等比数列求和教学设计(修改后)
等比数列前项求和教学设计

等比数列前项求和教学设计一、设计背景与目标在初中数学中,等比数列是一个重要的概念,而求解等比数列的前项和是其中的一个基础知识点。
为了帮助学生更好地理解和掌握等比数列前项求和的方法,本文设计了一堂以等比数列前项求和为主题的教学活动。
通过这个教学设计,目标是让学生能够正确应用等比数列前项求和的公式,并能够灵活运用于解决实际问题。
二、设计步骤与活动安排1. 活动导入(约10分钟)a. 引入等比数列的概念,并与等差数列进行比较,引起学生对等比数列的兴趣。
b. 通过一个简单的例子,让学生观察并总结等比数列的特点。
例如,给出一个等比数列的前三项,让学生观察公比的特点。
2. 理解等比数列前项求和公式(约20分钟)a. 介绍等比数列前项求和的公式:S_n = a * (1 - r^n) / (1 - r),其中S_n为前n项和,a为首项,r为公比。
b. 通过多个例子,让学生逐步理解公式的使用方法。
例如,给出一个等比数列的首项、公比和项数,让学生计算前n项的和。
3. 实际应用演练(约30分钟)a. 设计一些实际问题,让学生运用等比数列前项求和的公式解决。
例如,某班级每天增加人数是等比数列,首天有10人,公比为2,问经过30天后班级共有多少人。
b. 让学生分组讨论并解决问题,然后进行展示和讨论。
引导学生思考如何将实际问题转化为等比数列,并运用公式求解。
4. 拓展练习与反思(约20分钟)a. 给予学生一些形式各异的拓展题目,让他们巩固和巩固所学的知识。
例如,找出等比数列中的首项或公比等未知信息,给出前n项和并解出未知项等。
b. 结合学生的实际表现,进行个别指导和反思。
鼓励学生思考解题方法和思路,并及时纠正错误的观念。
5. 总结与归纳(约10分钟)a. 让学生总结等比数列前项求和的公式和解题方法,提出问题并共同总结。
b. 引导学生将所学的知识应用到其他的问题中,拓展他们的思维。
三、教学评价与追踪1. 教师的评价:通过观察学生在活动中的表现,可以对学生的掌握程度进行初步评价。
等比数列的求和教案

等比数列的求和教案一、引言数列是数学中的重要概念,而等比数列是数列中的一种特殊形式。
在解决等比数列问题时,求和是一个常见的需求。
本教案将介绍如何求解等比数列的求和问题,帮助学生掌握解题技巧。
二、等比数列的定义等比数列是指一个数列中,从第二个数开始,每个数与前一个数的比值都相等的数列。
具体而言,如果一个数列的通项公式为an = a1 *r^(n-1),其中a1为首项,r为公比,n为项数,则这个数列为等比数列。
三、等比数列的求和公式在求等比数列的和时,可以使用以下公式:Sn = a1 * (1 - r^n) / (1 - r)其中Sn表示等比数列前n项的和,a1为首项,r为公比。
四、教学步骤为了帮助学生理解等比数列的求和过程,我们将按照以下步骤进行教学:Step 1: 引入概念首先,我们会引入等比数列的概念,并通过具体的数列示例来说明等比数列是如何构成的。
Step 2: 推导求和公式接下来,我们将通过推导的方式得出等比数列求和的公式,让学生能够理解公式的来由,并通过实际例子进行验证。
Step 3: 解题示例在这一步骤中,我们将给出一些实际的问题,让学生运用所学的公式解决等比数列求和的问题。
教师可以给予学生一些指导,鼓励他们独立思考和解答问题。
Step 4: 练习题最后,我们将给学生一些练习题,让他们在课后巩固所学知识。
这些题目既包括应用题,也包括理论题,以检验学生对等比数列求和的掌握情况。
五、教学反馈在教学结束后,教师可以与学生进行互动交流和反馈。
可以找学生上台讲解解题过程,或者进行小组合作讨论。
通过反馈,可以检验学生对等比数列求和的掌握情况。
六、教学延伸如果学生对等比数列求和已经掌握得很好,可以进行一些拓展讨论。
比如,介绍等比数列的性质和应用,以及更高阶的数列求和问题。
七、总结通过本教案的学习,学生应该能够掌握等比数列求和的基本技巧和方法。
同时,也明白了等比数列的应用和重要性。
教师可以进一步引导学生拓展思维,培养他们独立解决问题的能力。
等比数列求和公式教学设计

