高中数学必修五综合测试题含答案

合集下载

高中数学(人教版)必修五第二章数列综合测试卷

高中数学(人教版)必修五第二章数列综合测试卷

高中数学(人教版)必修五第二章数列综合测试卷本试卷满分150分,其中选择题共75分,填空题共25分,解答题共50分。

试卷难度:0.63一.选择题(共15小题,满分75分,每小题5分)1.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.82.(5分)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏3.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.1104.(5分)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题5.(5分)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是由关系式a n+1()A.B.C.D.6.(5分)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.7.(5分)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定8.(5分)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.9.(5分)设△A n B n C n的三边长分别是a n,b n,c n,△A n B n C n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列10.(5分)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺11.(5分)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.5412.(5分)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱13.(5分)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣14.(5分)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.915.(5分)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0二.填空题(共5小题,满分25分,每小题5分)16.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=.17.(5分)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.18.(5分)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n },则此数列的项数为.19.(5分)已知无穷数列{a n },a 1=1,a 2=2,对任意n ∈N *,有a n +2=a n ,数列{b n }满足b n +1﹣b n =a n (n ∈N *),若数列中的任意一项都在该数列中重复出现无数次,则满足要求的b 1的值为.20.(5分)设数列{a n }的通项公式为a n =n 2+bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为.三.解答题(共5小题,满分50分,每小题10分)21.(10分)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.22.(10分)设{a n }和{b n }是两个等差数列,记c n =max {b 1﹣a 1n ,b 2﹣a 2n ,…,b n ﹣a n n }(n=1,2,3,…),其中max {x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若a n =n ,b n =2n ﹣1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,>M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.23.(10分)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{a n }的通项公式;(Ⅱ)求和:b 1+b 3+b 5+…+b 2n ﹣1.24.(10分)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.25.(10分)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3﹣x 2=2. (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2)…P n +1(x n +1,n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y=0,x=x 1,x=x n +1所围成的区域的面积T n.高中数学(人教版)必修五第二章数列综合测试卷参考答案与试题解析一.选择题(共15小题,满分75分,每小题5分)1.(5分)(2017•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.8【考点】85:等差数列的前n项和;84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.2.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【考点】89:等比数列的前n项和;88:等比数列的通项公式.【专题】11 :计算题;34 :方程思想;54 :等差数列与等比数列.【分析】设这个塔顶层有a盏灯,由题意和等比数列的定义可得:从塔顶层依次向下每层灯数是等比数列,结合条件和等比数列的前n项公式列出方程,求出a 的值.【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.【点评】本题考查了等比数列的定义,以及等比数列的前n项和公式的实际应用,属于基础题.3.(5分)(2017•新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.110【考点】8E:数列的求和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n ﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别分别即可求得N的值.【解答】解:设该数列为{a n},设b n=+…+=2n﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n﹣1=2n﹣n﹣2,),数列{a n}的前N项和为数列{b n}的前n项和,可知当N为时(n∈N+即为2n﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1, (2)﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N >100,∴该款软件的激活码440.故选A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.4.(5分)(2017•上海模拟)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4O:定义法;5L :简易逻辑.【分析】对于①不妨设a n=2n,b n=3n、c n=sinn,满足{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但是不满足c n=sinn是递增数列,对于②根据等差数列的性质和定义即可判断.【解答】解:对于①不妨设a n=2n,b n=3n、c n=sinn,∴{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但c n=sinn不是递增数列,故为假命题,对于②{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,不妨设公差为分别为a,b,c,∴a n+b n﹣a n﹣1﹣b n﹣1=a,b n+c n﹣b n﹣1﹣c n﹣1=b,a n+c n﹣a n﹣1﹣c n﹣1=c,设{a n},{b n}、{c n}的公差为x,y,x,∴则x=,y=,z=,故若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列,故为真命题,故选:D【点评】本题考查了等差数列的性质和定义,以及命题的真假,属于基础题.5.(5分)(2017•徐汇区校级模拟)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),由关系式a n+1=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是()A.B.C.D.【考点】81:数列的概念及简单表示法.【专题】31 :数形结合;51 :函数的性质及应用.=f(a n)得到的数列{a n}满足a n+1>a n(n∈N*),根据点与【分析】由关系式a n+1直线之间的位置关系,我们不难得到,f(x)的图象在y=x上方.逐一分析不难得到正确的答案.=f(a n)>a n知:f(x)的图象在y=x上方.【解答】解:由a n+1故选:A.【点评】本题考查了数列与函数的单调性、数形结合思想方法,考查了推理能力与计算能力,属于基础题.6.(5分)(2017•河东区二模)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.【考点】82:数列的函数特性.【专题】32 :分类讨论;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】由a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,可得:(﹣1)n+2016•a<2+,对n分类讨论即可得出.【解答】解:a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,∴(﹣1)n+2016•a<2+,n为偶数时:化为a<2﹣,则a<.n为奇数时:化为﹣a<2+,则a≥﹣2.则实数a的取值范围是.故选:D【点评】本题考查了数列通项公式、分类讨论方法、数列的单调性,考查了推理能力与计算能力,属于中档题.7.(5分)(2017•宝清县一模)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列.【分析】由于{b n}是等差数列,可得b4+b10=2b7.已知a6=b7,于是b4+b10=2a6.由于数列{a n}是正项等比数列,可得a3+a9=≥=2a6.即可得出.【解答】解:∵{b n}是等差数列,∴b4+b10=2b7,∵a6=b7,∴b4+b10=2a6,∵数列{a n}是正项等比数列,∴a3+a9=≥=2a6,∴a3+a9≥b4+b10.【点评】本题考查了等差数列与等比数列的性质、基本不等式的性质,属于中档题.8.(5分)(2017•湖北模拟)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.【考点】82:数列的函数特性.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】根据数列的递推公式可得数列{+1}是等比数列,首项为+1=2,公=(n﹣2λ)•2n,根据数列的单调性即可求出λ的范围.比为2,再代值得到b n+1【解答】解:∵数列{a n}满足:a1=1,a n+1=(n∈N*),∴=+1,化为+1=+2∴数列{+1}是等比数列,首项为+1=2,公比为2,∴+1=2n,=(n﹣2λ)(+1)=(n﹣2λ)•2n,∴b n+1∵数列{b n}是单调递增数列,>b n,∴b n+1∴(n﹣2λ)•2n>(n﹣1﹣2λ)•2n﹣1,解得λ<1,但是当n=1时,b2>b1,∵b1=﹣λ,∴(1﹣2λ)•2>﹣λ,故选:A.【点评】本题考查了变形利用等比数列的通项公式的方法、单调递增数列,考查了推理能力与计算能力,属于中档题.9.(5分)(2017•海淀区校级模拟)设△A n B n C n的三边长分别是a n,b n,c n,△A nB nC n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列;58 :解三角形;59 :不等式的解法及应用.【分析】由a n=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣2a1=(b n+c n+1﹣2a n),b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n﹣c n+1=(c n﹣b n),得b n﹣c n=,可知n→+∞时b n→c n,+1据此可判断△A n B n C n的边B n C n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴c1,+c n+1=+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),由题意,b n+1∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,﹣c n+1=,又由题意,b n+1∴b n﹣(2a1﹣b n+1)==a1﹣b n,b n+1﹣a1=(a1﹣b n)=(b1 +1﹣a1).∴b n=a1+(b1﹣a1),c n=2a1﹣b n=a1﹣(b1﹣a1),=•=单调递增.可得{S n}单调递增.故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,属于难题.10.(5分)(2017•汉中二模)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺【考点】84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】由题意,该女子从第一天起,每天所织的布的长度成等差数列,其公差为d,由等差数列的前n项和公式能求出公差.【解答】解:由题意,该女子从第一天起,每天所织的布的长度成等差数列,记为:a1,a2,a3,…,a n,其公差为d,则a1=5,S30=390,∴=390,∴d=.故选:B.【点评】本题查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.11.(5分)(2017•徐水县模拟)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.54【考点】84:等差数列的通项公式.【专题】11 :计算题.【分析】由题意得a2=3a4﹣6,所以得a5=3.所以由等差数列的性质得S9=9a5=27.【解答】解:设数列{a n}的首项为a1,公差为d,因为a2=3a4﹣6,所以a1+d=3(a1+3d)﹣6,所以a5=3.所以S9=9a5=27.故选B.【点评】解决此类题目的关键是熟悉等差数列的性质并且灵活利用性质解题.12.(5分)(2017•安徽模拟)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱【考点】84:等差数列的通项公式.【专题】11 :计算题;21 :阅读型;33 :函数思想;51 :函数的性质及应用;54 :等差数列与等比数列.【分析】设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,列出方程组,能求出E所得.【解答】解:由题意:设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,则,解得a=,故E所得为钱.故选:A.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质、等差数列的性质的合理运用.13.(5分)(2017•南开区模拟)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣【考点】84:等差数列的通项公式.【专题】54 :等差数列与等比数列.【分析】设出等差数列的首项和公差,由已知列式求得首项和公差,代入两点求直线的斜率公式得答案.【解答】解:设等差数列{a n}的首项为a1,公差为d,由S2=10,S5=55,得,解得:.∴过点P(n,a n),Q(n+2,a n+2)的直线的斜率为k=.故选:A.【点评】本题考查等差数列的通项公式,考查等差数列的前n项和,训练了两点求直线的斜率公式,是基础题.14.(5分)(2017•枣阳市校级模拟)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.9【考点】84:等差数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】设等差数列{a n}的公差为d,由S3=9,a2a4=21,可得3a1+d=9,(a1+d)(a1+3d)=21,可得a n.由数列{b n}满足,利用递推关系可得:=.对n取值即可得出.【解答】解:设等差数列{a n}的公差为d,∵S3=9,a2a4=21,∴3a1+d=9,(a1+d)(a1+3d)=21,联立解得:a1=1,d=2.∴a n=1+2(n﹣1)=2n﹣1.∵数列{b n}满足,∴n=1时,=1﹣,解得b1=.n≥2时,+…+=1﹣,∴=.∴b n=.若,则<.n=7时,>.n=8时,<.因此:,则n的最小值为8.故选:C.【点评】本题考查了等差数列通项公式与求和公式、数列递推关系及其单调性,考查了推理能力与计算能力,属于中档题.15.(5分)(2017•安徽一模)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0【考点】84:等差数列的通项公式.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】由函数图象关于x=﹣1对称,由题意可得a50+a51=﹣2,运用等差数列的性质和求和公式,计算即可得到所求和.【解答】解:函数f(x)的图象关于x=﹣1对称,数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),可得a50+a51=﹣2,又{a n}是等差数列,所以a1+a100=a50+a51=﹣2,则{a n}的前100项的和为=﹣100故选:B.【点评】本题考查函数的对称性及应用,考查等差数列的性质,以及求和公式,考查运算能力,属于中档题.二.填空题(共5小题,满分25分,每小题5分)16.(5分)(2017•江苏)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=32.【考点】88:等比数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列.【分析】设等比数列{a n}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.17.(5分)(2017•新课标Ⅱ)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.【考点】8E:数列的求和;85:等差数列的前n项和.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】利用已知条件求出等差数列的前n项和,然后化简所求的表达式,求解即可.【解答】解:等差数列{a n}的前n项和为S n,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,S n=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.【点评】本题考查等差数列的求和,裂项消项法求和的应用,考查计算能力.18.(5分)(2017•汕头三模)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n},则此数列的项数为134.【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】由能被3除余1且被5除余1的数就是能被15整除余1的数,运用等差数列通项公式,以及解不等式即可得到所求项数.【解答】解:由能被3除余1且被5除余1的数就是能被15整除余1的数,故a n=15n﹣14.由a n=15n﹣14≤2017得n≤135,∵当n=1时,符合要求,但是该数列是从2开始的,故此数列的项数为135﹣1=134.故答案为:134【点评】本题考查数列模型在实际问题中的应用,考查等差数列的通项公式的运用,考查运算能力,属于基础题19.(5分)(2017•闵行区一模)已知无穷数列{a n},a1=1,a2=2,对任意n∈N*,=a n,数列{b n}满足b n+1﹣b n=a n(n∈N*),若数列中的任意一项都在有a n+2该数列中重复出现无数次,则满足要求的b1的值为2.【考点】81:数列的概念及简单表示法.【专题】35 :转化思想;48 :分析法;5M :推理和证明.【分析】依题意数列{a n}是周期数咧,则可写出数列{a n}的通项,由数列{b n}满足b n﹣b n=a n(n∈N*),可推出b n+1﹣b n=a n=⇒,,+1,,…要使数列中的任意一项都在该数列中重复出现无数次,则b2=b6=b10=…=b2n﹣1,b4=b8=b12=…=b4n,可得b8=b4=3即可,【解答】解:a1=1,a2=2,对任意n∈N*,有a n+2=a n,∴a3=a1=1,a4=a2=2,a5=a3=a1=1,∴a n=﹣b n=a n=,∴b n+1﹣b2n+1=a2n+1=1,b2n+1﹣b2n=a2n=2,∴b2n+2﹣b2n=3,b2n+1﹣b2n﹣1=3∴b2n+2∴b3﹣b1=b5﹣b3=…=b2n+1﹣b2n﹣1=3,b4﹣b2=b6﹣b4=b8﹣b6=…=b2n﹣b2n﹣2=3,b2﹣b1=1,,,,,,,…,=b4n﹣2∵数列中的任意一项都在该数列中重复出现无数次,∴b2=b6=b10=…=b4n﹣2,b4=b8=b12=…=b4n,解得b8=b4=3,b2=3,∵b2﹣b1=1,∴b1=2,故答案为:2【点评】本题考查了数列的推理与证明,属于难题.20.(5分)(2017•青浦区一模)设数列{a n}的通项公式为a n=n2+bn,若数列{a n}是单调递增数列,则实数b的取值范围为(﹣3,+∞).【考点】82:数列的函数特性.【专题】35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】数列{a n}是单调递增数列,可得∀n∈N*,a n+1>a n,化简整理,再利用数列的单调性即可得出.【解答】解:∵数列{a n}是单调递增数列,∴∀n∈N*,a n>a n,+1(n+1)2+b(n+1)>n2+bn,化为:b>﹣(2n+1),∵数列{﹣(2n+1)}是单调递减数列,∴n=1,﹣(2n+1)取得最大值﹣3,∴b>﹣3.即实数b的取值范围为(﹣3,+∞).故答案为:(﹣3,+∞).【点评】本题考查了数列的单调性及其通项公式、不等式的解法,考查了推理能力与计算能力,属于中档题.三.解答题(共5小题,满分50分,每小题10分)21.(10分)(2017•江苏)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.【考点】8B :数列的应用.【专题】23 :新定义;35 :转化思想;4R :转化法;54 :等差数列与等比数列.【分析】(1)由题意可知根据等差数列的性质,a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1)═2×3a n ,根据“P (k )数列”的定义,可得数列{a n }是“P (3)数列”;(2)由已知条件结合(1)中的结论,可得到{a n }从第3项起为等差数列,再通过判断a 2与a 3的关系和a 1与a 2的关系,可知{a n }为等差数列.【解答】解:(1)证明:设等差数列{a n }首项为a 1,公差为d ,则a n =a 1+(n ﹣1)d ,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3,=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1),=2a n +2a n +2a n ,=2×3a n ,∴等差数列{a n }是“P (3)数列”;(2)证明:当n ≥4时,因为数列{a n }是P (3)数列,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n ,①,因为数列{a n }是“P (2)数列”,所以a n ﹣3+a n ﹣3+a n +a n +1=4a n ﹣1,②,a n ﹣1+a n +a n +2+a n +3=4a n +1,③,②+③﹣①,得2a n =4a n ﹣1+4a n +1﹣6a n ,即2a n =a n ﹣1+a n +1,(n ≥4),因此n ≥4从第3项起为等差数列,设公差为d ,注意到a 2+a 3+a 5+a 6=4a 4, 所以a 2=4a 4﹣a 3﹣a 5﹣a 6=4(a 3+d )﹣a 3﹣(a 3+2d )﹣(a 3+3d )=a 3﹣d ,因为a1+a2+a4+a5=4a3,所以a1=4a3﹣a2﹣a4﹣a5=4(a2+d)﹣a2﹣(a2+2d)﹣(a2+3d)=a2﹣d,也即前3项满足等差数列的通项公式,所以{a n}为等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.22.(10分)(2017•北京)设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(1)若a n=n,b n=2n﹣1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.【考点】8B:数列的应用;8C:等差关系的确定.【专题】32 :分类讨论;4R:转化法;54 :等差数列与等比数列.【分析】(1)分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c2,c3;由(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,则c n=b1﹣na1=1﹣c n=﹣1对∀n∈N*均成立;﹣n,c n+1(2)由b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得c m,c m+1,c m+2,…是等差数列;设=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,分类讨论,采用放缩法即可求得因此对任意正数M,存在正整数m,使得当n≥m时,>M.【解答】解:(1)a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,当n=1时,c1=max{b1﹣a1}=max{0}=0,当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,下面证明:对∀n∈N*,且n≥2,都有c n=b1﹣na1,当n∈N*,且2≤k≤n时,则(b k﹣na k)﹣(b1﹣na1),=[(2k﹣1)﹣nk]﹣1+n,=(2k﹣2)﹣n(k﹣1),=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,则(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,∴c n﹣c n=﹣1对∀n∈N*均成立,+1∴数列{c n}是等差数列;(2)证明:设数列{a n}和{b n}的公差分别为d1,d2,下面考虑的c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中任意b i﹣a i n,(i∈N*,且1≤i≤n),则b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则b i﹣a i n═(b1﹣a1n)+(i﹣1)d2,当若d2≤0,则(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d2>0,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣n)d2>0,则对于给定的正整数n而言,c n=b n﹣a n n=b n﹣a1n,﹣c n=d2﹣a1,此时c n+1∴数列{c n}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此当n≥m时,c n=b1﹣a1n,此时c n﹣c n=﹣a1,故数列{c n}从第m项开始为等差数列,命题成立;+1③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,则当n≥s时,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i ≤n),因此,当n≥s时,c n=b n﹣a n n,此时==﹣a n+,=﹣d2n+(d1﹣a1+d2)+,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,若C≥0,取m=[+1],[x]表示不大于x的最大整数,当n≥m时,≥An+B≥Am+B=A[+1]+B>A•+B=M,此时命题成立;若C<0,取m=[]+1,当n≥m时,≥An+B+≥Am+B+C>A•+B+C≥M﹣C﹣B+B+C=M,此时命题成立,因此对任意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种情况,命题得证.【点评】本题考查数列的综合应用,等差数列的性质,考查与不等式的综合应用,考查“放缩法”的应用,考查学生分析问题及解决问题的能力,考查分类讨论及转化思想,考查计算能力,属于难题.23.(10分)(2017•北京)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【考点】8E:数列的求和;8M:等差数列与等比数列的综合.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】(Ⅰ)利用已知条件求出等差数列的公差,然后求{a n}的通项公式;(Ⅱ)利用已知条件求出公比,然后求解数列的和即可.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,}是等比数列,公比为3,首项为1.{b2n﹣1b1+b3+b5+…+b2n﹣1==.【点评】本题考查等差数列与等比数列的应用,数列求和以及通项公式的求解,考查计算能力.24.(10分)(2017•新课标Ⅰ)记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.【考点】8E:数列的求和;89:等比数列的前n项和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】(1)由题意可知a3=S3﹣S2=﹣6﹣2=﹣8,a1==,a2==,由a1+a2=2,列方程即可求得q及a1,根据等比数列通项公式,即可求得{a n}的通项公式;(2)由(1)可知.利用等比数列前n项和公式,即可求得S n,分别求得S n+1,S n+2,显然S n+1+S n+2=2S n,则S n+1,S n,S n+2成等差数列.。

