使用寿命适合抽样调查,(D)正确。

2014河南省中考数学试卷与答案(word版)

2014河南省中考数学试卷与答案(word版)

2014 年河南省普通高中招生考试试卷数学注意事项:1.本试卷共 8 页,三个大题,满分 120 分,考试时间 100 分钟,请用蓝、黑色水笔或圆珠笔直接答在试卷上.2.答卷前请将密封线内的项目填写清楚.一二三总分题号1~89~ 151617181920212223分数A . 8B.9C.10D. 118.( 3 分)如图,在 Rt△ ABC 中,∠C=90 °,AC=1cm ,BC=2cm ,点 P 从点 A 出发,以 1cm/s 的速度沿折线AC →CB→BA 运动,最终回到点 A,设点 P 的运动时间为 x( s),线段 AP 的长度为 y( cm),则能够反映 y 与 x 之间函数关系的图象大致是()A .B .C. D .三、解答题(本大题共8 小题,满分75 分)16.( 8 分)先化简,再求值: x21(2x 21),其中 x=﹣1.x2x x17.(9 分)如图, CD 是⊙ O 的直径,且 CD=2cm ,点 P 为CD 的延长线上一点,过点 P 作⊙ O 的切线 PA, PB,切点分别为点 A ,B.一、选择题(每小题 3 分,共 24 分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.下列各数中,最小的数是()A . 0B.C.﹣D.﹣32.据统计,2013 年河南省旅游业总收入达到约3875.5 亿元.若将 3875.5 亿用科学记数法表示为 3.8755×10n,则 n 等于()A.10B. 11C. 12D.133.如图,直线AB , CD 相交于点 O,射线 OM 平分∠ AOC ,ON⊥ OM ,若∠ AOM=35 °,则∠ CON 的度数为()二、填空题(每小题 3 分,共 21 分)9.计算:﹣|﹣2|=_________.10.不等式组的所有整数解的和为_________.11.如图,在△ABC 中,按以下步骤作图:①分别以 B, C 为圆心,以大于BC 的长为半径作弧,两弧相交于 M,N 两点;②作直线 MN 交 AB 于点 D ,连接 CD ,若 CD=AC ,∠ B=25 °,则∠ ACB 的度数为 _________.( 1)连接 AC ,若∠ APO=30 °,试证明△ACP 是等腰三角形;( 2)填空:①当 DP=_________cm 时,四边形AOBD 是菱形;②当 DP=_________cm 时,四边形AOBD 是正方形.18.( 9 分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校 300 名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.A.35°B. 45°C. 55°D.65°4.下列各式计算正确的是()A . a+2a=3a 2326326222 B.(﹣a) =a C.a?a=a D .(a+b)=a +b5.下列说法中,正确的是()A .“打开电视,正在播放河南新闻节目”是必然事件B.某种彩票中奖概率为 10% 是指买十张一定有一张中奖C.神舟飞船反射前需要对零部件进行抽样调查D.了解某种节能灯的使用寿命适合抽样调查6.( 3 分)( 2014?河南)将两个长方体如图放置,则所构成的几何体的左视图可能是()A .B.C.D.7.如图, ?ABCD 的对角线AC 与 BD 相交于点O,AB ⊥AC ,若 AB=4 ,AC=6 ,则 BD 的长是()2两点,12.已知抛物线 y=ax +bx+c ( a≠0)与 x 轴交于 A , B若点 A 的坐标为(﹣ 2, 0),抛物线的对称轴为直线x=2,则线段 AB 的长为 _________.13.一个不透明的袋子中装有仅颜色不同的 2 个红球和 2 个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是_________ .14.如图,在菱形ABCD 中,AB=1 ,∠DAB=60 °,把菱形ABCD 绕点A 顺时针旋转 30°得到菱形 AB ′C′D′,其中点 C的运动路径为弧 cc ' ,则图中阴影部分的面积为_________.15.如图矩形 ABCD 中, AD=5 ,AB=7 ,点 E 为 DC 上一个动点,把△ ADE 沿 AE 折叠,当点 D 的对应点 D′落在∠ ABC 的角平分线上时, DE 的长为 _________.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为 _________;(2)请补全条形统计图;(3)该校共有 1200 名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为 1200× =108”,请你判断这种说法是否正确,并说明理由.19.(9 分)在中俄“海上联合﹣ 2014”反潜演习中,我军舰 A测得潜艇 C 的俯角为 30°,位于军舰 A 正上方 1000 米的反潜直升机 B 测得潜艇 C 的俯角为 68°,试根据以上数据求出潜艇 C 离开海平面的下潜深度.(结果保留整数,参考数据:sin68°≈0.9, cos68°≈0.4, tan68°≈2.5, 1.7)20.( 9 分)如图,在直角梯形OABC 中,BC ∥ AO ,∠AOC=90 °,点A,B 的坐标分别为( 5, 0),( 2, 6),点 D 为 AB 上一点,且 BD=2AD ,双曲线 y= ( k> 0)经过点 D ,交 BC 于点 E.(1)求双曲线的解析式;(2)求四边形 ODBE 的面积.21.( 10 分)某商店销售10 台 A 型和 20 台 B 型电脑的利润为4000 元,销售 20 台 A 型和 10 台 B 型电脑的利润为3500 元.( 1)求每台 A 型电脑和 B 型电脑的销售利润;( 2)该商店计划一次购进两种型号的电脑共100 台,其中 B型电脑的进货量不超过 A 型电脑的 2 倍,设购进 A 型电脑 x台,这 100 台电脑的销售总利润为y 元.①求 y 关于 x 的函数关系式;②该商店购进 A 型、 B 型电脑各多少台,才能使销售总利润最大?( 3)实际进货时,厂家对 A 型电脑出厂价下调m(0< m< 100)元,且限定商店最多购进 A 型电脑70 台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这 100 台电脑销售总利润最大的进货方案.22.( 10 分)( 1)问题发现如图 1,△ ACB 和△ DCE 均为等边三角形,点 A, D, E 在同一直线上,连接 BE .填空:① ∠ AEB 的度数为 _________;②线段 AD ,BE 之间的数量关系为_________.( 2)拓展探究如图 2,△ ACB 和△ DCE 均为等腰直角三角形,∠ACB= ∠ DCE=90 °,点 A ,D,E 在同一直线上, CM 为△ DCE中 DE 边上的高,连接 BE,请判断∠ AEB 的度数及线段 CM , AE ,BE 之间的数量关系,并说明理由.( 3)解决问题如图 3,在正方形ABCD 中, CD=,若点P满足PD=1,且∠ BPD=90 °,请直接写出点A 到 BP 的距离.23.(11 分)( 2014?河南)如图,抛物线2与 x 轴y=﹣ x +bx+c交于点 A (﹣ 1, 0),B( 5,0)两点,直线 y=﹣ x+3与 y 轴交于点 C,与 x 轴交于点 D.点 P 是 x 轴上方的抛物线上一动点,过点 P 作 PF⊥ x 轴于点 F,交直线 CD 于点 E.设点 P 的横坐标为m.(1)求抛物线的解析式;(2)若 PE=5EF,求 m 的值;(3)若点 E′是点 E 关于直线 PC 的对称点,是否存在点 P,使点 E′落在 y 轴上?若存在,请直接写出相应的点 P 的坐标;若不存在,请说明理由.2014 年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3 分,共 24 分)1.( 3 分)( 2014?河南)下列各数中,最小的数是()A . 0B .C . ﹣D .﹣3考 有理数大小比较. 点:分 根据正数大于 0, 0 大于负数,可得答案.析: 解解:﹣3 ,答:故选: D .点 本题考查了有理数比较大小,正数大于 0, 0 大于负数是评: 解题关键.2.( 3 分)( 2014?河南)据统计, 2013 年河南省旅游业总收入 达到约 3875.5 亿元.若将 3875.5 亿用科学记数法表示为3.8755×10 n,则 n 等于( ) A .10 B . 11 C . 12 D .13 考科学记数法 —表示较大的数.点:a ×10n 的形式,其中 1≤|a|< 10, 分 科学记数法的表示形式为析: n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n 是负数.解解: 3875.5 亿=3875 5000 0000=3.8755 ×1011, 答: 故选: B . 点 此题考查科学记数法的表示方法. 科学记数法的表示形式评:为 a ×10n的形式,其中 1≤|a|< 10, n 为整数,表示时关键 要正确确定 a 的值以及 n 的值.3.( 3 分)( 2014?河南)如图,直线 A B ,CD 相交于点 O ,射线 OM 平分∠ AOC ,ON ⊥OM ,若∠ AOM=35 °,则∠ CON 的度数为()A . 35°B .45°C .55°D . 65°考 垂线;对顶角、邻补角.点:分 由射线 OM 平分∠ AOC ,∠ AOM=35 °,得出∠ MOC=35 °,析:由 ON ⊥OM ,得出∠ CON= ∠ MON ﹣∠ MOC 得出答案.解 解:∵射线 OM 平分∠ AOC ,∠ AOM=35 °,答: ∴∠ MOC=35 °,∵ ON ⊥OM , ∴∠ MON=90 °,∴∠ CON= ∠ MON ﹣∠ MOC=90 °﹣ 35°=55°. 故选: C .点 本题主要考查了垂线和角平分线, 解决本题的关键是找准评:角的关系.4.( 3 分)(2014?河南)下列各式计算正确的是()A . a+2a=3a 23 3 2 6. ( a+b )B .(﹣ a )C .a ?a =aD 2 6222=a=a +b考 完全平方公式;合并同类项;同底数幂的乘法;幂的乘方点:与积的乘方.分 根据合并同类项法则,积的乘方,同底数幂的乘法,平方析:差公式分别求出每个式子的值,再判断即可.解 解: A 、 a+2a=3a ,故本选项错误;3 26,故本选项正确;答: B 、(﹣ a )=a3 2 5C 、 a ?a =a ,故本选项错误;2 2 2B .D 、(a+b ) =a +b +2ab ,故本选项错误,故选点 本题考查了合并同类项法则, 积的乘方,同底数幂的乘法, 评:平方差公式的应用,主要考查学生的计算能力.5.( 3 分)(2014?河南)下列说法中,正确的是( )A . “打开电视,正在播放河南新闻节目 ”是必然事件B . 