等比数列求和公式教学设计教学设计:等比数列求和公式一、教学目标:1.知识与能力目标:掌握等比数列的概念和性质;理解等比数列求和公式的推导过程;能够运用等比数列求和公式解决实际问题;2.过程与方法目标:合作探究,培养学生的自主学习能力;让学生在实践中运用公式,提高思维能力;3.情感态度与价值观目标:培养学生合作意识和团队精神;加深学生对数学知识的兴趣;培养学生的分析问题和解决问题能力;二、教学重点与难点:1.教学重点:等比数列的概念和性质;2.教学难点:如何引导学生理解和掌握等比数列求和公式的推导过程;如何在实际问题中运用等比数列求和公式;三、教学准备:1.教学资料:教材、课件、黑板、书写工具等;2.实验器材:计算器;3.教学环节和内容安排:导入新课、概念讲解、公式推导、例题演示、合作探究、课堂练习、总结与布置作业。
四、教学过程:1.导入新课(10分钟)通过提问学生已学的等差数列的求和公式,引导学生回顾和思考,并激发学习等差数列求和公式的兴趣。
老师问:“大家回忆一下,我们之前学过的等差数列能用什么方法求和呢?”学生回答:“可以用等差数列求和公式Sn=n(a1+an)/2、”老师说:“非常好,那么我们今天来学习一下等比数列的求和公式。
”2.概念讲解(15分钟)a.等比数列的概念:老师出示等比数列的定义:“等比数列是指一个数列中后一项是前一项乘以同一个固定的数。
”b.等比数列的性质:老师通过举例子来解释等比数列的性质。
-等比数列首项为a,公比为r,第n项为an,则有如下性质:an=a*r^(n-1)(其中,^表示乘方运算)a(n-1)=a*r^n(其中,n-1表示n-1项)(an/an-1)=r(相邻项的比值恒为r)- 当公比,r,<1时,等比数列的前n项和的极限为S=infinity当公比,r,=1时,则无极限值。
当公比,r,>1时,等比数列的前n项和的极限为S=a/(1-r)3.公式推导(15分钟)a.老师引导学生思考如何推导等比数列的求和公式。
等比数列求和1(修改)

二、
引入 新课:
2 , 2 ,2 , 2
国际象 棋的棋盘 上共有8 行8列,构 成64个格 子.国际象 棋起源于 古代印度, 关于国际 象棋有这 样一个传 说……
0
1
2
3
2
63
分析:
各个格子里的麦粒数依次是:
1, 2, 2 , 2 , , 2
2 3
63
于是发明者要求的麦粒总数就是:
1 2 2 2 2
2 3
63
☆
实际上这是一个等比数列求和的问题
S64 =1+ 2 + 22 + 23+· · 62 + 263 ·+2
2S64 =
①
2 + 22 + 23+· · 62 + 263 +264 ② ·+2
由② - ①,得:
2S64 – S64=264 - 1 S64=264 - 1
☆
结果:
264-1这个数字非常大,等于:
六、课后作业
1. P145-练习A组1、2题 2.等比数列{an}中,已知a1=3,a5=48,求q和S5的值。 3 .等比数列求和在现实生活中具体有哪些应用(每 人举一例)?
1.求数列 2. 求数列
1
1 1 1 1 的前n项和 , 2 , 3 , 4 2 4 8 16 1 1 1 1 1 ,2 , 3 ,4 的前n项和。 2 4 8 16
一
a1 (1 q ) Sn 1 q
n
a q 1 a n S ( ) q 1 n 1q
二 这种把两式位置错开相减的推导方法,
称之为错位相减法。
三 通常将通项公式与前n项和公式联合应用, 由 Sn , an ,q , a1 , n 知三可求二 。 四 由具体到抽象、由特殊到一般的研究规律。
等比数列求和优秀教学设计