最新人教A版高中数学必修五综合测试题及答案3套

最新人教A版高中数学必修五综合测试题及答案3套

最新人教A 版高中数学必修五综合测试题及答案3套综合学业质量标准检测(一)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在等比数列{a n }中,S 4=1,S 8=3,则a 17+a 18+a 19+a 20的值是( B ) A .14 B .16 C .18D .20[解析] ∵S 4=1,S 8=3,∴a 1·1-q 41-q =1,a 1·1-q 81-q =3,∴1+q 4=3,即q 4=2,∴a 17+a 18+a 19+a 20=a 1q 16(1+q +q 2+q 3)=q 16·a 1(1-q4)1-q=16.2.若1+2+22+…+2n >128,n ∈N *,则n 的最小值( B ) A .6 B .7 C .8D .9[解析] 1+2+22+…+2n =2n +1-1. ∵2n +1-1>128=27,∴n +1>7,n >6. 又∵n ∈N *,∴n =7.3.已知集合A ={x ||x +1|≤2},B ={x |y =lg(x 2-x -2)},则A ∩∁R B =(C ) A .[-3,-1) B .[-3,-1] C .[-1,1]D .(-1,1][解析] 因为A ={x ||x +1|≤2}={x |-3≤x ≤1},B ={x |lg(x 2-x -2)}={x |x 2-x -2>0}={x |x <-1或x >2},所以∁R B ={x |-1≤x ≤2},所以A ∩∁R B ={x |-1≤x ≤1}.4.已知a >b >0,c ≠0,则下列不等式中不恒成立的是( B ) A .ac 2>bc 2 B .a -b c>0C .(a +b )(1a +1b)>4D .a 2+b 2+2>2a +2b[解析] ∵c ≠0,∴c 2>0,又∵a >b ,∴ac 2>bc 2; ∵a >b ,∴a -b >0,又c ≠0, ∴c >0时a -b c >0,c <0时,a -bc <0;∵a >b >0,∴(a +b )(1a +1b )=2+b a +ab>2+∵a >b >0,∴a 2+b 2+2-2a -2b =(a -1)2+(b -1)2>0, 故A ,C ,D 恒成立,B 不恒成立.5.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( C )A .12B .1C .3D .2[解析] 因为b 2+c 2-a 2=2bc cos A =bc ,所以cos A =12,因为A ∈(0,π),所以A =π3,所以△ABC 的面积为12bc sin A =12×4×32=3,故选C .6.已知x ,y ∈R ,且x >y >0,则( C ) A .1x -1y >0B .sin x -sin y >0C .(12)x -(12)y <0D .ln x +ln y >0[解析] 解法1:因为x >y >0,选项A ,取x =1,y =12,则1x -1y =1-2=-1<0,排除A ;选项B ,取x =π,y =π2,则sin x -sin y =sin π-sin π2=-1<0,排除B ;选项D ,取x =2,y=12,则ln x +ln y =ln(x +y )=ln1=0,排除D .故选C . 解法2:因为函数y =⎝⎛⎭⎫12x在R 上单调递减,且x >y >0,所以⎝⎛⎭⎫12x <⎝⎛⎭⎫12y ,即⎝⎛⎭⎫12x -⎝⎛⎭⎫12y <0,故选C .7.已知数列{a n },满足a n +1=11-a n,若a 1=12,则a 2015=( B )A .12B .2C .-1D .1[解析] 易知a 2=2,a 3=-1,a 4=12,a 5=2,∴数列{a n }的周期为3,而2015=671×3+2,∴a 2015=a 2=2.8.在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影,由区域⎩⎪⎨⎪⎧x -2≤0,x +y ≥0,x -3y +4≥0中的点在直线x +y -2=0上的投影构成的线段记为AB ,则|AB |=( C )A .22B .4C .32D .6[解析] 作出不等式组所表示的平面区域如图中阴影部分所示,过点C ,D 分别作直线x +y -2=0的垂线,垂足分别为A ,B ,则四边形ABDC 为矩形,又C (2,-2).D (-1,1),所以|AB |=|CD |=(2+1)2+(-2-1)2=3 2.故选C .9.已知数列{a n }的通项公式是a n =1n +n +1(n ∈N *),若a n +a n +1=11-3,则n 的值是( B )A .12B .9C .8D .6[解析] ∵a n =1n +n +1=n +1-n ,∴a n +a n +1=n +1-n +n +2-n +1 =n +2-n =11-3=11-9, ∴n =9.10.已知△ABC 中,∠A =30°,AB 、BC 分别是3+2、3-2的等差中项与等比中项,则△ABC 的面积等于( D )A .32B .34C .32或3 D .32或34[解析] 依题意得AB =3,BC =1,易判断△ABC 有两解,由正弦定理,得AB sin C =BCsin A ,3sin C =1sin30°,即sin C =32.又0°<C <180°,因此有C =60°或C =120°.当C =60°时,B =90°,△ABC 的面积为12AB ·BC =32;当C =120°时,B =30°,△ABC 的面积为12AB ·BC ·sin B =12×3×1×sin30°=34.综上所述,选D . 11.设等差数列{a n }的前n 项和为S n ,且a 2+a 7+a 12=24,则S 13=( C ) A .52 B .78 C .104D .208[解析] 由等差数列的性质得a 2+a 7+a 12=3a 7=24,∴a 7=8, ∴S 13=13a 7=104,故选C .12.若直线x a +yb =1(a >0,b >0)过点(1,1),则a +b 的最小值等于13.( C ) A .2 B .3 C .4D .5[解析] 由已知得,1a +1b =1,a >0,b >0,则a +b =(a +b )(1a +1b )=2+b a +ab ≥2+2b a ·a b=4,当b a =ab,即a =b =2时取等号.[点评] 一个小题涉及到直线的方程与基本不等式,难度又不大,这是高考客观题命题的主要方向.平时就要加强这种小综合交汇训练.二、填空题(本大题共4个小题,每个小题4分,共16分.将正确答案填在题中横线上) 13.等比数列{a n }和等差数列{b n }中,a 5=b 5,2a 5-a 2a 8=0,则b 3+b 7=4. [解析] ∵2a 5-a 2a 8=2a 5-a 25=0,a n ≠0,∴a 5=2, ∴b 3+b 7=2b 5=2a 5=4.14.在△ABC 中,∠A =π3,BC =3,AB =6,则∠C =π4.[解析] 由正弦定理得3sin π3=6sin C ,∴sin C =22,∵AB <BC ,∴C <A ,∴C =π4.15.已知变量x 、y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0x +3y -3≥0y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围为⎝⎛⎭⎫12,+∞. [解析] 作出可行域如图(包括边界)当直线z =ax +y 经过A 点, 位于直线l 1与x +2y -3=0之间时, z 仅在点A (3,0)处取得最大值, ∴-a <-12,∴a >12.16.已知点(1,t )在直线2x -y +1=0的上方,且不等式x 2+(2t -4)x +4>0恒成立,则t 的取值集合为{t |3<t <4}.[解析] ∵(1,t )在直线2x -y +1=0的上方, ∴t >3,∵不等式x 2+(2t -4)x +4>0恒成立, ∴Δ=(2t -4)2-16<0,∴0<t <4,∴3<t <4.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)和为114的三个数是一个公比不为1的等比数列的连续三项,也是一个等差数列的第1项,第4项,第25项,求这三个数.[解析] 由题意,设这三个数分别是a q ,a ,aq ,且q ≠1,则aq +a +aq =114①令这个等差数列的公差为d ,则a =aq +(4-1)·d .则d =13(a -a q),又有aq =a q +24×13×⎝⎛⎭⎫a -a q ② 由②得(q -1)(q -7)=0,∵q ≠1,∴q =7 代入①得a =14,则所求三数为2,14,98.18.(本题满分12分)(2016·贵阳市第一中学月考)设函数f (x )=12sin2x -cos 2(x +π4).(1)若x ∈(0,π),求f (x )的单调递增区间;(2)在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (B2)=0,b =1,求△ABC 面积的最大值.[解析] (1)由题意可知,f (x )=12sin2x -1+cos (2x +π2)2=12sin2x -1-sin2x 2=sin2x -12.由2k π-π2≤2x ≤2k π+π2,k ∈Z ,得k π-π4≤x ≤k π+π4,k ∈Z .又因为x ∈(0,π),所以f (x )的单调递增区间是(0,π4]和[3π4,π).(2)由f (B 2)=sin B -12=0,得sin B =12,由题意知B 为锐角,所以cos B =32. 由余弦定理b 2=a 2+c 2-2ac cos B ,得1+3ac =a 2+c 2≥2ac ,即ac ≤2+3,当且仅当a =c 时等号成立. 因为S △ABC =12ac sin B ≤2+34,所以△ABC 面积的最大值为2+34. 19.(本题满分12分)为了防止洪水泛滥,保障人民生命财产安全,去年冬天,某水利工程队在河边选择一块矩形农田,挖土以加固河堤,为了不影响农民收入,挖土后的农田改造成面积为10 000 m 2的矩形鱼塘,其四周都留有宽2 m 的路面,问所选的农田的长和宽各为多少时,才能使占有农田的面积最小.[解析] 设鱼塘的长为 x m ,宽为y m ,则农田长为(x +4)m ,宽为(y +4)m ,设农田面积为S .则xy =10 000,S =(x +4)(y +4)=xy +4(x +y )+16=10 000+16+4(x +y )≥10 016+8xy =10 016+800=10 816.当且仅当x =y =100时取等号. 所以当x =y =100时,S min =10 816 m 2. 此时农田长为104 m ,宽为104 m.20.(本题满分12分)(2015·浙江文,17)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ∈N *),b 1+12b 2+13b 3+…+1nb n =b n +1-1(n ∈N *).(1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n .[分析] 等差等比数列的通项公式;数列的递推关系式;数列求和和运算求解能力,推理论证能力.解答本题(1)利用等比数列的通项公式求a n ;利用递推关系求b n .(2)根据(1)问得到新的数列的通项公式,利用错位相减法进行数列求和.[解析] (1)由a 1=2,a n +1=2a n ,得a n =2n . 当n =1时,b 1=b 2-1,因为b 1=当n ≥2时,1n b n =b n +1-b n由累乘法得:b n =n .①, 又∵b n =1,符合①式,∴b n =n (2)由(1)知,a n b n =n ·2n ,所以T n =2+2·22+3·23+…+n ·2n ,2T n =22+2·23+3·24+…+(n -1)·2n +n ·2n +1,所以T n -2T n =2+22+23+…+2n -n ·2n +1=(1-n )2n +1-2, 所以T n =(n -1)2n +1+2.21.(本题满分12分)(2016·河南高考适应性测试)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知向量m =(cos B,2cos 2C2-1),n =(c ,b -2a ),且m ·n =0.(1)求角C 的大小;(2)若点D 为边AB 上一点,且满足AD →=DB →,|CD →|=7,c =23,求△ABC 的面积. [解析] (1)∵m =(cos B ,cos C ),n =(c ,b -2a ),m ·n =0, ∴c cos B +(b -2a )cos C =0,在△ABC 中,由正弦定理得 sin C cos B +(sin B -2sin A )cos C =0, ∴sin A =2sin A cos C .又∵sin A ≠0,∴cos C =12,∵C ∈(0,π),∴C =π3.(2)由AD →=DB →,知CD →-CA →=CB →-CD →,所以2CD →=CA →+CB →, 两边平方得4|CD →|2=b 2+a 2+2ba cos C ∴b 2+a 2+ba =28.①又∵c 2=a 2+b 2-2ab cos C ,∴a 2+b 2-ab =12.② 由①②得ab =8,所以S △ABC =12ab sin C =2 3.22.(本题满分14分)已知α、β是方程x 2+ax +2b =0的两根,且α∈[0,1],β∈[1,2],a 、b ∈R ,求b -3a -1的最大值和最小值.[解析] ∵⎩⎪⎨⎪⎧α+β=-aαβ=2b ,∴⎩⎪⎨⎪⎧a =-(α+β)b =αβ2,∵0≤α≤1,1≤β≤2, ∴1≤α+β≤3,0≤αβ≤2.∴⎩⎪⎨⎪⎧-3≤a ≤-10≤b ≤1. 建立平面直角坐标系aOb ,则上述不等式组表示的平面区域如图所示.令k =b -3a -1,可以看成动点P (a ,b )与定点A (1,3)的连线的斜率.取B (-1,0),C (-3,1),则k AB =32,k AC =12,∴12≤b -3a -1≤32. 故b -3a -1的最大值是32,最小值是12.综合学业质量标准检测(二)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a <b <0,则( C ) A .1a <1bB .0<a b <1C .ab >b 2D .b a >a b[解析] ∵a <b <0,∴两边同乘b ,得ab >b 2,故选C . 2.己知集合A ={x |x 2-3x +2<0},B ={x |log 4x >12},则( A )A .A ∩B =∅ B .B ⊆AC .A ∩∁R B =RD .A ⊆B[解析] A ={x |x 2-3x +2<0}={x |1<x <2},B ={x |log 4x >12}={x |x >2},∴A ∩B =∅.故选A .3.(x -2y +1)(x +y -3)<0表示的平面区域为( C )[解析] 将点(0,0)代入不等式中,不等式成立,否定A 、B ,将(0,4)点代入不等式中,不等式成立,否定D ,故选C .4.已知数列{a n }中的首项a 1=1,且满足a n +1=12a n +12n ,则此数列的第三项是( C )A .1B .12C .34D .58[解析] ∵a 1=1,a n +1=12a n +12n ,∴a 2=12a 1+12=1,a 3=12a 2+14=34,∴选C .5.已知A 为△ABC 的一个内角,且sin A +cos A =23,则△ABC 的形状是( B ) A .锐角三角形 B .钝角三角形 C .直角三角形D .不确定[解析] 解法1:∵sin A +cos A =23,∴(sin A +cos A )2=29,∴2sin A ·cos A =-79<0,∴A 为钝角,∴△ABC 的形状为钝角三角形.故选B .解法2:假设0<A ≤π2,则π4<A +π4≤3π4,∴sin(A +π4)≥22>13.∴sin A +cos A =2sin(A +π4)≥1>23.与条件矛盾,∴A >π2.故选B .6.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( C )A .3B .932C .332D .33[解析] 依题意得a 2+b 2-c 2-2ab +6=0,∴2ab cos C -2ab +6=0,即ab =6,△ABC 的面积等于12ab sin C =332,故选C .7.在等差数列{a n }中,a 3+a 9=27-a 6,S n 表示数列{a n }的前n 项和,则S 11=( B ) A .18 B .99 C .198D .297[解析] 由已知得:a 3+a 9+a 6=27,即3a 6=27,a 6=9. ∴S 11=11(a 1+a 11)2=11×2a 62=11a 6=11×9=99.故选B .8.(2016·湖北七市教科研协作体联考)已知直线ax +by -6=0(a >0,b >0)被圆x 2+y 2-2x -4y =0截得的弦长为25,则ab 的最大值是( B )A .9B .92C .4D .52[解析] 圆的标准方程为(x -1)2+(y -2)2=5,直线截圆所得的弦长为 25,等于直径,∴直线ax +by -6=0过圆心,即a +2b -6=0.又a >0,b >0,由基本不等式得a +2b ≥22ab ,即ab ≤92,当且仅当a =3,b =32时等号成立,∴ab 的最大值为92.故选B .9.从某电视塔的正东方向的A 处,测得塔顶仰角是60°;从电视塔的西偏南30°的B 处,测得塔顶仰角为45°,A 、B 间距离是35 m ,则此电视塔的高度是( A )A .521mB .10mC .4 90013mD .35m[解析] 作出示意图,设塔高OC 为h m ,在Rt △AOC 中,OA =h tan60°=33h ,OB =h . AB =35,∠AOB =150°,由余弦定理得352=(33h )2+h 2-2×33h ·h cos150°, 解得h =521.故选A .10.定义np 1+p 2+…+p n为n 个正数p 1,p 2,…,p n 的“均倒数”,若已知数列{a n }的前n 项的“均倒数”为15n ,又b n =a n 5,则1b 1b 2+1b 2b 3+…+1b 10b 11等于( C )A .811B .919C .1021D .1123[解析] 由n a 1+a 2+…+a n =15n 得S n =a 1+a 2+…+a n =5n 2,则S n -1=5(n -1)2(n ≥2),a n =S n -S n -1=10n -5(n ≥2),当n =1时,a 1=5也满足.故a n =10n -5,b n =2n -1,1b n b n +1=1(2n -1)(2n +1)=12(12n -1-12n +1),所以原式=12(1b 1-1b 11)=12×(1-121)=1021.故选C .11.已知O 是△ABC 的重心,且满足sin A 3·OA →+sin B 7·OB →+sin C 8·OC →=0,则角B 等于( B )A .30°B .60°C .90°D .120°[解析] 由正弦定理得:a 3OA →+b 7OB →+c 8OC →=0,又由题意得:OA →+OB →+OC →=0,∴a 3=b 7=c8,∴由余弦定理得:cos B =a 2+c 2-b 22ac=⎝⎛⎭⎫37b 2+⎝⎛⎭⎫87b 2-b 22×37b ×87b=12∴B =60°.故选B .12.已知x ,y 满足⎩⎪⎨⎪⎧x ≥2y ≥2,x +y ≤8,则z =x -y 的最大值为( A )A .4B .-4C .0D .2[解析] 作出不等式组表示的可行域如图阴影部分所示,由z =x -y 得y =x -z ,欲求z 的最大值,可将直线l :y =x 向下平移,当直线l 经过A 点时直线在y 轴上的截距-2最小,此时z 取得最大值.易求点A (6,2),则z max =6-2=4.故选A .二、填空题(本大题共4个小题,每个小题4分,共16分.将正确答案填在题中横线上)13.如图,在△ABC 中,∠B =45°,D 是BC 边上一点,AD =5,AC =7,DC =3,则AB 的长为562.[解析] 在△ACD 中,cos ∠ADC =52+32-722×5×3=-12,所以∠ADC =120°,所以∠ADB=60°.在△ABD 中,由正弦定理得AB sin60°=AD sin45°,所以AB =562.14.若函数f (x )=2x 2+2ax -a -1的定义域为R ,则a 的取值范围为-1≤a ≤0. [解析] 2x 2+2ax -a -1≥0⇔x 2+2ax -a ≥0,∴Δ≤0, ∴-1≤a ≤0.15.已知实数a ,b 满足a >1,b >0且2a +2b -ab -2=0,那么a +2b 的最小值是10. [解析] 因为实数a ,b 满足a >1,b >0且2a +2b -ab -2=0,整理1a -1+2b =1,所以a+2b =(a -1)+2b +1=[(a -1)+2b ]⎣⎡⎦⎤1a -1+2b +1=2(a -1)b +2b a -1+6,所以2(a -1)b +2ba -1+6≥22(a -1)b ×2b a -1+6=10.当且仅当2(a -1)b =2ba -1时取等号. 16.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y ≤2,y ≥0,则z =(x +1)2+(y -1)2的最小值是12.[解析] 如图,可行域为△ABC 及其内部,其中A (-1,0),B (2,0),C (12,32).目标函数表示可行域内的点M 到点P (-1,1)的距离的平方,因此所求最小值为点P (-1,1)到直线AC :x -y +1=0的距离的平方,即(|-1-1+1|2)2=12.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan ⎝⎛⎭⎫π4+A =2.(1)求sin2Asin2A +cos 2A的值;(2)若B =π4,a =3,求△ABC 的面积.[分析] 考查同角三角函数基本关系式;正弦定理和三角形面积公式.三角恒等变换与运算求解能力.(1)利用两角和与差的正切公式,求出tan A ,再利用同角三角函数基本关系式得到结论; (2)已知A ,B 和a 可利用正弦定理形式的面积公式(两边及夹角)求解.[解析] (1)由tan(π4+A )=2,得tan A =13,所以sin 2A sin 2A +cos 2 A =2sin A cos A 2sin A cos A +cos 2 A =2tan A 2tan A +1=25.(2)由tan A =13,A ∈(0,π)可得,sin A =1010,cos A =31010.由a =3,B =π4及正弦定理知:b =3 5.又sin C =sin(A +B )=sin A cos B +cos A sin B =255,所以S △ABC =12ab sin C =12×3×35×255=9.18.(本题满分12分)已知函数f (x )=x 2-2ax -1+a ,a ∈R . (1)若a =2,试求函数y =f (x )x(x >0)的最小值;(2)对于任意的x ∈[0,2],不等式f (x )≤a 成立,试求a 的取值范围. [解析] (1)依题意得y =f (x )x =x 2-4x +1x =x +1x -4.因为x >0,所以x +1x≥2.当且仅当x =1x ,即x =1时,等号成立.所以y ≥-2.所以当x =1时,y =f (x )x的最小值为-2.(2)解法1:因为f (x )-a =x 2-2ax -1,所以要使得“任意的x ∈[0,2],不等式f (x )≤a 成立”只要“x 2-2ax -1≤0在[0,2]上恒成立”.不妨设g (x )=x 2-2ax -1, 则只要g (x )≤0在[0,2]上恒成立.所以⎩⎪⎨⎪⎧ g (0)≤0,g (2)≤0,即⎩⎪⎨⎪⎧0-0-1≤0,4-4a -1≤0所以a 的取值范围是[34,+∞).解法2:∵f (x )≤a 对任意x ∈[0,2]恒成立, ∴x 2-2ax -1≤0对任意x ∈[0,2]恒成立, 当x =0时,显然恒成立,a ∈R ;当x ∈(0,2]时,有a ≥x 2-12x ,令g (x )=x 2-12x ,则g (x )=x 2-12x 在(0,2]上单调递增,∴g (x )max =g (2)=34.∴a ≥34.综上得a 的取值范围是[34,+∞).19.(本题满分12分)设数列{a n }的首项a 1=a ≠14,且a n +1=⎩⎨⎧12a n (n 为偶数)a n+14 (n 为奇数).记b n =a 2n -1-14,n =1,2,3,….(1)求a 2、a 3;(2)判断数列{b n }是否为等比数列,并证明你的结论. [解析] (1)a 2=a 1+14=a +14,a 3=12a 2=12a +18.(2)∵a 4=a 3+14=12a +38,所以a 5=12a 4=14a +316,所以b 1=a 1-14=a -14,b 2=a 3-14=12(a -14),b 3=a 5-14=14(a -14).猜想:{b n }是公比为12的等比数列.证明如下:∵b n +1=a 2n +1-14=12a 2n -14=12(a 2n -1+14)-14=12(a 2n -1-14)=12b n (n ∈N *),∴{b n }是首项为a -14,公比为12的等比数列.20.(本题满分12分)已知关于x 的一元二次不等式kx 2-2x +6k <0(k ≠0).导学号 54742970(1)若不等式的解集是{x |x <-3或x >-2},求k 的值; (2)若不等式的解集是R ,求k 的取值范围. [解析] (1)∵不等式的解集为{x |x <-3或x >-2}, ∴-3,-2是方程kx 2-2x +6k =0的两根,且k <0. ∴⎩⎪⎨⎪⎧(-3)×(-2)=6,(-3)+(-2)=2k ,∴k =-25. (2)∵不等式的解集为R ,∴⎩⎪⎨⎪⎧k <0,Δ=4-4k ·6k <0,即⎩⎪⎨⎪⎧k <0,k >66或k <-66,∴k <-66. 即k 的取值范围是(-∞,-66). 21.(本题满分12分)已知a ,b ,c 分别是△ABC 的角A ,B ,C 所对的边,且c =2,C =π3. (1)若△ABC 的面积等于3,求a ,b ; (2)若sin C +sin(B -A )=2sin2A ,求A 的值.[解析] (1)∵c =2,C =π3,由余弦定理得4=a 2+b 2-2ab cos π3=a 2+b 2-ab ,∵△ABC 的面积等于3,∴12ab sin C =3,∴ab =4,联立⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2;(2)∵sin C +sin(B -A )=2sin2A , ∴sin(B +A )+sin(B -A )=4sin A cos A , ∴sin B cos A =2sin A cos A , ①当cos A =0时,A =π2,②当cos A ≠0时,sin B =2sin A ,由正弦定理得b =2a ,联立⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得a =233,b =433,∴b 2=a 2+c 2,∵C =π3,∴A =π6,综上所述,A =π2或A =π6.22.(本题满分14分)已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式; (2)求数列{a n ·2a n }的前n 项和S n .[解析] (1)设数列{a n }的首项为a 1,公差为d ,由已知得 ⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,S 10=10a 1+10×92d =10a 1+45d =100,解得⎩⎪⎨⎪⎧a 1=1,d =2. 所以数列{a n }的通项公式为a n =1+2(n -1)=2n -1. (2)由(1)可知a n ·2a n =(2n -1)×22n -1,所以S n =1×21+3×23+5×25+…+(2n -3)×22n -3+(2n -1)×22n -1,① 4S n =1×23+3×25+5×27+…+(2n -3)×22n -1+(2n -1)×22n -1,② ①-②得-3S n =2+2×(23+25+…+22n -1)-(2n -1)×22n +1 所以S n =2+2×(23+25+…+22n -1)-(2n -1)×22n +1-3=2+2×8(1-4n -1)1-4-(2n -1)×22n +1-3=-6+16(1-4n -1)+(6n -3)×22n +19=10+(6n -5)×22n +19.学业质量标准检测(解三角形、数列部分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在锐角三角形ABC 中,已知A =2C ,则ac 的范围是( C )A .(0,2)B .(2,2)C .(2,3)D .(3,2)[解析] a c =sin A sin C =sin2Csin C =2cos C ,又A +B +C =π,A =2C ,∴π6<C <π4,∴2<ac< 3. 2.已知2a =3b =m ,且a ,ab ,b 成等差数列,则m =( C )A .2 C .6[解析] ∵2a =3b =m ,∴a =log 2又∵a ,ab ,b 成等差数列,∴2ab =a +b ⇒2=1a +1b=log m 2+log m 3=log m 6,∴m = 6.3.在△ABC 中,若(a -a cos B )sin B =(b -c cos C )sin A ,则这个三角形是( D ) A .底角不等于45°的等腰三角形 B .锐角不等于45°的直角三角形 C .等腰直角三角形D .等腰三角形或直角三角形[解析] 由正弦定理,得a sin B =b sin A , ∴a sin B cos B =c sin A cos C , sin A sin B cos B =sin C sin A cos C . ∴sin2B =sin2C .∴B =C ,或2B =π-2C ,即B +C =π2.4.等差数列{a n }中,a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }前9项的和S 9等于( B )A .66B .99C .144D .297[解析] 设b i =a i +a i +3+a i +6,则由条件知{b n }为等差数列,且b 1=39,b 3=27,∴公差d =b 3-b 12=-6,∴数列{a n }前9项的和a 1+a 2+…+a 9=b 1+b 2+b 3=3b 2=3(b 1+d )=3×(39-6)=99.5.△ABC 的三边分别为a ,b ,c ,且a =1,B =45°,S △ABC =2,则△ABC 的外接圆的直径为( C )A .43B .5C .52D .62[解析] ∵S △ABC =12ac sin B ,∴c =4 2.由余弦定理,得b 2=a 2+c 2-2ac cos B =25, ∴b =5.由正弦定理,得2R =bsin B=52(R 为△ABC 外接圆的半径),故选C .6.已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10=( B ) A .172B .192C .10D .12[解析] 由题可知:等差数列{a n }的公差d =1,因为等差数列S n =a 1n +n (n -1)d2,且S 8=4S 4,代入计算可得a 1=12;等差数列的通项公式为a n =a 1+(n -1)d ,则a 10=12+(10-1)×1=192.故本题正确答案为B .7.在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,且a >b >c ,a 2<b 2+c 2,则A 的取值范围为( C )A .(π2,π)B .(π4,π2)C .(π3,π2)D .(0,π2)[解析] 由题意,得cos A =b 2+c 2-a 22bc >0,∴A <π2.又a >b >c ,∴A >B >C .又∵A +B +C =π,∴A >π3,故选C .8.已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n ( C )A .4n -1B .4n -1 C .2n -1D .2n -1[解析] 设公比为q ,则a 1(1+q 2)=52,a 2(1+q 2)=54,∴q =12,∴a 1+14a 1=52,∴a 1=2.∴a n =a 1q n -1=2×(12)n -1,S n =2[1-(12)n ]1-12=4[1-(12)n ],∴S n a n =4[1-(12)n ]2×(12)n -1=2(2n -1-12) =2n -1.[点评] 用一般解法解出a 1、q ,计算量大,若注意到等比数列的性质及求S na n,可简明解答如下:∵a 2+a 4=q (a 1+a 3),∴q =12,∴S na n =a 1(1-q n )1-q a 1q n -1=1-q n (1-q )·qn -1=1-12n 12·12n -1=2n -1. 9.根据下边框图,对大于2的整数N ,输出的数列的通项公式是( C )A .a n =2nB .a n =2(n -1)C .a n =2nD .a n =2n -1[解析] 由程序框图可知a 1=2,a 2=22,a 3=23, ∴a n =2n .10.已知等比数列{a n }中,a n >0,a 5、a 95为方程x 2-10x +16=0的两根,则a 20·a 50·a 80的值为( B )A .32B .64C .256D .±64[解析] 由条件知a 5+a 95=10,a 5·a 95=16, ∵{a n }是等比数列,∴a 250=16,∵a n >0,∴a 50=4,∴a 20a 50a 80=a 350=64. 11.△ABC 中,A ︰B =1︰2,∠ACB 的平分线CD 把△ABC 的面积分成3︰2两部分,则cos A 等于( C )A .13B .12C .34D .0[解析] ∵CD 为∠ACB 的平分线, ∴点D 到AC 与点D 到BC 的距离相等, ∴△ACD 与△BCD 的高相等. ∵A ︰B =1︰2,∴AC >BC .∵S △ACD ︰S △BCD =3︰2,∴AC BC =32. 由正弦定理,得sin B sin A =32,又∵B =2A ,∴sin2A sin A =32,∴2sin A cos A sin A =32, ∴cos A =34.12.若△ABC 的三边为a ,b ,c ,f (x )=b 2x 2+(b 2+c 2-a 2)x +c 2,则函数f (x )的图象( B ) A .与x 轴相切 B .在x 轴上方 C .在x 轴下方D .与x 轴交于两点[解析] 函数f (x )相应方程的判别式Δ=(b 2+c 2-a 2)2-4b 2c 2 =(2bc cos A )2-4b 2c 2 =4b 2c 2(cos 2A -1).∵0<A <π,∴cos 2A -1<0,∴Δ<0, ∴函数图象与x 轴没交点.故选B .二、填空题(本大题共4小题,每小题4分,共16分.将正确答案填在题中横线上) 13.已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于27.[解析] ∵n ≥2时,a n =a n -1+12,且a 1=1,∴{a n }是以1为首项,12为公差的等差数列.∴S 9=9×1+9×82×12=9+18=27.14.三角形一边长14,它对的角为60°,另两边之比为8︰5,则此三角形面积为 [解析] 设另两边长为8x 和5x ,则 cos60°=64x 2+25x 2-14280x 2,∴x =2,∴另两边长为16和10,此三角形面积S =12×16×10·sin60°=40 3.15.若数列{a n }满足a 1=2,a n =1-1a n -1,则a 2016=-1. [解析] ∵a 1=2,a n =1-1a n -1,∴a 2=1-1a 1=12,a 3=1-1a 2=-1,a 4=1-1a 3=2,a 5=1-1a 4=12,……∴数列{a n }的值呈周期出现,周期为3. ∴a 2016=a 3=-1.16.已知a ,b ,c 分别为 △ABC 的三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC[解析] 由a =2,(2+b )(sin A -sin B )=(c -b )sin C 及正弦定理可得,(a +b )(a -b )=(c -b )·c∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12,∴A =60°. 在△ABC 中,a 2=b 2+c 2-2bc cos60°=b 2+c 2-bc ≥2bc -bc =bc ,(等号在b =c 时成立),∴bc ≤4.∴S △ABC =12bc sin A ≤12×4×32= 3. 三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足a cos B +b cos A =2c cos C .(1)求C ;(2)若△ABC 的面积为23,a +b =6,求∠ACB 的角平分线CD 的长度.[解析] (1)已知a cos B +b cos A =2c cos C ,由正弦定理,得sin A cos B +sin B cos A =2sin C cos C ,所以sin(A +B )=2sin C cos C ,即sin C =2sin C cos C .因为0<C <π,所以cos C =12,故C =π3. (2)方法一:由已知,得S =12ab sin C =34ab =23,所以ab =8. 又a +b =6,解得⎩⎪⎨⎪⎧ a =2b =4,或⎩⎪⎨⎪⎧ a =4,b =2. 当⎩⎪⎨⎪⎧a =2b =4时,由余弦定理,得c 2=4+16-2×2×4×12=12, 所以c =2 3.所以b 2=a 2+c 2,△ABC 为直角三角形,∠B =π2. 因为CD 平分∠ACB ,所以∠BCD =π6. 在Rt △BCD 中,CD =2cos π6=433.当⎩⎪⎨⎪⎧ a =4b =2时,同理可得CD =2cos π6=433. 方法二:在△ABC 中,因为CD 平分∠ACB ,所以∠ACD =∠BCD =π6. 因为S △ABC =S △ACD +S △BCD ,所以S △ABC =12b · CD ·sin π6+12a ·CD ·sin π6=12CD ·sin π6·(a +b )=14(a +b )·CD . 因为S △ABC =23,a +b =6,即23=14×6·CD ,解得CD =433. 18.(本题满分12分))在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,若m =(cos 2A 2,1),n =(cos 2(B +C ),1),且m ∥n .(1)求角A ;(2)当a =6,且△ABC 的面积S 满足3=a 2+b 2-c 24S时,求边c 的值和△ABC 的面积. [解析] (1)因为m ∥n ,所以cos 2(B +C )-cos 2A 2=cos 2A -cos 2A 2=cos 2A -cos A +12=0, 即2cos 2A -cos A -1=0,(2cos A +1)(coa A -1)=0. 所以cos A =-12或cos A =1(舍去),即A =120°. (2)由3=a 2+b 2-c 24S 及余弦定理,得tan C =33,所以C =30°. 又由正弦定理a sin A =c sin C,得c =2 3. 所以△ABC 的面积S =12ac sin B =3 3. 19.(本题满分12分)(2016·广西自治区质检)已知数列{a n }的前n 项和为S n ,且S n =32a n -1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =2log 3a n 2+1,求1b 1b 2+1b 2b 3+…+1b n -1b n. [解析] (1)当n =1时,a 1=32a 1-1,∴a 1=2. ∵S n =32a n -1,① S n -1=32a n -1-1(n ≥2),② ∴①-②得a n =(32a n -1)-(32a n -1-1),即a n =3a n -1,∴数列{a n }是首项为2,公比为3的等比数列,∴a n =2·3n -1.(2)由(1)得b n =2log 3a n 2+1=2n -1, ∴1b 1b 2+1b 2b 3+…+1b n -1b n =11×3+13×5+…+1(2n -3)(2n -1) =12[(1-13)+(13-15)+…+(12n -3-12n -1)]=n -12n -1. 20.(本题满分12分)用分期付款的方式购买一批总价为2 300万元的住房,购买当天首付300万元,以后每月的这一天都交100万元,并加付此前欠款的利息,设月利率为1%.若从首付300万元之后的第一个月开始算分期付款的第一个月,问分期付款的第10个月应付多少万元?全部贷款付清后,买这批住房实际支付多少万元?[解析] 购买时付款300万元,则欠款2 000万元,依题意分20次付清,则每次交付欠款的数额依次购成数列{a n },故a 1=100+2 000×0.01=120(万元),a 2=100+(2 000-100)×0.01=119(万元),a 3=100+(2 000-100×2)×0.01=118(万元),a 4=100+(2 000-100×3)×0.01=117(万元),…a n =100+[2 000-100(n -1)]×0.01=121-n (万元) (1≤n ≤20,n ∈N *).因此{a n }是首项为120,公差为-1的等差数列.故a 10=121-10=111(万元),a 20=121-20=101(万元).20次分期付款的总和为S 20=(a 1+a 20)×202=(120+101)×202=2 210(万元). 实际要付300+2 210=2 510(万元).即分期付款第10个月应付111万元;全部贷款付清后,买这批住房实际支付2 510万元.21.(本题满分12分)在△ABC 中,若a 2+c 2-b 2=ac ,log 4sin A +log 4sin C =-1,S △ABC =3,求三边a ,b ,c 的长及三个内角A ,B ,C 的度数.[解析] 由a 2+c 2-b 2=ac ,得cos B =a 2+c 2-b 22ac =12. ∵0°<B <180°,∴B =60°.∵S △ABC =12ac sin B =12ac ×32=3, ∴ac =4.①由log 4sin A +log 4sinC =-1,得sin A sin C =14. 由正弦定理,得ac 4R 2=14, ∴44R 2=14, ∴R =2(负值舍去).∴b =2R sin B =2×2×32=2 3. 由已知,得a 2+c 2-(23)2=4.②当a >c 时,由①②,得a =6+2,c =6- 2.∴三边的长分别为a =6+2,b =23,c =6- 2.由正弦定理,得sin A =a 2R =6+24=sin105°. ∴A =105°,即C =15°.同理,当a <c 时,a =6-2,b =23,c =6+2,A =15°,B =60°,C =105°.22.(本题满分14分)(2015·石家庄市一模)设数列{a n }的前n 项和为S n ,a 1=1,a n +1=λS n +1(n ∈N *,λ≠-1),且a 1、2a 2、a 3+3为等差数列{b n }的前三项.(1)求数列{a n }、{b n }的通项公式;(2)求数列{a n b n }的前n 项和.[解析] (1)解法1:∵a n +1=λS n +1(n ∈N *),∴a n =λS n -1+1(n ≥2),∴a n +1-a n =λa n ,即a n +1=(λ+1)a n (n ≥2),λ+1≠0,又a 1=1,a 2=λS 1+1=λ+1,∴数列{a n }为以1为首项,公比为λ+1的等比数列,∴a 3=(λ+1)2,∴4(λ+1)=1+(λ+1)2+3,整理得λ2-2λ+1=0,得λ=1∴a n =2n -1,b n =1+3(n -1)=3n -2,解法2:∵a 1=1,a n +1=λS n +1(n ∈N *),∴a 2=λS 1+1=λ+1,a 3=λS 2+1=λ(1+λ+1)=λ2+2λ+1,∴4(λ+1)=1+λ2+2λ+1+3,整理得λ2-2λ+1=0,得λ=1∴a n +1=S n +1(n ∈N *),∴a n =S n -1+1(n ≥2)∴a n +1-a n =a n ,即a n +1=2a n (n ≥2), 又a 1=1,a 2=2,∴数列{a n }为以1为首项,公比为2的等比数列, ∴a n =2n -1,b n =1+3(n -1)=3n -2.(2)a n b n =(3n -2)·2n -1,∴T n =1·1+4·21+7·22+…+(3n -2)·2n -1 ① ∴2T n =1·21+4·22+7·23+…+(3n -5)·2n -1+(3n -2)·2n ② ①-②得-T n =1·1+3·21+3·22+…+3·2n -1-(3n -2)·2n=1+3·2·(1-2n -1)1-2-(3n -2)·2n整理得:T n =(3n -5)·2n +5.。

(完整版)高中数学必修五综合测试题 含答案

(完整版)高中数学必修五综合测试题 含答案

.绝密★启用前高中数学必修五综合考试卷第I 卷(选择题)一、单选题1.数列的一个通项公式是( )0,23,45,67⋯A .B . a n =n -1n +1(n ∈N *)a n =n -12n +1(n ∈N *)C .D .a n =2(n -1)2n -1(n ∈N *)a n =2n2n +1(n ∈N *)2.不等式的解集是( )x -12-x ≥0A .B .C .D . [1,2](-∞,1]∪[2,+∞)[1,2)(-∞,1]∪(2,+∞)3.若变量满足 ,则的最小值是( )x,y {x +y ≥0x -y +1≥00≤x ≤1x -3y A .B .C .D . 4-5-314.在实数等比数列{a n }中,a 2,a 6是方程x 2-34x +64=0的两根,则a 4等于( )A . 8B . -8C . ±8D . 以上都不对5.己知数列为正项等比数列,且,则( ){a n }a 1a 3+2a 3a 5+a 5a 7=4a 2+a 6=A . 1B . 2C . 3D . 46.数列前项的和为( )11111,2,3,4,24816n A . B . C .D .2122nn n ++21122n n n +-++2122n n n +-+21122n n n +--+7.若的三边长成公差为的 等差数列,最大角的正弦值为ΔABC a,b,c 232的面积为( )A .B .C .D .1541534213435348.在△ABC 中,已知,则B 等于( )a =2,b =2,A =450A . 30°B . 60°C . 30°或150°D . 60°或120°9.下列命题中正确的是( )A . a >b ⇒ac 2>bc 2B . a >b ⇒a 2>b 2C . a >b ⇒a 3>b 3D . a 2>b 2⇒a >b.10.满足条件,的的个数是 ( )a =4,b =32,A =45∘A . 1个B . 2个C . 无数个D . 不存在11.已知函数满足:则应满足( )f(x)=ax 2-c -4≤f(1)≤-1,-1≤f(2)≤5.f(3)A .B .C .D .-7≤f(3)≤26-4≤f(3)≤15-1≤f(3)≤20-283≤f(3)≤35312.已知数列{a n }是公差为2的等差数列,且成等比数列,则为( )a 1,a 2,a 5a2A . -2B . -3C . 2D . 313.等差数列的前10项和,则等于(){a n }S 10=15a 4+a 7A . 3B . 6C . 9D . 1014.等差数列的前项和分别为,若,则的值为( ){a n },{b n }n S n ,T nS nT n=2n3n +1a 3b 3A .B .C .D . 3547581219第II 卷(非选择题)二、填空题15.已知为等差数列,且-2=-1,=0,则公差={a n }a 7a 4a3d 16.在中,,,面积为,则边长=_________.△ABC A =60∘b =13c 17.已知中,,, ,则面积为_________.ΔABC c =3a =1acosB =bcosA ΔABC 18.若数列的前n 项和,则的通项公式____________{a n }S n =23a n +13{a n }19.直线下方的平面区域用不等式表示为________________.x -4y +9=020.函数的最小值是 _____________.y =x +4x -1(x >1)21.已知,且,则的最小值是______.x ,y ∈R +4x +y =11x +1y三、解答题22.解一元二次不等式(1) (2)-x 2-2x +3>0x 2-3x +5>0.(1)求边上的中线的长;BC AD (2)求△的面积。

(常考题)北师大版高中数学必修五第二章《解三角形》测试题(包含答案解析)(3)

(常考题)北师大版高中数学必修五第二章《解三角形》测试题(包含答案解析)(3)