某种彩票中奖概率为 10% 是指买十张一定有一张中奖C . 神舟飞船反射前需要对零部件进行抽样调查D . 了解某种节能灯的使用寿命适合抽样调查考 随机事件;全面调查与抽样调查;概率的意义.点:分 必然事件指在一定条件下一定发生的事件. 不可能事件是析: 指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.不易采集到数据的调查要采用抽样调查的方式,据此判断即可.解解: A .“打开电视,正在播放河南新闻节目 ”是随机事件, 答: 本项错误;B .某种彩票中奖概率为 10%是指买十张可能中奖,也可能不中奖,本项错误;C .神舟飞船反射前需要对零部件进行全面调查,本项错误;D .解某种节能灯的使用寿命, 具有破坏性适合抽样调查. 故选: D .点 本题考查了调查的方式和事件的分类. 不易采集到数据的评: 调查要采用抽样调查的方式; 必然事件指在一定条件下一定发生的事件. 不可能事件是指在一定条件下,一定不发生的事件. 不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.( 3 分)( 2014?河南)将两个长方体如图放置,则所构成的几何体的左视图可能是( )A .B .C .D .考 简单组合体的三视图.点:分 根据从左边看得到的图形是左视图,可得答案.析:解 解:从左边看, 下面是一个矩形, 上面是一个等宽的矩形,答: 该矩形的中间有一条棱,故选: C .点 本题考查了简单组合体的三视图, 注意能看到的棱用实线评: 画出.7.( 3 分)( 2014?河南)如图, ?ABCD 的对角线A C 与 BD 相交于点 O,AB ⊥AC ,若 AB=4 ,AC=6 ,则 BD 的长是()A . 8B . 9C. 10D.11考平行四边形的性质;勾股定理.点:分利用平行四边形的性质和勾股定理易求BO 的长,进而可析:求出 BD 的长.解解:∵ ?ABCD 的对角线 AC 与 BD 相交于点 O,答:∴ BO=DO , AO=CO ,∵AB ⊥ AC , AB=4 , AC=6 ,∴BO==5,∴BD=2BO=10 ,故选 C.点本题考查了平行四边形的性质以及勾股定理的运用,是中评:考常见题型,比较简单.8.( 3 分)( 2014?河南)如图,在 Rt△ABC 中,∠ C=90°,AC=1cm ,BC=2cm ,点 P 从点 A 出发,以 1cm/s 的速度沿折线AC →CB→BA 运动,最终回到点 A ,设点 P 的运动时间为(x s),线段 AP 的长度为 y(cm),则能够反映 y 与 x 之间函数关系的图象大致是()A B C D....点:分这是分段函数:①点 P 在 AC 边上时, y=x ,它的图象是析:一次函数图象的一部分;②点 P 在边 BC 上时,利用勾股定理求得y 与 x 的函数关系式,根据关系式选择图象;③点 P 在边 AB 上时,利用线段间的和差关系求得y 与 x的函数关系式,由关系式选择图象.解解:①当点 P在AC 边上,即0≤x≤1 时, y=x ,它的图象答:是一次函数图象的一部分.故 C 错误;②点 P 在边 BC 上,即 1< x≤3 时,根据勾股定理得AP=,即 y=,则其函数图象是 y 随 x 的增大而增大,且不是线段.故B、 D 错误;③点 P 在边 AB 上,即 3< x≤3+时, y= +3 ﹣ x= ﹣x+3+,其函数图象是直线的一部分.综上所述, A 选项符合题意.故选: A.点本题考查了动点问题的函数图象.此题涉及到了函数评:y=的图象问题,在初中阶段没有学到该函数图象,所以只要采取排除法进行解题.二、填空题(每小题 3 分,共 21 分)9.( 3 分)( 2014?河南)计算:﹣|﹣2|=1.考实数的运算.点:分首先计算开方和绝对值,然后再计算有理数的减法即可.析:解解:原式 =3﹣ 2=1,答:故答案为: 1.点此题主要考查了实数的运算,关键是掌握立方根和绝对值评:得性质运算.10.( 3 分)( 2014?河南)不等式组的所有整数解的和为﹣2.分先分别求出各不等式的解集,再求出其公共解集,在其公析:共解集内找出符合条件的x 的所有整数解相加即可求解.解答:解:,由①得: x≥﹣2,由②得: x< 2,∴﹣ 2≤x< 2,∴不等式组的整数解为:﹣2,﹣ 1, 0, 1.所有整数解的和为﹣2﹣ 1+0+1= ﹣ 2.故答案为:﹣ 2.点本题考查的是解一元一次不等式组及求一元一次不等式评:组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.( 3 分)( 2014?河南)如图,在△ABC 中,按以下步骤作图:①分别以 B ,C 为圆心,以大于BC 的长为半径作弧,两弧相交于 M,N 两点;②作直线 MN 交 AB 于点 D ,连接 CD,若 CD=AC ,∠ B=25 °,则∠ ACB 的度数为 105° .考作图—基本作图;线段垂直平分线的性质.点:分首先根据题目中的作图方法确定MN 是线段 BC 的垂直平析:分线,然后利用垂直平分线的性质解题即可.解解:由题中作图方法知道MN 为线段 BC 的垂直平分线,答:∴ CD=BD ,∵∠ B=25 °,∴∠ DCB= ∠B=25 °,∴∠ ADC=50 °,∵CD=AC ,考一元一次不等式组的整数解.考动点问题的函数图象.点:∴∠ A= ∠ ADC=50 °,∴∠ ACD=80 °,∴∠ ACB= ∠ACD+ ∠ BCD=80 °+25°=105°,故答案为: 105°.点本题考查了基本作图中的垂直平分线的作法及线段的垂评: 直平分线的性质,解题的关键是了解垂直平分线的做法.12.( 3 分)( 2014?河南)已知抛物线2y=ax +bx+c ( a ≠0)与 x 轴交于 A ,B 两点,若点 A 的坐标为(﹣ 2, 0),抛物线的对 称轴为直线 x=2 ,则线段 AB 的长为8.考 抛物线与 x 轴的交点. 点: 由抛物线 y=ax 2分+bx+c 的对称轴为直线 x=2 ,交 x 轴于 A 、 析: B 两点,其中 A 点的坐标为(﹣ 2,0),根据二次函数的对称性,求得 B 点的坐标,再求出 AB 的长度. 解 解:∵对称轴为直线2x=2 的抛物线 y=ax +bx+c ( a ≠0)与 答: x 轴相交于 A 、 B 两点,∴ A 、 B 两点关于直线 x=2 对称, ∵点 A 的坐标为(﹣ 2, 0), ∴点 B 的坐标为( 6, 0), AB=6 ﹣(﹣ 2)=8.故答案为: 8.点此题考查了抛物线与x 轴的交点.此题难度不大, 解题的评: 关键是求出 B 点的坐标.13.( 3 分)( 2014?河南)一个不透明的袋子中装有仅颜色不同的 2 个红球和 2 个白球, 两个人依次从袋子中随机摸出一个小球不放回, 则第一个人摸到红球且第二个人摸到白球的概率是.考 列表法与树状图法.点:专 计算题.题:分 列表得出所有等可能的情况数, 找出第一个人摸到红球且析: 第二个人摸到白球的情况数,即可求出所求的概率. 解解:列表得:答:红 红 白 白红 ﹣﹣﹣ (红,红) (白,红) (白,红)红 (红,红) ﹣﹣﹣ (白,红) (白,红) 白 (红,白) (红,白) ﹣﹣﹣(白,白)白(红,白) (红,白) (白,白) ﹣﹣﹣所有等可能的情况有12 种,其中第一个人摸到红球且第二个人摸到白球的情况有 4 种,则 P= =.故答案为: .点 此题考查了列表法与树状图法,用到的知识点为:概率=评:所求情况数与总情况数之比.14.( 3 分)(2014?河南)如图,在菱形 ABCD 中, AB=1 ,∠DAB=60 °,把菱形 ABCD 绕点 A 顺时针旋转 30°得到菱形AB ′C ′D ′,其中点 C 的运动路径为,则图中阴影部分的面积为 .考 菱形的性质;扇形面积的计算;旋转的性质.点:分 连接 BD ′,过 D ′作 D ′H ⊥ AB ,则阴影部分的面积可分为 3 析:部分, 再根据菱形的性质,三角形的面积公式以及扇形的面积公式计算即可.解解:连接 BD ′,过 D ′作 D ′H ⊥ AB ,答: ∵在菱形 ABCD 中, AB=1 ,∠ DAB=60 °,把菱形 ABCD绕点 A 顺时针旋转 30°得到菱形 AB ′C ′D ′,∴ D ′H= ,∴ S △ABD ′= 1× = ,∴图中阴影部分的面积为+ ﹣,故答案为: + ﹣.点 本题考查了旋转的性质,菱形的性质,扇形的面积公式,评: 熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.15.( 3 分)( 2014?河南)如图矩形 ABCD 中, AD=5 ,AB=7 ,点 E 为 DC 上一个动点,把 △ ADE 沿 AE 折叠,当点 D 的对应点 D ′落在∠ ABC 的角平分线上时, DE 的长为或 .考 翻折变换(折叠问题) .点:分 连接 BD ′,过 D ′作 MN ⊥AB ,交 AB 于点 M ,CD 于点 N ,析: 作 D ′P ⊥ BC 交 BC 于点 P ,先利用勾股定理求出 MD ′,再分两种情况利用勾股定理求出 DE .解解:如图,连接 BD ′,过 D ′作 MN ⊥ AB ,交 AB 于点 M ,答: CD 于点 N ,作 D ′P ⊥BC 交 BC 于点 P ,∵点 D 的对应点 D ′落在∠ ABC 的角平分线上, ∴ MD ′=PD ′,设 MD ′=x ,则 PD ′=BM=x ,∴ AM=AB ﹣BM=7 ﹣ x ,又折叠图形可得 AD=AD ′=5,22,解得 x=3 或 4,∴ x +( 7﹣ x ) =25即MD ′=3 或 4.在RT△END ′中,设 ED ′=a,①当 MD ′=3 时, D ′E=5 ﹣3=2 , EN=7 ﹣CN ﹣ DE=7 ﹣ 3﹣a=4﹣ a,222,∴ a =2 +( 4﹣ a)解得 a=,即 DE=,②当 MD ′=4 时, D ′E=5 ﹣4=1 , EN=7 ﹣CN ﹣ DE=7 ﹣ 4﹣a=3﹣ a,222,∴ a =1 +( 3﹣ a)解得 a=,即 DE=.当 x=﹣1时,原式==.点本题考查了分式的化简求值:先把分式的分子或分母因式评:分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.17.(9 分)( 2014?河南)如图,CD 是⊙ O 的直径,且 CD=2cm ,点 P 为 CD 的延长线上一点,过点 P 作⊙ O 的切线 PA, PB,切点分别为点A,B.(1)连接 AC ,若∠ APO=30 °,试证明△ ACP 是等腰三角形;(2)填空:②.点本题考查了切线的性质,圆周角的性质,熟练掌握圆的切评:线的性质和直角三角形的边角关系是解题的关键.故答案为:或.①当DP= 1 cm 时,四边形 AOBD 是菱形;18.( 9 分)( 2014?河南)某兴趣小组为了了解本校男生参加课②当DP=﹣ 1 cm 时,四边形 AOBD 是正方形.外体育锻炼情况,随机抽取本校300 名男生进行了问卷调查,点本题主要考查了折叠问题,解题的关键是明确掌握折叠以统计整理并绘制了如下两幅尚不完整的统计图.