等比数列求和优秀教学设计一、引言数学是一门理论性和实践性相结合的学科,在学习数学的过程中,很多学生常常会遇到难以理解和掌握的概念和知识点。
作为教师,我们需要设计有效的教学方案,以帮助学生理解和应用数学知识。
本文将以等比数列求和为例,探讨一个优秀的教学设计。
二、教学目标1. 理解等比数列的概念和性质;2. 掌握等比数列的通项公式和求和公式;3. 能够应用等比数列的求和公式解决实际问题。
三、教学准备1. 教师准备:a. 具备等比数列的相关知识;b. 精心设计课堂教学活动。
2. 学生准备:a. 已掌握等比数列的基本概念;b. 具备一定的数学计算能力。
四、教学过程1. 导入环节在课堂开始时,可以提出一个问题:在日常生活中,有哪些例子可以用等比数列来描述?引导学生回忆和分享自己的观察和思考。
2. 概念讲解通过幻灯片或白板,向学生展示等比数列的概念和性质,并解释其通项公式和求和公式的推导过程。
可以通过具体的实例来说明等比数列的特点和规律。
3. 探究活动将学生分成小组,每个小组设计一个等比数列求和的实际问题。
可以是某家公司的销售额,或者某种动物繁殖的数量等。
要求学生根据实际情况,确定等比数列的首项、公比和项数,并计算出求和的结果。
4. 教师辅助在学生进行探究活动的过程中,教师需要提供必要的指导和支持。
可以通过与学生的讨论,引导他们找出正确的解题思路和方法。
5. 小结与总结在学生完成探究活动后,教师组织全班讨论,总结等比数列求和的关键步骤和方法。
并引导学生应用所学知识解决其他类似的问题。
六、教学评价教师可以通过以下方式进行教学评价:1. 观察学生在课堂上的参与度和学习态度;2. 检查学生完成的课堂练习和作业;3. 针对学生的理解程度和能力水平,进行个别或小组评价;4. 收集学生的反馈意见,了解教学效果和改进方向。
七、结语通过本文的教学设计,我们可以看到等比数列求和的教学过程充满了趣味性和互动性,激发了学生的学习兴趣和主动性。
等比数列求和教案

等比数列求和教案
一、教学目标
1.理解等比数列求和公式的推导过程和含义;
2.能够运用等比数列求和公式解决实际问题;
3.培养学生的数学思维和逻辑推理能力。
二、教学内容
1.等比数列求和公式的推导;
2.等比数列求和公式的应用。
三、教学重点与难点
重点:等比数列求和公式的推导和应用。
难点:理解等比数列求和公式的本质,解决较复杂的等比数列求和问题。
四、教具和多媒体资源
1.黑板;
2.投影仪;
3.教学软件:PPT。
五、教学方法
1.激活学生的前知:回顾等差数列求和公式及其推导方法;
2.教学策略:通过讲解、示范、小组讨论、案例分析等方式,
使学生掌握等比数列求和公式及其应用;
3.学生活动:小组讨论、案例分析、解题练习。
六、教学过程
1.导入:通过回顾等差数列求和公式及其推导方法,引出等
比数列求和公式的推导方法。
2.讲授新课:通过讲解、示范、小组讨论等方式,引导学生
推导等比数列求和公式,并理解其含义和应用。
3.巩固练习:通过案例分析、解题练习等方式,让学生运用
等比数列求和公式解决实际问题。
4.归纳小结:总结等比数列求和公式的推导方法和应用,强
调解题思路和技巧。
七、评价与反馈
1.设计评价策略:小组讨论、案例分析、解题练习等;
2.为学生提供反馈,针对不同学生的情况给予建议和指导,
以便学生更好地理解和掌握等比数列求和公式及其应用。
八、作业布置
1.完成教学软件中的相关练习题;
2.自己收集一些等比数列求和的实际问题,尝试运用所学知
识解决。
我的教学设计《等比数列求和》

我的教学设计《等比数列求和》一、教学目标1. 了解等比数列的概念和性质;2. 掌握等比数列通项公式的推导和应用;3. 掌握等比数列前n项和的公式的推导和应用;4. 能够运用所学知识解决实际问题。
二、教学重点和难点教学重点:1. 等比数列通项公式的推导和应用;2. 等比数列前n项和的公式的推导和应用。
教学难点:1. 教师如何引导学生发现等比数列的规律;2. 学生如何理解等比数列通项公式和前n项和公式的推导过程。
三、教学过程1.引入(5分钟)教师出示一组数列:2, 4, 8, 16, 32…,问学生如何推算下一个数是多少。
学生可能会发现:每个数是上一个数乘以2得到的。
教师引导学生思考这个数列的规律,引入等比数列的概念。
2.概念讲解(10分钟)教师给出等比数列的定义,即每一项都是前一项乘以同一个非零常数q得到的数列。
然后详细讲解等比数列的性质,包括:公比是固定的;任何一个非零项都可以看作是第一项乘以公比的若干次方等等。
3.通项公式的推导(30分钟)教师以2, 4, 8, 16, 32…为例,引导学生推导出等比数列的通项公式an=a1q^(n-1)。
教师先让学生用数学归纳法求出n=2时的通项公式,再让学生通过误差法求出q的值,最后求出n通项公式的公式式。
4.通项公式的应用(15分钟)教师通过实例讲解通项公式的应用,如:已知数列的前两项为1和3,求第10项的值;已知数列的前三项为2,6,18,求第8项的值等等。
5.前n项和公式的推导(30分钟)教师以2, 4, 8, 16, 32…为例,引导学生推导出等比数列前n项和的公式Sn=(a1(1-q^n))/(1-q)。
教师先让学生通过数学归纳法求出n=2时的前n项和公式,再通过误差法求得q的值,最后推出n的公式。
6.前n项和公式的应用(10分钟)教师通过实例讲解前n项和公式的应用,如:已知数列的前两项为1和3,求前5项的和;已知数列的前三项为2,6,18,求前4项的和等。
等比数列求和教案