一、选择题1.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若()sin sin sin c C a A b a B =+-,角C 的角平分线交AB 于点D ,且CD =,3a b =,则c 的值为( )A .72B .3C .3D .2.在ABC 中,内角,A ,B C 的对边分别为,a ,b c ,已知b =22cos c a b A -=,则a c +的最大值为( )A B .C .D3.在△ABC 中,若222a c b -+=,则C =( ). A .45° B .30°C .60°D .120°4.ABC 的内角,,A B C 的对边分别为,,a b c ,分别根据下列条件解三角形,其中有两解的是( )A .2,4,120a b A ===︒B .3,2,45a b A ===︒C . 6,60b c C ===︒D .4,3,30b c C ===︒5.ABC 的内角,,A B C 的对边分别为,,a b c ,若222sin sin sin sin A C B A C +-=,1b =,则2a -的最小值为( )A .4-B .-C .2-D .6.在ABC 中,,,a b c 分别为三个内角,,A B C 的对边,若cos cos a A b B =,则ABC 一定是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形7.在ABC 中,内角,,A B C 所对应的边分别为,,a b c ,若sin cos 0b A B =,且2b ac =,则a cb+ 的值为( )A BC .2D .48.在直角梯形ABCD 中,//AB CD ,90ABC ∠=,22AB BC CD ==,则cos DAC ∠=( )A B C D .109.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且1a =,cos si 3n 3b c C B -=,则B 的值是( )A .6π B .3π C .23π D .56π 10.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,若3a =,2b =,45B =︒,则A =( )A .30B .30或150︒C .60︒或120︒D .60︒11.构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2BD AD =,则DEF 与ABC 的面积之比为( )A .12B .13C .15D .1712.已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2sin sin sin B A C =,13a cc a+=+,则B = ( ) A .56π B .6π C .3π D .2π 二、填空题13.已知ABC 的面积为4,2tan 3B =,AB AC >,设M 是边BC 的中点,若5AM =,则BC =___________.14.在ABC 中,点M 是边BC 的中点,3AM =2BC =,则2AC AB +的最大值为___________.15.某小区拟将如图的一直角三角形ABC 区域进行改建:在三边上各选一点连成等边三角形DEF ,在其内建造文化景观.已知207m AB =,107m AC =,则DEF 区域面积(单位:2m )的最小值大约为______2m .7 2.65≈;3 1.73≈)16.如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75︒,距灯塔68海里的M 处,下午2时到达这座灯塔的东南方向N 处,则该船航行的速度为__________海里/小时.17.在三角形ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,222a c b ac +-=,3b =2a c +的最大值为______.18.在ABC 中,若3b =3c =,30B ︒=,则a 等于________.19.ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin sin 22sin sin b C c B a B C +=,2226b c a +-=,则ABC 的面积为_______. 20.已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,且cos cos sin b C c B a A +=,则A =________. 三、解答题21.在ABC 中,已知边长是5,7,8BC AC AB ===. (1)求角B ;(2)求ABC 的面积; (3)求ABC 外接圆面积.22.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且()()()sin sin sin 3a b A B C c b -+=.(1)求角A ;(2)若ABC 的面积23ABC S =△a 的取值范围.23.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程22320x x -+=的两根,()2cos 1A B +=.(1)求角C 的度数; (2)求AB 的长.24.ABC 是等边三角形,点D 在边AC 的延长线上,且AD =3CD ,BD 7,求AD 的值和sin ∠ABD 的值25.在△ABC 中,BC =a ,AC =b ,a 、b 是方程22320x x -+=的两个根,且120A B +=︒,求ABC 的面积及AB 的长.26.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边长,已知2b ac =,且a 2-c 2=ac -bc ,求∠A 的大小及sin b Bc的值【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用正弦定理边角互化以及余弦定理求出角C 的值,由ABC ACD BCD S S S =+△△△可得出ab a b =+,结合3a b =可求得a 、b 的值,再利用余弦定理可求得c 的值. 【详解】()sin sin sin c C a A b a B =+-,由正弦定理可得()22c a b a b =+-,可得222a b c ab +-=,由余弦定理可得:2221cos 22a b c C ab +-==,0C π<<,所以3C π=,由ABC ACD BCD S S S =+△△△,有111sin sin sin 232626ab a CD b CD πππ=⋅+⋅,得ab a b =+,所以234b b =,0b >,43b ∴=,34a b ==, 由余弦定理可得221616471692cos 3c a b ab C =+--==+. 故选:B. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”;(2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.2.B解析:B 【分析】由正弦定理化边角,利用诱导公式两角和的正弦公式化简可得B 角,然后用余弦定理得2()33a c ac +-=,再利用基本不等式变形后解不等式得a c +的最大值.【详解】因为22cos c a b A -=,所以由正弦定理得,2sin sin 2sin cos C A B A -=,因为A B C π+=-,所以sin sin()sin cos cos sin C A B A B A B =+=+,所以2sin cos 2cos sin sin 2sin cos A B A B A B A +-=,化简得(2cos 1)sin 0B A -=,因为sin 0A ≠,所以2cos 10B -=,解得1cos 2B =,因为(0,)B π∈,所以3B π=,因为b =222232cos a c ac B a c ac =+-=+-,所以2()33a c ac +-=,所以222313()()()44a c a c a c ≥+-+=+,当且仅当a c =时取等号,所以a c +≤a c +的最大值为故选:B . 【点睛】方法点睛:本题考查主要正弦定理、余弦定理,在三角形问题中出现边角关系时可用正弦定理化边为角,然后由利用三角函数恒等变换公式如诱导公式,两角和与差的正弦公式等化简变形得出所要结论.3.B解析:B 【分析】根据余弦定理,可以求出C 角的余弦值,进而根据C 为三角形内角,解三角方程可以求出C 角.【详解】∵222a c b -+=,∴22222a b c cosC ab +-==. 又∵C 为三角形内角∴30C =︒. 故选B . 【点睛】本题考查余弦定理的应用,属基础题.4.D解析:D 【分析】运用正弦定理公式,可以求出另一边的对角正弦值,最后还要根据三角形的特点:“大角对大边”进行合理排除. 【详解】A. 2,4,120a b A ===︒,由,a b <A B ⇒<所以不存在这样的三角形.B. 3,2,45a b A ===︒,由sin sin sin a b B A B =⇒=,a b >所以只有一个角BC. 6,60b c C ===︒中,同理也只有一个三角形.D. 4,3,30b c C ===︒中2sin sin sin 3c b B C B =⇒=此时b c >,所以出现两个角符合题意,即存在两个三角形. 所以选择D 【点睛】在直接用正弦定理求另外一角中,求出 sin θ后,记得一定要去判断是否会出现两个角.5.A解析:A 【分析】由222sin sin sin sin A C B A C +-=,利用正弦定理和余弦定理,可得6B π=,再根据正弦定理、三角形内角和及两角和的余弦公式,得到2a -4cos 3C π⎛⎫=+ ⎪⎝⎭,借助角C 的范围,即可求得结果. 【详解】222sin sin sin sin A C B A C +-=,∴222a c b +-=,∴2222a c b ac +-=,∴cos 2B =,又0B π<<,∴6B π=,12sin sin sin sin 6b A C B ac π====,∴2sin a A =,2sin c C =,∴24sin a A C -=-4sin()B C C =+-4sin()6C C π=+-14cos 22C C C ⎛⎫=+- ⎪ ⎪⎝⎭2cos C C =-14cos sin 22C C ⎛⎫=- ⎪ ⎪⎝⎭ 4cos 3C π⎛⎫=+ ⎪⎝⎭因为506C π<<,所以7336C πππ<+<,所以当3C ππ+=时,2a -取得最小值,且最小值为4-.故选:A. 【点睛】本题考查了正弦定理和余弦定理的应用、三角形内角和的应用、两角和的余弦公式及余弦型函数的最值问题,考查学生对这些知识的掌握能力,属于中档题.在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,一 般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理.6.D解析:D 【分析】根据cos cos a A b B =,利用正弦定理将边转化为角得到sin cos sin cos A A B B =,然后再利用二倍角的正弦公式化简求解. 【详解】因为cos cos a A b B =,由正弦定理得:sin cos sin cos A A B B =, 所以sin 2sin 2A B =, 所以22A B =或22A B π=-, 即A B =或2A B π+=所以ABC 一定是等腰三角形或直角三角形, 故选:D 【点睛】本题主要正弦定理,二倍角公式的应用,属于中档题.7.C解析:C 【分析】利用正弦定理边化角,结合辅助角公式可求得sin 03B π⎛⎫-= ⎪⎝⎭,从而确定3B π=;利用余弦定理构造方程可求得()24+=a c ac ,代入所求式子即可化简得到结果. 【详解】sin cos 0b A B =,()sin sin cos sin sin 2sin sin 03B A A B A B B A B π⎛⎫∴=-=-= ⎪⎝⎭,()0,A π∈,sin 0A ∴≠,sin 03B π⎛⎫∴-= ⎪⎝⎭,又()0,B π∈,3B π∴=.()22222231cos 2222a c ac a cb ac ac B ac ac ac +-+-+-∴====,整理可得:()24+=a c ac ,2a cb+∴====. 故选:C . 【点睛】本题考查解三角形的相关知识,涉及到正弦定理边化角、余弦定理的应用等知识;解决此类问题的关键是能够通过正弦定理,将边的齐次式转化为角的关系,属于常考题型.8.C解析:C 【分析】设1BC CD ==,计算出ACD ∆的三条边长,然后利用余弦定理计算出cos DAC ∠. 【详解】如下图所示,不妨设1BC CD ==,则2AB =,过点D 作DE AB ⊥,垂足为点D , 易知四边形BCDE 是正方形,则1BE CD ==,1AE AB BE ∴=-=,在Rt ADE ∆中,AD ==AC在ACD ∆中,由余弦定理得2222cos2AC AD CD DAC AC AD +-∠===⋅, 故选C .【点睛】本题考查余弦定理求角,在利用余弦定理求角时,首先应将三角形的边长求出来,结合余弦定理来求角,考查计算能力,属于中等题.9.C解析:C 【分析】cos sin sin 33B C C B A =-,再由三角恒等变换化简可得sin 3=-B B ,进而可得tan 3B =.【详解】 因为1a =cos si 3n 3b c C B -=3cos sin 3b C c B a -=,cos sin sin 33B C C B A =-, 又()sin sin sin cos cos sin A B C B C B C =+=+,33in n co c s s os in s 3s n n i i B C B C C B B C =-, 化简得sin sin 3sin C B B C =-, 因为()0,C π∈,()0,B π∈,所以sin 0C ≠, 所以sin 3=B B 即tan 3B = 所以23B π=. 故选:C. 【点睛】本题考查了三角恒等变换及正弦定理的综合应用,考查了运算求解能力与转化化归思想,属于中档题.10.C解析:C 【解析】 ∵3,2,45a b B ===︒∴根据正弦定理sin sin a b A B=,即sin sin a B A b ===∵a b =>=∴()45,135A ∈︒︒ ∴60A =︒或120︒ 故选C11.D解析:D 【分析】由题意得出点D 为AF的中点,由余弦定理得出AB =,结合三角形面积公式得出正确答案. 【详解】2,BD AD AF BD ==,2AF AD ∴=,即点D 为AF 的中点由余弦定理得:2222cos120AB AD BD AD BD ︒⋅-=+解得:AB =)22ABC1()sin 601217sin 602DEFAD S S ︒︒∴== 故选:D 【点睛】本题主要考查了余弦定理以及三角形的面积公式,属于中档题.12.B解析:B 【分析】根据正弦定理,边角互化可得2b ac =,再根据2221a c a c b c a ac+-+-=,利用余弦定理求角.【详解】∵2sin sin sin B A C =,∴21b ac=,∴2221a c a c b c a ac+-+-== ∴cos 2B =,又()0,πB ∈∴6B π=.故选:B .【点睛】本题考查正弦定理和余弦定理解不等式,重点考查转化的思想,计算能力,属于基础题型.二、填空题13.4【分析】首先利用余弦定理和三角形面积公式建立关于的方程再分别求根据余弦定理求结合条件求得的值【详解】得:解得:①中利用余弦定理②由①②可得解得:或即当时得此时不成立当时得此时成立故故答案为:4【点 解析:4【分析】首先利用余弦定理和三角形面积公式,建立关于,a c 的方程,再分别求,a c ,根据余弦定理求b ,结合条件AB AC >,求得BC 的值.【详解】2tan 3B =,得:sin 13B =,cos 13B =11sin 422ABC S ac B ac ===,解得:ac =① ABM中,利用余弦定理222252cos 5424a a a c c B c =+-⋅⋅=+= ② 由①②可得22174ac a c ⎧=⎪⎨+=⎪⎩,解得:2a c ⎧=⎪⎨=⎪⎩4a c =⎧⎪⎨=⎪⎩, AB AC >,即c b >当2a c ==时,2222cos 32b a c ac B =+-=,得b =c b <,不成立,当4,a c == 2222cos 5b a c ac B =+-=,得b =c b >,成立,故4BC a ==.故答案为:4【点睛】易错点点睛:本题的易错点是求得,a c 后,还需满足条件AB AC >这个条件,否则会增根. 14.【分析】用余弦定理表示出求出后利用余弦函数性质可得最大值【详解】记则在中同理在中可得∴设则其中是锐角显然存在使得∴的最大值为故答案为:【点睛】关键点点睛:本题考查余弦定理考查换元法求最值解题方法是用解析:【分析】用余弦定理表示出,AC AB ,求出2AC AB +后利用余弦函数性质可得最大值.【详解】记AMC α∠=,则AMB πα∠=-,在AMC中,2222cos 314AC AM MC AM MC ααα=+-⋅=+-=-, 同理在AMB中可得24AB α=+,∴228AB AC +=,设AB x =,AC x =,(0,)2x π∈.则12cos )cos )2AC AB x x x x x x +=+=+=+)x θ=+,其中cos θθ==θ是锐角, 显然存在0(0,)22x ππθ=-∈,使得0sin()1x θ+=, ∴2AC AB +的最大值为故答案为:【点睛】关键点点睛:本题考查余弦定理,考查换元法求最值.解题方法是用余弦定理表示出,AB AC ,得出228AB AC +=,利用三角换元法AB x =,AC x =,(0,)2x π∈.这里注意标明x 的取值范围.在下面求最值时需确认最值能取到,然后结合三角函数的性质求最值.15.【分析】设那么在中利用正弦定理求出关于的函数并求出其最大值即可求解【详解】在中可得所以设那么在中由正弦定理可得其中所以当时取到最小值最小值为故面积的最小值故答案为:【点睛】本题考解三角形的实际应用考 解析:130【分析】设CED θ∠=,m DE x =,那么6BFE πθ∠=+,cos CE x θ=,在BEF 中,利用正弦定理,求出x 关于θ的函数,并求出其最大值,即可求解.【详解】在Rt ABC △中,AB =,AC =,可得CB =. 所以6ABC π∠=设CED θ∠=,m DE x =,那么6BFE πθ∠=+,cos CE x θ=.在BFE △中,由正弦定理,可得sin sin 66xπθ=+ ⎪⎝⎭,132(cos sin )cos 1021,(3sin 2cos )102122x x xθθθθθ++=+=, 2121101010sin()3sin 2cos 7s 3in()x θαθθθα===+++,其中23tan α=, 所以当sin()1θα+=时,x 取到最小值,最小值为103, 故DEF 面积的最小值21sin 75375 1.73129.7513023S x π=⨯=≈⨯=≈. 故答案为:130【点睛】本题考解三角形的实际应用,考查正弦定理,三角恒等变换,以及三角函数的性质,属于中档题.本题解题的关键在于设CED θ∠=,m DE x =,进而在BFE △中,得1021cos sin sin 66xx θππθ-=⎛⎫+ ⎪⎝⎭,进而将问题转化为求边x 的最小值问题. 16.【解析】如图在△MNO 中由正弦定理可得则这艘船的航行速度(海里/小时)点睛:(1)测量两个不可到达的点之间的距离问题一般是把求距离问题转化为应用余弦定理求三角形的边长的问题然后把求未知的另外边长问题解析:176 【解析】如图,在△MNO 中,由正弦定理可得,68sin120686346sin 45MN === 则这艘船的航行速度6642v ==(海里/小时). 点睛:(1)测量两个不可到达的点之间的距离问题,一般是把求距离问题转化为应用余弦定理求三角形的边长的问题.然后把求未知的另外边长问题转化为只有一点不能到达的两点距离测量问题,然后运用正弦定理解决.(2)测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知两个角和一条边解三角形的问题,从而运用正弦定理解决.17.【分析】由余弦定理可求出角再根据正弦定理即可表示出然后利用消元思想和辅助角公式即可求出的最大值【详解】因为所以而∴∵∴∴其中所以的最大值为当时取得故答案为:【点睛】本题主要考查正余弦定理在解三角形中解析:【分析】由余弦定理可求出角B ,再根据正弦定理即可表示出2a c +,然后利用消元思想和辅助角公式,即可求出2a c +的最大值.【详解】因为222a cb ac +-=,所以2221cos 222a c b ac B ac ac +-===,而0B π<<,∴3B π=.∵2sin sin sin sin 3a b c A B C π====,∴2sin ,2sin a A c C ==.∴222sin 4sin 2sin 4sin 4sin 3a c A C A A A A π⎛⎫+=+=+-=+ ⎪⎝⎭()A ϕ=+,其中tan 2ϕ=. 所以2a c +的最大值为2A πϕ=-时取得.故答案为:【点睛】 本题主要考查正余弦定理在解三角形中的应用,以及利用三角函数求解三角形中的最值问题,意在考查学生的转化能力和数学运算能力,属于中档题.18.或【分析】由正弦定理求得得到或分类讨论即可求得的值【详解】由正弦定理可得所以因为所以或当时可得;当时此时综上可得或故答案为:或【点睛】本题主要考查了正弦定理的应用其中解答中利用正弦定理求得的值得出的解析:【分析】由正弦定理,求得sin C =,得到60C ︒=或120C ︒=,分类讨论,即可求得a 的值. 【详解】 由正弦定理,可得sin sin b c B C =,所以sin 3sin c B C b ⋅===, 因为(0,180)C ∈,所以60C ︒=或120C ︒=,当60C ︒=时,90A ︒=,可得a =;当120C ︒=时,30A ︒=,此时a b ==综上可得a =a =故答案为:.【点睛】本题主要考查了正弦定理的应用,其中解答中利用正弦定理求得sin C 的值,得出C 的大小是解答的关键,着重考查分类讨论,以及运算与求解能力. 19.【分析】由正弦定理得由平方关系和余弦定理可得再利用面积公式即可得解【详解】由已知条件及正弦定理可得易知所以又所以所以所以即所以的面积故答案为:【点睛】本题考查了正弦定理余弦定理和三角形面积公式的应用 解析:32【分析】由正弦定理得sin A =32bc =,再利用面积公式1sin 2S bc A =即可得解. 【详解】由已知条件及正弦定理可得2sin sin sin sin B C A B C =,易知sin sin 0B C ≠,所以sin 2A =, 又2226b c a +-=,所以2223cos 2b c a A bc bc+-==,所以cos 0A >,所以cos A =32bc =,bc =,所以ABC 的面积113sin 2222S bc A ==⨯=. 故答案为:32. 【点睛】本题考查了正弦定理、余弦定理和三角形面积公式的应用,属于中档题. 20.【分析】根据正弦定理把已知等式中的边转化为角的正弦利用两角和公式化简求得的值进而求得【详解】由于为三角形内角可得故答案为:【点睛】本题主要考查正弦定理的应用解题的关键是利用正弦定理把等式中的边转化为 解析:2π 【分析】 根据正弦定理把已知等式中的边转化为角的正弦,利用两角和公式化简求得sin A 的值进【详解】cos cos sin b C c B a A +=,2sin cos sin cos sin()sin sin B C C B B C A A ∴+=+==,sin 0A ≠,sin 1A ∴=,∴由于A 为三角形内角,可得2A π=. 故答案为:2π. 【点睛】本题主要考查正弦定理的应用.解题的关键是利用正弦定理把等式中的边转化为角的正弦. 三、解答题21.(1)3π;(2)3)493π. 【分析】(1)由余弦定理,求得1cos 2B =,即可求得角B 的大小; (2)由三角形的面积公式,即可求得ABC S的面积; (3)由正弦定理,求得2sin AC R B ==. 【详解】 (1)由题意,在ABC 中,5BC =,7AC =,8AB =, 由余弦定理有2222225871cos 22582BC AB AC B BC AB +-+-===⋅⨯⨯, 因为(0,)B π∈,所以3B π=.(2)由三角形的面积公式,可得ABC S=11sin 8522AB BC B ⋅=⨯⨯= (3)由正弦定理,可得72sin sin 3AC R B π===,所以外接圆面积为2493ππ⨯=. 22.(1)30;(2)2a ≥【分析】(1)由正弦定理化角为边可得222b c a +-=,再利用余弦定理即可求出; (2)由面积公式可得8bc =+.(1)由已知结合正弦定理可得()()()3a b a b c c b -+=-,即2223b c a bc +-=, 则由余弦定理可得22233cos 2b c bc A bc a +===-, ()0,180A ∈,30A ∴=;(2)11sin 2324ABC S bc A bc ===+△,则843bc =+, 由2223234a b c bc bc bc =+-≥-=,当且仅当b c =时等号成立,2a ∴≥.23.(1)23C π=;(2)10AB . 【分析】(1)利用诱导公式可得角C 的余弦值,从而可求C 的大小.(2)利用余弦定理和韦达定理可求AB 的长.【详解】(1)由题设可得()1cos 2C π-=即1cos 2C =-, 而C 为三角形内角,故23C π=. (2)由韦达定理可得23,2a b ab +==, 由余弦定理可得()2222222cos 10AB a b ab C a b ab a b ab =+-=++=+-=,故10AB. 24.6;32114. 【分析】在BCD 中,根据AD =3CD ,BD =27,利用余弦定理求解CD ,在A BD 中,利用正弦定理求解.【详解】如图所示:在等边ABC 中,AD =3CD ,所以AC =2CD .又BD 7所以BD 2=BC 2+CD 2-2BC ⋅CD ⋅cos ∠BCD ,即)2=(2CD )2+CD 2-2⋅2CD ⋅CD ⋅cos120°,解得CD =2,可得AD=6,由sin 60AD ABD =∠, 得6sin 60ABD =∠, 解得sin ∠ABD25.S AB == 【分析】 利用韦达定理求出,a b ab +,再利用余弦定理,得到关于c 的方程,解之可得AB 的长;再结合面积公式可得.【详解】,a b 是方程220x-+=的两个根, 2a b ab ∴+==,又因为120A B +=︒则60C =︒,所以由余弦定理得:()(22222222221cos 22222c a b ab c a b c C ab ab -⨯-+--+-====⨯,解得c= 所以AB =ABC的面积11sin 222S ab C ==⨯= 26.3A π=,sin b B c 2= 【分析】 由已知条件变形,结合余弦定理可求得A ,由2b ac =得=b a c b,结合正弦定理可求得sin b B c. 【详解】由2b ac =,且a 2-c 2=ac -bc ,得222b c a bc +-=,所以2221cos 22b c a A bc +-==,因为0A π<<,所以3A π=. 因为2b ac =,所以=b ac b ,所以sin sin sin 2b B a B A c b === 故3A π=,sinb Bc =【点睛】关键点点睛:利用正弦定理和余弦定理求解是解题关键.。

最新高中数学必修五试卷(含答案)

最新高中数学必修五试卷(含答案)

必修五阶段测试四(本册综合测试)时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分) 1.不等式3x -12-x≥1的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ 34≤x ≤2B.⎩⎨⎧⎭⎬⎫x ⎪⎪ 34≤x <2C.⎩⎨⎧⎭⎬⎫x ⎪⎪x >2或x ≤34 D .{x |x <2} 2.(2017·存瑞中学质检)△ABC 中,a =1,B =45°,S △ABC =2,则△ABC 外接圆的直径为( ) A .4 3 B .5 C .5 2 D .6 2 3.若a <0,则关于x 的不等式x 2-4ax -5a 2>0的解为( )A .x >5a 或x <-aB .x >-a 或x <5aC .-a <x <5aD .5a <x <-a 4.若a >0,b >0,且lg(a +b )=-1,则1a +1b 的最小值是( )A.52B .10C .40D .80 5.设S n 为等差数列{a n }的前n 项和,若a 1=1,a 3=5,S k +2-S k =36,则k 的值为( ) A .8 B .7 C .6 D .5 6.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( )A.1a <1bB.1a 2>1b 2C.a c 2+1>bc 2+1D .a |c |>b |c | 7.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 的值为( ) A .12 B .8 C .6 D .4 8.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤8,2y -x ≤4,x ≥0,y ≥0,且z =5y -x 的最大值为a ,最小值为b ,则a —b 的值是( )A .48B .30C .24D .169.设{a n }是等比数列,公比q =2,S n 为{a n }的前n 项和,记T n =17S n -S 2na n +1(n ∈N *),设Tn 0为数列{T n }的最大项,则n 0=( )A .2B .3C .4D .5 10.设全集U =R ,A ={x |2(x -1)2<2},B ={x |log 12(x 2+x +1)>-log 2(x 2+2)},则图中阴影部分表示的集合为( )A .{x |1≤x <2}B .{x |x ≥1}C .{x |0<x ≤1}D .{x |x ≤1} 11.在等比数列{a n }中,已知a 2=1,则其前三项的和S 3的取值范围是( ) A .(-∞,-1] B .(-∞,0]∪[1,+∞) C .[3,+∞) D .(-∞,-1]∪[3,+∞)12.(2017·山西朔州期末)在数列{a n }中,a 1=1,a n +1=a n +n +1,设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,若S n <m对一切正整数n 恒成立,则实数m 的取值范围为( )A .(3,+∞)B .[3,+∞)C .(2,+∞)D .[2,+∞) 二、填空题(本大题共4小题,每小题5分,共20分)13.(2017·福建莆田二十四中期末)已知数列{a n }为等比数列,前n 项的和为S n ,且a 5=4S 4+3,a 6=4S 5+3,则此数列的公比q =________.14.(2017·唐山一中期末)若x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是________.15.如右图,已知两座灯塔A 和B 与海洋观察站C 的距离都等于3a km ,灯塔A 在观察站C 的北偏东20°.灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为________.16.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________.三、解答题(本大题共6小题,共70分)17.(10分)(2017·山西太原期末)若关于x 的不等式ax 2+3x -1>0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <1. (1)求a 的值;(2)求不等式ax 2-3x +a 2+1>0的解集.18.(12分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c .已知BA →·BC →=2,cos B =13,b =3.求:(1)a 和c 的值; (2)cos(B -C )的值.19.(12分)(2017·辽宁沈阳二中月考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos A =13.(1)求sin 2B +C2+cos2A 的值;(2)若a =3,求bc 的最大值.20.(12分)(2017·长春十一高中期末)设数列{a n }的各项都是正数,且对于n ∈N *,都有a 31+a 32+a 33+…+a 3n =S 2n ,其中S n 为数列{a n }的前n 项和.(1)求a 2;(2)求数列{a n }的通项公式.21.(12分)已知点(x ,y )是区域⎩⎪⎨⎪⎧x +2y ≤2n ,x ≥0,y ≥0(n ∈N +)内的点,目标函数z =x +y ,z 的最大值记作z n .若数列{a n }的前n 项和为S n ,a 1=1,且点(S n ,a n )在直线z n =x +y 上.(1)证明:数列{a n -2}为等比数列; (2)求数列{S n }的前n 项和T n .22.(12分)某投资商到一开发区投资72万元建起一座蔬菜加工厂,第一年共支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入50万元.设f (n )表示前n 年的纯利润总和(f (n )=前n 年的总收入-前n 年的总支出-投资额).(1)该厂从第几年起开始盈利?(2)若干年后,投资商为开发新项目,对该厂有两种处理方法:①年平均纯利润达到最大时,以48万元出售该厂;②纯利润总和达到最大时,以16万元出售该厂,问哪种方案更合算?答案与解析1.B 由3x -12-x ≥1,可得3x -12-x -1≥0,所以3x -1-(2-x )2-x ≥0,即4x -32-x ≥0,所以⎩⎪⎨⎪⎧(4x -3)(x -2)≤0,x -2≠0,解得34≤x <2.故选B.2.C ∵S △ABC =12ac sin B =2,∴12×1×22c =2,∴c =42, ∴b 2=c 2+a 2-2ac cos B =32+1-2×1×42×22=25, ∴b =5,∴外接圆的直径为b sin B =522=52,故选C. 3.B (x +a )(x -5a )>0. ∵a <0, ∴-a >5a . ∴x >-a 或x <5a ,故选B.4.C 若lg(a +b )=-1,则a +b =110,∴1a +1b =10⎝⎛⎭⎫1a +1b (a +b )=10⎝⎛⎭⎫2+b a +ab ≥10(2+2)=40. 当a =b =120时,“=”成立,故选C.5.A ∵a 1=1,a 3=5,∴公差d =5-12=2,∴a n =1+2(n -1)=2n -1,S k +2-S k =a k +2+a k +1=2(k +2)-1+2(k +1)-1=4k +4=36,∴k =8,故选A. 6.C ∵a >b ,1c 2+1>0,∴a c 2+1>bc 2+1,故选C.7.B 由等差数列的性质知,a 3+a 6+a 10+a 13=4a 8=32, ∴a 8=8.又a m =8,∴m =8.8.C如图所示,当直线z =5y -x 经过A 点时z 最大,即a =16,经过C 点时z 最小,即b =-8,∴a -b =24,故选C.9.A S n =a 1(2n -1)2-1=a 1(2n-1),S 2n =a 1(22n -1)2-1=a 1(22n -1),a n +1=a 1·2n ,∴T n =17S n -S 2n a n +1=17a 1(2n -1)-a 1(22n -1)a 1·2n =17-⎝⎛⎭⎫2n +162n ≤17-8=9,当且仅当n =2时取等号,∴数列{T n }的最大项为T 2,则n 0=2,故选A.10.A 由2(x -1)2<2,得(x -1)2<1.解得0<x <2. ∴A ={x |0<x <2}.由log 12(x 2+x +1)>-log 2(x 2+2),得log 2(x 2+x +1)<log 2(x 2+2). 则⎩⎪⎨⎪⎧x 2+x +1>0,x 2+2>0,x 2+x +1<x 2+2.解得x <1.∴B ={x |x <1}.∴∁U B ={x |x ≥1}. ∴阴影部分表示的集合为 (∁U B )∩A ={x |1≤x <2}.11.D 设数列{a n }的公比为q ,则a 2=a 1q =1,∴q =1a 1,∴S 3=a 1+a 2+a 3=a 1+a 1q +a 1q 2=a 1+1+1a 1,当a 1>0时,S 3≥1+2a 1·1a 1=3,当且仅当a 1=1时,取等号;当a 1<0时,S 3≤1-2=-1,当且仅当a 1=-1时,取等号.故S 3的取值范围是(-∞,-1]∪[3,+∞). 12.D a 1=1,a n +1-a n =n +1,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =(n -1+1)+(n -2+1)+…+(1+1)+1 =n +(n -1)+(n -2)+…+2+1=n (n +1)2,当n =1时,也满足上式, ∴a n =n (n +1)2,1a n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1, ∴S n =2⎝⎛⎭⎫1-12+12-13+…+1n -1n +1=2⎝⎛⎭⎫1-1n +1.∵S n <m 对一切正整数n 恒成立,∴m ≥2,故选D. 13.5解析:由题可得a 5-a 6=4S 4-4S 5=-4a 5, ∴a 6=5a 5,∴q =5. 14.4解析:∵x +2y +2xy =8, 又2xy ≤⎝⎛⎭⎫x +2y 22, ∴x +2y +⎝⎛⎭⎫x +2y 22≥8,∴14(x +2y )2+x +2y -8≥0, ∴x +2y ≥4,当且仅当x =2y =2时,等号成立. ∴x +2y 的最小值为4. 15.3a km解析:由题意知,∠ACB =120°,∴AB 2=3a 2+3a 2-23a ×3a cos120°=9a 2, ∴AB =3a km. 16. 3解析:由正弦定理及(2+b )(sin A -sin B )=(c -b )sin C ,得(2+b )(a -b )=(c -b )c ,又a =2, ∴b 2+c 2-a 2=bc .由余弦定理得 cos A =b 2+c 2-a 22bc =bc 2bc =12,∴A =60°.又22=b 2+c 2-2bc cos60°=b 2+c 2-bc ≥2bc -bc , ∴bc ≤4.当且仅当b =c 时取等号. ∴S △ABC =12bc sin A ≤12×4×32= 3.17.解:(1)依题意,可知方程ax 2+3x -1=0的两个实数根为12和1,∴12+1=-3a 且12×1=-1a 解得a =-2, ∴a 的值为-2,(2)由(1)可知,不等式为-2x 2-3x +5>0,即2x 2+3x -5<0, ∵方程2x 2+3x -5=0的两根为x 1=1,x 2=-52,∴不等式ax 2-3x +a 2+1>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-52<x <1. 18.解:(1)由BA →·BC →=2得c ·a cos B =2,又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b 2+2ac cos B . 又b =3,所以a 2+c 2=9+2×2=13.解⎩⎪⎨⎪⎧ac =6,a 2+c 2=13,得a =2,c =3或a =3,c =2. 因a >c ,所以a =3,c =2.(2)在△ABC 中,sin B =1-cos 2B =1-⎝⎛⎭⎫132=223,由正弦定理,得sin C =c b sin B =23×223=429.因a =b >c ,所以C 是锐角,因此cos C =1-sin 2C =1-⎝⎛⎭⎫4292=79. 于是cos(B -C )=cos B cos C +sin B sin C =13×79+223×429=2327.19.解:(1)在△ABC 中,∵cos A =13,∴sin 2B +C 2+cos2A =12[1-cos(B +C )]+2cos 2A -1=12(1+cos A )+2cos 2A -1=-19.(2)由余弦定理知a 2=b 2+c 2-2bc cos A ,∴3=b 2+c 2-23bc ≥2bc -23bc =43bc ,∴bc ≤94,当且仅当b =c =32时,等号成立,∴bc 的最大值为94.20.解:(1)在已知式中,当n =1时,a 31=a 21,∵a 1>0,∴a 1=1, 当n ≥2时,a 31+a 32+a 33+…+a 3n =S 2n ,① a 31+a 32+a 33+…+a 3n -1=S 2n -1,②①-②得a 3n =a n (2a 1+2a 2+…+2a n -1+a n ).∵a n >0,∴a 2n =2a 1+2a 2+…+2a n -1+a n ,即a 2n =2S n -a n ,∴a 22=2(1+a 2)-a 2,解得a 2=-1或a 2=2, ∵a n >0,∴a 2=2.(2)由(1)知a 2n =2S n -a n (n ∈N *),③当n ≥2时,a 2n -1=2S n -1-a n -1,④③-④得a 2n -a 2n -1=2(S n -S n -1)-a n +a n -1=2a n -a n +a n -1=a n +a n -1.∵a n +a n -1>0,∴a n -a n -1=1,∴数列{a n }是等差数列,首项为1,公差为1,可得a n =n .21.解:(1)证明:由已知当直线过点(2n,0)时,目标函数取得最大值,故z n =2n .∴方程为x +y =2n .∵(S n ,a n )在直线z n =x +y 上,∴S n +a n =2n .① ∴S n -1+a n -1=2(n -1),n ≥2.②由①-②得,2a n -a n -1=2,n ≥2.∴a n -1=2a n -2,n ≥2.又∵a n -2a n -1-2=a n -22a n -2-2=a n -22(a n -2)=12,n ≥2,a 1-2=-1,∴数列{a n -2}是以-1为首项,12为公比的等比数列.(2)由(1)得a n -2=-⎝⎛⎭⎫12n -1,∴a n=2-⎝⎛⎭⎫12n -1. ∵S n +a n =2n ,∴S n =2n -a n =2n -2+⎝⎛⎭⎫12n -1.∴T n =⎣⎡⎦⎤0+⎝⎛⎭⎫120+⎣⎡⎦⎤2+⎝⎛⎭⎫12+…+⎣⎡⎦⎤2n -2+⎝⎛⎭⎫12n -1 =[0+2+…+(2n -2)]+⎝⎛⎭⎫120+⎝⎛⎭⎫12+…+⎝⎛⎭⎫12n -1=n (2n -2)2+1-⎝⎛⎭⎫12n 1-12=n 2-n +2-⎝⎛⎭⎫12n -1. 22.解:由题意知f (n )=50n -⎣⎡⎦⎤12n +n (n -1)2×4-72=-2n 2+40n -72.(1)由f (n )>0,即-2n 2+40n -72>0,解得2<n <18.由n ∈N +知,该厂从第3年起开始盈利. (2)方案①:年平均纯利润f (n )n =40-2⎝⎛⎭⎫n +36n ,∵n +36n ≥2n ×36n=12,当且仅当n =6时取等号,∴f (n )n≤40-2×12=16.因此方案①共获利16×6+48=144(万元),此时n =6.方案②:f (n )=-2(n -10)2+128.从而方案②共获利128+16=144(万元).比较两种方案,获利都是144万元,但由于第一方案只需6年,而第②种方案需要10年,因此,选择第①种方案更合算.。