评:后有哪些线段是对应相等的.三、解答题(本大题共8 小题,满分75 分)16.( 8 分)(2014?河南)先化简,再求值:+( 2+),其中 x=﹣1.考分式的化简求值.点:专计算题.题:分先把括号内通分,再把除法运算化为乘法运算,然后把分析:子分母因式分解,约分后得到原式=,再把x的值代入计算.解答:解:原式 =÷=÷=?=,考切线的性质;等腰三角形的判定;菱形的判定;正方形的点:判定.分( 1)利用切线的性质可得OC⊥ PC.利用同弧所对的圆析:周角等于圆心角的一半,求得∠ACP=30 °,从而求得.( 2)① 要使四边形AOBD 是菱形,则OA=AD=OD ,所以∠ AOP=60 °,所以 OP=2OA , DP=OD .②要使四边形AOBD 是正方形,则必须∠AOP=45 °,OA=PA=1 ,则 OP=,所以DP=OP﹣1.解解:( 1)连接 OA, AC答:∵ PA 是⊙ O 的切线,∴ OA ⊥PA,在 RT△ AOP 中,∠ AOP=90 °﹣∠ APO=90 °﹣ 30°=60°,∴∠ ACP=30 °,∵∠ APO=30 °∴∠ ACP= ∠ APO ,∴ AC=AP ,∴△ ACP 是等腰三角形.( 2)① 1,请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为144°;(2)请补全条形统计图;(3)该校共有 1200 名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为 1200× =108”,请你判断这种说法是否正确,并说明理由.考条形统计图;用样本估计总体;扇形统计图.点:专图表型.题:分( 1)用“经常参加”所占的百分比乘以 360°计算即可得解;析:( 2)先求出“经常参加”的人数,然后求出喜欢篮球的人数,再补全统计图即可;( 3)用总人数乘以喜欢篮球的学生所占的百分比计算即可得解;(4)根据喜欢乒乓球的 27 人都是“经常参加”的学生,“偶尔参加”的学生中也会有喜欢乒乓球的考虑解答.解解:(1) 360°×( 1﹣ 15%﹣ 45% )=360°×40%=144°;答:故答案为: 144°;(2)“经常参加”的人数为: 300×40%=120 人,喜欢篮球的学生人数为: 120﹣ 27﹣ 33﹣ 20=120 ﹣ 80=40人;补全统计图如图所示;( 3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为: 1200×=160 人;( 4)这个说法不正确.理由如下:小明得到的 108 人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108 人.点本题考查的是条形统计图和扇形统计图的综合运用,读懂评:统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(9 分)( 2014?河南)在中俄“海上联合﹣ 2014”反潜演习中,我军舰 A 测得潜艇 C 的俯角为 30°,位于军舰 A 正上方 1000 米的反潜直升机 B 测得潜艇 C 的俯角为 68°,试根据以上数据求出潜艇 C 离开海平面的下潜深度.(结果保留整数,参考数据: sin68°≈0.9, cos68°≈0.4, tan68°≈2.5, 1.7)考解直角三角形的应用-仰角俯角问题.点:分过点 C 作 CD ⊥ AB ,交 BA 的延长线于点 D ,则 AD 即为析:潜艇 C 的下潜深度,分别在Rt 三角形 ACD 中表示出CD和在 Rt 三角形 BCD 中表示出BD ,从而利用二者之间的关系列出方程求解.解解:过点 C 作 CD ⊥ AB ,交 BA 的延长线于点D,则 AD答:即为潜艇 C 的下潜深度,根据题意得:∠ACD=30 °,∠ BCD=68 °,设 AD=x ,则 BD=BA+AD=1000+x,在 Rt 三角形 ACD 中, CD===,在Rt 三角形 BCD 中, BD=CD ?tan68°,∴ 1000+x= x?tan68°解得: x==≈308米,∴潜艇 C 离开海平面的下潜深度为308 米.点本题考查了解直角三角形的应用,解题的关键是从题目中评:抽象出直角三角形并选择合适的边角关系求解.20.( 9 分)( 2014?河南)如图,在直角梯形 OABC 中,BC∥ AO ,∠AOC=90 °,点 A , B 的坐标分别为( 5, 0),( 2,6),点 D为 AB 上一点,且BD=2AD ,双曲线 y=(k>0)经过点D,交BC 于点 E.(1)求双曲线的解析式;(2)求四边形 ODBE 的面积.考反比例函数综合题.点:专综合题.题:分( 1)作 BM ⊥ x 轴于 M ,作 BN ⊥x 轴于 N,利用点 A ,B析:的坐标得到BC=OM=5 ,BM=OC=6 , AM=3 ,再证明△ ADN ∽△ ABM ,利用相似比可计算出DN=2 , AN=1 ,则 ON=OA ﹣ AN=4 ,得到 D 点坐标为( 4, 2),然后把D点坐标代入y=中求出k的值即可得到反比例函数解析式;( 2)根据反比例函数k 的几何意义和S 四边形ODBE=S 梯形OABC﹣S△OCE﹣S△OAD进行计算.解解:(1)作 BM ⊥ x 轴于 M ,作 BN ⊥ x 轴于 N ,如图,答:∵点 A ,B 的坐标分别为( 5, 0),(2, 6),∴BC=OM=5 ,BM=OC=6 , AM=3 ,∵DN∥BM ,∴△ ADN ∽△ ABM ,∴= =,即= =,∴DN=2 , AN=1 ,∴ON=OA ﹣ AN=4 ,∴D 点坐标为( 4,2),把D( 4,2)代入 y= 得 k=2 ×4=8,∴反比例函数解析式为 y= ;( 2)S 四边形ODBE=S 梯形OABC﹣ S△OCE﹣ S△OAD解解:( 1)设每台 A 型电脑销售利润为x 元,每台 B 型电=×(2+5)×6﹣×|8|﹣×5×2答:脑的销售利润为y 元;根据题意得=12.解得如图 1,△ ACB 和△DCE 均为等边三角形,点 A ,D, E 在同一直线上,连接BE .填空:① ∠ AEB 的度数为60°;②线段 AD , BE 之间的数量关系为AD=BE.( 2)拓展探究如图 2,△ ACB 和△ DCE 均为等腰直角三角形,点本题考查了反比例函数综合题:熟练掌握反比例函数图象评:上点的坐标特征、反比例函数k 的几何意义和梯形的性质;理解坐标与图形的性质;会运用相似比计算线段的长度.21.( 10 分)( 2014?河南)某商店销售 10台A型和 20台B型电脑的利润为 4000 元,销售 20 台 A 型和 10 台 B 型电脑的利润为 3500 元.( 1)求每台 A 型电脑和 B 型电脑的销售利润;( 2)该商店计划一次购进两种型号的电脑共100 台,其中 B 型电脑的进货量不超过 A 型电脑的 2 倍,设购进 A 型电脑 x 台,这 100 台电脑的销售总利润为y 元.①求 y 关于 x 的函数关系式;②该商店购进 A 型、 B 型电脑各多少台,才能使销售总利润最大?( 3)实际进货时,厂家对 A 型电脑出厂价下调 m( 0< m< 100)元,且限定商店最多购进 A 型电脑 70 台,若商店保持同种电脑的售价不变,请你根据以上信息及( 2)中条件,设计出使这100 台电脑销售总利润最大的进货方案.答:每台 A 型电脑销售利润为 100 元,每台 B 型电脑的销售利润为 150 元.(2)①据题意得, y=100x+150 ( 100﹣x),即 y= ﹣50x+15000 ,②据题意得, 100﹣ x≤2x,解得 x≥33,∵y= ﹣50x+15000 ,∴ y 随 x 的增大而减小,∵x 为正整数,∴当 x=34 时, y 取最大值,则100﹣x=66 ,即商店购进34 台 A 型电脑和66 台 B 型电脑的销售利润最大.(3)据题意得, y=( 100+m)x+150( 100﹣ x),即 y=( m﹣50)x+15000 ,33≤x≤70①当 0< m<50 时, y 随 x 的增大而减小,∴当 x=34 时, y 取最大值,即商店购进 34 台 A 型电脑和 66 台 B 型电脑的销售利润最大.∠ACB= ∠ DCE=90 °,点 A ,D ,E 在同一直线上, CM 为△ DCE中 DE 边上的高,连接 BE,请判断∠ AEB 的度数及线段 CM ,AE , BE 之间的数量关系,并说明理由.( 3)解决问题如图 3,在正方形 ABCD 中, CD= ,若点 P 满足 PD=1 ,且∠BPD=90 °,请直接写出点 A 到 BP 的距离.考圆的综合题;全等三角形的判定与性质;等腰三角形的性点:质;等边三角形的性质;直角三角形斜边上的中线;正方形的性质;圆周角定理.专综合题;探究型.题:分( 1)由条件易证△ ACD≌△ BCE,从而得到:AD=BE,析:∠ ADC= ∠BEC .由点 A , D ,E 在同一直线上可求出∠ ADC ,从而可以求出∠AEB 的度数.( 2)仿照( 1)中的解法可求出∠ AEB 的度数,证出AD=BE ;由△ DCE 为等腰直角三角形及 CM 为△ DCE 中考一次函数的应用;二元一次方程组的应用;一元一次不等② m=50 时, m﹣50=0 , y=15000 ,点:式组的应用.即商店购进 A 型电脑数量满足33 ≤x≤70 的整数时,均获分( 1)设每台 A 型电脑销售利润为 x 元,每台 B 型电脑的析:销售利润为 y 元;根据题意列出方程组求解,得最大利润;( 2)①据题意得, y= ﹣50x+15000 ,③当 50<m<100 时, m﹣50> 0, y 随 x 的增大而增大,②利用不等式求出 x 的范围,又因为 y= ﹣ 50x+15000 是∴当 x=70 时, y 取得最大值.减函数,所以 x 取 34, y 取最大值,即商店购进 70 台 A 型电脑和 30 台 B 型电脑的销售利润( 3)据题意得, y=( 100+m ) x﹣ 150( 100﹣x),即 y=最大.( m﹣ 50) x+15000 ,分三种情况讨论,①当 0< m< 50点本题主要考查了一次函数的应用,二元一次方程组及一元时,y 随 x 的增大而减小,② m=50 时,m﹣ 50=0,y=15000 ,评:一次不等式的应用,解题的关键是根据一次函数x 值的增③当 50< m< 100 时, m﹣ 50>0, y 随 x 的增大而增大,大而确定 y 值的增减情况.分别进行求解.22.( 10 分)( 2014?河南)(1)问题发现DE 边上的高可得 CM=DM=ME ,从而证到 AE=2CH+BE .( 3)由 PD=1 可得:点 P 在以点 D 为圆心, 1 为半径的圆上;由∠BPD=90 °可得:点 P 在以 BD 为直径的圆上.显然,点 P 是这两个圆的交点,由于两圆有两个交点,接下来需对两个位置分别进行讨论.然后,添加适当的辅助线,借助于( 2)中的结论即可解决问题.解解:( 1)①如图 1,答:∵△ ACB 和△ DCE 均为等边三角形,∴CA=CB , CD=CE ,∠ ACB= ∠DCE=90 °.∴∠ ACD= ∠ BCE .在△ACD 和△BCE 中,。