2.5等比数列的前n 项和(一)教学目标1、 知识与技能:掌握等比数列的前n 项和公式,并用公式解决实际问题2、 过程与方法:由研究等比数列的结构特点推导出等比数列的前n 项和公式3、 情态与价值:从“错位相减法”这种算法中,体会“消除差别”,培养化简的能力(二)教学重、难点重点:使学生掌握等比数列的前n 项和公式,用等比数列的前n 项和公式解决实际问题难点:由研究等比数列的结构特点推导出等比数列的前n 项和公式(三)学法与教学用具学法:由等比数列的结构特点推导出前n 项和公式,从而利用公式解决实际问题教学用具:投影仪(四)教学设想教材开头的问题可以转化成求首项为1,公比为2的等比数列的前64项的和.类似于等差数列,我们有必要探讨等比数列的前n 项和公式。
一般地,对于等比数列 a 1,a 2,a 3,..., a n ,...它的前n 项和是Sn= a 1+a 2+a 3+...+a n由等比数列的通项公式,上式可以写 Sn= a 1+a 1q + a 1q 2 +...+a 1q n-1 ①① 式两边同乘以公比q 得 qSn= a 1q+ a 1q 2 +...+a 1q n-1+ a 1q n ②①,②的右边有很多相同的项,用①的两边分别减去②的两边,得(1-q)Sn= a 1-a 1q n当q≠1时,Sn=qq a n --1)1(1 (q ≠1) 又a n =a 1q n-1 所以上式也可写成 Sn=qq a a n --11(q ≠1) 推导出等比数列的前n 项和公式,本节开头的问题就可以解决了[相关问题]①当q=1时,等比数列的前n 项和公式为Sn=na 1② 公式可变形为Sn=q q a n --1)1(1=1)1(1--q q a n (思考q>1和q<1时分别使用哪个方便) ③ 如果已知a 1, a n,q,n,Sn 五个量中的任意三个就可以求出其余两个[例题分析]例1 求下列等比数列前8项的和: (1)21,41,81,...;(2) a 1=27, a 9=2431,q<0 评注:第(2)题已知a 1=27,n=8,还缺少一个已知条件,由题意显然可以通过解方程求得公比q,题设中要求q<0,一方面是为了简化计算,另一方面是想提醒学生q 既可以为正数,又可以为负数.例2 某商场今年销售计算机5000台,如果平均每年的销售量比上一年的销售量增加10%,那么从今年起,大约几年可使总销售量达到30000台(结果保留到个位)?评注:先根据等比数列的前n 项和公式列方程,再用对数的知识解方程[随堂练习]第66页第1.2.3题[课堂小结](1)等比数列的前n项和公式中要求q≠1;这个公式可以变形成几个等价的式子(2)如果已知a1, a n,q,n,Sn五个量中的任意三个就可以求出其余两个《等比数列的前n项和》教学案例设计一、设计思想1、设计理念本课的教学设计基于“人人都能获得必要得数学”即平等性的考虑,坚持面向全体学生,努力设计“适合学生发展得数学教育”,体现“人人学数学”,“不同的人学不同的数学”的理念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n项和
等比数列的前
一.教学目标
知识与技能目标:理解用错位相减法推导等比数列前n项和公式的过程,掌握公式的特点,并在此基础上能初步应用公式解决与之有关的问题.
过程与方法目标:通过对公式的研究过程,提高学生的建模意识及探究问题、分析与解决问题的能力,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质.
情感、态度与价值目标:通过学生自主对公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,并从中获得成功的体验,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美.
二、教学重点、难点
重点:等比数列前n项和公式的推导及公式的简单应用.
难点:错位相减法的生成和等比数列前n项和公式的运用.
三、教学流程:
四、教学过程
28
++
22
【教师提问】
)能否逐一相加得结果?
)那有什么简单方法?
纵观全过程,①式两边为什。