人教A版高中数学必修五必修五 综合测试题 (第三套).docx

人教A版高中数学必修五必修五 综合测试题 (第三套).docx

必修五 综合测试题 (第三套)一.选择题:1. 已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )A . 15B . 30 C. 31 D. 642. 若全集U=R,集合M ={}24x x >,S =301x xx ⎧-⎫>⎨⎬+⎩⎭,则()U M S I ð=( ) A.{2}x x <- B. {23}x x x <-≥或 C. {3}x x ≥ D. {23}x x -≤<3. 若1+2+22+ (2)>128,n ÎN*,则n 的最小值为( ) A. 6 B. 7 C. 8 D. 9 4. 在ABC V 中,60B =o ,2b ac =,则ABC V 一定是( )A 、等腰三角形B 、等边三角形C 、锐角三角形D 、钝角三角形 5. 若不等式022>++bx ax的解集为⎭⎬⎫⎩⎨⎧<<-3121|x x ,则a -b 值是( )A.-10B.-14C. 10D. 14 6. 在等比数列{a n }中,4S =1,8S =3,则20191817a a a a +++的值是( )A .14B .16C .18D .207.已知12=+y x ,则y x 42+的最小值为( ) A .8 B .6 C .22 D .238. 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第n 个图案中有白色地面砖的块数是( ) A.42n +B.42n -C.24n +D.33n +9. 已知变量y x ,满足⎪⎩⎪⎨⎧≥<+≤+-12553034x y x y x ,目标函数是y x z +=2,则有( )A .3,12min max ==z zB .,12max=z z 无最小值C .z z ,3min=无最大值 D .z 既无最大值,也无最小值10.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 成立,则实数a 的取值范围是( ) A .11a -<< B .02a << C .1322a -<< D .3122a -<< 二填空题: 11. 在数列{}n a 中,11a =,且对于任意正整数n ,都有1n n a a n +=+,则100a =______第1个 第2个 第3个12.在⊿ABC 中,5:4:21sin :sin :sin=C B A ,则角A =13.某校要建造一个容积为83m ,深为2m 的长方体无盖水池,池底和池壁的造价每平方米分别为240元和160元,那么水池的最低总造价为 元。

最新人教B版高中数学必修五综合测试题及答案2套

最新人教B版高中数学必修五综合测试题及答案2套
B=2sin Acos B, π π 故 tan B=2sin A=2sin 3= 3,又∠B∈(0,π),所以∠B=3. π 又∠A=∠B=3,则△ABC 是正三角形, 1 1 3 3 所以 S△ABC=2bcsin A=2×1×1× 2 = 4 . 【答案】 B 6.等差数列的第二,三,六项顺次成等比数列,且该等差数列不是常数数列,则这个等 比数列的公比为( A.3B.4 C.5D.6 【解析】 设等差数列的首项为 a1,公差为 d, 则 a2=a1+d,a3=a1+2d,a6=a1+5d, 又∵a2· a6=a2 3, ∴(a1+2d)2=(a1+d)(a1+5d), )
最新人教 B 版高中数学必修五综合测试题及答案 2 套
模块综合测评(一)
(时间 120 分钟,满分 150 分) 一、选择题(本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有 一项是符合题目要求的) 1.若 a<1,b>1,那么下列命题中正确的是( 1 1 A.a>b C.a2<b2 b B.a>1 D.ab<a+b )
【解析】 ∵2 3=a+b≥2 ab,∴ab≤3. 由 ax=by=3 得 x=loga3,y=logb3,
1 1 1 1 ∴x+y=log 3+log 3=log3a+log3b=log3ab≤log33=1.故选 C. a b 【答案】 C 11.△ABC 的内角 A,B,C 所 对的边分别为 a,b,c,若∠B=2∠A,a=1,b= 3,则 c=( A.2 3B.2 C. 2D.1 a b 【解析】 由正弦定理得:sin A=sin B, ∵∠B=2∠A,a=1,b= 3, 1 3 ∴sin A=2sin Acos A. ∵A 为三角形的内角,∴sin A≠0. 3 ∴cos A= 2 . π π 又 0<∠A<π,∴∠A=6,∴∠B=2∠A=3. π ∴∠C=π-∠A-∠B=2,∴△ABC 为直角三角形. 由勾股定理得 c= 12+ 32=2. 【答案】 B 12.一个等比数列前三项的积为 2,最后三项的积为 4,且所有项的积为 64,则该数列有 ( ) A.13 项 B.12 项 C.11 项 D.10 项 )

高中数学必修五第三章测试题有详细答案

高中数学必修五第三章测试题有详细答案

第三章能力检测满分150分.考试时间120分钟.一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设M=2a(a-2)+7,N=(a-2)(a-3),则有()A.M>N B.M≥NN≤M.DC.M<NA【答案】13??2222+a=+6)=a1+>N. 【解析】M-N=(2a7)-4a+-(aa-5a+M+>0,∴??24) (2.下列结论成立的是,则a>b ac A.若>bc22b>,则ab B.若a>+d,则C.若a>b,c<da+c>b>b-cb D.若a>,c>d,则a-d【答案】D,,不成立;对于C b【解析】对于A,当c<0时,不成立;对于B,取a=-1,=-2,,又>-ca>b,∴a-d>b-c,∵==取a2,b=1,c0,d=3,不成立;对于D c>d,∴-d因此成立.故选D.26xx--)的解集为(.3不等式>01x-3} 1<<x或<-|3} x A.{|x<-2或x>{B.xx23} <x<1或1<x<2或<x C.{|-2x<1x>3} -|x{.D【答案】C xx2{,>1)(x+【解析】原不等式可化为(x2)(-x-3)0则该不等式的解集为x|-<<1或.3}>22) B0}xxx=设集合年四川自贡模拟.4(2017)A{|-3<,=(=B∩A4}|x{x>,则2,3) -( 2,0)(.A-B.(2,3) (0,2).C.D D【答案】.22B2},则A∩x|x>2或x<x<3},B={x|x<->4}={【解析】A={x|x=-3x<0}{x|0D.x<3}.故选={x|2<1??2,0∈对于一切xx≥+ax+10成立,则a的取值范围是() 5.若不等式??25??-∞,-.B 2]A.(-∞,-??25??,+∞-)[2,+∞D.C.??2【答案】C21x--11????2,0,0∈≥对于一切x∈成立?【解析】x+ax+1≥0对于一切x成立?a ????22x111111????,0,0∈-x-对于一切-上是增函数,∴-x-≤-∵成立.y=-x在区间2a≥????222xxx55 .≥-.故选C=-.∴a22p),+∞x)在(1(p 为常数且p>0),若f()6.(2017年上海校级联考)已知函数f(x=x+1-x)的值为(上的最小值为4,则实数p99B.A.424.DC.2B【答案】p2=p即x,当且仅当(x-1)=1,【解析】由题意得x-1>0f(x)=x-++1≥+2p11x-9.p=1p+=4)fp+1时取等号.∵(x)在(1,+∞上的最小值为4,∴,解得242) (则实数0x -8x-4-a≥在1≤x≤4内有解,a的取值范围是的不等式7.若关于x2) -4.A(-∞,-4],+∞[.B 12]-∞,-(.D,+∞.C[-12)【答案】A22x时,a44=时,取最大值-,∴当≤-428x-x4)x4(1xx=∵【解析】y2-8-≤≤在[1,4]a4-≥在内有解.吨;3A.8某工厂生产甲、乙两种产品,已知生产每吨甲种产品要用原料吨,原料2B乙两种产品的总量不B3原料吨.该工厂每天生产甲、吨,1原料生产每吨乙种产品要用A 吨.如果设每天甲种产品9原料不能超过B吨,10原料不能超过A吨且每天消耗的2少于的产量为x吨,乙种产品的产量为y吨,则在坐标系xOy中,满足上述条件的x,y的可行域用阴影部分表示正确的是()A B C D【答案】A,≥2x+y??,≤103x+y?故选A【解析】由题可知.,≤9+2x3y?,0≥x?0.≥y9.(2016年广东佛山模拟)若a>b>0,c<d<0,则一定有()abba B.< .A>dccdabab DC..< >cddc B【答案】1111abab【解析】∵c<d<0,∴<<0,∴->->0.而a>b>0,∴->->0,∴<.故选dcdcdcdc.B.10.下列函数中,最小值是4的函数是()4A.y=x+x4(0<x<x+π) B.y=sin x sinxx-=e4e+C.y D.y=log x+log81 x3【答案】C44【解析】当x<0时,y=x+≤-4,排除A;∵0<x<π,∴0<sin x≤1,y=sin x+xx sin4xxxxx-=2时成立;若0<x e<1,则y=elog+4e≥4,等号在e x=>4,排除B;e即>0,x3e <0,log81<0,排除D.故选C.x2+qx+r>0的解集是{x|α<x<β}(β>α>0),那么另一个关于x11.关于x的不等式px2-qx+p>0的解集应该是(的不等式rx)1111??????<<x<<x A.x B.x??????αββα????1111??????<--<-x<-<xx.x C.D??????αβαβ????【答案】D2+qx+r>0的解集是{x|α<x<【解析】因为关于x的不等式pxβ},所以α和β可看作qr2+qx+r=0的两个根且p<0,则α+β=-,α·β=.因为0<α方程px<β,p<0,所以r pprq11222+(α+β)x+1<0,解得-<x<-.故所以rxp-qx+>0,即x+-x1<0,即α·βx <0.αβpp选D.,≥0-2?x-y??x+y???)的取值范围为(则x+2y满足12.已知实数x,y?,4x≤1≤??A.[12,+∞)B.[0,3] D.[3,12][0,12]C.【答案】C【解析】作出不等式组表示的平面区域如图,作直线l:x+2y=0,平移l可见当经过00可行域内的点A,B时,z=x+2y分别取得最大值与最小值,∴z=12,z.C,故选0=minmax) 分.将正确答案填在题中横线上5分,共20二、填空题(本大题共4个小题,每小题22________. =,则m的解集是(1,axm-6x+a)<0x13.若关于的不等式【答案】2222x∴不等式为2的一个根,∴a=-6x+a2.=0是方程【解析】由题意知a>0且1ax22.m=x<2.∴+3x2<0.∴1-6x+4<0,即x<-,0x≥???,4+3y≥xy.若直线所表示的平面区域为D14.(2016年湖南郴州二模)记不等式组??4y≤3x+__________.有公共点,则a的?,≥0x??,y≥4x+3-(1)过定点=a(x 取值范围是(x+1)与D=a1??4,【答案】??2+的平面区域如图所示.因为y【解析】满足约束条件??4≤3x+y1.a=,1)时,得到a(x+1)过点A(1ax所以当y=a(+1)过点B(0,4)时,得到=4;当y=1,0),214.≤有公共点,所以≤a1)a(x+与平面区域D又因为直线y=222b+1a???2≠-x的最小值为则x+2+b>0的解集为x已知二次不等式b且a>,15.ax???aba-??.________22【答案】1???2-x≠x0的解集为>+2∵二次不等式且对应方程有两个>,∴a0【解析】ax+xb???a??2222+?a-ba?+b1b11??--a.由根与系数的关系得-·==(=,即ab=1,故相等的实根-??aaaabbaa--22222,当且b??a-b)+≥a2-=,∴b)+.∵a>ba-b>0.由基本不等式可得(aa--ba-bb22b+a2.时取等号,故的最小值为2-仅当ab=2ba-,5≥2a-b???,a-b≤2满足不等式组,ba16.某校今年计划招聘女教师名,男教师b名,若a??<7.a______.设这所学校今年计划招聘教师最多x名,则=x【答案】13+b:+b,如图所示,画出约束条件所表示的可行域,作直线l由题意得【解析】x=a13.+b=x=7时,取最大值,∴x=a=,再由a=0,平移直线la,b∈N,可知当a6,b三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)22=0k的两个实2kx+1-分)设x,x是关于x的一元二次方程x-(17.本小题满分102122+x的最小值.根,求x212. -kx,x=1【解析】由题意,得x+x=2k22111222kΔ=4≥k.≥0-4(1-k,∴)2222+x=(x+x)-2x∴xx22121122) k2(1=4k--12-2≥6×-2=6k=1.222+xx的最小值为1.∴212两个代数式值的大小,并说明理由;6) x++5)(x7)与(+x比较分本小题满分.18(12)(1)(220. <a-ax+x56的不等式x解关于(2).222+12x+36)=-(x1<0x+6),=(x+12x+35)-(1)【解析】∵(x+5)(x+7)-(2.+6)<(xx+5)(x+7)∴(aa??????22--xx-<0,即a)(8x-a+ax-a)<0,∴(7x+<0. (2)∵56x ??????87aa2<0,解得x∈=,不等式化为x?.①当a=0时,-78aa②当a>0时,-<,不等式的解集为78aa???<x-<. x???78??aa③当a<0时,->,不等式的解集为78aa???<x<-.x???87??2+(lg a+2)x+lg b满足f(-1)x19.(本小题满分12分)已知函数f(x)==-2且对于任意x∈R,恒有f(x)≥2x成立.(1)求实数a,b的值;(2)解不等式f(x)<x+5.【解析】(1)由f(-1)=-2知lg b-lg a+1=0,a所以=10.b又f(x)≥2x恒成立,即f(x)-2x≥0恒成立,2+x·lg a+lg b则有x≥0恒成立,2-4lg b≤0,Δ故=(lg a)22≤1)0. (lg b--4lg b≤0,即+所以(lg b1)故lg b=1,即b=10,a=100.2+4x+1,f(x=x)<x+5,)知(2)由(1)f(x2+4x+1<即xx+5,2+3x-4<0,解得-4<所以xx<1,因此不等式的解集为{x|-4<x<1}.辆,/万元1上年度生产摩托车的投入成本为某摩托车生产企业,)分12本小题满分(.20.出厂价为1.2万元/辆,年销售量为1 000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应的提高比例为0.75x,同时预计年销售量增加的比例为0.6x.已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y(万元)与投入成本增加的比例x的关系式;(2)为使本年度的年利润比上年度有所增加,问投入成本增加的比例x应在什么范围内?【解析】(1)依题意得y=[1.2×(1+0.75x)-1×(1+x)]×1 000×(1+0.6x)(0<x<1),2+20x+200(0<x<1).整理,得y=-60x∴本年度年利润与投入成本增加的比例的关系式为2+20x+200(0<x<1)y=-60x.(2)要保证本年度的年利润比上年度有所增加,?,1 000>0?×?1.2-1y-??当且仅当?,<10<x?2?,x>060x+20-?1?,0<x即<解得3?,<10<x?1∴为保证本年度的年利润比上年度有所增加,投入成本增加的比例x应满足0<x<.32+bx-a+2.已知函数f(x)=ax(21.本小题满分12分)(1)若关于x的不等式f(x)>0的解集是(-1,3),求实数a,b的值;(2)若b=2,a>0,解关于x的不等式f(x)>0.【解析】(1)∵不等式f(x)>0的解集是(-1,3),2+bx-a+2=0的两根且∴-1,3是方程axa<0.??,10,a=-aa-b-+2=????解得∴??2.b0,=3b-a+2=9a+????2a-2??0.1)>a,∵>0,∴(x+a+2ax(=b2时,fx)=x+2-a+=(x1)(ax-+2)当(2)-x??a2a--1}.x,解集为,即=a=1{x|≠1①若-a2a-<<,即1②若->0a1,解集为a ???2a-???. x??1<x>-或x?a????a-2③若-1<,即a>1,解集为a???a-2???. x??>1或xx<-?a????22.(本小题满分12分)某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往A地至少72吨的货物,派用的每辆车需满载且只运送一次,派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元.该公司该如何合理计划当天派用两类卡车的车辆数,可得最大利润,最大利润是多少元?【解析】设派用甲型卡车x辆,乙型卡车y辆,获得的利润为z元,z=450x+350y.,8x≤0≤??,0≤y≤7?,x≤12+y?满足关系式由题意,x,y,≥6y7210x??,N∈x,y作出相应的平面区域如图阴影部分所+?,y≤192x+示.z=450x+350y=50(9x+7y),?,12+y=x??4 900. 有最大值350x+y时,,,∴当得交点(7,5)x=7y=5450由?19y=+2x?元.4 900最大利润为获得的利润最大,辆,5乙型卡车辆,7该公司派用甲型卡车答:。

(必考题)高中数学必修五第二章《解三角形》测试题(含答案解析)(2)

(必考题)高中数学必修五第二章《解三角形》测试题(含答案解析)(2)