2014年河南省中招考试数学试卷及答案(解析版)

2014年河南省中招考试数学试卷及答案(解析版)

2014年河南省中招考试数学试卷及答案解析一、选择题(每小题3分,共24分)1。

下列各数中,最小的数是( )(A)。

0 (B)。

13(C)。

—13(D).-3答案:D解析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.解:∵﹣3<—13<0<13,∴最小的数是﹣3,故选A.2. 据统计,2013年河南省旅游业总收入达到3875。

5亿元。

若将3875.5亿用科学计数法表示为3.8755×10n,则n等于()(A) 10 (B) 11 (C)。

12 (D)。

13答案:B解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3875。

5亿=3。

8755×1011,故选B。

3。

如图,直线AB、CD相交于O,射线OM平分∠AOC,ON⊥OM,若∠AOM =350,则∠CON的度数为 ( )(A) .350 (B)。

450 (C) .550(D)。

650答案:C解析:根据角的平分线的性质及直角的性质,即可求解.∠CON=900-350=550,故选C.4。

下列各式计算正确的是()(A)a +2a =3a2(B)(—a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b2答案:B解析:根据同底数幂的乘法;幂的乘方;完全平方公式;同类项加法即可求得;(—a3)2=a6计算正确,故选B5.下列说法中,正确的是 ( )(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(C)神州飞船发射前需要对零部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查答案:D解析:根据统计学知识;(A)“打开电视,正在播放河南新闻节目”是随机事件,(A)错误.(B)某种彩票中奖概率为10%是指买十张一定有一张中奖是随机事件,(B)错误。

2014年河南省中考数学试卷及答案(解析版)

2014年河南省中考数学试卷及答案(解析版)

2014年河南省中招考试数学试卷及答案解析一、选择题(每小题3分,共24分)1.下列各数中,最小的数是()(A). 0 (B).13(C).-13(D).-3答案:D解析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.解:∵﹣3<-13<0<13,∴最小的数是﹣3,故选A.2. 据统计,2013年河南省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.8755×10n,则n等于()(A) 10 (B) 11 (C).12 (D).13答案:B解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3875.5亿=3.8755×1011,故选B.3.如图,直线AB、CD相交于O,射线OM平分∠AOC,ON⊥OM,若∠AOM =350,则∠CON的度数为()(A) .350 (B). 450 (C) .550(D). 650答案:C解析:根据角的平分线的性质及直角的性质,即可求解.∠CON=900-350=550,故选C.4.下列各式计算正确的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b2答案:B解析:根据同底数幂的乘法;幂的乘方;完全平方公式;同类项加法即可求得;(-a3)2=a6计算正确,故选B5.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(C)神州飞船发射前需要对零部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查答案:D解析:根据统计学知识;(A)“打开电视,正在播放河南新闻节目”是随机事件,(A)错误。

(B)某种彩票中奖概率为10%是指买十张一定有一张中奖是随机事件,(B)错误。

2014年河南省中考数学试卷(含答案和解析)

2014年河南省中考数学试卷(含答案和解析)

2014年河南省中考数学试卷一、选择题(每小题3分,共24分)1.(3分)(2014•河南)下列各数中,最小的数是()D.﹣3A.0B.C.﹣2.(3分)(2014•河南)据统计,2013年河南省旅游业总收入达到约3875.5亿元.若将3875.5亿用科学记数法表示为3.8755×10n,则n等于()A.10 B.11 C.12 D.133.(3分)(2014•河南)如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()A.35°B.45°C.55°D.65°4.(3分)(2014•河南)下列各式计算正确的是()A.a+2a=3a2B.(﹣a3)2=a6C.a3•a2=a6D.(a+b)2=a2+b25.(3分)(2014•河南)下列说法中,正确的是()A.“打开电视,正在播放河南新闻节目”是必然事件B.某种彩票中奖概率为10%是指买十张一定有一张中奖C.神舟飞船反射前需要对零部件进行抽样调查D.了解某种节能灯的使用寿命适合抽样调查6.(3分)(2014•河南)将两个长方体如图放置,则所构成的几何体的左视图可能是()A.B.C.D.7.(3分)(2014•河南)如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8B.9C.10 D.118.(3分)(2014•河南)如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y 与x之间函数关系的图象大致是()A.B.C.D.二、填空题(每小题3分,共21分)9.(3分)(2014•河南)计算:﹣|﹣2|=_________.10.(3分)(2014•河南)不等式组的所有整数解的和为_________.11.(3分)(2014•河南)如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为_________.12.(3分)(2014•河南)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为_________.13.(3分)(2014•河南)一个不透明的袋子中装有仅颜色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是_________.14.(3分)(2014•河南)如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为,则图中阴影部分的面积为_________.15.(3分)(2014•河南)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为_________.三、解答题(本大题共8小题,满分75分)16.(8分)(2014•河南)先化简,再求值:+(2+),其中x=﹣1.17.(9分)(2014•河南)如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线PA,PB,切点分别为点A,B.(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;(2)填空:①当DP=_________cm时,四边形AOBD是菱形;②当DP=_________cm时,四边形AOBD是正方形.18.(9分)(2014•河南)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为_________;(2)请补全条形统计图;(3)该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由.19.(9分)(2014•河南)在中俄“海上联合﹣2014”反潜演习中,我军舰A测得潜艇C的俯角为30°,位于军舰A正上方1000米的反潜直升机B测得潜艇C的俯角为68°,试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数,参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5, 1.7)20.(9分)(2014•河南)如图,在直角梯形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且BD=2AD,双曲线y=(k>0)经过点D,交BC于点E.(1)求双曲线的解析式;(2)求四边形ODBE的面积.21.(10分)(2014•河南)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.22.(10分)(2014•河南)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为_________;②线段AD,BE之间的数量关系为_________.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE 中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.23.(11分)(2014•河南)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P 的坐标;若不存在,请说明理由.2014年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)(2014•河南)下列各数中,最小的数是()A.0B.C.D.﹣3﹣考点:有理数大小比较.分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣3,故选:D.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.(3分)(2014•河南)据统计,2013年河南省旅游业总收入达到约3875.5亿元.若将3875.5亿用科学记数法表示为3.8755×10n,则n等于()A.10 B.11 C.12 D.13考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:3875.5亿=3875 5000 0000=3.8755×1011,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2014•河南)如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()A.35°B.45°C.55°D.65°考点:垂线;对顶角、邻补角.分析:由射线OM平分∠AOC,∠AOM=35°,得出∠MOC=35°,由ON⊥OM,得出∠CON=∠MON﹣∠MOC得出答案.解答:解:∵射线OM平分∠AOC,∠AOM=35°,∴∠MOC=35°,∵ON⊥OM,∴∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣35°=55°.故选:C.点评:本题主要考查了垂线和角平分线,解决本题的关键是找准角的关系.4.(3分)(2014•河南)下列各式计算正确的是()A.a+2a=3a2B.(﹣a3)2=a6C.a3•a2=a6D.(a+b)2=a2+b2考点:完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项法则,积的乘方,同底数幂的乘法,平方差公式分别求出每个式子的值,再判断即可.解答:解:A、a+2a=3a,故本选项错误;B、(﹣a3)2=a6,故本选项正确;C、a3•a2=a5,故本选项错误;D、(a+b)2=a2+b2+2ab,故本选项错误,故选B.点评:本题考查了合并同类项法则,积的乘方,同底数幂的乘法,平方差公式的应用,主要考查学生的计算能力.5.(3分)(2014•河南)下列说法中,正确的是()A.“打开电视,正在播放河南新闻节目”是必然事件B.某种彩票中奖概率为10%是指买十张一定有一张中奖C.神舟飞船反射前需要对零部件进行抽样调查D.了解某种节能灯的使用寿命适合抽样调查考点:随机事件;全面调查与抽样调查;概率的意义.分析:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.不易采集到数据的调查要采用抽样调查的方式,据此判断即可.解答:解:A.“打开电视,正在播放河南新闻节目”是随机事件,本项错误;B.某种彩票中奖概率为10%是指买十张可能中奖,也可能不中奖,本项错误;C.神舟飞船反射前需要对零部件进行全面调查,本项错误;D.解某种节能灯的使用寿命,具有破坏性适合抽样调查.故选:D.点评:本题考查了调查的方式和事件的分类.不易采集到数据的调查要采用抽样调查的方式;必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.(3分)(2014•河南)将两个长方体如图放置,则所构成的几何体的左视图可能是()A.B.C.D.考点:简单组合体的三视图.分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从左边看,下面是一个矩形,上面是一个等宽的矩形,该矩形的中间有一条棱,故选:C.点评:本题考查了简单组合体的三视图,注意能看到的棱用实线画出.7.(3分)(2014•河南)如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8B.9C.10 D.11考点:平行四边形的性质;勾股定理.分析:利用平行四边形的性质和勾股定理易求BO的长,进而可求出BD的长.解答:解:∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB⊥AC,AB=4,AC=6,∴BO==5,∴BD=2BO=10,故选C.点评:本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单.8.(3分)(2014•河南)如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P 从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y 与x之间函数关系的图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:这是分段函数:①点P在AC边上时,y=x ,它的图象是一次函数图象的一部分;②点P在边BC上时,利用勾股定理求得y与x的函数关系式,根据关系式选择图象;③点P在边AB上时,利用线段间的和差关系求得y与x的函数关系式,由关系式选择图象.解答:解:①当点P在AC边上,即0≤x≤1时,y=x,它的图象是一次函数图象的一部分.故C错误;②点P在边BC上,即1<x≤3时,根据勾股定理得AP=,即y=,则其函数图象是y随x的增大而增大,且不是线段.故B、D错误;③点P在边AB上,即3<x≤3+时,y=+3﹣x=﹣x+3+,其函数图象是直线的一部分.综上所述,A选项符合题意.故选:A.点评:本题考查了动点问题的函数图象.此题涉及到了函数y=的图象问题,在初中阶段没有学到该函数图象,所以只要采取排除法进行解题.二、填空题(每小题3分,共21分)9.(3分)(2014•河南)计算:﹣|﹣2|=1.考点:实数的运算.分析:首先计算开方和绝对值,然后再计算有理数的减法即可.解答:解:原式=3﹣2=1,故答案为:1.点评:此题主要考查了实数的运算,关键是掌握立方根和绝对值得性质运算.10.(3分)(2014•河南)不等式组的所有整数解的和为﹣2.考点:一元一次不等式组的整数解.分析:先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相加即可求解.解答:解:,由①得:x≥﹣2,由②得:x<2,∴﹣2≤x<2,∴不等式组的整数解为:﹣2,﹣1,0,1.所有整数解的和为﹣2﹣1+0+1=﹣2.故答案为:﹣2.点评:本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.(3分)(2014•河南)如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为105°.考点:作图—基本作图;线段垂直平分线的性质.分析:首先根据题目中的作图方法确定MN是线段BC的垂直平分线,然后利用垂直平分线的性质解题即可.解答:解:由题中作图方法知道MN为线段BC的垂直平分线,∴CD=BD,∵∠B=25°,∴∠DCB=∠B=25°,∴∠ADC=50°,∵CD=AC,∴∠A=∠ADC=50°,∴∠ACD=80°,∴∠ACB=∠ACD+∠BCD=80°+25°=105°,故答案为:105°.点评:本题考查了基本作图中的垂直平分线的作法及线段的垂直平分线的性质,解题的关键是了解垂直平分线的做法.12.(3分)(2014•河南)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为8.考点:抛物线与x轴的交点.分析:由抛物线y=ax2+bx+c的对称轴为直线x=2,交x轴于A、B两点,其中A点的坐标为(﹣2,0),根据二次函数的对称性,求得B点的坐标,再求出AB的长度.