一、选择题1.ABC ∆中,角,,A B C 所对的边分别为,,a b c .若13,3,60a b A ===︒,则边c =( ) A .1B .2C .4D .62.在锐角ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若22212a b c =+,则tan A 的取值范围是( ) A .)3,⎡+∞⎣ B .()3,+∞C .()2,+∞D .[)2,+∞3.ABC 的内角,,A B C 的对边分别为,,a b c ,分别根据下列条件解三角形,其中有两解的是( )A .2,4,120a b A ===︒B .3,2,45a b A ===︒C . 6,43,60b c C ===︒D .4,3,30b c C ===︒4.已知,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边,若1,3a b ==,B 是,A C 的等差中项,则角C =( ) A .30B .45︒C .60︒D .90︒5.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若cos 2a B c=,21sin sin (2cos )sin 22A B C A -=+,则A =( ) A .6π B .3π C .2π D .23π 6.如图,某船在A 处看见灯塔P 在南偏东15方向,后来船沿南偏东45的方向航行30km 后,到达B 处,看见灯塔P 在船的西偏北15方向,则这时船与灯塔的距离是:A .10kmB .20kmC .3kmD .53km7.在ABC 中,内角,,A B C 所对应的边分别为,,a b c ,若sin 3cos 0b A a B -=,且2b ac =,则a cb+ 的值为( ) A .22B .2C .2D .48.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且BC 边上的高为3a ,则c bb c+的最大值是( ) A .8B .6C .32D .49.ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,已知a ,b ,c 成等差数列,且2C A =,若AC 边上的中线792BD =,则△ABC 的周长为( ) A .15B .14C .16D .1210.在ABC ∆中,30,10B AC =︒=,D 是AB 边上的一点,25CD =,若ACD ∠为锐角,ACD ∆的面积为20,则BC =( ) A .25B .35C .45D .65 11.在ABC 中,若2a =,23b =,30A =︒,则B 等于( ) A .30B .30或150︒C .60︒D .60︒或120︒12.已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,2b =,45B =︒,若三角形有两解,则a 的取值范围是( ) A .2a >B .02a <<C .222a <<D .223a <<二、填空题13.在ABC 中,已知1AC =,A ∠的平分线交BC 于D ,且1AD =,2BD =,则ABC 的面积为_________.14.如图,三个全等的三角形ABF ,BCD ,CAE 拼成一个等边三角形ABC ,且DEF 为等边三角形,若2EF AE =,则tan ACE ∠的值为__________.15.如图,在ABC 中,角C 的平分线交AB 于D 且CD AD =.若3AC =,2BC =,则AB =________16.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222a b =,sin 3sin C B =,则cos A =________.17.如图,设A 、B 两点在河的两岸,一测量者在A 的同侧所在的河岸边选定一点C ,测出AC 的距离为50m ,45ACB ∠=︒,105CAB ∠=︒后,就可以计算出A 、B 两点的距离为______18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中23a c ==,,且满足(2)cos cos a c B b C -⋅=⋅,则AB BC ⋅=______.19.在锐角ABC ∆中,a ,b ,c 分别为角A ,B ,C 所对的边,且满足cos 2b aC a-=,则tan A 的取值范围是__. 20.在三角形ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,222a c b ac +-=,3b =2a c +的最大值为______.三、解答题21.如图,在ABC 中,6AB =,3cos 4B =,点D 在BC 边上,4=AD ,ADB ∠为锐角.(1)若62AC =DC 的长度; (2)若2BAD DAC ∠=∠,求sin C 的值.22.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若2sin c bC -=tan cos A C -. (1)求角A 的大小;(2)若32b =,2c =,点D 在边BC 上,且2CD DB =,求a 及AD . 23.在ABC 中,内角A 、B 、C 对应的边长分别为a b c 、、,且,,a b c 满足5cos 44cos 5sin sin cos a B b cB A BC -=+.(1)求cos A ;(2)若3a =,求b c +的最大值.24.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos cos 12+=A C a c ,且2b =.(1)证明:4+≥a c ;(2)若ABC 的周长为232+S .25.已知ABC 的三个内角A ,B ,C 的对边分别是a ,b ,c ,且cos cos 2cos b C c B a A +=.(1)求角A ;(2)若3a =ABC 的面积为23b c +的值.26.在ABC 中,内角,,A B C 的对边长分别为,,a b c ,已知222a c b -=,且sin cos 3cos sin A C A C = ,求b【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【解析】试题分析:2222cos a c b cb A =+-213923cos60c c ⇒=+-⨯⨯︒,即2340c c --=,解得4c =或1c =-(舍去). 考点:余弦定理,正弦定理.2.B解析:B 【分析】根据题中条件,由三角形的余弦定理、正弦定理和两角和的正弦公式,化简可得tan 3tan A B =,再由两角和的正切公式,以及锐角三角形的定义,可得tan 0A >,tan 0C >,解不等式可得所求范围. 【详解】因为22212a b c =+,由余弦定理可得,2222cos a b c bc A =+-,则222212cos 2b c b c bc A +=+-,可得4cos c b A =,由正弦定理可得:sin 4sin cos C B A =,可得sin()sin cos sin cos 4sin cos A B A B B A B A +=+=, 化为3sin cos sin cos B A A B =, 在锐角ABC 中,cos 0A ≠,cos 0B ≠, 则tan 3tan A B =,又21tan tan tan tan 3tan tan()11tan tan 1tan 3A AA B C A B A B A ++=-+=-=---,由tan 0A >,tan 0C >,可得211tan 03A -<,解得tan A >, 故选:B . 【点睛】本题考查三角形的正弦定理和余弦定理的运用,以及两角和的三角函数公式,考查方程思想和化简运算能力,属于中档题.3.D解析:D 【分析】运用正弦定理公式,可以求出另一边的对角正弦值,最后还要根据三角形的特点:“大角对大边”进行合理排除. 【详解】A. 2,4,120a b A ===︒,由,a b <A B ⇒<所以不存在这样的三角形.B. 3,2,45a b A ===︒,由sin sin sin 3a b B A B =⇒=且,a b >所以只有一个角BC. 6,60b c C ===︒中,同理也只有一个三角形.D. 4,3,30b c C ===︒中2sin sin sin 3c b B C B =⇒=此时b c >,所以出现两个角符合题意,即存在两个三角形. 所以选择D 【点睛】在直接用正弦定理求另外一角中,求出 sin θ后,记得一定要去判断是否会出现两个角.4.A解析:A 【详解】由题设可得060B =11sin sin 2A A =⇒=,则030A =或0150A =,但a b A B <⇔<,应选答案A .5.C解析:C 【分析】先利用余弦定理化简条件得sin sin B C =,再利用三角恒等变换即求得B ,C ,再求A 角. 【详解】∵cos 2a B c =,∴22222a c b aac c+-=,解得b c =,∴sin sin B C =. ∵212cos sin sin (2cos )sin 222A AB C A --=+=,易知2cos 0A -≠,∴1sin sin 2B C =,又sin sin B C =,∴sin sin 2B C ==,即4B C π==,∴2A π=.故选:C . 【点睛】本题考查了三角恒等变换与解三角形的综合,属于中档题.6.C解析:C 【分析】在ABP ∆中,利用正弦定理求出BP 得长,即为这时船与灯塔的距离,即可得到答案. 【详解】由题意,可得30PAB PBA ∠=∠=,即30,120AB APB =∠=,在ABP ∆中,利用正弦定理得30sin 30sin120PB ==即这时船与灯塔的距离是km ,故选C . 【点睛】本题主要考查了正弦定理,等腰三角形的判定与性质,以及特殊角的三角函数值的应用,其中熟练掌握正弦定理是解答本题的关键,着重考查了推理与运算能力,属于基础题.7.C解析:C 【分析】利用正弦定理边化角,结合辅助角公式可求得sin 03B π⎛⎫-= ⎪⎝⎭,从而确定3B π=;利用余弦定理构造方程可求得()24+=a c ac ,代入所求式子即可化简得到结果. 【详解】sin cos 0b A B =,()sin sin cos sin sin 2sin sin 03B A A B A B B A B π⎛⎫∴=-=-= ⎪⎝⎭,()0,A π∈,sin 0A ∴≠,sin 03B π⎛⎫∴-= ⎪⎝⎭,又()0,B π∈,3B π∴=.()22222231cos 2222a c ac a cb ac ac B ac ac ac +-+-+-∴====,整理可得:()24+=a c ac ,2a cb+∴====. 故选:C . 【点睛】本题考查解三角形的相关知识,涉及到正弦定理边化角、余弦定理的应用等知识;解决此类问题的关键是能够通过正弦定理,将边的齐次式转化为角的关系,属于常考题型.8.D解析:D 【分析】首先利用面积公式可得:2sin a A =,再利用余弦定理2222cos b c a bc A +=+,两者结合可得22sin 2cos b c A bc A +=+,而22c b b c b c bc++=,即可得c bb c +2cos A A =+,再利用辅助角公式即可求解. 【详解】由已知可得:11sin 226bc A a a =⨯,所以2sin a A =,因为222cos 2b c a A bc+-=,所以2222cos sin 2cos b c a bc A A bc A +=+=+所以222cos 4sin 46c b b c A A A b c bc π+⎛⎫+==+=+≤ ⎪⎝⎭, 所以c bb c +的最大值是4 故选:D 【点睛】本题主要考查了三角形面积公式、余弦定理、以及辅助角公式,属于中档题.9.A解析:A 【分析】由已知结合等差数列的性质及二倍角公式,正弦定理及余弦定理进行化简,即可求得结果. 【详解】由a ,b ,c 成等差数列可知,2b a c =+, 因为2C A =,所以sin sin 22sin cos C A A A ==,由正弦定理及余弦定理可得,22222b c a c a bc+-=⋅,所以2223bc ab ac a =+-, 所以32c a =,54b a =,若AC 边上的中线BD =所以2225379242a a a ⎡⎤⎛⎫⎛⎫+=+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解可得4a =,5b =,6c =, 故△ABC 的周长为15. 故选:A. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理,正弦定理,等差数列的条件,以及边角关系,属于简单题目.10.C解析:C先利用面积公式计算出sin ACD ∠,计算出cos ACD ∠,运用余弦定理计算出AD ,利用正弦定理计算出sin A ,在ABC ∆中运用正弦定理求解出BC . 【详解】解:由ACD ∆的面积公式可知,11sin 1025sin 2022ACAD ACD ACD ∠=∠=,可得sin ACD∠=,ACD ∠为锐角,可得cos ACD ∠==在ACD ∆中,21002021025805AD =+-=,即有AD =由sin sin AD CDACD A =∠可得sin sin CD ACD A AD ∠=,由sin sin AC BCB A=可知sin sin 2AC A BC B ===.故选C . 【点睛】本题考查正弦定理与余弦定理在解三角形中的应用,考查方程思想,属于中档题.11.D解析:D 【分析】由正弦定理,求得sin sin bB A a=,再由a b <,且0180B ︒<<︒,即可求解,得到答案. 【详解】由题意,在ABC中,由正弦定理可得sin sin a bA B=, 即sin sin sin 3022b B A a ==︒=, 又由a b <,且0180B ︒<<︒, 所以60B =︒或120B =︒, 故选:D. 【点睛】本题主要考查了正弦定理的应用,其中解答中熟记三角形的正弦定理,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.12.C解析:C 【分析】直接利用正弦定理计算得到答案.根据正弦定理:sin sin 2a b A B ==sin A =,三角形有两解,故sin 12A <=<,解得2a << 故选:C. 【点睛】本题考查了利用正弦定理解三角形,意在考查学生的计算能力和转化能力.二、填空题13.【分析】设将利用三角形面积公式表示出来可得在中利用余弦定理可得解得即可求出进而可得的值再利用三角形面积公式即可求解【详解】因为平分所以设则因为设所以所以因为所以即在中所以可得解得:所以所以所以故答案【分析】设12BAD CAD BAC θ∠=∠=∠=,AB x =,将BAD CAD ABC S S S +=△△△利用三角形面积公式表示出来,可得1cos 2x xθ+=,在ABD △中,利用余弦定理可得212cos 2x xθ+-=,解得2x =,即可求出cos θ,sin θ,进而可得sin BAC ∠的值,再利用三角形面积公式即可求解. 【详解】因为AD 平分BAC ∠,所以12BAD CAD BAC ∠=∠=∠, 设BAD θ∠=,则CAD θ∠=,2BAC θ∠=, 因为BAD CAD ABC S S S +=△△△,设AB x =, 所以111sin sin sin 2222x x θθθ+=, 所以,sin sin 2sin cos x x θθθθ+=, 因为sin 0θ≠,所以12cos x x θ+=,即1cos 2x xθ+=, 在ABD △中,212cos 2x x θ+-=,所以21122x x x x-+=, 可得220x x --=,解得:2x =,所以3cos cos 4BAD θ∠==,所以sin BAD ∠==,3sin 2sin cos 24BAC θθ∠===,所以1sin 28ABC S AC AB BAC =⋅∠=,【点睛】 关键点点睛:本题解题的关键是将BAD CAD ABC S S S +=△△△用面积公式表示出来可得边角之间的关系,再结合余弦定理即求出边和角即可求面积.14.【分析】首先设中利用正弦定理表示的值【详解】设因为三角形互为全等三角形且是等边三角形所以且在中根据正弦定理有所以所以即故答案为:【点睛】本题主要考查正弦定理三角函数恒等变换属于中档题型【分析】首先设AE x =,CBD ACE θ∠=∠=,CBD 中,CD AE x ==,3BD x =,6060BCE ACE θ∠=-∠=-,利用正弦定理表示tan ACE ∠的值.【详解】设AE x =,22EF AE x ==,因为三角形ABF ,BCD ,CAE 互为全等三角形,且ABC 是等边三角形, 所以CBD ACE θ∠=∠=,CD AE x ==,3BD AF AE EF x ==+=,且6060BCE ACE θ∠=-∠=-,在CDB △中,根据正弦定理有sin sin CD BD CBD BCD=∠∠, 所以()3sin sin 60x x θθ=-,所以()13sin sin 60sin 2θθθθ=-=-,即7sin 2θθ=,sin tan cos θθθ==.【点睛】本题主要考查正弦定理,三角函数恒等变换,属于中档题型.15.【分析】不妨令易知然后在中利用正弦定理求出的值最后在中利用正弦定理可求出的值【详解】解:在中角的平分线交于且设则即整理得所以:结合得即显然是锐角所以再由得:解得故答案为:【点睛】本题考查正弦定理三角【分析】不妨令A α∠=,易知ACD BCD α∠==,3B πα∠=-,然后在ABC 中,利用正弦定理,求出sin α,cos α的值,最后在ABC 中,利用正弦定理,可求出AB 的值.【详解】解:在ABC 中,角C 的平分线交AB 于D ,且CD AD =.设A α∠=,则ACD BCD α∠==,3B πα∠=-, ∴sin sin AC BC B A =∠∠,即32sin(3)sin παα=-, 整理得2sin33sin αα=,所以:2(sin cos2cos sin 2)3sin ααααα+=,结合sin 0α≠得222(2cos 12cos )3αα-+=, 即258cos α=,显然α是锐角,所以cos αα=∴sin 22sin cos ααα==. 再由ABC 得:2sin sin 2AB αα=,∴= 解得10AB .【点睛】本题考查正弦定理,三角恒等变换的知识方法在解题中的作用,属于中档题.16.【分析】由根据正弦定理边化角可得根据余弦定理结合已知联立方程组即可求得角【详解】根据正弦定理:根据余弦定理:又故可联立方程:解得:故答案为:【点睛】本题主要考查了求三角形的一个内角解题关键是掌握由正【分析】由sin C B =,根据正弦定理“边化角”,可得=c ,根据余弦定理2222cos a b c bc A =+-,结合已知联立方程组,即可求得角cos A .【详解】sin C B=,根据正弦定理:sin sinb cB C=,∴=c,根据余弦定理:2222cosa b c bc A=+-,又222a b=,故可联立方程:222222cos2ca b c bc Aa b⎧=⎪=+-⎨⎪=⎩,解得:cos A=..【点睛】本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.17.【分析】由与求出的度数根据以及的长利用正弦定理即可求出的长【详解】解:在中即则由正弦定理得:故答案为:【点睛】本题考查正弦定理以及特殊角的三角函数值熟练掌握正弦定理是解本题的关键解析:【分析】由ACB∠与BAC∠,求出ABC∠的度数,根据sin ACB∠,sin ABC∠,以及AC的长,利用正弦定理即可求出AB的长.【详解】解:在ABC∆中,50AC m=,45ACB∠=︒,105CAB∠=︒,即30ABC∠=︒,则由正弦定理sin sinAB ACACB ABC=∠∠,得:50sin21sin2AC ACBABABC∠===∠.故答案为:.【点睛】本题考查正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.18.【分析】由题意利用正弦定理边化角求得∠B的值然后结合数量积的定义求解的值即可【详解】根据正弦定理得:故答案为【点睛】本题主要考查正弦定理余弦定理的应用等知识意在考查学生的转化能力和计算求解能力解析:3-【分析】由题意利用正弦定理边化角,求得∠B的值,然后结合数量积的定义求解AB BC⋅的值即可.【详解】()2a c cosB bcosC -=根据正弦定理得:()2sinA sinC cosB sinBcosC -=2sinAcosB sinBcosC sinCcosB =+()2sinAcosB sin B C =+2sinAcosB sinA =12cosB ∴=, 60B ∴=1||2332AB BC AB BC cosB ⎛⎫∴⋅=-⋅=-⨯⨯=- ⎪⎝⎭ 故答案为3-【点睛】本题主要考查正弦定理、余弦定理的应用等知识,意在考查学生的转化能力和计算求解能力.19.【分析】先由余弦定理可将条件整理得到利用正弦定理得到;结合二倍角公式;再由和差化积公式得:代入①整理得;求出和的关系求出角的范围即可求解【详解】解:由余弦定理可知则整理得即由正弦定理可得即①由和差化解析:,1) 【分析】先由余弦定理可将条件整理得到22c a ab -=,利用正弦定理得到22sin sin sin sin C A A B -=;结合二倍角公式1cos21cos2cos2cos2sin sin 222C A A C A B ----==;再由和差化积公式得:cos2cos22sin()sin()A C A C A C -=-+-代入①整理得sin sin()sin()A A C C A =--=-;求出A 和C 的关系,求出角的范围即可求解.【详解】解:由余弦定理可知222cos 2a b c C ab+-=,则22222a b c b a ab a +--=, 整理得2222a b c b ab +-=-,即22c a ab -=,由正弦定理可得,22sin sin sin sin C A A B -=,即1cos21cos2cos2cos2sin sin 222C A A C A B ----==①, 由和差化积公式得:cos2cos22sin()sin()A C A C A C -=-+-代入①得sin()sin()sin sin A C A C A B -+-=;因为sin()sin 0A C B +=≠;sin sin()sin()A A C C A ∴=--=-;在锐角ABC ∆中,C A A -=即2C A =,则3B A C A ππ=--=-, 因为02022032A A A ππππ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩, ∴64A ππ<<,tan A ∴的取值范围是,1);故答案为:,1). 【点睛】 本题主要考查正弦定理、余弦定理以及和差化积公式的应用,特殊角的三角函数值,属于中档题.20.【分析】由余弦定理可求出角再根据正弦定理即可表示出然后利用消元思想和辅助角公式即可求出的最大值【详解】因为所以而∴∵∴∴其中所以的最大值为当时取得故答案为:【点睛】本题主要考查正余弦定理在解三角形中解析:【分析】由余弦定理可求出角B ,再根据正弦定理即可表示出2a c +,然后利用消元思想和辅助角公式,即可求出2a c +的最大值.【详解】因为222a cb ac +-=,所以2221cos 222a c b ac B ac ac +-===,而0B π<<,∴3B π=.∵2sin sin sin sin 3a b c A B C π====,∴2sin ,2sin a A c C ==.∴222sin 4sin 2sin 4sin 4sin 3a c A C A A A A π⎛⎫+=+=+-=+ ⎪⎝⎭()A ϕ=+,其中tan 2ϕ=.所以2a c +的最大值为2A πϕ=-时取得.故答案为:【点睛】 本题主要考查正余弦定理在解三角形中的应用,以及利用三角函数求解三角形中的最值问题,意在考查学生的转化能力和数学运算能力,属于中档题.三、解答题21.(1)7;(2 【分析】(1)分别在△ABD 、△ABC 中,由余弦定理求BD ,BC ,即可求DC 的长度; (2)记DAC ∠θ=,则2BAD θ∠=,在△ABD 中由余弦定理求sin 2θ、sin θ、cos θ,法一:即可求sin3θ、cos3θ,由已知求sin B ,又()sin sin 3C B πθ=--即可求值;法二:由余弦定理求cos BDA ∠,sin BDA ∠,又()sin sin C BDA θ=∠-即可求值.【详解】(1)在△ABD 中,由余弦定理得22223616312co 24s AB BD AD B AB B BD D BD +-⋅⋅=+-==, ∴5BD =或4BD =.当4BD =时,161636cos 0244ADB +-∠=<⨯⨯,则2ADB π∠>,不合题意,舍去; 当5BD =时,162536cos 0245ADB +-∠=>⨯⨯,则2ADB π∠<,符合题意. ∴5BD =. 在△ABC 中,22223672312co 24s AB BC AC B AB B BC C BC +-⋅⋅=+-==, ∴12BC =或3BC =-(舍).∴7DC BC BD =-=.(2)记DAC ∠θ=,则2BAD θ∠=.在△ABD 中,2229cos cos2216AB AD BD BAD AB AD θ+-∠===⋅,∴2θ为锐角,得21cos27sin 232θθ-==,sin 2θ=sin θ=,cos θ=,法一:sin3sin 2cos cos2sin θθθθθ=+=,同理cos3θ=由3cos 4B =知:sin B =,∴()()sin sin 3sin 3sin cos3cos sin3C B B B B πθθθθ=--=+=+法二:2221625361cos 22458AD BD AB BDA AD BD +-+-∠===⋅⨯⨯,sin BDA ∠.∴()sin sin sin cos cos sin C BDA BDA BDA θθθ=∠-=∠-∠=【点睛】关键点点睛:(1)应用余弦定理求三角形的边长,根据边的数量关系求DC ;(2)由余弦定理,利用诱导公式及两角和或差的正弦公式,求角的正弦值即可.22.(1)π4A =;(2)a =3AD =. 【分析】(1()sin sin sin tan cos C B A C A C -=-,再化简计算即可求出cos A =(2)由余弦定理求得a =,求得cos B =3a BD ==,再由余弦定理即可求出AD .【详解】解:(1()sin sin sin tan cos C B A C A C -=-,()()sin sin sin tan cos C A C A C A C -+=-,∴2sin sin cos cos sin sin sin cos cos A C A C A C C A C A--=-,∵sin 0C ≠,∴2sin cos cos A A A+=∴cos 2A =0πA <<,∴π4A =. (2)由余弦定理可得:2222cos 1841210a b c bc A =+-=+-=, ∴a =∵点D 在边BC 上,且2CD DB =,∴33a BD ==,又222cos 2a c b B ac +-==∴222582cos 9AD AB BD AB BD B =+-⋅⋅=,∴3AD =. 【点睛】关键点睛:本题考查正余弦定理的应用,解题的关键是正确利用正弦定理化边为角处理条件,再结合三角恒等变换化简运算.23.(1)45-;(2 【分析】 (1)利用正弦定理边化角,结合两角和的正弦公式、余弦公式,化简整理,即可求得答案.(2)由(1)可得4cos 5A =-,根据余弦定理,可得25()92bc b c ⎡⎤=+-⎣⎦,根据基本不等式,即可求得b c +的最大值.【详解】(1)由题意得5cos cos 4cos 4cos 5sin sin a C B b C c B c A B -=+, 正弦定理边化角得:5sin cos cos 4sin cos 4sin cos 5sin sin sin A C B B C C B C A B -=+,所以5sin (cos cos sin sin )4(sin cos sin cos )A C B C B C B B C -=+,所以5sin cos()4sin()A B C B C +=+,又A B C π++=,所以sin()sin()sin ,cos()cos()cos B C A A B C A A ππ+=-=+=-=-,所以5sin cos 4sin A A A -=,又因为(0,)A π∈,所以sin 0A ≠, 所以4cos 5A =-. (2)由(1)可得4cos 5A =-, 由余弦定理得2222()294cos 225b c a b c bc A bc bc +-+--===-, 所以25()92bc b c ⎡⎤=+-⎣⎦, 由基本不等式可得22b c bc +⎛⎫≤ ⎪⎝⎭,所以225()922b c b c +⎛⎫⎡⎤+-≤ ⎪⎣⎦⎝⎭,解得b c +≤ 当且仅当b c =时等号成立,所以b c +【点睛】解题的关键是熟练掌握正余弦定理、基本不等式等知识,并灵活应用,考查计算化简的能力,属中档题.24.(1)证明见解析;(2)2. 【分析】(1)解法一:用正弦定理化边为角,得到2sin sin sin B A C =,再变成2b ac =,运用基本不等式可证明解法二:用余弦定理化角为边,得到关系式2b ac =,再用基本不等式求解即可. (2)用余弦定理求出3cos 4B =,再用三角形面积公式求解即可. 【详解】(1)解法一:由已知及正弦定理,得cos cos 1sin sin sin A C A C B += 因为cos cos cos sin cos sin sin()sin sin sin sin sin sin sin sin sin +++===A C A C C A A C B A C A C A c A c所以sin 1sin sin sin =B A c B,2sin sin sin B A C =由正弦定理得2b ac =,即4ac =.4a c +≥=. 解法二:由已知及余弦定理,得222221222+-+-+=b c a a b c abc abc ,得24==ac b ,所以4a c +≥=.(2)因为ABC 的周长为2+a c +=因为22222cos ()22cos b a c ac B a c ac ac B =+-⋅=+--⋅又因为4ac =,所以3cos 4B =得sin B =.所以1sin 2sin 2===ABC S ac B B 【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.25.(1)π3A =;(2)6. 【分析】(1)由正弦定理把条件cos cos 2cos b C c B a A +=转化为角的关系,再由两角和的正弦公式及诱导公式得A 的关系式,从而可得结论;(2)首先可根据解三角形面积公式得出8bc =,然后根据余弦定理计算出6b c +=.【详解】(1)因为cos cos 2cos b C c B a A +=由正弦定理得,sin cos sin cos 2sin cos B C C B A A +=所以()sin sin 2sin cos B C A A A +==因为0πA <<所以,sin 0A ≠所以1cos 2A =,所以π3A =(2)因为ABC 的面积为所以1sin 2bc A =因为π3A =,所以1πsin 23bc =, 所以8bc =.由余弦定理得,2222cos a b c bc A =+-,因为a =,π3A =, 所以()()2222π122cos 3243b c bc b c bc b c =+-=+-=+-, 所以6b c +=.【点睛】关键点点睛:解题时要注意边角关系的转化.求“角”时,常常把已知转化为角的关系,求“边”时,常常把条件转化为边的关系式,然后再进行转化变形.26.4【分析】根据题意,在ABC 中,因为sin cos 3cos sin A C A C =,由正弦定理及余弦定理可得:2222223,22a b c b c a a c ab bc+-+-⋅=⋅ 化简并整理得:2222()a c b -=,结合已知条件222a c b -=,联立即可得解.【详解】在ABC 中,因为sin cos 3cos sin A C A C =,由正弦定理及余弦定理可得:2222223,22a b c b c a a c ab bc+-+-⋅=⋅ 化简并整理得:2222()a c b -=,又由已知222a c b -=,所以24b b =,解得4b =或0b =,由0b ≠,所以4b =.。

(典型题)高中数学必修五第二章《解三角形》测试卷(包含答案解析)

(典型题)高中数学必修五第二章《解三角形》测试卷(包含答案解析)

一、选择题1.在ABC ∆中,若sin (sin cos )sin 0A B B C +-=,sin cos20B C +=,4a =,则ABC ∆的面积为( )A .243+B .43+C .623+D .843+2.在锐角ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若22212a b c =+,则tan A 的取值范围是( ) A .)3,⎡+∞⎣B .()3,+∞C .()2,+∞D .[)2,+∞3.在△ABC 中,若2223a c b ab -+=,则C =( ). A .45°B .30°C .60°D .120°4.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若cos 2a B c=,21sin sin (2cos )sin 22A B C A -=+,则A =( ) A .6π B .3π C .2π D .23π 5.在锐角三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若2223a c ac b +=+,则cos sin A C +的取值范围为( )A .33,22⎛⎫⎪⎪⎝⎭B .2,22⎛⎫⎪ ⎪⎝⎭C .13,22⎛⎫⎪⎝⎭D .()3,26.ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .已知3a =,cos sin b A B =,则A =( )A .12πB .6π C .4π D .3π 7.构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2BD AD =,则DEF 与ABC 的面积之比为( )A .12B .13C .15D .178.在ABC 中,若2a =,b =30A =︒,则B 等于( ) A .30 B .30或150︒C .60︒D .60︒或120︒9.在锐角△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若22b c ac =+,则角C 的取值范围是( )A .π(0,)4B .ππ(,)42C .ππ(,)43D .π,64π⎛⎫⎪⎝⎭10.在ABC 中,边a ,b ,c 分别是角A ,B ,C 的对边,且满足()cos 3cos b C a c B =-,若4BC BA ⋅=,则ac 的值为 ()A .12B .11C .10D .911.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若tan C =cos A =,b =ABC 的面积为( )A .B .2C .4D .812.已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2sin sin sin B A C =,1a cc a+=+,则B = ( ) A .56π B .6π C .3π D .2π 二、填空题13.已知60A =︒,ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,其中7a =,sin sin B C +=bc 的值为______. 14.ABC 中,D 是边BC 上的点,满足90BAD ∠=︒,30DAC ∠=︒,4BD CD =.则sin sin BC=______. 15.在ABC 中,3A π∠=,D 是BC 的中点.若34AD BC ≤,则sin sin B C 的最大值为____________.16.如图,三个全等的三角形ABF ,BCD ,CAE 拼成一个等边三角形ABC ,且DEF 为等边三角形,若2EF AE =,则tan ACE ∠的值为__________.17.如图,为了测量山坡上灯塔CD 的高度,某人从高为40h =的楼AB 的底部A 处和楼顶B 处分别测得仰角为60β=︒,30α=︒,若山坡高为32a =,则灯塔高度是________.18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin :sin :sin 3:5:7A B C =,则ABC 的最大角的大小是________.19.在ABC ∆中,A ∠,B ,C ∠所对的边长分别为a ,b ,c .设a ,b ,c 满足222b c bc a +-=和132c b =,则tan B =______ 20.对于ABC ,有如下命题:①若sin2A =sin2B ,则ABC 为等腰三角形; ②若sin A =cos B ,则ABC 为直角三角形;③若sin 2A +sin 2B +cos 2C <1,则ABC 为钝角三角形; ④若满足C =6π,c =4,a =x 的三角形有两个,则实数x 的取值范围为(4,8). 其中正确说法的序号是_____.三、解答题21.将函数()sin 3cos f x x x =图象上所有点向右平移6π个单位长度,然后横坐标缩短为原来的12(纵坐标不变),得到函数()g x 的图象. (1)求函数()g x 的解析式及单调递增区间;(2)在ABC 中,内角,,A B C 的对边分别为,,a b c ,若1sin cos 364B B ππ⎛⎫--= ⎪⎝⎭⎛⎫ ⎪⎝⎭,,236c g b π⎛⎫== ⎪⎝⎭ABC 的面积. 22.在①222b c a bc +-=;②4AB AC ⋅=;③2sin 22cos 122A A π⎛⎫++=⎪⎝⎭这三个条件中任选一个,补充在下面问题中,求ABC 的面积.问题:已知ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin 2sin C B =,2b =, ?注:如果选择多个条件分别解答,按第一个解答计分.23.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且3bcos A c a ⋅=-. (1)求角B ;(2)若ABC 的面积为23,BC 边上的高1AH =,求b ,c .24.ABC 的内角A 、B 、C 的对边分别是a 、b 、c ,且3b =,2a c -=,23A π=. (1)求ABC 的面积; (2)求()sin A C -的值.25.已知ABC 中,角,,A B C 所对的边分别为,,a b c ,且()2cos cosA cosC b 0a C c ++=(1)求角C 的大小;(2)求22sin sin A B +的取值范围. 26.如图,在ABC 中,2AB =,3B π∠=,点D 在线段BC 上.(1)若4BAD π∠=,求AD 的长;(2)若3BD DC =,且23ABCS=sin sin BADCAD∠∠的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】在ABC ∆中,()sin sin B A C +=,化简sin (sin cos )sin 0A B B C +-=可得4A π=,又sin cos20B C +=和34B C π+=,解得3B π=,512C π=,最后通过正弦定理求出1)c =,再根据三角形面积公式得到面积.【详解】由sin (sin cos )sin 0A B B C +-=得:sin sin sin cos sin cos cos sin sin sin cos sin 0A B A B A B A B A B A B ⋅+⋅-⋅-⋅=⋅-⋅=,∴sin cos A A =,又0()A π∈,,则4A π=,则34B C π+=,又3sin cos 2sin 22B C C π⎛⎫=-=-⎪⎝⎭,则3222B C k ππ=-+或222B C k ππ=-+,(0)B C π∈、,,则322B C π+=或22C B π-=,又34B C π+=,则取22C B π-=,得3B π=,512C π=,又4a =,根据正弦定理,sin 1)sin a Cc A ⋅==,∴1sin 62ABC S ac B ∆=⋅=+ 故选C. 【点睛】思路点睛:在三角形中,由于A B C π++=,根据诱导公式,()sin sin A B C +=,()sin sin A C B +=,()sin sin C B A +=,()cos cos A B C +=-,()cos cos A C B +=-,()cos cos C B A +=-等,以上常见结论需要非常熟练. 2.B解析:B 【分析】根据题中条件,由三角形的余弦定理、正弦定理和两角和的正弦公式,化简可得tan 3tan A B =,再由两角和的正切公式,以及锐角三角形的定义,可得tan 0A >,tan 0C >,解不等式可得所求范围. 【详解】因为22212a b c =+,由余弦定理可得,2222cos a b c bc A =+-,则222212cos 2b c b c bc A +=+-,可得4cos c b A =,由正弦定理可得:sin 4sin cos C B A =,可得sin()sin cos sin cos 4sin cos A B A B B A B A +=+=, 化为3sin cos sin cos B A A B =,在锐角ABC 中,cos 0A ≠,cos 0B ≠, 则tan 3tan A B =,又21tan tan tan tan 3tan tan()11tan tan 1tan 3A AA B C A B A B A ++=-+=-=---,由tan 0A >,tan 0C >,可得211tan 03A -<,解得tan A >, 故选:B . 【点睛】本题考查三角形的正弦定理和余弦定理的运用,以及两角和的三角函数公式,考查方程思想和化简运算能力,属于中档题.3.B解析:B 【分析】根据余弦定理,可以求出C 角的余弦值,进而根据C 为三角形内角,解三角方程可以求出C 角.【详解】∵222a c b -+=,∴22222a b c cosC ab +-==. 又∵C 为三角形内角 ∴30C =︒. 故选B . 【点睛】本题考查余弦定理的应用,属基础题.4.C解析:C 【分析】先利用余弦定理化简条件得sin sin B C =,再利用三角恒等变换即求得B ,C ,再求A 角. 【详解】∵cos 2a B c =,∴22222a c b aac c+-=,解得b c =,∴sin sin B C =. ∵212cos sin sin (2cos )sin 222A AB C A --=+=,易知2cos 0A -≠, ∴1sin sin 2B C =,又sin sin B C =,∴sin sin 2B C ==,即4B C π==,∴2A π=.故选:C . 【点睛】本题考查了三角恒等变换与解三角形的综合,属于中档题.5.A解析:A 【分析】 由余弦定理求得6B π=,并求得32A ππ<<,利用三角恒等变换思想将cos sin A C +化为以角A 为自变量的正弦型函数,利用正弦函数的基本性质可求得cos sin A C +的取值范围. 【详解】由222a cb +=+和余弦定理得222cos 2a c b B ac +-==,又()0,B π∈,6B π∴=.因为三角形ABC 为锐角三角形,则0202A C ππ⎧<<⎪⎪⎨⎪<<⎪⎩,即025062A A πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得32A ππ<<,1cos sin cos sin cos sin cos cos 6622A C A A A A A A Aπππ⎛⎫⎛⎫+=+--=++=++ ⎪ ⎪⎝⎭⎝⎭3cos 223A A A π⎛⎫=+=+ ⎪⎝⎭, 32A ππ<<,即25336A πππ<+<,所以,1sin 232A π⎛⎫<+< ⎪⎝⎭,则3cos sin 22A C <+<,因此,cos sinA C +的取值范围是3,22⎛⎫ ⎪ ⎪⎝⎭. 故选:A. 【点睛】本题考查三角形中代数式取值范围的计算,涉及利用余弦定理求角,解题的关键就是利用三角恒等变换思想将代数式转化为以某角为自变量的三角函数来求解,考查计算能力,属于中等题.6.D解析:D 【分析】由cos sin b A B =有1sin cos b B A =,再由正弦定理有sin sin a b A B =,即1sin cos A A=,可解出答案. 【详解】由cos sin b A B =有1sin cos b B A=, 由正弦定理有sin sin a b A B=,又a =1cos A=.所以tan A =因为A 为ABC 的内角,则3A π=.故选:D 【点睛】本题考查正弦定理的应用,属于中档题.7.D解析:D 【分析】由题意得出点D 为AF的中点,由余弦定理得出AB =,结合三角形面积公式得出正确答案. 【详解】2,BD AD AF BD ==,2AF AD ∴=,即点D 为AF 的中点由余弦定理得:2222cos120AB AD BD AD BD ︒⋅-=+解得:AB =)22ABC1()sin 601217sin 602DEF AD S S ︒︒∴== 故选:D 【点睛】本题主要考查了余弦定理以及三角形的面积公式,属于中档题.8.D解析:D 【分析】由正弦定理,求得sin sin bB A a=,再由a b <,且0180B ︒<<︒,即可求解,得到答案. 【详解】由题意,在ABC 中,由正弦定理可得sin sin a bA B=,即sin sin sin 30b B A a ==︒=, 又由a b <,且0180B ︒<<︒, 所以60B =︒或120B =︒, 故选:D. 【点睛】本题主要考查了正弦定理的应用,其中解答中熟记三角形的正弦定理,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.9.D解析:D 【分析】由22b c ac =+,并结合余弦定理,可求得2cos c a c B =-,进而结合正弦定理可得sin sin 2sin cos C A C B =-,由()sin sin A B C =+,代入并整理得sin C ()sin B C =-,结合△ABC 为锐角三角形,可得出2B C =,从而可得π02ππ2B BC ⎧<<⎪⎪⎨⎪<+<⎪⎩,即可求出答案. 【详解】由余弦定理可得,2222cos b a c ac B =+-,所以2222cos a c ac B c ac +-=+,即2cos c a c B =-, 由正弦定理可得,sin sin 2sin cos C A C B =-, 又()sin sin sin cos sin cos A B C B C C B =+=+, 所以sin sin cos sin cos 2sin cos C B C C B C B =+-()sin cos sin cos sin B C C B B C =-=-,因为π,0,2B C ⎛⎫∈ ⎪⎝⎭,所以ππ,22B C ⎛⎫-∈- ⎪⎝⎭, 所以C B C =-,即2B C =.在锐角△ABC 中,π02ππ2B B C ⎧<<⎪⎪⎨⎪<+<⎪⎩,即π022π3π2C C ⎧<<⎪⎪⎨⎪<<⎪⎩,解得ππ64C <<.故选:D. 【点睛】本题考查正弦、余弦定理在解三角形中的运用,考查两角和的正弦公式的运用,考查学生的计算求解能力,属于中档题.10.A解析:A 【分析】利用正弦定理把题设等式中的边换成角的正弦,进而利用两角和公式化简整理可得cos B 的值,由4BC BA ⋅=可得ac 的值 【详解】 在ABC 中,()3bcosC a c cosB =-由正弦定理可得()sin cos 3sin sin cos B C A C B =-3sin cos sin cos sin cos A B C B B C ∴-=化为:3sin cos sin cos sin cos A B C B B C =+即()sin sin B C A += 在ABC 中,sin 0A ≠,故1cos 3B =4BC BA ⋅=,可得cos 4ac B =,即12ac = 故选A 【点睛】本题以三角形为载体,主要考查了正弦定理,向量的数量积的运用,考查了两角和公式,考查了分析问题和解决问题的能力,属于中档题.11.B解析:B 【分析】结合同角三角函数的基本关系可求出sin C =,cos C =,sin A =和的正弦公式可求出sin B ,结合正弦定理即可求出a ,进而可求出三角形的面积.【详解】因为sin tan cos C C C ==,且22sin cos 1C C +=,解得sin 4C =,cos 4C =,又cos 8A =,所以sin 8A ==,故sin sin[()]sin()sin cos cos sin 8B AC A C A C A C π=-+=+=+=.因为sin sin a bA B =,b =,故sin 2sin b A a B==,故11sin 22242ABC S ab C =⨯=⨯⨯=△.故选:B . 【点睛】本题考查了同角三角函数的基本关系,考查了两角和的正弦公式,考查了正弦定理,考查了三角形的面积公式,属于中档题.12.B解析:B 【分析】根据正弦定理,边角互化可得2b ac =,再根据2221a c a c b c a ac+-+-=,利用余弦定理求角.【详解】∵2sin sin sin B A C =,∴21b ac=,∴2221a c a c b c a ac+-+-==∴cos 2B =,又()0,πB ∈∴6B π=.故选:B . 【点睛】本题考查正弦定理和余弦定理解不等式,重点考查转化的思想,计算能力,属于基础题型.二、填空题13.40【分析】首先根据正弦定理求并表示最后根据余弦定理求的值【详解】根据正弦定理可知根据余弦定理可知得解得:故答案为:40【点睛】方法点睛:(1)在解有关三角形的题目时要有意识地考虑用哪个定理更适合或解析:40 【分析】首先根据正弦定理求2R ,并表示sin sin 22b cB C R R+=+,最后根据余弦定理求bc 的值. 【详解】22sin a R R A =⇒==,根据正弦定理可知1322b c b c R R +=⇒+=, 根据余弦定理可知()2222222cos 3a b c bc A b c bc b c bc =+-=+-=+-, 得249133bc =-,解得:40bc =.故答案为:40 【点睛】方法点睛:(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到;(2)解题中注意三角形内角和定理的应用及角的范围限制.14.【分析】直接利用三角形的面积建立等量关系进一步利用正弦定理的应用求出结果【详解】解:中D 是边上的点满足所以又因为则则故答案为:【点睛】本题考查了正弦定理三角形面积计算公式及其性质考查了推理能力与计算 解析:12【分析】直接利用三角形的面积建立等量关系,进一步利用正弦定理的应用求出结果. 【详解】解:ABC中,D 是边BC 上的点,满足90BAD ∠=︒,30DAC ∠=︒,4BD CD =,所以1sin 90221sin 302ABD ACDAB AD S AB S AC AC AD ⋅︒==⋅⋅︒△△,又因为4ABD ACD S BDS CD ==△△,则24AB BD AC CD==, 则sin 1sin 2B AC C AB ==. 故答案为:12.【点睛】本题考查了正弦定理、三角形面积计算公式及其性质,考查了推理能力与计算能力,属于中档题.15.【分析】设三角形三条边长分别为先分析得到再利用余弦定理得到最后利用正弦定理即得解【详解】设三角形三条边长分别为那么因为所以故由题意得故答案为:【点睛】本题主要考查正弦定理和余弦定理解三角形意在考查学 解析:1532【分析】设AD x =,三角形三条边长分别为,,a b c ,先分析得到222138b c a +≤,再利用余弦定理得到258bc a ≤,最后利用正弦定理即得解. 【详解】设AD x =,三角形三条边长分别为,,a b c , 那么2243,169x a x a ≤∴≤, 因为cos cos 0ADB ADC ∠+∠= 所以2222422+=+x a b c ,故2222222213168849,8x b c a a b c a =+-≤∴+≤由题意得222222221135cos ,,2288b c a A b c bc a a bc a bc +-==∴+=+≤∴≤255315sin sin sin =88432B C A ∴≤=⨯.故答案为:1532【点睛】本题主要考查正弦定理和余弦定理解三角形,意在考查学生对这些知识的理解掌握水平.16.【分析】首先设中利用正弦定理表示的值【详解】设因为三角形互为全等三角形且是等边三角形所以且在中根据正弦定理有所以所以即故答案为:【点睛】本题主要考查正弦定理三角函数恒等变换属于中档题型解析:7【分析】首先设AE x =,CBD ACE θ∠=∠=,CBD 中,CD AE x ==,3BD x =,6060BCE ACE θ∠=-∠=-,利用正弦定理表示tan ACE ∠的值. 【详解】设AE x =,22EF AE x ==,因为三角形ABF ,BCD ,CAE 互为全等三角形,且ABC 是等边三角形, 所以CBD ACE θ∠=∠=,CD AE x ==,3BD AF AE EF x ==+=,且6060BCE ACE θ∠=-∠=-,在CDB △中,根据正弦定理有sin sin CD BDCBD BCD=∠∠,所以()3sin sin 60x x θθ=-,所以()313sin sin 60cos sin 22θθθθ=-=-, 即73sin cos 2θθ=,sin 3tan cos θθθ==. 故答案为:3【点睛】本题主要考查正弦定理,三角函数恒等变换,属于中档题型.17.28【分析】作于延长线交地面于则由求得从而可得然后即得【详解】如图于延长线交地面于则而所以即所以故答案为:28【点睛】本题考查解三角形的应用掌握仰角概念是解题基础测量高度问题常常涉及到直角三角形因此解析:28 【分析】作BN DC ⊥于N ,DC 延长线交地面于M ,则AM BN =,AM DM ⊥,tan DM AM β=,tan DN BN α=,由40DM DN -=求得BN ,从而可得DM ,然后即得DC . 【详解】如图,BN DC ⊥于N ,DC 延长线交地面于M ,则tan DN BN α=,tan DM AM β=,而BN AM =,所以tan tan BN BN h βα-=,即(tan 60tan 30)40BN ︒-︒=,40203tan 60tan 30BN ==︒-︒,所以tan 60tan 603220333228DC AM CM BN =︒-=︒-=⨯-=. 故答案为:28.【点睛】本题考查解三角形的应用,掌握仰角概念是解题基础.测量高度问题常常涉及到直角三角形,因此掌握直角三角形中的三角函数定义是解题关键,有时还需要用三角函数恒等变换公式.18.【分析】根据设根据大角对大边确定角C 是最大角再利用余弦定理求解【详解】因为所以设所以角C 是最大角因为所以则的最大角是故答案为:【点睛】本题主要考查正弦定理余弦定理的应用还考查了运算求解的能力属于中档题 解析:23π 【分析】根据sin :sin :sin 3:5:7A B C =,设()3,5,7,0a t b t c t t ===>,根据大角对大边,确定角C 是最大角,再利用余弦定理求解. 【详解】因为sin :sin :sin 3:5:7A B C =, 所以设()3,5,7,0a t b t c t t ===>,所以角C 是最大角2221cos 22a b c C ab +-==-,因为()0,C π∈,所以23C π=, 则ABC 的最大角是23π. 故答案为:23π 【点睛】本题主要考查正弦定理,余弦定理的应用,还考查了运算求解的能力,属于中档题.19.【分析】先利用余弦定理求得再由正弦定理结合已知条件求得的关系式求得即可【详解】由得又因为得由正弦定理得又因为所以所以故答案为:【点睛】本题考查了正余弦定理的综合运用属于中档题 解析:12【分析】先利用余弦定理求得3A π=,再由正弦定理()sin sin sin sin A B c C b B B+==结合已知条件,求得tan B 的关系式,求得tan B 即可.【详解】由222b c bc a +-=得2221cos 22b c a A bc +-==, 又因为()0A π∈,得3A π=.由正弦定理,得()sin sin sin sin A B c C b B B +==sin cos cos sin 1sin 2tan 2A B A B B B +==+又因为12c b =+,所以1=2tan 2B+12+1tan 2B =. 故答案为:12. 【点睛】本题考查了正余弦定理的综合运用,属于中档题.20.③④【分析】举出反例可判断①②;由同角三角函数的平方关系正弦定理可得再由余弦定理可判断③;由正弦定理可得再由三角形有两个可得且即可判断④;即可得解【详解】对于①当时满足此时△ABC 不是等腰三角形故①解析:③④ 【分析】举出反例可判断①、②;由同角三角函数的平方关系、正弦定理可得222a b c +<,再由余弦定理可判断③;由正弦定理可得8sin x A =,再由三角形有两个可得566A ππ<<且2A π≠,即可判断④;即可得解.【详解】 对于①,当3A π=,6B π=时,满足sin 2sin 2A B =,此时△ABC 不是等腰三角形,故①错误; 对于②,当23A π=,6B π=时,满足sin cos A B =,此时△ABC 不是直角三角形,故②错误;对于③,∵222sin sin cos 1A B C ++<,∴22222sin sin cos sin cos A B C C C ++<+, ∴222sin sin sin A B C +<,∴根据正弦定理得222a b c +<,∵222cos 02a b c C ab+-=<,()0,C π∈,∴C 为钝角,∴△ABC 为钝角三角形,故③正确;对于④,∵,4,6C c a x π===,∴根据正弦定理得481sin sin 2a c A C ===,∴8sin x A =,由题意566A ππ<<,且2A π≠,∴1sin 12A <<,∴48x ,即x 的取值范围为(4,8),故④正确. 故答案为:③④. 【点睛】本题考查了三角函数及解三角形的综合应用,考查了运算求解能力,合理转化条件是解题关键,属于中档题.三、解答题21.(1)()2sin 26g x x π⎛⎫=+⎪⎝⎭,单调递增区间为:(,3)k k k Z πππ⎡⎤⎢⎥⎣⎦-++∈;(2)【分析】(1)由题可得()2sin 26g x x π⎛⎫=+ ⎪⎝⎭,令222262k x k πππππ-+≤+≤+即可解得单调递增区间;(2)由题可得2c =,6B π=或2B π=,由余弦定理可求得a ,即可求出面积.【详解】(1)()sin 2sin 3f x x x x π⎛⎫=+=+⎪⎝⎭, ()f x 图象向右平移6π个单位长度得到2sin 6y x π⎛⎫=+ ⎪⎝⎭的图象,横坐标缩短为原来的12 (纵坐标不变)得到2sin 6y x π⎛⎫=+ ⎪⎝⎭图象, 所以()2sin 26g x x π⎛⎫=+ ⎪⎝⎭, 令222262k x k πππππ-+≤+≤+,解得36k x k ππππ-+≤≤+,所以()g x 的单调递增区间为:(,3)k k k Z πππ⎡⎤⎢⎥⎣⎦-++∈ (2)由(1)知,62c g π⎛⎫⎪⎝⎭==, 因为21sin cos cos 3664B B B πππ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-+=+=,所以1cos 62B π⎛⎫ ⎪⎝=±⎭+ 又因为()0,B π∈,所以7,666B πππ+=⎛⎫ ⎪⎝⎭, 当1cos 62B π⎛⎫⎪⎝=⎭+时,,636B B πππ+==,此时由余弦定理可知,2422cos126a a π+-⨯⨯=,解得a =,所以12sin262ABCSπ=⨯⨯⨯=, 当1cos 62B π⎛⎫⎪⎝=-⎭+时,2,632B B πππ+==,此时由勾股定理可得,a ==,所以122S =⨯⨯=△ABC 【点睛】关键点睛:本题考查三角函数的图象变换求三角函数的性质,以及解三角形的应用,解题的关键是根据图象变换正确得出变换后的解析式. 22.答案见解析 【分析】利用边角互化可得24c b ==,选①:利用余弦定理以及三角形的面积公式即可求解;选②:利用向量数量积的定义可得1cos 2A =,从而可得3A π=,再利用三角形的面积公式即可求解;选③:利用诱导公式以及二倍角的余弦公式可得1cos 2A =,从而可得3A π=,再利用三角形的面积公式即可求解.【详解】因为sin 2sin C B =,2b =,所以24c b ==,选①:因为222b c a bc +=+,所以2221cos 22b c a A bc +-==, 又因为()0,A π∈,所以3A π=.所以ABC 的面积11sin 2422S bc A ==⨯⨯=. 选②:若4AB AC ⋅=,故cos 4AB AC A ⋅⋅=, 则1cos 2A =,故3A π=,所以ABC 的面积11sin 2422S bc A ==⨯⨯=. 选③:若2sin 22cos 122A A π⎛⎫++=⎪⎝⎭,则cos2cos 0A A +=,故22cos cos 10A A +-=,解得1cos 2A =(cos 1A =-舍去),故3A π=.所以ABC 的面积11sin 2422S bc A ==⨯⨯=.23.(1)6π;(2)b =2c =. 【分析】(1)化角为边,化简得222c a b +-=,再利用余弦定理求角B ; (2)由正弦定理算出c ,由面积公式算出a ,由余弦定理计算b 中即可. 【详解】解:(1)因为cos b A c =-,所以2222b c a b c bc +-⋅=-,所以22222b c a c +-=-,即222c a b +-=.由余弦定理可得222cos 22c a b B ac +-==, 因为(0,)B π∈,所以6B π=.(2)由正弦定理可得sin sin 22sin sin6AH AH AHBc Bππ∠===.因为ABC的面积为11sin 22ac B a ==,解得a = 由余弦定理可得2222cos b a c ac B =+-=4842228+-⨯⨯=,则b = 【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围. 24.(1)4;(2)7. 【分析】(1)由余弦定理可得2219232a c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭,又2a c -=,代入方程,可求得c 值,代入面积公式,即可求得答案.(2)根据题意,可求得sin ,cos A A 的值,根据正弦定理即可求得sin C 的值,根据同角三角函数的关系及角C 的范围,即可求得cos C 的值,代入两角差的正弦公式,即可求得答案. 【详解】(1)由余弦定理2222cos a b c bc A =+-,所以2219232a c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭.因为2a c -=,所以()22129232c c c ⎛⎫+=+-⨯⋅-⎪⎝⎭,解得5c =,则7a =.所以ABC 的面积11sin 3522ABCS bc A ==⨯⨯=(2)由23A π=得sin 2A =.由正弦定理得sin sin 14c C A a ==. 在ABC 中,A 为钝角,所以C 为锐角.所以11cos 14C ==.所以()sin sin cos cos sin 7A C A C A C -=-=. 25.(1)23C π=;(2)13,24⎡⎫⎪⎢⎣⎭. 【分析】(1)利用正弦定理的边角互化即可求解.(2)利用二倍角公式以及三角形的内角和性质可得22sin sin A B +11sin 226A π⎛⎫=-+ ⎪⎝⎭,利用三角函数的性质即可求解.【详解】解:(1)由已知及正弦定理得2(sin cos sin cos )cos sin 0A C C A C B ++=, 2sin()cos sin 0A C C B ++=,因为A B C π+=-,所以sin (2cos 1)0B C +=, 因为sin 0B ≠,所以1cos 2C =-, 因为0C π<<,所以23C π=. (2)221cos 21cos 21sin sin 1(cos 2cos 2)222A B A B A B --+=+=-+12111cos 2cos 21cos 2cos 2223222A A A A A π⎛⎫⎡⎤⎛⎫=-+-=--+ ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎝⎭1111cos 221sin 22226A A A π⎛⎫⎛⎫=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭. 因为03A π<<,所以52666A πππ<+<,1sin 2126A π⎛⎫<+≤ ⎪⎝⎭, 111sin 22264A π⎛⎫-≤-+<- ⎪⎝⎭,1131sin 22264A π⎛⎫≤-+< ⎪⎝⎭,所以2213sin sin 24A B ≤+<,即22sin sin A B +的取值范围是13,24⎡⎫⎪⎢⎣⎭. 26.(1)AD =;(2)sin sin BAD CAD∠∠= 【分析】(1)利用正弦定理求解即可. (2)用余弦定理求出AC =sin 3sin 2BAD AC CAD ∠=∠,代入AC 值求解即可.【详解】 解:(1)∵sin sin AD AB B ADB=∠,且75ADB ︒∠=∴=,∴AD = (2)∵1sin 23ABC A S B BC π==⋅⋅, 故算得4,3,1BC BD DC ===, 在ABD △中,利用正弦定理有32sin sin BAD ADB =∠∠, 在ADC 中,有1sin sin AC DAC ADC =∠∠ ∴sin 3sin 2BAD AC CAD ∠=∠, ∵21416224122AC =+-⨯⨯⨯=,∴AC =∴sin sin BAD CAD ∠∠=。