解答:解:∵对称轴为直线x=2的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=2对称,∵点A的坐标为(﹣2,0),∴点B的坐标为(6,0),AB=6﹣(﹣2)=8.故答案为:8.点评:此题考查了抛物线与x轴的交点.此题难度不大,解题的关键是求出B点的坐标.13.(3分)(2014•河南)一个不透明的袋子中装有仅颜色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是.考点:列表法与树状图法.专题:计算题.分析:列表得出所有等可能的情况数,找出第一个人摸到红球且第二个人摸到白球的情况数,即可求出所求的概率.解答:解:列表得:红红白白红﹣﹣﹣(红,红)(白,红)(白,红)红(红,红)﹣﹣﹣(白,红)(白,红)白(红,白)(红,白)﹣﹣﹣(白,白)白(红,白)(红,白)(白,白)﹣﹣﹣所有等可能的情况有12种,其中第一个人摸到红球且第二个人摸到白球的情况有4种,则P==.故答案为:.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.14.(3分)(2014•河南)如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为,则图中阴影部分的面积为.考点:菱形的性质;扇形面积的计算;旋转的性质.分析:连接BD′,过D′作D′H⊥AB,则阴影部分的面积可分为3部分,再根据菱形的性质,三角形的面积公式以及扇形的面积公式计算即可.解答:解:连接BD′,过D′作D′H⊥AB,∵在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,∴D′H=,∴S△ABD′=1×=,∴图中阴影部分的面积为+﹣,故答案为:+﹣.点评:本题考查了旋转的性质,菱形的性质,扇形的面积公式,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.15.(3分)(2014•河南)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为或.考点:翻折变换(折叠问题).分析:连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.解答:解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.在RT△END′中,设ED′=a,①当MD′=3时,D′E=5﹣3=2,EN=7﹣CN﹣DE=7﹣3﹣a=4﹣a,∴a2=22+(4﹣a)2,解得a=,即DE=,②当MD′=4时,D′E=5﹣4=1,EN=7﹣CN﹣DE=7﹣4﹣a=3﹣a,∴a2=12+(3﹣a)2,解得a=,即DE=.故答案为:或.点评:本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.三、解答题(本大题共8小题,满分75分)16.(8分)(2014•河南)先化简,再求值:+(2+),其中x=﹣1.考点:分式的化简求值.专题:计算题.分析:先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解,约分后得到原式=,再把x 的值代入计算.解答:解:原式=÷=÷=•=,当x=﹣1时,原式==.点评:本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.17.(9分)(2014•河南)如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线PA,PB,切点分别为点A,B.(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;(2)填空:①当DP=1cm时,四边形AOBD是菱形;②当DP=﹣1cm时,四边形AOBD是正方形.考点:切线的性质;等腰三角形的判定;菱形的判定;正方形的判定.分析:(1)利用切线的性质可得OC⊥PC.利用同弧所对的圆周角等于圆心角的一半,求得∠ACP=30°,从而求得.(2)①要使四边形AOBD是菱形,则OA=AD=OD,所以∠AOP=60°,所以OP=2OA,DP=OD.②要使四边形AOBD是正方形,则必须∠AOP=45°,OA=PA=1,则OP=,所以DP=OP﹣1.解答:解:(1)连接OA,AC∵PA是⊙O的切线,∴OA⊥PA,在RT△AOP中,∠AOP=90°﹣∠APO=90°﹣30°=60°,∴∠ACP=30°,∵∠APO=30°∴∠ACP=∠APO,∴AC=AP,∴△ACP是等腰三角形.(2)①1,②.点评:本题考查了切线的性质,圆周角的性质,熟练掌握圆的切线的性质和直角三角形的边角关系是解题的关键.18.(9分)(2014•河南)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为144°;(2)请补全条形统计图;(3)该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由.考点:条形统计图;用样本估计总体;扇形统计图.专题:图表型.分析:(1)用“经常参加”所占的百分比乘以360°计算即可得解;(2)先求出“经常参加”的人数,然后求出喜欢篮球的人数,再补全统计图即可;(3)用总人数乘以喜欢篮球的学生所占的百分比计算即可得解;(4)根据喜欢乒乓球的27人都是“经常参加”的学生,“偶尔参加”的学生中也会有喜欢乒乓球的考虑解答.解答:解:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案为:144°;(2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120﹣27﹣33﹣20=120﹣80=40人;补全统计图如图所示;(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×=160人;(4)这个说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(9分)(2014•河南)在中俄“海上联合﹣2014”反潜演习中,我军舰A测得潜艇C的俯角为30°,位于军舰A正上方1000米的反潜直升机B测得潜艇C的俯角为68°,试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数,参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5, 1.7)考点:解直角三角形的应用-仰角俯角问题.分析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,分别在Rt三角形ACD中表示出CD和在Rt三角形BCD中表示出BD,从而利用二者之间的关系列出方程求解.解答:解:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,根据题意得:∠ACD=30°,∠BCD=68°,设AD=x,则BD=BA+AD=1000+x,在Rt三角形ACD中,CD===,在Rt三角形BCD中,BD=CD•tan68°,∴1000+x=x•tan68°解得:x==≈308米,∴潜艇C离开海平面的下潜深度为308米.点评:本题考查了解直角三角形的应用,解题的关键是从题目中抽象出直角三角形并选择合适的边角关系求解.20.(9分)(2014•河南)如图,在直角梯形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且BD=2AD,双曲线y=(k>0)经过点D,交BC于点E.(1)求双曲线的解析式;(2)求四边形ODBE的面积.考点:反比例函数综合题.专题:综合题.分析:(1)作BM⊥x轴于M,作BN⊥x轴于N,利用点A,B的坐标得到BC=OM=5,BM=OC=6,AM=3,再证明△ADN∽△ABM,利用相似比可计算出DN=2,AN=1,则ON=OA﹣AN=4,得到D点坐标为(4,2),然后把D点坐标代入y=中求出k的值即可得到反比例函数解析式;(2)根据反比例函数k的几何意义和S四边形ODBE=S梯形OABC﹣S△OCE﹣S△OAD进行计算.解答:解:(1)作BM⊥x轴于M,作BN⊥x轴于N,如图,∵点A,B的坐标分别为(5,0),(2,6),∴BC=OM=5,BM=OC=6,AM=3,∵DN∥BM,∴△ADN∽△ABM,∴==,即==,∴DN=2,AN=1,∴ON=OA﹣AN=4,∴D点坐标为(4,2),把D(4,2)代入y=得k=2×4=8,∴反比例函数解析式为y=;(2)S四边形ODBE=S梯形OABC﹣S△OCE﹣S△OAD=×(2+5)×6﹣×|8|﹣×5×2=12.点评:本题考查了反比例函数综合题:熟练掌握反比例函数图象上点的坐标特征、反比例函数k的几何意义和梯形的性质;理解坐标与图形的性质;会运用相似比计算线段的长度.21.(10分)(2014•河南)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.考点:一次函数的应用;二元一次方程组的应用;一元一次不等式组的应用.分析:(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元;根据题意列出方程组求解,(2)①据题意得,y=﹣50x+15000,②利用不等式求出x的范围,又因为y=﹣50x+15000是减函数,所以x取34,y取最大值,(3)据题意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,分三种情况讨论,①当0<m <50时,y随x的增大而减小,②m=50时,m﹣50=0,y=15000,③当50<m<100时,m﹣50>0,y随x的增大而增大,分别进行求解.解答:解:(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.点评:本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据一次函数x 值的增大而确定y值的增减情况.22.(10分)(2014•河南)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD,BE之间的数量关系为AD=BE.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE 中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.考点:圆的综合题;全等三角形的判定与性质;等腰三角形的性质;等边三角形的性质;直角三角形斜边上的中线;正方形的性质;圆周角定理.专题:综合题;探究型.分析:(1)由条件易证△ACD≌△BCE,从而得到:AD=BE,∠ADC=∠BEC.由点A,D,E在同一直线上可求出∠ADC,从而可以求出∠AEB的度数.(2)仿照(1)中的解法可求出∠AEB的度数,证出AD=BE;由△DCE为等腰直角三角形及CM为△DCE 中DE边上的高可得CM=DM=ME,从而证到AE=2CH+BE.(3)由PD=1可得:点P在以点D为圆心,1为半径的圆上;由∠BPD=90°可得:点P在以BD为直径的圆上.显然,点P是这两个圆的交点,由于两圆有两个交点,接下来需对两个位置分别进行讨论.然后,添加适当的辅助线,借助于(2)中的结论即可解决问题.解答:解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,∴△ACD≌△BCE.∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.故答案为:60°.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE.(2)∠AEB=90°,AE=BE+2CM.理由:如图2,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,∴△ACD≌△BCE.∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.(3)∵PD=1,∴点P在以点D为圆心,1为半径的圆上.∵∠BPD=90°,∴点P在以BD为直径的圆上.∴点P是这两圆的交点.①当点P在如图3①所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E,如图3①.∵四边形ABCD是正方形,∴∠ADB=45°.AB=AD=DC=BC=,∠BAD=90°.∴BD=2.∵DP=1,∴BP=.∵A、P、D、B四点共圆,∴∠APB=∠ADB=45°.∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD.∴=2AH+1.∴AH=.②当点P在如图3②所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,如图3②.同理可得:BP=2AH﹣PD.∴=2AH﹣1.∴AH=.综上所述:点A到BP的距离为或.。