高中数学必修五答案

高中数学必修五答案

高中数学必修五答案【篇一:高中数学必修5课后习题答案】=txt>第一章解三角形1.1两角和与差的正弦、余弦和正切公式练习(p4) 1、(1)a?14,b?19,b?105?;(2)a?18cm,b?15cm,c?75?. 2、(1)a?65?,c?85?,c?22;或a?115?,c?35?,c?13;(2)b?41?,a?24?,a?24. 练习(p8) 1、(1)a?39.6?,b?58.2?,c?4.2 cm;(2)b?55.8?,c?81.9?,a?10.5 cm. 2、(1)a?43.5?,b?100.3?,c?36.2?;(2)a?24.7?,b?44.9?,c?110.4?. 习题1.1 a组(p10) 1、(1)a?38cm,b?39cm,b?80?;(2)a?38cm,b?56cm,c?90? 2、(1)a?114?,b?43?,a?35cm;a?20?,b?137?,a?13cm(2)b?35?,c?85?,c?17cm;(3)a?97?,b?58?,a?47cm;a?33?,b?122?,a?26cm; 3、(1)a?49?,b?24?,c?62cm;(2)a?59?,c?55?,b?62cm;(3)b?36?,c?38?,a?62cm; 4、(1)a?36?,b?40?,c?104?;(2)a?48?,b?93?,c?39?;习题1.1 a组(p10)1、证明:如图1,设?abc的外接圆的半径是r,①当?abc时直角三角形时,?c?90?时,?abc的外接圆的圆心o在rt?abc的斜边ab上.bcac在rt?abc中,?sina,?sinbababab即?sina,?sinb 2r2r所以a?2rsina,b?2rsinb 又c?2r?2r?sin90??2rsinc (第1题图1)所以a?2rsina, b?2rsinb, c?2rsinc②当?abc时锐角三角形时,它的外接圆的圆心o在三角形内(图2),作过o、b的直径a1b,连接ac, 1?90?,?bac??bac则?a1bc直角三角形,?acb. 11在rt?a1bc中,即bc?sin?bac1, a1ba?sin?bac?sina, 12r所以a?2rsina,同理:b?2rsinb,c?2rsinc③当?abc时钝角三角形时,不妨假设?a为钝角,它的外接圆的圆心o在?abc外(图3)(第1题图2)作过o、b的直径a1b,连接ac.1则?a1bc直角三角形,且?acb?90?,?bac?180???11在rt?a1bc中,bc?2rsin?bac, 1即a?2rsin(180???bac)即a?2rsina同理:b?2rsinb,c?2rsinc综上,对任意三角形?abc,如果它的外接圆半径等于则a?2rsina, b?2rsinb, c?2rsinc2、因为acosa?bcosb,所以sinacosa?sinbcosb,即sin2a?sin2b 因为0?2a,2b?2?,(第1题图3)所以2a?2b,或2a???2b,或2a???2??2b. 即a?b或a?b?所以,三角形是等腰三角形,或是直角三角形.在得到sin2a?sin2b后,也可以化为sin2a?sin2b?0 所以cos(a?b)sin(a?b)?0 a?b??2.?2,或a?b?0即a?b??2,或a?b,得到问题的结论.1.2应用举例练习(p13)1、在?abs中,ab?32.2?0.5?16.1 n mile,?abs?115?,根据正弦定理,得as?asab?sin?abssin(65??20?)?ab?sin?abs16.1?sin115sin(65??20?)∴s到直线ab的距离是d?as?sin20??16.1?sin115sin20??7.06(cm). ∴这艘船可以继续沿正北方向航行. 2、顶杆约长1.89 m.练习(p15)1、在?abp中,?abp?180?????,?bpa?180??(???)??abp?180??(???)?(180?????)????在?abp中,根据正弦定理,apab?sin?abpsin?apbapa?sin(180?????)sin(???)a?sin(???)ap?sin(???)asin?sin(???)所以,山高为h?apsin??sin(???)2、在?abc中,ac?65.3m,?bac?????25?25??17?38??7?47? ?abc?90????90??25?25??64?35?acbc?sin?abcsin?bac?747ac?sin?bac65.?3?sinbc?m ??9.8?sin?abcsin?6435井架的高约9.8m.200?sin38?sin29?3、山的高度为?382msin9?练习(p16)1、约63.77?. 练习(p18)1、(1)约168.52 cm2;(2)约121.75 cm2;(3)约425.39 cm2. 2、约4476.40 m2a2?b2?c2a2?c2?b2?c?3、右边?bcosc?ccosb?b?2ab2aca2?b2?c2a2?c2?b22a2?a左边? 【类似可以证明另外两个等式】 ?2a2a2a习题1.2 a组(p19)1、在?abc中,bc?35?0.5?17.5 n mile,?abc?148??126??22?根据正弦定理,??14?8)?,1??bac?180??110??22??48??acb?78??(180acbc?sin?abcsin?bacbc?sin?abc17.?5s?in22ac???8.8 2n milesin?bacsin?48货轮到达c点时与灯塔的距离是约8.82 n mile. 2、70 n mile.3、在?bcd中,?bcd?30??10??40?,?bdc?180???adb?180??45??10??12 5?1cd?30??10 n mile3cdbd根据正弦定理, ?sin?cbdsin?bcd10bd?sin?(180??40??125?)sin40?根据正弦定理,10?sin?40sin1?5在?abd中,?adb?45??10??55?,?bad?180??60??10??110? ?abd?180??110??55??15?adbdabadbdab根据正弦定理,,即 ????sin?abdsin?badsin?adbsin15?sin110?sin55?10?sin?40?sin1?5bd?sin1?5?10s?in40???6.8 4n mile ad?sin1?10si?n110?sin70bd?bd?sin5?5?10s??in40?sin55n mile ??21.6 5sin1?10si??n15?sin70如果一切正常,此船从c开始到b所需要的时间为:ad?ab6.8?421.6520?min ?6?01?0???60 86.983030即约1小时26分59秒. 所以此船约在11时27分到达b岛. 4、约5821.71 m5、在?abd中,ab?700 km,?acb?180??21??35??124?700acbc根据正弦定理, ??sin124?sin35?sin21?700?sin?35700?sin21?ac?,bc?sin1?24sin124?700?sin?357?00s?in21ac?bc7?86.89 kmsin1?24si?n124所以路程比原来远了约86.89 km.6、飞机离a处探照灯的距离是4801.53 m,飞机离b处探照灯的距离是4704.21 m,飞机的高度是约4574.23 m.1507、飞机在150秒内飞行的距离是d?1000?1000? m3600dx? 根据正弦定理,sin(81??18.5?)sin18.5?这里x是飞机看到山顶的俯角为81?时飞机与山顶的距离.d?sin18.5??tan81??14721.64 m 飞机与山顶的海拔的差是:x?tan81??sin(81??18.5?)山顶的海拔是20250?14721.64?5528 m8、在?abt中,?atb?21.4??18.6??2.8?,?abt?90??18.6?,ab?15 mabat15?cos18.6?根据正弦定理,,即at? ?sin2.8?cos18.6?sin2.8?15?cos18.6?塔的高度为at?sin21.4???sin21.4??106.19 msin2.8?326?189、ae??97.8 km 60在?acd中,根据余弦定理:ab?ac??101.235 根据正弦定理,(第9题)adac?sin?acdsin?adcad?sin?adc5?7si?n66sin 44?acd???0.51ac101.2356?acd?30.9??acb?133??30.9?6?10 2?在?abc中,根据余弦定理:ab?245.93222ab?ac?b2c245.9?3101?.22352204sbac???0.58co? 472?ab?ac2?245.?93101.235?bac?54.21?在?ace中,根据余弦定理:ce?90.75222ae2?ec?a2c97.8?90.?751012.235saec???0.42co? 542?ae?ec2?97?.890.75?aec?64.82?0??aec?(1?8?0?7?5?)?75??64.8?2 18?所以,飞机应该以南偏西10.18?的方向飞行,飞行距离约90.75 km.10、如图,在?abcac??37515.44 km222ab?ac?b2c6400?37515?2.44422200???0.692 ?bac? 42?ab?ac2?640?037515.448,2 ?bac?90??43.?8 ?bac?133.? 2所以,仰角为43.82?1111、(1)s?acsinb??28?33?sin45??326.68 cm222aca36(2)根据正弦定理:,c???sinc??sin66.5?sinasincsinasin32.8?11sin66.5?s?acsinb??362??sin(32.8??66.5?)?1082.58 cm222sin32.8?2(3)约为1597.94 cm122?12、nrsin.2na2?c2?b213、根据余弦定理:cosb?2acaa2所以ma?()2?c2?2??c?cosb22a2a2?c2?b22?()?c?a?c? b22ac12212?()2[a2?4c2?2(a?c?2b)]?()[2(b?c2)?a2]222(第13题)【篇二:高中数学必修5期末测试题及答案】:90分钟试卷满分:100分一、选择题:本大题共14小题,每小题4分,共56分. 在每小题的4个选项中,只有一项是符合题目要求的.1.在等差数列3,7,11,…中,第5项为( ). a.15b.18c.19d.232.数列{an}中,如果an=3n(n=1,2,3,…) ,那么这个数列是( ). a.公差为2的等差数列 c.首项为3的等比数列b.公差为3的等差数列 d.首项为1的等比数列3.等差数列{an}中,a2+a6=8,a3+a4=3,那么它的公差是( ). a.4b.5c.6d.7a.5b.13c.d.5.数列{an}满足a1=1,an+1=2an+1(n∈n+),那么a4的值为( ). a.4b.8c.15d.316.△abc中,如果a.直角三角形abc==,那么△abc是( ). tanatanbtancb.等边三角形 d.钝角三角形c.等腰直角三角形7.如果a>b>0,t>0,设m=a.m>n c.m=naa?t,n=,那么( ). bb?tb.m<nd.m与n的大小关系随t的变化而变化8.如果{an}为递增数列,则{an}的通项公式可以为( ). a.an=-2n+3 c.an=b.an=-n2-3n+1 d.an=1+log2 n12n9.如果a<b<0,那么( ).a.a-b>0b.ac<bcc.11> abd.a2<b210.我们用以下程序框图来描述求解一元二次不等式ax2+bx+c>0(a>0)的过程.令a=2,b=4,若c∈(0,1),则输出的为( ).a.m b.n c.pd.?(第10题)111.等差数列{an}中,已知a1=,a2+a5=4,an=33,则n的值为( ).3a.50b.49c.48d.4712.设集合a={(x,y)|x,y,1―x―y是三角形的三边长},则a所表示的平面区域(不含边界的阴影部分)是( ).cda ba.4b.5c.7d.814.已知数列{an}的前n项和sn=n2-9n,第k项满足5<ak<8,则k=( ). a.9b.8c.7d.6二、填空题:本大题共4小题,每小题4分,共16分.将答案填在题中横线上. 15.已知x是4和16的等差中项,则x= 16.一元二次不等式x2<x+6的解集为.17.函数f(x)=x(1-x),x∈(0,1)的最大值为三、解答题:本大题共3小题,共28分. 解答应写出文字说明、证明过程或演算步骤. 19.△abc中,bc=7,ab=3,且(1)求ac的长;(2)求∠a的大小.3sinc=. sinb520.某工厂修建一个长方体无盖蓄水池,其容积为4 800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形的长为x米.(1)求底面积,并用含x的表达式表示池壁面积; (2)怎样设计水池能使总造价最低?最低造价是多少?21.已知等差数列{an}的前n项的和记为sn.如果a4=-12,a8=-4. (1)求数列{an}的通项公式;(2)求sn的最小值及其相应的n的值;(3)从数列{an}中依次取出a1,a2,a4,a8,…,a2n-1,…,构成一个新的数列{bn},求{bn}的前n项和.参考答案一、选择题 1.c 7.a 13.d2.b 8.d 14.b3.b 9.c4.c 10.b5.c 11.a6.b 12.a二、填空题 15.10. 16.(-2,3). 17.1. 418.-3.三、解答题19.解:(1)由正弦定理得acababsinc35?3===?ac==5. ?53sincacsinbsinb(2)由余弦定理得19?25?49ab2?ac2?bc22?3?52ab?ac24 80020.解:(1)设水池的底面积为s1,池壁面积为s2,则有s1==1 600(平方米).31 600池底长方形宽为米,则x1 6001 600xx(2)设总造价为y,则1 600?x??当且仅当x=1 600,即x=40时取等号. x所以x=40时,总造价最低为297 600元.答:当池底设计为边长40米的正方形时,总造价最低,其值为297 600元.【篇三:高中数学必修5课后习题答案】=txt>第一章解三角形1.1两角和与差的正弦、余弦和正切公式练习(p4) 1、(1)a?14,b?19,b?105?;(2)a?18cm,b?15cm,c?75?. 2、(1)a?65?,c?85?,c?22;或a?115?,c?35?,c?13;(2)b?41?,a?24?,a?24. 练习(p8) 1、(1)a?39.6?,b?58.2?,c?4.2 cm;(2)b?55.8?,c?81.9?,a?10.5 cm. 2、(1)a?43.5?,b?100.3?,c?36.2?;(2)a?24.7?,b?44.9?,c?110.4?. 习题1.1 a组(p10) 1、(1)a?38cm,b?39cm,b?80?;(2)a?38cm,b?56cm,c?90? 2、(1)a?114?,b?43?,a?35cm;a?20?,b?137?,a?13cm(2)b?35?,c?85?,c?17cm;(3)a?97?,b?58?,a?47cm;a?33?,b?122?,a?26cm; 3、(1)a?49?,b?24?,c?62cm;(2)a?59?,c?55?,b?62cm;(3)b?36?,c?38?,a?62cm; 4、(1)a?36?,b?40?,c?104?;(2)a?48?,b?93?,c?39?;习题1.1 a组(p10)1、证明:如图1,设?abc的外接圆的半径是r,①当?abc时直角三角形时,?c?90?时,?abc的外接圆的圆心o在rt?abc的斜边ab上.bcac在rt?abc中,?sina,?sinbababab即?sina,?sinb 2r2r所以a?2rsina,b?2rsinb 又c?2r?2r?sin90??2rsinc (第1题图1)所以a?2rsina, b?2rsinb, c?2rsinc②当?abc时锐角三角形时,它的外接圆的圆心o在三角形内(图2),作过o、b的直径a1b,连接ac, 1?90?,?bac??bac则?a1bc直角三角形,?acb. 11在rt?a1bc中,即bc?sin?bac1, a1ba?sin?bac?sina, 12r所以a?2rsina,同理:b?2rsinb,c?2rsinc③当?abc时钝角三角形时,不妨假设?a为钝角,它的外接圆的圆心o在?abc外(图3)(第1题图2)作过o、b的直径a1b,连接ac.1则?a1bc直角三角形,且?acb?90?,?bac?180???11在rt?a1bc中,bc?2rsin?bac, 1即a?2rsin(180???bac)即a?2rsina同理:b?2rsinb,c?2rsinc综上,对任意三角形?abc,如果它的外接圆半径等于则a?2rsina, b?2rsinb, c?2rsinc2、因为acosa?bcosb,所以sinacosa?sinbcosb,即sin2a?sin2b 因为0?2a,2b?2?,(第1题图3)所以2a?2b,或2a???2b,或2a???2??2b. 即a?b或a?b?所以,三角形是等腰三角形,或是直角三角形.在得到sin2a?sin2b后,也可以化为sin2a?sin2b?0 所以cos(a?b)sin(a?b)?0 a?b??2.?2,或a?b?0即a?b??2,或a?b,得到问题的结论.1.2应用举例练习(p13)1、在?abs中,ab?32.2?0.5?16.1 n mile,?abs?115?,根据正弦定理,得as?asab?sin?abssin(65??20?)?ab?sin?abs16.1?sin115sin(65??20?)∴s到直线ab的距离是d?as?sin20??16.1?sin115sin20??7.06(cm). ∴这艘船可以继续沿正北方向航行. 2、顶杆约长1.89 m. 练习(p15)1、在?abp中,?abp?180?????,?bpa?180??(???)??abp?180??(???)?(180?????)????在?abp中,根据正弦定理,apab?sin?abpsin?apbapa?sin(180?????)sin(???)a?sin(???)ap?sin(???)asin?sin(???)所以,山高为h?apsin??sin(???)2、在?abc中,ac?65.3m,?bac?????25?25??17?38??7?47? ?abc?90????90??25?25??64?35?acbc?sin?abcsin?bac?747ac?sin?bac65.?3?sinbc?m ??9.8?sin?abcsin?6435井架的高约9.8m.200?sin38?sin29?3、山的高度为?382msin9?练习(p16)1、约63.77?. 练习(p18)1、(1)约168.52 cm2;(2)约121.75 cm2;(3)约425.39 cm2. 2、约4476.40 m2a2?b2?c2a2?c2?b2?c?3、右边?bcosc?ccosb?b?2ab2aca2?b2?c2a2?c2?b22a2?a左边? 【类似可以证明另外两个等式】 ?2a2a2a习题1.2 a组(p19)1、在?abc中,bc?35?0.5?17.5 n mile,?abc?148??126??22?根据正弦定理,??14?8)?,1??bac?180??110??22??48??acb?78??(180acbc?sin?abcsin?bacbc?sin?abc17.?5s?in22ac???8.8 2n milesin?bacsin?48货轮到达c点时与灯塔的距离是约8.82 n mile. 2、70 n mile.3、在?bcd中,?bcd?30??10??40?,?bdc?180???adb?180??45??10??12 5?1cd?30??10 n mile3cdbd根据正弦定理, ?sin?cbdsin?bcd10bd?sin?(180??40??125?)sin40?根据正弦定理,10?sin?40sin1?5在?abd中,?adb?45??10??55?,?bad?180??60??10??110? ?abd?180??110??55??15?adbdabadbdab根据正弦定理,,即 ????sin?abdsin?badsin?adbsin15?sin110?sin55?10?sin?40?sin1?5bd?sin1?5?10s?in40???6.8 4n mile ad?sin1?10si?n110?sin70bd?bd?sin5?5?10s??in40?sin55n mile ??21.6 5sin1?10si??n15?sin70如果一切正常,此船从c开始到b所需要的时间为:ad?ab6.8?421.6520?min ?6?01?0???60 86.983030即约1小时26分59秒. 所以此船约在11时27分到达b岛. 4、约5821.71 m5、在?abd中,ab?700 km,?acb?180??21??35??124?700acbc根据正弦定理, ??sin124?sin35?sin21?700?sin?35700?sin21?ac?,bc?sin1?24sin124?700?sin?357?00s?in21ac?bc7?86.89 kmsin1?24si?n124所以路程比原来远了约86.89 km.6、飞机离a处探照灯的距离是4801.53 m,飞机离b处探照灯的距离是4704.21 m,飞机的高度是约4574.23 m.1507、飞机在150秒内飞行的距离是d?1000?1000? m3600dx? 根据正弦定理,sin(81??18.5?)sin18.5?这里x是飞机看到山顶的俯角为81?时飞机与山顶的距离.d?sin18.5??tan81??14721.64 m 飞机与山顶的海拔的差是:x?tan81??sin(81??18.5?)山顶的海拔是20250?14721.64?5528 m8、在?abt中,?atb?21.4??18.6??2.8?,?abt?90??18.6?,ab?15 mabat15?cos18.6?根据正弦定理,,即at? ?sin2.8?cos18.6?sin2.8?15?cos18.6?塔的高度为at?sin21.4???sin21.4??106.19 msin2.8?326?189、ae??97.8 km 60在?acd中,根据余弦定理:ab?ac??101.235 根据正弦定理,(第9题)adac?sin?acdsin?adcad?sin?adc5?7si?n66sin 44?acd???0.51ac101.2356?acd?30.9??acb?133??30.9?6?10 2?在?abc中,根据余弦定理:ab?245.93222ab?ac?b2c245.9?3101?.22352204sbac???0.58co? 472?ab?ac2?245.?93101.235?bac?54.21?在?ace中,根据余弦定理:ce?90.75222ae2?ec?a2c97.8?90.?751012.235saec???0.42co? 542?ae?ec2?97?.890.75?aec?64.82?0??aec?(1?8?0?7?5?)?75??64.8?2 18?所以,飞机应该以南偏西10.18?的方向飞行,飞行距离约90.75 km.10、如图,在?abcac??37515.44 km222ab?ac?b2c6400?37515?2.44422200???0.692 ?bac? 42?ab?ac2?640?037515.448,2 ?bac?90??43.?8 ?bac?133.? 2所以,仰角为43.82?1111、(1)s?acsinb??28?33?sin45??326.68 cm222aca36(2)根据正弦定理:,c???sinc??sin66.5?sinasincsinasin32.8?11sin66.5?s?acsinb??362??sin(32.8??66.5?)?1082.58 cm222sin32.8?2(3)约为1597.94 cm122?12、nrsin.2na2?c2?b213、根据余弦定理:cosb?2acaa2所以ma?()2?c2?2??c?cosb22a2a2?c2?b22?()?c?a?c? b22ac12212?()2[a2?4c2?2(a?c?2b)]?()[2(b?c2)?a2]222(第13题)。