2014年河南省中招考试数学试卷和答案(word版)

2014年河南省中招考试数学试卷和答案(word版)

2014年河南省中招考试数学试卷一、选择题(每小题3分,共24分)1.下列各数中,最小的数是 ( ) (A). 0 (B).13 (C).-13(D).-3 2. 据统计,2013年河南省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.8755×10n ,则n 等于 ( ) (A) 10 (B) 11 (C).12 (D).133.如图,直线AB 、CD 相交于O ,射线OM 平分∠AOC,O N ⊥OM,若∠AOM =350,则∠CON 的度数为 ( )(A) .350 (B). 450 (C) .550 (D). 6504.下列各式计算正确的是 ( ) (A )a +2a =3a 2 (B )(-a 3)2=a 6(C )a 3·a 2=a 6 (D )(a +b )2=a 2 + b 25.下列说法中,正确的是 ( ) (A )“打开电视,正在播放河南新闻节目”是必然事件 (B )某种彩票中奖概率为10%是指买十张一定有一张中奖(c )神州飞船发射前钻要对冬部件进行抽样检查 (D )了解某种节能灯的使用寿命适合抽样调查6:将两个长方体如图放皿,到所构成的几何体的左视田可能是( )7.如图,ABCD 的对角线AC 与BD 相交于点O,AB ⊥AC.若AB =4,AC =6,则BD 的长是( ) (A)8 (B) 9 (C)10 (D )118.如图,在Rt △ABC 中,∠C=900,AC=1cm ,BC=2cm ,点P 从A 出发,以1cm/s 的速沿折线AC CB BA 运动,最终回到A 点。