高中数学必修五解答题综合100题(附答案)

高中数学必修五解答题综合100题(附答案)

必修5解答题综合100题一、解答题1、在锐角三角形ABC 中,A =2B ,a ,b ,c 所对的角分别为A ,B ,C ,求ab 的取值范围.2、在△ABC 中,已知a =23,b =6,A =30°,解三角形.3、在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S .4、△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知b 2=ac 且cos B =34.(1)求1tan A +1tan C 的值;(2)设BA ·BC = 23,求a+c 的值.5、在△ABC 中,求证:a 2-b 2c 2=sin (A -B )sin C .6、如图,在山脚测得出山顶的仰角为,沿倾斜角为的斜坡向上走米到,在处测得山顶的仰角为,求证:山高A P a βaB B Pγ7、如图,为测量河对岸A、B两点的距离,在河的这边测出CD的长为32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求A、B两点间的距离.8、如图所示,在山顶铁塔上B处测得地面上一点A的俯角为α,在塔底C处测得A处的俯角为β.已知铁塔BC部分的高为h,求山高CD.9、江岸边有一炮台高30 m,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连成30°角,求两条船之间的距离.()()sin sinsin-a ahaγβγ-=10、轮船A 和轮船B 在中午12时离开海港C ,两艘轮船的航行方向之间的夹角为,轮船A 的航行速度是25 n mile/h ,轮船B 的航行速度是15 n mile/h ,下午2时两船之间的距离是多少?11、在△ABC 中,D 为边BC 上一点,BD =12DC ,∠ADB =120°,AD =2.若△ADC 的面积为3-3,求∠BAC .12、如图,一艘船以32.2n mile/h 的速度向正北航行.在A处看灯塔S在船的北偏东的方向,30 min后航行到B处,在B处看灯塔在船的北偏东的方向,已知距离此灯塔6.5n mile 以外的海区为航行安全区域,这艘船可以继续沿正北方向航行吗?120206513、一架飞以326km/h 的速度,沿北偏东的航向从城市A 出发向城市B 飞行,18min 以后,飞机由于天气原因按命令改飞另一个城市C ,问收到命令时飞机应该沿什么航向飞行,此时离城市C 的距离是多少?14、在△ABC 中,角A 、B 、C 所对的边长分别是a 、b 、c ,且cos A =45.(1)求sin 2 B +C2+cos 2A 的值; (2)若b =2,△ABC 的面积S =3,求a .15、已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a =2,cos B =35.(1)若b =4,求sin A 的值;(2)若△ABC 的面积S △ABC =4,求b ,c 的值.7565 2016、已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.17、如图所示,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 交AC 于E ,AB =2.(1)求cos ∠CBE 的值; (2)求AE .18、(本题满分12分)在△ABC 中,BC =a ,AC =b ,a ,b 是方程02322=+-x x 的两个根,且()1cos 2=+B A 。

新课标人教版必修5高中数学综合检测试卷附答案解析

新课标人教版必修5高中数学综合检测试卷附答案解析

解题技巧
认真审题,理解 题意
运用所学知识, 分析问题
结合实际,联系 生活
细心计算,确保 答案准确
易错点提醒
计算错误:学生可 能因为粗心或计算 能力不足而犯错
概念混淆:学生对 相关概念理解不清 晰,导致填空题答 案错误
逻辑推理错误:学生 在解题过程中,可能 因为逻辑推理不严密 而导致答案错误
审题不清:学生可能因 为审题不仔细,导致理 解题意出现偏差,从而 影响答案的准确性
难度分布:试卷难度适中,注重基础知识的考查,同时也有一定的难度和区分度。
题型设计:本试卷包括选择题、填空题、解答题等多种题型,考查学生的不同能力。
考查重点:本试卷重点考查学生的数学基础知识和应用能力,以及学生的数学思维和解题技 巧。
难度分析
基础题占比: 40%
中档题占比: 40%
难题占比:20%
题目设计注重考查 学生的数学析
题目类型:单项选择题
题目数量:10道
题目难度:中等
解析:对每道题目进行详细的 解析,包括解题思路、方法、 答案等
解题技巧
掌握基础知识:选择题通常考察基础知识点,应熟练掌握相关概念和公式。 仔细审题:读懂题目要求,找出关键信息,避免因误解而选错答案。
排除法:对于一些难以确定答案的选择题,可以采用排除法,排除明显错误的选项。
善于利用选项:有些选择题的答案可以通过代入选项进行验证,从而快速找到正确答案。
易错点提醒
选项中涉及到的知识点是否准确掌握 选项中的陷阱和迷惑性词语是否能够识别 计算和分析过程中是否有遗漏或错误 解题思路和方法是否正确且符合题意
题目类型及解析
题目类型:填空题 题目难度:中等 题目数量:10道 解析:针对每道题目给出详细的解题思路和答案解析