设点P 的运动时间为x (s ),线段AP 的长度为y (cm ),则能反映y 与x 之间函数关系的图像大致是 ( )二、填空题(每小题3分,共21分)9.2-= .10.不等式组3x 6042x 0+≥⎧⎨-⎩>的所有整数解的和是 .11.在△ABC 中,按以下步骤作图:①分别以B 、C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M 、N ;②作直线MN 交AB 于点D ,连接CD. 若CD=AC ,∠B=250,则∠ACB 的度数为 .12.已知抛物线y=ax 2+bx+c(a ≠0)与x 轴交于A 、B 两点.若点A 的坐标为(-2,0),抛物线的对称轴为直线x=2.则线段AB 的长为 .13.一个不进明的袋子中装有仅颇色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,到第一个人摸到红球且第二个人摸到白球的概率是 .14.如图,在菱形ABCD 中,AB =1,∠DAB=600,把菱形ABCD 绕点A 顺时针旋转300得到菱形AB'C'D',其中点C 的运动能路径为/CC ,则图中阴影部分的面积为 .15.如图,矩形ABCD 中,AD=5,AB=7.点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D /落在∠ABC 的角平分线上时,DE 的长为 . 三、解答题(本大题共8个,满分75分) 16.(8分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中-1 17.(9分)如图,CD 是⊙O 的直径,且CD=2cm ,点P 为CD 的延长线上一点,过点P 作⊙O 的切线PA 、PB ,切点分别为点A 、B.(1)连接AC,若∠APO =300,试证明△ACP 是等腰三角形;(2)填空:①当DP= cm 时,四边形AOBD 是菱形;②当DP= cm 时,四边形AOBP 是正方形.18.(9分)某兴趣小组为了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图. 请根据以上信息解答下列问题: (1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为 ; (2)请补全条形统计图;(3)该校共有1200名男生,请估什全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27300=108”,请你判断这种说法是否正确,并说明理由.19.(9分)在中俄“海上联合—2014”反潜演习中,我军舰A 测得潜艇C 的俯角为300.位于军舰A 正上方1000米的反潜直升机B 侧得潜艇C 的俯角为680.试根据以上数据求出潜艇C 离开海平面的下潜深度.(结果保留整数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年河南省中考数学试卷(word版)一、选择题(每小题3分,共24分)1.(3分)下列各数中,最小的数是()A.0 B.C.﹣ D.﹣32.(3分)据统计,2013年河南省旅游业总收入达到约3875.5亿元.若将3875.5亿用科学记数法表示为3.8755×10n,则n等于()A.10 B.11 C.12 D.133.(3分)如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()A.35°B.45°C.55°D.65°4.(3分)下列各式计算正确的是()A.a+2a=3a2B.(﹣a3)2=a6C.a3•a2=a6 D.(a+b)2=a2+b25.(3分)下列说法中,正确的是()A.“打开电视,正在播放河南新闻节目”是必然事件B.某种彩票中奖概率为10%是指买十张一定有一张中奖C.神舟飞船发射前需要对零部件进行抽样调查D.了解某种节能灯的使用寿命适合抽样调查6.(3分)将两个长方体如图放置,则所构成的几何体的左视图可能是()A.B.C.D.7.(3分)如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.118.(3分)如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y与x之间函数关系的图象大致是()A.B.C.D.二、填空题(每小题3分,共21分)9.(3分)计算:﹣|﹣2|=.10.(3分)不等式组的所有整数解的和为.11.(3分)如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为.12.(3分)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为.13.(3分)一个不透明的袋子中装有仅颜色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是.14.(3分)如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为,则图中阴影部分的面积为.15.(3分)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE 沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:÷(2+),其中x=﹣1.17.(9分)如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线PA,PB,切点分别为点A,B.(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;(2)填空:①当DP=cm时,四边形AOBD是菱形;②当DP=cm时,四边形AOBP是正方形.18.(9分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为;(2)请补全条形统计图;(3)该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由.19.(9分)在中俄“海上联合﹣2014”反潜演习中,我军舰A测得潜艇C的俯角为30°,位于军舰A正上方1000米的反潜直升机B测得潜艇C的俯角为68°,试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数,参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5, 1.7)20.(9分)如图,在直角梯形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且BD=2AD,双曲线y=(k>0)经过点D,交BC于点E.(1)求双曲线的解析式;(2)求四边形ODBE的面积.21.(10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y 元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.22.(10分)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E 在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.2014年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)下列各数中,最小的数是()A.0 B.C.﹣ D.﹣3解:﹣3,故选:D.2.(3分)据统计,2013年河南省旅游业总收入达到约3875.5亿元.若将3875.5亿用科学记数法表示为3.8755×10n,则n等于()A.10 B.11 C.12 D.13解:3875.5亿=3875 5000 0000=3.8755×1011,故选:B.3.(3分)如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()A.35°B.45°C.55°D.65°解:∵射线OM平分∠AOC,∠AOM=35°,∴∠MOC=35°,∵ON⊥OM,∴∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣35°=55°.故选:C.4.(3分)下列各式计算正确的是()A.a+2a=3a2B.(﹣a3)2=a6C.a3•a2=a6 D.(a+b)2=a2+b2解:A、a+2a=3a,故A选项错误;B、(﹣a3)2=a6,故B选项正确;C、a3•a2=a5,故C选项错误;D、(a+b)2=a2+b2+2ab,故D选项错误,故选:B.5.(3分)下列说法中,正确的是()A.“打开电视,正在播放河南新闻节目”是必然事件B.某种彩票中奖概率为10%是指买十张一定有一张中奖C.神舟飞船发射前需要对零部件进行抽样调查D.了解某种节能灯的使用寿命适合抽样调查解:A.“打开电视,正在播放河南新闻节目”是随机事件,故A选项错误;B.某种彩票中奖概率为10%是指买十张可能中奖,也可能不中奖,故B选项错误;C.神舟飞船发射前需要对零部件进行全面调查,故C选项错误;D.解某种节能灯的使用寿命,具有破坏性适合抽样调查,故D选项正确.故选:D.6.(3分)将两个长方体如图放置,则所构成的几何体的左视图可能是()A.B.C.D.解:从左边看,下面是一个矩形,上面是一个等宽的矩形,该矩形的中间有一条棱,故选:C.7.(3分)如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.11解:∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB⊥AC,AB=4,AC=6,∴BO==5,∴BD=2BO=10,故选:C.8.(3分)如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y与x之间函数关系的图象大致是()A.B.C.D.解:①当点P在AC边上,即0≤x≤1时,y=x,它的图象是一次函数图象的一部分;②点P在边BC上,即1<x≤3时,根据勾股定理得AP=,即y=,则其函数图象是y随x的增大而增大,且不是一次函数.故B、C、D错误;③点P在边AB上,即3<x≤3+时,y=+3﹣x=﹣x+3+,其函数图象是直线的一部分.综上所述,A选项符合题意.故选:A.二、填空题(每小题3分,共21分)9.(3分)计算:﹣|﹣2|=1.解:原式=3﹣2=1,故答案为:1.10.(3分)不等式组的所有整数解的和为﹣2.解:,由①得:x≥﹣2,由②得:x<2,∴﹣2≤x<2,∴不等式组的整数解为:﹣2,﹣1,0,1.所有整数解的和为﹣2﹣1+0+1=﹣2.故答案为:﹣2.11.(3分)如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为105°.解:由题中作图方法知道MN为线段BC的垂直平分线,∴CD=BD,∵∠B=25°,∴∠DCB=∠B=25°,∴∠ADC=50°,∵CD=AC,∴∠A=∠ADC=50°,∴∠ACD=80°,∴∠ACB=∠ACD+∠BCD=80°+25°=105°,故答案为:105°.12.(3分)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为8.解:∵对称轴为直线x=2的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=2对称,∵点A的坐标为(﹣2,0),∴点B的坐标为(6,0),AB=6﹣(﹣2)=8.故答案为:8.13.(3分)一个不透明的袋子中装有仅颜色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是.解:列表得:红红白白红﹣﹣﹣(红,红)(白,红)(白,红)红(红,红)﹣﹣﹣(白,红)(白,红)白(红,白)(红,白)﹣﹣﹣(白,白)白(红,白)(红,白)(白,白)﹣﹣﹣所有等可能的情况有12种,其中第一个人摸到红球且第二个人摸到白球的情况有4种,则P==.故答案为:.14.(3分)如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为,则图中阴影部分的面积为.解:连接CD′和BC′,∵∠DAB=60°,∴∠DAC=∠CAB=30°,∵∠C′AB′=30°,∴A、D′、C及A、B、C′分别共线.∴AC=∴扇形ACC′的面积为:=,∵AC=AC′,AD′=AB∴在△OCD′和△OC'B中,∴△OCD′≌△O C′B(AAS).∴OB=OD′,CO=C′O∵∠CBC′=60°,∠BC′O=30°∴∠COD′=90°∵CD′=AC﹣AD′=﹣1OB+C′O=1∴在Rt△BOC′中,BO2+(1﹣BO)2=(﹣1)2解得BO=,C′O=﹣,∴S△OC′B=•BO•C′O=﹣∴图中阴影部分的面积为:S扇形ACC′﹣2S△OC′B=+﹣.故答案为:+﹣.15.(3分)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为或.解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC 交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.在Rt△END′中,设ED′=a,①当MD′=3时,AM=7﹣3=4,D′N=5﹣3=2,EN=4﹣a,∴a2=22+(4﹣a)2,解得a=,即DE=,②当MD′=4时,AM=7﹣4=3,D′N=5﹣4=1,EN=3﹣a,∴a2=12+(3﹣a)2,解得a=,即DE=.故答案为:或.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:÷(2+),其中x=﹣1.解:原式=÷=÷=•=,当x=﹣1时,原式==.17.(9分)如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线PA,PB,切点分别为点A,B.(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;(2)填空:①当DP=1cm时,四边形AOBD是菱形;②当DP=﹣1cm时,四边形AOBP是正方形.解:(1)连接OA,AC∵PA是⊙O的切线,∴OA⊥PA,在Rt△AOP中,∠AOP=90°﹣∠APO=90°﹣30°=60°,∴∠ACP=30°,∵∠APO=30°∴∠ACP=∠APO,∴AC=AP,∴△ACP是等腰三角形.(2)①DP=1,理由如下:∵四边形AOBD是菱形,∴OA=AD=OD,∴∠AOP=60°,∴OP=2OA,DP=OD.∴DP=1,②DP=,理由如下:∵四边形AOBP是正方形,∴∠AOP=45°,∵OA=PA=1,OP=,∴DP=OP﹣1∴DP=.18.(9分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为144°;(2)请补全条形统计图;(3)该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由.解:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案为:144°;(2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120﹣27﹣33﹣20=120﹣80=40人;补全统计图如图所示;(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×=160人;(4)这个说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人.19.(9分)在中俄“海上联合﹣2014”反潜演习中,我军舰A测得潜艇C的俯角为30°,位于军舰A正上方1000米的反潜直升机B测得潜艇C的俯角为68°,试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数,参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5, 1.7)解:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,根据题意得:∠ACD=30°,∠BCD=68°,设AD=x,则BD=BA+AD=1000+x,在Rt△ACD中,CD===,在Rt△BCD中,BD=CD•tan68°,∴1000+x=x•tan68°解得:x=≈≈308米,∴潜艇C离开海平面的下潜深度为308米.20.(9分)如图,在直角梯形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且BD=2AD,双曲线y=(k>0)经过点D,交BC于点E.(1)求双曲线的解析式;(2)求四边形ODBE的面积.解:(1)作BM⊥x轴于M,作DN⊥x轴于N,如图,∵点A,B的坐标分别为(5,0),(2,6),∴BC=OM=2,BM=OC=6,AM=3,∵DN∥BM,∴△ADN∽△ABM,∴==,即==,∴DN=2,AN=1,∴ON=OA﹣AN=4,∴D点坐标为(4,2),把D(4,2)代入y=得k=2×4=8,∴反比例函数解析式为y=;=S梯形OABC﹣S△OCE﹣S△OAD(2)S四边形ODBE=×(2+5)×6﹣×|8|﹣×5×2=12.21.(10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y 元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.22.(10分)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD,BE之间的数量关系为AD=BE.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E 在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.故答案为:60°.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE.(2)∠AEB=90°,AE=BE+2CM.理由:如图2,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.(3)点A到BP的距离为或.理由如下:∵PD=1,∴点P在以点D为圆心,1为半径的圆上.∵∠BPD=90°,∴点P在以BD为直径的圆上.∴点P是这两圆的交点.①当点P在如图3①所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E,如图3①.∵四边形ABCD是正方形,∴∠ADB=45°.AB=AD=DC=BC=,∠BAD=90°.∴BD=2.∵DP=1,∴BP=.∵∠BPD=∠BAD=90°,∴A、P、D、B在以BD为直径的圆上,∴∠APB=∠ADB=45°.∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD.∴=2AH+1.∴AH=.②当点P在如图3②所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,如图3②.同理可得:BP=2AH﹣PD.∴=2AH﹣1.∴AH=.综上所述:点A到BP的距离为或.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.方法一:解:(1)将点A、B坐标代入抛物线解析式,得:,解得,∴抛物线的解析式为:y=﹣x2+4x+5.(2)∵点P的横坐标为m,∴P(m,﹣m2+4m+5),E(m,﹣m+3),F(m,0).∴PE=|y P﹣y E|=|(﹣m2+4m+5)﹣(﹣m+3)|=|﹣m2+m+2|,EF=|y E﹣y F|=|(﹣m+3)﹣0|=|﹣m+3|.由题意,PE=5EF,即:|﹣m2+m+2|=5|﹣m+3|=|m+15|①若﹣m2+m+2=m+15,整理得:2m2﹣17m+26=0,解得:m=2或m=;②若﹣m2+m+2=﹣(m+15),整理得:m2﹣m﹣17=0,解得:m=或m=.由题意,m的取值范围为:﹣1<m<5,故m=、m=这两个解均舍去.∴m=2或m=.(3)假设存在.作出示意图如下:∵点E、E′关于直线PC对称,∴∠1=∠2,CE=CE′,PE=PE′.∵PE平行于y轴,∴∠1=∠3,∴∠2=∠3,∴PE=CE,∴PE=CE=PE′=CE′,即四边形PECE′是菱形.当四边形PECE′是菱形存在时,由直线CD解析式y=﹣x+3,可得OD=4,OC=3,由勾股定理得CD=5.过点E作EM∥x轴,交y轴于点M,易得△CEM∽△CDO,∴,即,解得CE=|m|,∴PE=CE=|m|,又由(2)可知:PE=|﹣m2+m+2|∴|﹣m2+m+2|=|m|.①若﹣m2+m+2=m,整理得:2m2﹣7m﹣4=0,解得m=4或m=﹣;②若﹣m2+m+2=﹣m,整理得:m2﹣6m﹣2=0,解得m1=3+,m2=3﹣.由题意,m的取值范围为:﹣1<m<5,故m=3+这个解舍去.当四边形PECE′是菱形这一条件不存在时,此时P点横坐标为0,E,C,E'三点重合与y轴上,也符合题意,∴P(0,5)综上所述,存在满足条件的点P,可求得点P坐标为(0,5),(﹣,),(4,5),(3﹣,2﹣3)方法二:(1)略.(2)略.(3)若E(不与C重合时)关于直线PC的对称点E′在y轴上,则直线CD与直线CE′关于PC轴对称.∴点D关于直线PC的对称点D′也在y轴上,∴DD′⊥CP,∵y=﹣x+3,∴D(4,0),CD=5,∵OC=3,∴OD′=8或OD′=2,①当OD′=8时,D′(0,8),设P(t,﹣t2+4t+5),D(4,0),C(0,3),∵PC⊥DD′,∴K PC×K DD′=﹣1,∴,∴2t2﹣7t﹣4=0,∴t1=4,t2=﹣,②当OD′=2时,D′(0,﹣2),设P(t,﹣t2+4t+5),∵PC⊥DD′,∴K PC×K DD′=﹣1,∴=﹣1,∴t1=3+,t2=3﹣,∵点P是x轴上方的抛物线上一动点,∴﹣1<t<5,∴点P的坐标为(﹣,),(4,5),(3﹣,2﹣3).若点E与C重合时,P(0,5)也符合题意.综上所述,存在满足条件的点P,可求得点P坐标为(0,5),(﹣,),(4,5),(3﹣,2﹣3)第31页(共31页)。

相关文档
最新文档