人教版高中数学必修5测试题及答案全套

人教版高中数学必修5测试题及答案全套

第一章 解三角形测试一 正弦定理和余弦定理Ⅰ 学习目标1.掌握正弦定理和余弦定理及其有关变形.2.会正确运用正弦定理、余弦定理及有关三角形知识解三角形.Ⅱ 基础训练题一、选择题1.在△ABC 中,若BC =2,AC =2,B =45°,则角A 等于( ) (A)60°(B)30°(C)60°或120°(D)30°或150°2.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =3,cos C =-41,则c 等于( ) (A)2(B)3 (C)4 (D)53.在△ABC 中,已知32sin ,53cos ==C B ,AC =2,那么边AB 等于( ) (A )45 (B)35 (C)920 (D)512 4.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,已知B =30°,c =150,b =503,那么这个三角形是( ) (A)等边三角形 (B)等腰三角形 (C)直角三角形 (D)等腰三角形或直角三角形5.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,如果A ∶B ∶C =1∶2∶3,那么a ∶b ∶c 等于( ) (A)1∶2∶3(B)1∶3∶2(C)1∶4∶9(D)1∶2∶3二、填空题6.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,B =45°,C =75°,则b =________. 7.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =23,c =4,则A =________.8.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若2cos B cos C =1-cos A ,则△ABC 形状是________三角形.9.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =3,b =4,B =60°,则c =________. 10.在△ABC 中,若tan A =2,B =45°,BC =5,则 AC =________.三、解答题11.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =4,C =60°,试解△ABC . 12.在△ABC 中,已知AB =3,BC =4,AC =13.(1)求角B 的大小;(2)若D 是BC 的中点,求中线AD 的长.13.如图,△OAB 的顶点为O (0,0),A (5,2)和B (-9,8),求角A 的大小.14.在△ABC 中,已知BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A+B )=1.(1)求角C 的度数; (2)求AB 的长; (3)求△ABC 的面积.测试二 解三角形全章综合练习Ⅰ 基础训练题一、选择题1.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若b 2+c 2-a 2=bc ,则角A 等于( ) (A)6π (B)3π (C)32π (D)65π2.在△ABC 中,给出下列关系式: ①sin(A +B )=sin C②cos(A +B )=cos C ③2cos 2sinCB A =+ 其中正确的个数是( ) (A)0 (B)1(C)2 (D)33.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c .若a =3,sin A =32,sin(A +C )=43,则b 等于( ) (A)4(B)38(C)6(D)827 4.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =3,b =4,sin C =32,则此三角形的面积是( ) (A)8 (B)6 (C)4 (D)35.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若(a +b +c )(b +c -a )=3bc ,且sin A =2sin B cos C ,则此三角形的形状是( ) (A)直角三角形 (B)正三角形 (C)腰和底边不等的等腰三角形 (D)等腰直角三角形 二、填空题6.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =2,B =45°,则角A =________.7.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =3,c =19,则角C =________.8.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若b =3,c =4,cos A =53,则此三角形的面积为________.9.已知△ABC 的顶点A (1,0),B (0,2),C (4,4),则cos A =________.10.已知△ABC 的三个内角A ,B ,C 满足2B =A +C ,且AB =1,BC =4,那么边BC 上的中线AD 的长为________. 三、解答题11.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且a =3,b =4,C =60°.(1)求c ; (2)求sin B .12.设向量a ,b 满足a ·b =3,|a |=3,|b |=2.(1)求〈a ,b 〉; (2)求|a -b |.13.设△OAB 的顶点为O (0,0),A (5,2)和B (-9,8),若BD ⊥OA 于D .(1)求高线BD 的长; (2)求△OAB 的面积.14.在△ABC 中,若sin 2A +sin 2B >sin 2C ,求证:C 为锐角.(提示:利用正弦定理R CcB b A a 2sin sin sin ===,其中R 为△ABC 外接圆半径) Ⅱ 拓展训练题15.如图,两条直路OX 与OY 相交于O 点,且两条路所在直线夹角为60°,甲、乙两人分别在OX 、OY 上的A 、B 两点,| OA |=3km ,| OB |=1km ,两人同时都以4km/h 的速度行走,甲沿方向,乙沿OY 方向.问:(1)经过t 小时后,两人距离是多少(表示为t 的函数)?(2)何时两人距离最近?16.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且ca bC B +-=2cos cos . (1)求角B 的值;(2)若b =13,a +c =4,求△ABC 的面积.第二章 数列测试三 数列Ⅰ 学习目标1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊的函数.2.理解数列的通项公式的含义,由通项公式写出数列各项.3.了解递推公式是给出数列的一种方法,能根据递推公式写出数列的前几项.Ⅱ 基础训练题一、选择题1.数列{a n }的前四项依次是:4,44,444,4444,…则数列{a n }的通项公式可以是( ) (A)a n =4n (B)a n =4n (C)a n =94(10n-1)(D)a n =4×11n2.在有一定规律的数列0,3,8,15,24,x ,48,63,……中,x 的值是( ) (A)30 (B)35 (C)36 (D)42 3.数列{a n }满足:a 1=1,a n =a n -1+3n ,则a 4等于( ) (A)4 (B)13 (C)28 (D)43 4.156是下列哪个数列中的一项( ) (A){n 2+1} (B){n 2-1} (C){n 2+n } (D){n 2+n -1} 5.若数列{a n }的通项公式为a n =5-3n ,则数列{a n }是( ) (A)递增数列 (B)递减数列 (C)先减后增数列 (D)以上都不对 二、填空题6.数列的前5项如下,请写出各数列的一个通项公式:(1)n a ,,31,52,21,32,1 =________;(2)0,1,0,1,0,…,a n =________.7.一个数列的通项公式是a n =122+n n .(1)它的前五项依次是________; (2)0.98是其中的第________项.8.在数列{a n }中,a 1=2,a n +1=3a n +1,则a 4=________. 9.数列{a n }的通项公式为)12(3211-++++=n a n (n ∈N *),则a 3=________.10.数列{a n }的通项公式为a n =2n 2-15n +3,则它的最小项是第________项. 三、解答题11.已知数列{a n }的通项公式为a n =14-3n .(1)写出数列{a n }的前6项; (2)当n ≥5时,证明a n <0.12.在数列{a n }中,已知a n =312-+n n (n ∈N *).(1)写出a 10,a n +1,2n a ;(2)7932是否是此数列中的项?若是,是第几项? 13.已知函数xx x f 1)(-=,设a n =f (n )(n ∈N +). (1)写出数列{a n }的前4项;(2)数列{a n }是递增数列还是递减数列?为什么?测试四 等差数列Ⅰ 学习目标1.理解等差数列的概念,掌握等差数列的通项公式,并能解决一些简单问题. 2.掌握等差数列的前n 项和公式,并能应用公式解决一些简单问题.3.能在具体的问题情境中,发现数列的等差关系,并能体会等差数列与一次函数的关系.Ⅱ 基础训练题一、选择题1.数列{a n }满足:a 1=3,a n +1=a n -2,则a 100等于( ) (A)98 (B)-195 (C)-201 (D)-1982.数列{a n }是首项a 1=1,公差d =3的等差数列,如果a n =2008,那么n 等于( ) (A)667 (B)668 (C)669 (D)670 3.在等差数列{a n }中,若a 7+a 9=16,a 4=1,则a 12的值是( ) (A)15 (B)30 (C)31 (D)644.在a 和b (a ≠b )之间插入n 个数,使它们与a ,b 组成等差数列,则该数列的公差为( )(A)n a b - (B)1+-n a b (C)1++n a b (D)2+-n ab 5.设数列{a n }是等差数列,且a 2=-6,a 8=6,S n 是数列{a n }的前n 项和,则( ) (A)S 4<S 5 (B)S 4=S 5 (C)S 6<S 5 (D)S 6=S 5 二、填空题6.在等差数列{a n }中,a 2与a 6的等差中项是________.7.在等差数列{a n }中,已知a 1+a 2=5,a 3+a 4=9,那么a 5+a 6=________. 8.设等差数列{a n }的前n 项和是S n ,若S 17=102,则a 9=________.9.如果一个数列的前n 项和S n =3n 2+2n ,那么它的第n 项a n =________.10.在数列{a n }中,若a 1=1,a 2=2,a n +2-a n =1+(-1)n (n ∈N *),设{a n }的前n 项和是S n ,则S 10=________. 三、解答题11.已知数列{a n }是等差数列,其前n 项和为S n ,a 3=7,S 4=24.求数列{a n }的通项公式.12.等差数列{a n }的前n 项和为S n ,已知a 10=30,a 20=50.(1)求通项a n ;(2)若S n =242,求n .13.数列{a n }是等差数列,且a 1=50,d =-0.6.(1)从第几项开始a n <0;(2)写出数列的前n 项和公式S n ,并求S n 的最大值.Ⅲ 拓展训练题14.记数列{a n }的前n 项和为S n ,若3a n +1=3a n +2(n ∈N *),a 1+a 3+a 5+…+a 99=90,求S 100.测试五 等比数列Ⅰ 学习目标1.理解等比数列的概念,掌握等比数列的通项公式,并能解决一些简单问题. 2.掌握等比数列的前n 项和公式,并能应用公式解决一些简单问题.3.能在具体的问题情境中,发现数列的等比关系,并能体会等比数列与指数函数的关系.Ⅱ 基础训练题一、选择题1.数列{a n }满足:a 1=3,a n +1=2a n ,则a 4等于( )(A)83 (B)24 (C)48 (D)542.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5等于( ) (A)33 (B)72 (C)84 (D)189 3.在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3等于( )(A)4(B)23 (C)916 (D)3 4.在等比数列{a n }中,若a 2=9,a 5=243,则{a n }的前四项和为( ) (A)81 (B)120 (C)168 (D)1925.若数列{a n }满足a n =a 1q n -1(q >1),给出以下四个结论: ①{a n }是等比数列; ②{a n }可能是等差数列也可能是等比数列; ③{a n }是递增数列; ④{a n }可能是递减数列. 其中正确的结论是( ) (A)①③ (B)①④ (C)②③ (D)②④ 二、填空题6.在等比数列{a n }中,a 1,a 10是方程3x 2+7x -9=0的两根,则a 4a 7=________. 7.在等比数列{a n }中,已知a 1+a 2=3,a 3+a 4=6,那么a 5+a 6=________. 8.在等比数列{a n }中,若a 5=9,q =21,则{a n }的前5项和为________. 9.在38和227之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为________.10.设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,则q =________. 三、解答题11.已知数列{a n }是等比数列,a 2=6,a 5=162.设数列{a n }的前n 项和为S n .(1)求数列{a n }的通项公式; (2)若S n =242,求n .12.在等比数列{a n }中,若a 2a 6=36,a 3+a 5=15,求公比q .13.已知实数a ,b ,c 成等差数列,a +1,b +1,c +4成等比数列,且a +b +c =15,求a ,b ,c .Ⅲ 拓展训练题14.在下列由正数排成的数表中,每行上的数从左到右都成等比数列,并且所有公比都等于q ,每列上的数从上到下都成等差数列.a ij 表示位于第i 行第j 列的数,其中a 24=81,a 42=1,a 54=5.(2)求a ij 的计算公式.测试六 数列求和Ⅰ 学习目标1.会求等差、等比数列的和,以及求等差、等比数列中的部分项的和. 2.会使用裂项相消法、错位相减法求数列的和.Ⅱ 基础训练题一、选择题1.已知等比数列的公比为2,且前4项的和为1,那么前8项的和等于( ) (A)15 (B)17 (C)19 (D)21 2.若数列{a n }是公差为21的等差数列,它的前100项和为145,则a 1+a 3+a 5+…+a 99的值为( ) (A)60 (B)72.5 (C)85 (D)1203.数列{a n }的通项公式a n =(-1)n -1·2n (n ∈N *),设其前n 项和为S n ,则S 100等于( ) (A)100 (B)-100 (C)200 (D)-200 4.数列⎭⎬⎫⎩⎨⎧+-)12)(12(1n n 的前n 项和为( )(A)12+n n (B)122+n n (C)24+n n (D)12+n n5.设数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且a n +2=a n +3(n =1,2,3,…),则S 100等于( ) (A)7000 (B)7250 (C)7500 (D)14950 二、填空题 6.nn +++++++++11341231121 =________.7.数列{n +n21}的前n 项和为________. 8.数列{a n }满足:a 1=1,a n +1=2a n ,则a 21+a 22+…+a 2n =________. 9.设n ∈N *,a ∈R ,则1+a +a 2+…+a n =________. 10.n n 21813412211⨯++⨯+⨯+⨯=________. 三、解答题11.在数列{a n }中,a 1=-11,a n +1=a n +2(n ∈N *),求数列{|a n |}的前n 项和S n .12.已知函数f (x )=a 1x +a 2x 2+a 3x 3+…+a n x n (n ∈N *,x ∈R ),且对一切正整数n 都有f (1)=n 2成立.(1)求数列{a n }的通项a n ;(2)求13221111++++n n a a a a a a .13.在数列{a n }中,a 1=1,当n ≥2时,a n =12141211-++++n ,求数列的前n 项和S n .Ⅲ 拓展训练题14.已知数列{a n }是等差数列,且a 1=2,a 1+a 2+a 3=12.(1)求数列{a n }的通项公式;(2)令b n =a n x n (x ∈R ),求数列{b n }的前n 项和公式.测试七 数列综合问题Ⅰ 基础训练题一、选择题1.等差数列{a n }中,a 1=1,公差d ≠0,如果a 1,a 2,a 5成等比数列,那么d 等于( ) (A)3 (B)2 (C)-2 (D)2或-2 2.等比数列{a n }中,a n >0,且a 2a 4+2a 3a 5+a 4a 6=25,则a 3+a 5等于( ) (A)5 (B)10 (C)15 (D)20 3.如果a 1,a 2,a 3,…,a 8为各项都是正数的等差数列,公差d ≠0,则( ) (A)a 1a 8>a 4a 5 (B)a 1a 8<a 4a 5 (C)a 1+a 8>a 4+a 5 (D)a 1a 8=a 4a 54.一给定函数y =f (x )的图象在下列图中,并且对任意a 1∈(0,1),由关系式a n +1=f (a n )得到的数列{a n }满足a n +1>a n (n ∈N *),则该函数的图象是()5.已知数列{a n }满足a 1=0,1331+-=+n n n a a a (n ∈N *),则a 20等于( )(A)0 (B)-3 (C)3(D)23 二、填空题6.设数列{a n }的首项a 1=41,且⎪⎪⎩⎪⎪⎨⎧+=+.,,41,211为奇数为偶数n a n a a n nn 则a 2=________,a 3=________.7.已知等差数列{a n }的公差为2,前20项和等于150,那么a 2+a 4+a 6+…+a 20=________. 8.某种细菌的培养过程中,每20分钟分裂一次(一个分裂为两个),经过3个小时,这种细菌可以由1个繁殖成________个.9.在数列{a n }中,a 1=2,a n +1=a n +3n (n ∈N *),则a n =________.10.在数列{a n }和{b n }中,a 1=2,且对任意正整数n 等式3a n +1-a n =0成立,若b n 是a n 与a n +1的等差中项,则{b n }的前n 项和为________. 三、解答题11.数列{a n }的前n 项和记为S n ,已知a n =5S n -3(n ∈N *).(1)求a 1,a 2,a 3;(2)求数列{a n }的通项公式; (3)求a 1+a 3+…+a 2n -1的和.12.已知函数f (x )=422+x (x >0),设a 1=1,a 21+n ·f (a n )=2(n ∈N *),求数列{a n }的通项公式.13.设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0.(1)求公差d 的范围;(2)指出S 1,S 2,…,S 12中哪个值最大,并说明理由.Ⅲ 拓展训练题14.甲、乙两物体分别从相距70m 的两地同时相向运动.甲第1分钟走2m ,以后每分钟比前1分钟多走1m ,乙每分钟走5m . (1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1m ,乙继续每分钟走5m ,那么开始运动几分钟后第二次相遇?15.在数列{a n }中,若a 1,a 2是正整数,且a n =|a n -1-a n -2|,n =3,4,5,…则称{a n }为“绝对差数列”.(1)举出一个前五项不为零的“绝对差数列”(只要求写出前十项); (2)若“绝对差数列”{a n }中,a 1=3,a 2=0,试求出通项a n ; (3)*证明:任何“绝对差数列”中总含有无穷多个为零的项.测试八 数列全章综合练习Ⅰ 基础训练题一、选择题1.在等差数列{a n }中,已知a 1+a 2=4,a 3+a 4=12,那么a 5+a 6等于( ) (A)16 (B)20 (C)24 (D)36 2.在50和350间所有末位数是1的整数和( ) (A)5880 (B)5539 (C)5208 (D)48773.若a ,b ,c 成等比数列,则函数y =ax 2+bx +c 的图象与x 轴的交点个数为( ) (A)0 (B)1 (C)2 (D)不能确定 4.在等差数列{a n }中,如果前5项的和为S 5=20,那么a 3等于( ) (A)-2 (B)2 (C)-4 (D)45.若{a n }是等差数列,首项a 1>0,a 2007+a 2008>0,a 2007·a 2008<0,则使前n 项和S n >0成立的最大自然数n 是( ) (A)4012 (B)4013 (C)4014 (D)4015 二、填空题6.已知等比数列{a n }中,a 3=3,a 10=384,则该数列的通项a n =________. 7.等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项和S 20=________. 8.数列{a n }的前n 项和记为S n ,若S n =n 2-3n +1,则a n =________.9.等差数列{a n }中,公差d ≠0,且a 1,a 3,a 9成等比数列,则1074963a a a a a a ++++=________.10.设数列{a n }是首项为1的正数数列,且(n +1)a 21+n -na 2n +a n +1a n =0(n ∈N *),则它的通项公式a n =________. 三、解答题11.设等差数列{a n }的前n 项和为S n ,且a 3+a 7-a 10=8,a 11-a 4=4,求S 13.12.已知数列{a n }中,a 1=1,点(a n ,a n +1+1)(n ∈N *)在函数f (x )=2x +1的图象上.(1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和S n ;(3)设c n =S n ,求数列{c n }的前n 项和T n .13.已知数列{a n }的前n 项和S n 满足条件S n =3a n +2.(1)求证:数列{a n }成等比数列; (2)求通项公式a n .14.某渔业公司今年初用98万元购进一艘渔船,用于捕捞,第一年需各种费用12万元,从第二年开始包括维修费在内,每年所需费用均比上一年增加4万元,该船每年捕捞的总收入为50万元.(1)写出该渔船前四年每年所需的费用(不包括购买费用);(2)该渔船捕捞几年开始盈利(即总收入减去成本及所有费用为正值)?(3)若当盈利总额达到最大值时,渔船以8万元卖出,那么该船为渔业公司带来的收益是多少万元?Ⅱ 拓展训练题15.已知函数f (x )=412-x (x <-2),数列{a n }满足a 1=1,a n =f (-11+n a )(n ∈N *).(1)求a n ;(2)设b n =a 21+n +a 22+n +…+a 212+n ,是否存在最小正整数m ,使对任意n ∈N *有b n <25m成立?若存在,求出m 的值,若不存在,请说明理由.16.已知f 是直角坐标系平面xOy 到自身的一个映射,点P 在映射f 下的象为点Q ,记作Q=f (P ).设P 1(x 1,y 1),P 2=f (P 1),P 3=f (P 2),…,P n =f (P n -1),….如果存在一个圆,使所有的点P n (x n ,y n )(n ∈N *)都在这个圆内或圆上,那么称这个圆为点P n (x n ,y n )的一个收敛圆.特别地,当P 1=f (P 1)时,则称点P 1为映射f 下的不动点.若点P (x ,y )在映射f 下的象为点Q (-x +1,21y ). (1)求映射f 下不动点的坐标;(2)若P 1的坐标为(2,2),求证:点P n (x n ,y n )(n ∈N *)存在一个半径为2的收敛圆.第三章 不等式测试九 不等式的概念与性质Ⅰ 学习目标1.了解日常生活中的不等关系和不等式(组)的实际背景,掌握用作差的方法比较两个代数式的大小.2.理解不等式的基本性质及其证明.Ⅱ 基础训练题一、选择题1.设a ,b ,c ∈R ,则下列命题为真命题的是( ) (A)a >b ⇒a -c >b -c (B)a >b ⇒ac >bc (C)a >b ⇒a 2>b 2 (D)a >b ⇒ac 2>bc 2 2.若-1<α<β<1,则α-β 的取值范围是( ) (A)(-2,2) (B)(-2,-1) (C)(-1,0) (D)(-2,0) 3.设a >2,b >2,则ab 与a +b 的大小关系是( ) (A)ab >a +b (B)ab <a +b (C)ab =a +b (D)不能确定4.使不等式a >b 和ba 11>同时成立的条件是( ) (A)a >b >0 (B)a >0>b (C)b >a >0 (D)b >0>a 5.设1<x <10,则下列不等关系正确的是( ) (A)lg 2x >lg x 2>lg(lg x ) (B)lg 2x >lg(lg x )>lg x 2 (C)lg x 2>lg 2x >1g (lg x ) (D)lg x 2>lg(lg x )>lg 2x 二、填空题6.已知a <b <0,c <0,在下列空白处填上适当不等号或等号: (1)(a -2)c ________(b -2)c ; (2)a c ________bc; (3)b -a ________|a |-|b |. 7.已知a <0,-1<b <0,那么a 、ab 、ab 2按从小到大排列为________.8.已知60<a <84,28<b <33,则a -b 的取值范围是________;ba的取值范围是________. 9.已知a ,b ,c ∈R ,给出四个论断:①a >b ;②ac 2>bc 2;③cbc a >;④a -c >b -c .以其中一个论断作条件,另一个论断作结论,写出你认为正确的两个命题是________⇒________;________⇒________.(在“⇒”的两侧填上论断序号).10.设a >0,0<b <1,则P =23+a b 与)2)(1(++=a a bQ 的大小关系是________.三、解答题11.若a >b >0,m >0,判断a b 与ma mb ++的大小关系并加以证明.12.设a >0,b >0,且a ≠b ,b a q a b ba p +=+=,22.证明:p >q .注:解题时可参考公式x 3+y 3=(x +y )(x 2-xy +y 2).Ⅲ 拓展训练题13.已知a >0,且a ≠1,设M =log a (a 3-a +1),N =log a (a 2-a +1).求证:M >N .14.在等比数列{a n }和等差数列{b n }中,a 1=b 1>0,a 3=b 3>0,a 1≠a 3,试比较a 5和b 5的大小.测试十 均值不等式Ⅰ 学习目标1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.Ⅱ 基础训练题一、选择题1.已知正数a ,b 满足a +b =1,则ab ( )(A)有最小值41 (B)有最小值21 (C)有最大值41 (D)有最大值21 2.若a >0,b >0,且a ≠b ,则( ) (A)2222b a ab ba +<<+ (B)2222b a ba ab +<+< (C)2222ba b a ab +<+<(D)2222ba ab b a +<<+ 3.若矩形的面积为a 2(a >0),则其周长的最小值为( )(A)a (B)2a (C)3a(D)4a4.设a ,b ∈R ,且2a +b -2=0,则4a +2b 的最小值是( ) (A)22(B)4(C)24(D)85.如果正数a ,b ,c ,d 满足a +b =cd =4,那么( ) (A)ab ≤c +d ,且等号成立时a ,b ,c ,d 的取值唯一 (B)ab ≥c +d ,且等号成立时a ,b ,c ,d 的取值唯一 (C)ab ≤c +d ,且等号成立时a ,b ,c ,d 的取值不唯一 (D)ab ≥c +d ,且等号成立时a ,b ,c ,d 的取值不唯一 二、填空题6.若x >0,则变量xx 9+的最小值是________;取到最小值时,x =________. 7.函数y =142+x x(x >0)的最大值是________;取到最大值时,x =________. 8.已知a <0,则316-+a a 的最大值是________. 9.函数f (x )=2log 2(x +2)-log 2x 的最小值是________.10.已知a ,b ,c ∈R ,a +b +c =3,且a ,b ,c 成等比数列,则b 的取值范围是________. 三、解答题 11.四个互不相等的正数a ,b ,c ,d 成等比数列,判断2da +和bc 的大小关系并加以证明.12.已知a >0,a ≠1,t >0,试比较21log a t 与21log +t a 的大小.Ⅲ 拓展训练题13.若正数x ,y 满足x +y =1,且不等式a y x ≤+恒成立,求a 的取值范围. 14.(1)用函数单调性的定义讨论函数f (x )=x +xa(a >0)在(0,+∞)上的单调性; (2)设函数f (x )=x +xa(a >0)在(0,2]上的最小值为g (a ),求g (a )的解析式. 测试十一 一元二次不等式及其解法Ⅰ 学习目标1.通过函数图象理解一元二次不等式与相应的二次函数、一元二次方程的联系. 2.会解简单的一元二次不等式.Ⅱ 基础训练题一、选择题1.不等式5x +4>-x 2的解集是( ) (A){x |x >-1,或x <-4} (B){x |-4<x <-1} (C){x |x >4,或x <1}(D){x |1<x <4}2.不等式-x 2+x -2>0的解集是( ) (A){x |x >1,或x <-2}(B){x |-2<x <1} (C)R(D)∅3.不等式x 2>a 2(a <0)的解集为( ) (A){x |x >±a }(B){x |-a <x <a } (C){x |x >-a ,或x <a }(D){x |x >a ,或x <-a } 4.已知不等式ax 2+bx +c >0的解集为}231|{<<-x x ,则不等式cx 2+bx +a <0的解集是( )(A){x |-3<x <21} (B){x |x <-3,或x >21} (C){x -2<x <31}(D){x |x <-2,或x >31}5.若函数y =px 2-px -1(p ∈R )的图象永远在x 轴的下方,则p 的取值范围是( ) (A)(-∞,0) (B)(-4,0] (C)(-∞,-4) (D)[-4,0) 二、填空题6.不等式x 2+x -12<0的解集是________. 7.不等式05213≤+-x x 的解集是________.8.不等式|x 2-1|<1的解集是________. 9.不等式0<x 2-3x <4的解集是________. 10.已知关于x 的不等式x 2-(a +a 1)x +1<0的解集为非空集合{x |a <x <a1},则实数a 的取值范围是________.三、解答题11.求不等式x 2-2ax -3a 2<0(a ∈R )的解集.12.k 在什么范围内取值时,方程组⎩⎨⎧=+-=-+0430222k y x x y x 有两组不同的实数解?Ⅲ 拓展训练题13.已知全集U =R ,集合A ={x |x 2-x -6<0},B ={x |x 2+2x -8>0},C ={x |x 2-4ax +3a 2<0}.(1)求实数a 的取值范围,使C ⊇(A ∩B );(2)求实数a 的取值范围,使C ⊇(U A )∩(U B ).14.设a ∈R ,解关于x 的不等式ax 2-2x +1<0.测试十二 不等式的实际应用Ⅰ 学习目标会使用不等式的相关知识解决简单的实际应用问题.Ⅱ 基础训练题一、选择题 1.函数241xy -=的定义域是( )(A){x |-2<x <2}(B){x |-2≤x ≤2} (C){x |x >2,或x <-2}(D){x |x ≥2,或x ≤-2}2.某村办服装厂生产某种风衣,月销售量x (件)与售价p (元/件)的关系为p =300-2x ,生产x 件的成本r =500+30x (元),为使月获利不少于8600元,则月产量x 满足( ) (A)55≤x ≤60 (B)60≤x ≤65 (C)65≤x ≤70 (D)70≤x ≤753.国家为了加强对烟酒生产管理,实行征收附加税政策.现知某种酒每瓶70元,不征收附加税时,每年大约产销100万瓶;若政府征收附加税,每销售100元征税r 元,则每年产销量减少10r 万瓶,要使每年在此项经营中所收附加税不少于112万元,那么r 的取值范围为( ) (A)2≤r ≤10 (B)8≤r ≤10 (C)2≤r ≤8 (D)0≤r ≤84.若关于x 的不等式(1+k 2)x ≤k 4+4的解集是M ,则对任意实常数k ,总有( ) (A)2∈M ,0∈M (B)2∉M ,0∉M (C)2∈M ,0∉M (D)2∉M ,0∈M 二、填空题5.已知矩形的周长为36cm ,则其面积的最大值为________.6.不等式2x 2+ax +2>0的解集是R ,则实数a 的取值范围是________. 7.已知函数f (x )=x |x -2|,则不等式f (x )<3的解集为________.8.若不等式|x +1|≥kx 对任意x ∈R 均成立,则k 的取值范围是________. 三、解答题9.若直角三角形的周长为2,求它的面积的最大值,并判断此时三角形形状.10.汽车在行驶过程中,由于惯性作用,刹车后还要继续滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个主要因素,在一个限速为40km/h 的弯道上,甲乙两车相向而行,发现情况不对同时刹车,但还是相撞了,事后现场测得甲车刹车的距离略超过12m ,乙车的刹车距离略超过10m .已知甲乙两种车型的刹车距离s (km)与车速x (km/h)之间分别有如下关系:s 甲=0.1x +0.01x 2,s 乙=0.05x +0.005x 2.问交通事故的主要责任方是谁?Ⅲ 拓展训练题11.当x ∈[-1,3]时,不等式-x 2+2x +a >0恒成立,求实数a 的取值范围.12.某大学印一份招生广告,所用纸张(矩形)的左右两边留有宽为4cm 的空白,上下留有都为6cm 的空白,中间排版面积为2400cm 2.如何选择纸张的尺寸,才能使纸的用量最小?测试十三 二元一次不等式(组)与简单的线性规划问题Ⅰ 学习目标1.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组. 2.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.Ⅱ 基础训练题一、选择题1.已知点A (2,0),B (-1,3)及直线l :x -2y =0,那么( ) (A)A ,B 都在l 上方 (B)A ,B 都在l 下方 (C)A 在l 上方,B 在l 下方 (D)A 在l 下方,B 在l 上方 2.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤+≥≥2,0,0y x y x 所表示的平面区域的面积为( )(A)1 (B)2 (C)3 (D)43.三条直线y =x ,y =-x ,y =2围成一个三角形区域,表示该区域的不等式组是( )(A)⎪⎩⎪⎨⎧≤-≥≥.2,,y x y x y(B)⎪⎩⎪⎨⎧≤-≤≤.2,,y x y x y(C)⎪⎩⎪⎨⎧≤-≥≤.2,,y x y x y(D)⎪⎩⎪⎨⎧≤-≤≥.2,,y x y x y4.若x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-,3,0,05x y x y x 则z =2x +4y 的最小值是( )(A)-6 (B)-10 (C)5 (D)105.某电脑用户计划使用不超过500元的资金购买单价分别为60元,70元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有( ) (A)5种 (B)6种 (C)7种 (D)8种 二、填空题6.在平面直角坐标系中,不等式组⎩⎨⎧<>00y x 所表示的平面区域内的点位于第________象限.7.若不等式|2x +y +m |<3表示的平面区域包含原点和点(-1,1),则m 的取值范围是________. 8.已知点P (x ,y )的坐标满足条件⎪⎩⎪⎨⎧≥-+≤≤,033,3,1y x y x 那么z =x -y 的取值范围是________.9.已知点P (x ,y )的坐标满足条件⎪⎩⎪⎨⎧≥-+≤≤,022,2,1y x y x 那么x y 的取值范围是________.10.方程|x |+|y |≤1所确定的曲线围成封闭图形的面积是________. 三、解答题11.画出下列不等式(组)表示的平面区域:(1)3x +2y +6>0 (2)⎪⎩⎪⎨⎧≥+--≥≤.01,2,1y x y x12.某实验室需购某种化工原料106kg ,现在市场上该原料有两种包装,一种是每袋35kg ,价格为140元;另一种是每袋24kg ,价格为120元.在满足需要的前提下,最少需要花费多少元?Ⅲ 拓展训练题13.商店现有75公斤奶糖和120公斤硬糖,准备混合在一起装成每袋1公斤出售,有两种混合办法:第一种每袋装250克奶糖和750克硬糖,每袋可盈利0.5元;第二种每袋装500克奶糖和500克硬糖,每袋可盈利0.9元.问每一种应装多少袋,使所获利润最大?最大利润是多少?14.甲、乙两个粮库要向A ,B 两镇运送大米,已知甲库可调出100吨,乙库可调出80吨,而A 镇需大米70吨,B 镇需大米110吨,两个粮库到两镇的路程和运费如下表:问:(1)这两个粮库各运往A 、B 两镇多少吨大米,才能使总运费最省?此时总运费是多少?(2)最不合理的调运方案是什么?它给国家造成不该有的损失是多少?测试十四 不等式全章综合练习Ⅰ基础训练题一、选择题1.设a ,b ,c ∈R ,a >b ,则下列不等式中一定正确的是( ) (A)ac 2>bc 2(B)ba 11< (C)a -c >b -c (D)|a |>|b |2.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≥≥+-≤-+2,042,04y y x y x 表示的平面区域的面积是( )(A)23 (B)3 (C)4 (D)6 3.某房地产公司要在一块圆形的土地上,设计一个矩形的停车场.若圆的半径为10m ,则这个矩形的面积最大值是( ) (A)50m 2 (B)100m 2 (C)200m 2 (D)250m 2 4.设函数f (x )=222x x x +-,若对x >0恒有xf (x )+a >0成立,则实数a 的取值范围是( )(A)a <1-22(B)a <22-1(C)a >22-1(D)a >1-22 5.设a ,b ∈R ,且b (a +b +1)<0,b (a +b -1)<0,则( ) (A)a >1 (B)a <-1 (C)-1<a <1 (D)|a |>1二、填空题6.已知1<a <3,2<b <4,那么2a -b 的取值范围是________,ba 的取值范围是________. 7.若不等式x 2-ax -b <0的解集为{x |2<x <3},则a +b =________.8.已知x ,y ∈R +,且x +4y =1,则xy 的最大值为________. 9.若函数f (x )=1222--⋅+aax x的定义域为R ,则a 的取值范围为________.10.三个同学对问题“关于x 的不等式x 2+25+|x 3-5x 2|≥ax 在[1,12]上恒成立,求实数a的取值范围”提出各自的解题思路. 甲说:“只须不等式左边的最小值不小于右边的最大值.”乙说:“把不等式变形为左边含变量x 的函数,右边仅含常数,求函数的最值.” 丙说:“把不等式两边看成关于x 的函数,作出函数图象.” 参考上述解题思路,你认为他们所讨论的问题的正确结论,即a 的取值范围是________. 三、解答题11.已知全集U =R ,集合A ={x | |x -1|<6},B ={x |128--x x >0}. (1)求A ∩B ; (2)求(U A )∪B .12.某工厂用两种不同原料生产同一产品,若采用甲种原料,每吨成本1000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本1500元,运费400元,可得产品100千克.今预算每日原料总成本不得超过6000元,运费不得超过2000元,问此工厂每日采用甲、乙两种原料各多少千克,才能使产品的日产量最大?Ⅱ 拓展训练题13.已知数集A ={a 1,a 2,…,a n }(1≤a 1<a 2<…<a n ,n ≥2)具有性质P :对任意的i ,j (1≤i ≤j ≤n ),a i a j 与ij a a 两数中至少有一个属于A .(1)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P ,并说明理由; (2)证明:a 1=1,且n nna a a a a a a =++++++---1121121 .测试十五 必修5模块自我检测题一、选择题1.函数42-=x y 的定义域是( )(A)(-2,2) (B)(-∞,-2)∪(2,+∞) (C)[-2,2] (D)(-∞,-2]∪[2,+∞) 2.设a >b >0,则下列不等式中一定成立的是( ) (A)a -b <0 (B)0<ba<1 (C)ab <2ba +(D)ab >a +b3.设不等式组⎪⎩⎪⎨⎧≥-≥≤0,0,1y x y x 所表示的平面区域是W ,则下列各点中,在区域W 内的点是( )(A))31,21((B))31,21(-(C))31,21(-- (D))31,21(-4.设等比数列{a n }的前n 项和为S n ,则下列不等式中一定成立的是( ) (A)a 1+a 3>0 (B)a 1a 3>0 (C)S 1+S 3<0 (D)S 1S 3<05.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若A ∶B ∶C =1∶2∶3,则a ∶b ∶c 等于( ) (A)1∶3∶2(B)1∶2∶3(C)2∶3∶1(D)3∶2∶16.已知等差数列{a n }的前20项和S 20=340,则a 6+a 9+a 11+a 16等于( ) (A)31 (B)34 (C)68 (D)70 7.已知正数x 、y 满足x +y =4,则log 2x +log 2y 的最大值是( ) (A)-4 (B)4 (C)-2 (D)28.如图,在限速为90km/h 的公路AB 旁有一测速站P ,已知点P 距测速区起点A 的距离为0.08 km ,距测速区终点B 的距离为0.05 km ,且∠APB =60°.现测得某辆汽车从A 点行驶到B 点所用的时间为3s ,则此车的速度介于()(A)60~70km/h (B)70~80km/h (C)80~90km/h (D)90~100km/h 二、填空题9.不等式x (x -1)<2的解集为________.10.在△ABC 中,三个内角A ,B ,C 成等差数列,则cos(A +C )的值为________. 11.已知{a n }是公差为-2的等差数列,其前5项的和S 5=0,那么a 1等于________.12.在△ABC 中,BC =1,角C =120°,cos A =32,则AB =________. 13.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤-+≤-+≥≥030420,0y x y x y x ,所表示的平面区域的面积是________;变量z =x +3y 的最大值是________.14.如图,n 2(n ≥4)个正数排成n 行n 列方阵,符号a ij (1≤i ≤n ,1≤j ≤n ,i ,j ∈N )表示位于第i 行第j 列的正数.已知每一行的数成等差数列,每一列的数成等比数列,且各列数的公比都等于q .若a 11=21,a 24=1,a 32=41,则q =________;a ij =________.三、解答题15.已知函数f (x )=x 2+ax +6.(1)当a =5时,解不等式f (x )<0;(2)若不等式f (x )>0的解集为R ,求实数a 的取值范围.16.已知{a n }是等差数列,a 2=5,a 5=14.(1)求{a n }的通项公式;(2)设{a n }的前n 项和S n =155,求n 的值.17.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,A ,B 是锐角,c =10,且34c o s c o s ==a b B A . (1)证明角C =90°;(2)求△ABC 的面积.18.某厂生产甲、乙两种产品,生产这两种产品每吨所需要的煤、电以及每吨产品的产值如下表所示.若每天配给该厂的煤至多56吨,供电至多45千瓦,问该厂如何安排生产,19.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos A =31.(1)求A CB 2cos 2sin 2++的值; (2)若a =3,求bc 的最大值.20.数列{a n }的前n 项和是S n ,a 1=5,且a n =S n -1(n =2,3,4,…).(1)求数列{a n }的通项公式;(2)求证:⋅<++++531111321n a a a a参考答案第一章 解三角形测试一 正弦定理和余弦定理一、选择题1.B 2.C 3.B 4.D 5.B 提示:4.由正弦定理,得sin C =23,所以C =60°或C =120°, 当C =60°时,∵B =30°,∴A =90°,△ABC 是直角三角形; 当C =120°时,∵B =30°,∴A =30°,△ABC 是等腰三角形. 5.因为A ∶B ∶C =1∶2∶3,所以A =30°,B =60°,C =90°,由正弦定理CcB b A a sin sin sin ===k , 得a =k ·sin30°=21k ,b =k ·sin60°=23k ,c =k ·sin90°=k ,所以a ∶b ∶c =1∶3∶2. 二、填空题6.362 7.30° 8.等腰三角形 9.2373+ 10.425 提示:8.∵A +B +C =π,∴-cos A =cos(B +C ).∴2cos B cos C =1-cos A =cos(B +C )+1, ∴2cos B cos C =cos B cos C -sin B sin C +1,∴cos(B -C )=1,∴B -C =0,即B =C . 9.利用余弦定理b 2=a 2+c 2-2ac cos B . 10.由tan A =2,得52sin =A ,根据正弦定理,得ABC B AC sin sin =,得AC =425. 三、解答题11.c =23,A =30°,B =90°. 12.(1)60°;(2)AD =7. 13.如右图,由两点间距离公式,得OA =29)02()05(22=-+-,同理得232,145==AB OB .由余弦定理,得cos A =222222=⨯⨯-+AB OA OB AB OA , ∴A =45°.14.(1)因为2cos(A +B )=1,所以A +B =60°,故C =120°.(2)由题意,得a +b =23,ab =2,又AB 2=c 2=a 2+b 2-2ab cos C =(a +b )2-2ab -2ab cos C=12-4-4×(21-)=10. 所以AB =10. (3)S △ABC =21ab sin C =21·2·23=23.测试二 解三角形全章综合练习1.B 2.C 3.D 4.C 5.B 提示:5.化简(a +b +c )(b +c -a )=3bc ,得b 2+c 2-a 2=bc , 由余弦定理,得cos A =212222=-+bc a c b ,所以∠A =60°.因为sin A =2sin B cos C ,A +B +C =180°, 所以sin(B +C )=2sin B cos C ,即sin B cos C +cos B sin C =2sin B cos C . 所以sin(B -C )=0,故B =C . 故△ABC 是正三角形. 二、填空题6.30° 7.120° 8.524 9.55 10.3三、解答题11.(1)由余弦定理,得c =13;(2)由正弦定理,得sin B =13392. 12.(1)由a ·b =|a |·|b |·cos 〈a ,b 〉,得〈a ,b 〉=60°;(2)由向量减法几何意义,知|a |,|b |,|a -b |可以组成三角形,所以|a -b |2=|a |2+|b |2-2|a |·|b |·cos 〈a ,b 〉=7,故|a -b |=7.13.(1)如右图,由两点间距离公式,得29)02()05(22=-+-=OA , 同理得232,145==AB OB . 由余弦定理,得,222cos 222=⨯⨯-+=AB OA OB AB OA A所以A =45°.故BD =AB ×sin A =229.(2)S △OAB =21·OA ·BD =21·29·229=29. 14.由正弦定理R CcB b A a 2sin sin sin ===,得C Rc B R b A R a sin 2,sin 2,sin 2===. 因为sin 2A +sin 2B >sin 2C ,所以222)2()2()2(R cR b R a >+, 即a 2+b 2>c 2. 所以cos C =abc b a 2222-+>0, 由C ∈(0,π),得角C 为锐角.15.(1)设t 小时后甲、乙分别到达P 、Q 点,如图,则|AP |=4t ,|BQ |=4t ,因为|OA |=3,所以t =43h 时,P 与O 重合. 故当t ∈[0,43]时, |PQ |2=(3-4t )2+(1+4t )2-2×(3-4t )×(1+4t )×cos60°; 当t >43h 时,|PQ |2=(4t -3)2+(1+4t )2-2×(4t -3)×(1+4t )×cos120°. 故得|PQ |=724482+-t t (t ≥0).(2)当t =h 4148224=⨯--时,两人距离最近,最近距离为2km . 16.(1)由正弦定理R CcB b A a 2sin sin sin ===, 得a =2R sin A ,b =2R sin B ,c =2R sinC . 所以等式c a b C B +-=2cos cos 可化为CR A R BR C B sin 2sin 22sin 2cos cos +⋅-=, 即CA BC B sin sin 2sin cos cos +-=, 2sin A cos B +sin C cos B =-cos C ·sin B ,故2sin A cos B =-cos C sin B -sin C cos B =-sin(B +C ), 因为A +B +C =π,所以sin A =sin(B +C ), 故cos B =-21, 所以B =120°.(2)由余弦定理,得b 2=13=a 2+c 2-2ac ×cos120°, 即a 2+c 2+ac =13 又a +c =4, 解得⎩⎨⎧==31c a ,或⎩⎨⎧==13c a .所以S △ABC =21ac sin B =21×1×3×23=433.第二章 数列测试三 数列一、选择题1.C 2.B 3.C 4.C 5.B 二、填空题6.(1)12+=n a n (或其他符合要求的答案) (2)2)1(1n n a -+=(或其他符合要求的答案)7.(1)2625,1716,109,54,21 (2)7 8.67 9.151 10.4提示:9.注意a n 的分母是1+2+3+4+5=15.10.将数列{a n }的通项a n 看成函数f (n )=2n 2-15n +3,利用二次函数图象可得答案. 三、解答题11.(1)数列{a n }的前6项依次是11,8,5,2,-1,-4;(2)证明:∵n ≥5,∴-3n <-15,∴14-3n <-1, 故当n ≥5时,a n =14-3n <0.12.(1)31,313,31092421102-+=++==+n n a n n a a n n ;(2)7932是该数列的第15项. 13.(1)因为a n =n -n1,所以a 1=0,a 2=23,a 3=38,a 4=415;(2)因为a n +1-a n =[(n +1)11+-n ]-(n -n1)=1+)1(1+n n又因为n ∈N +,所以a n +1-a n >0,即a n +1>a n .所以数列{a n }是递增数列.测试四 等差数列一、选择题1.B 2.D 3.A 4.B 5.B 二、填空题6.a 4 7.13 8.6 9.6n -1 10.35 提示:10.方法一:求出前10项,再求和即可;方法二:当n 为奇数时,由题意,得a n +2-a n =0,所以a 1=a 3=a 5=…=a 2m -1=1(m ∈N *).当n 为偶数时,由题意,得a n +2-a n =2,即a 4-a 2=a 6-a 4=…=a 2m +2-a 2m =2(m ∈N *). 所以数列{a 2m }是等差数列.故S 10=5a 1+5a 2+2)15(5-⨯×2=35. 三、解答题11.设等差数列{a n }的公差是d ,依题意得⎪⎩⎪⎨⎧=⨯+=+.242344,7211d a d a 解得⎩⎨⎧==.2,31d a ∴数列{a n }的通项公式为a n =a 1+(n -1)d =2n +1. 12.(1)设等差数列{a n }的公差是d ,依题意得⎩⎨⎧=+=+.5019,30911d a d a 解得⎩⎨⎧==.2,121d a ∴数列{a n }的通项公式为a n =a 1+(n -1)d =2n +10.(2)数列{a n }的前n 项和S n =n ×12+2)1(-⨯n n ×2=n 2+11n , ∴S n =n 2+11n =242,解得n =11,或n =-22(舍).13.(1)通项a n =a 1+(n -1)d =50+(n -1)×(-0.6)=-0.6n +50.6.解不等式-0.6n +50.6<0,得n >84.3. 因为n ∈N *,所以从第85项开始a n <0.(2)S n =na 1+2)1(-n n d =50n +2)1(-n n ×(-0.6)=-0.3n 2+50.3n .由(1)知:数列{a n }的前84项为正值,从第85项起为负值, 所以(S n )max =S 84=-0.3×842+50.3×84=2108.4.。

高二期末测试卷必修五用

高二期末测试卷必修五用

高中数学必修5模块期末综合测试卷一一、选择题(本大题共12小题,每小题5分,共60分.)1.一个直角三角形三内角的正弦值成等比数列,则其最小内角的正弦值为( ) A.5+12 B.5-12 C.1-52 D.122.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .9 3.不等式ax 2+bx +2>0的解集是⎝ ⎛⎭⎪⎫-12,13,则a +b 的值是( )A .10B .-10C .-14D .144.已知数列{a n }满足a 1=0,a n +1=a n +2n ,那么a 2 009的值是( )A .2 0092B .2 008×2 007C .2 009×2 010D .2 008×2 009 5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( )A.π6B.π3C.π6或5π6D.π3或2π3 6.已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=( ) A .5 2 B .7 C .6 D .4 27.若变量x ,y 满足约束条件⎩⎨⎧y ≤1,x +y ≥0,x -y -2≤0,则z =x -2y 的最大值为( )A .4B .3C .2D .18.设{a n }是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y ,Z ,则下列等式中恒成立的是( )A .X +Z =2Y B .Y (Y -X )=Z (Z -X ) C .Y 2=XZ D .Y (Y -X )=X (Z -X )9.下列命题正确的是( )A .a ,b ∈R ,且a >b ,则a 2>b 2B .若a >b ,c >d ,则a c >bdC .a ,b ∈R ,且ab ≠0,则a b +ba ≥2D .a ,b ∈R ,且a >|b |,则a n >b n (n ∈N *) 10.在△ABC 中,已知a 比b 长2,b 比c 长2,且最大角的正弦值是32,则△ABC 的面积是( )A.154B.1543C.214 3D.3543 11.已知数列{a n }为等比数列,S n 是它的前n 项和.若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )A .35B .33C .31D .29 12.已知x ,y ∈R +,2x +y =2,c =xy ,那么c 的最大值为( )A .1 B.12 C.22 D.14二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 13.在△ABC 中,若b =1,c =3,∠C =2π3,则a =________. 14.不等式ax 2+4x +a >1-2x 2对一切x ∈R 恒成立,则实数a 的取值范围是________.15.设x ,y 满足约束条件⎩⎨⎧2x -y +2≥0,8x -y -4≤0,x ≥0,y ≥0,若目标函数z =abx +y (a >0,b >0)的最大值为8,则a +b 的最小值为________.16.设实数x ,y 满足3≤xy 2≤8,4≤x 2y ≤9,则x3y4的最大值是______.三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)某单位在抗雪救灾中,需要在A ,B 两地之间架设高压电线,测量人员在相距6 000 m 的C 、D 两地(A ,B ,C ,D 在同一平面上)测得∠ACD =45°,∠ADC =75°,∠BCD =30°,∠BDC =15°(如图).假如考虑到电线的自然下垂和施工损耗等原因,实际所需电线长度大约是A 、B 两地之间距离的1.2倍,问施工单位至少应该准备多长的电线(精确到0.1 m)?(参考数据:2≈1.4,3≈1.7,7≈2.6)18.(本小题满分12分)已知关于x的不等式2x2+(3a-7)x+(3+a-2a2)<0的解集中的一个元素为0,求实数a的取值范围,并用a表示该不等式的解集.19.(本小题满分12分)已知{a n}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(1)求数列{a n}的通项;(2)求数列{2a n}的前n项和S n.20.(本小题满分12分)某村计划建造一个室内面积为72 m2的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留1 m宽的通道,沿前侧内墙保留3 m宽的空地.当矩形温室的边长各为多少时?蔬菜的种植面积最大,最大种植面积是多少?21.(本小题满分12分)某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如下表:22.(本小题满分14分)设数列{a n}的前n项和为S n=2n2,{b n}为等比数列,且a1=b1,b2(a2-a1)=b1.(1)求数列{a n}和{b n}的通项公式;(2)设c n =a nb n,求数列{c n }的前n 项和T n .1.解析: 设最小内角为α,则sin α,cos α,1成等比数列,所以1-sin 2α=sin α, 解得sin α=5-12或sin α=-5-12(舍).答案: B 2.解析: a 4+a 6=2a 5=-6∴a 5=-3∴d =a 5-a 15-1=2∴S n =-11n +n (n -1)2·2=n 2-12n故n =6时S n 取最小值.答案: A3.解析: 不等式ax 2+bx +2>0的解集是⎝ ⎛⎭⎪⎫-12,13,即方程ax 2+bx +2=0的解为x =-12或13, 故⎩⎪⎨⎪⎧-12+13=-b a ,-12×13=2a .解得⎩⎨⎧a =-12,b =-2,∴a +b =-14.答案: C4.解析:由已知a n +1-a n =2n ,所以a 2-a 1=2×1,a 3-a 2=2×2,a 4-a 3=2×3,…,a n -a n -1=2×(n -1),以上各式两端分别相加得:a n -a 1=2[1+2+3+…+(n -1)]=n (n -1),即a n =n (n -1)∴a 2 009=2 008×2 009.D5.解析: 由余弦定理,得a 2+c 2-b 2=2ac cos B .由已知,得2ac cos B ·sin Bcos B =3ac ,即sin B=32,又B 是三角形的内角,所以B =π3或2π3.故选D.答案: D 6.解析:a 7·a 8·a 9a 1·a 2·a 3=q 18=2,∴q 9=2,a 4·a 5·a 6=(a 1·a 2·a 3)·q 9=5 2.答案: A7.解析: 作出可行域如图所示目标函数y =12x -12z过点A (1,-1)时z max =3答案: B8.解析: 易知X ,Y -X ,Z -Y 成等比数列∴(Y -X )2=X (Z -Y ) 化简可得Y (Y -X )=X (Z -X ).答案: D 9.解析: a >|b |≥0,故a n >b n .答案: D10.解析: 由题可知a =b +2,b =c +2,∴a =c +4.∵sin A =32,∴A =120°.又cos A =cos 120°=b 2+c 2-a 22bc=(c +2)2+c 2-(c +4)22c (c +2)=c 2-4c -122c (c +2)=-12,整理得c 2-c -6=0,∴c =3(c =-2舍去),从而b =5,∴S △ABC =12bc sin A =1543.故选B.答案: B11.解析: 设公比为q ,由题意知⎩⎪⎨⎪⎧a 2·a 3=a 12q 3=2a 1a 4+2a 7=a 1q 3+2a 1q 6=52即⎩⎪⎨⎪⎧a 1q 3=2a 1q 3+2a 1·q 3·q 3=52解得⎩⎪⎨⎪⎧q =12a 1=16,故S 5=16×⎝ ⎛⎭⎪⎫1-1251-12=31.答案: C12.解析: 由已知,2=2x +y ≥22xy =22c ,所以c ≤12.答案: B13.解析: ∵c 2=a 2+b 2-2ab cos ∠C ,∴(3)2=a 2+12-2a ·1·cos 23π,∴a 2+a -2=0,∴(a +2)(a -1)=0∴a =1答案: 114.解析: 不等式ax 2+4x +a >1-2x 2对一切x ∈R 恒成立,即(a +2)x 2+4x +a -1>0对一切x ∈R 恒成立.若a +2=0,则4x -3>0,显然不恒成立;若a +2≠0,则⎩⎨⎧a +2>0,Δ<0,即⎩⎨⎧a +2>0,42-4(a +2)(a -1)<0,解得a >2.答案: (2,+∞) 15.解析: 可行域如图所示 目标函数y =-abx +z∵a >0,b >0 ∴斜率-ab <0∴直线过A (1,4)时z 取到最大值8∴ab =4∴a +b ≥2ab =4(当且仅当a =b =2时等号成立)∴a +b 的最小值为4.16.解析: 由3≤xy 2≤8得18≤1xy 2≤13①由4≤x 2y ≤9得16≤x 4y 2≤81②①×②得2≤x 3y4≤27∴最大值为2717.解析: 在△ACD 中∠CAD =180°-∠ACD -∠ADC =60°,=23CD .在CD =6 000,∠ACD =45°,根据正弦定理,得AD =CD sin 45°sin 60°△BCD 中,∠CBD =180°-∠BCD -∠BDC =135°,CD = 6 000,∠BCD=30°,根据正弦定理,得BD =CD sin 30°sin 135°=22CD .又在△ABD 中,∠ADB =∠ADC +∠BDC =90°,根据勾股定理,得AB =AD 2+BD 2=23+12CD =1 00042,而1.2AB ≈7 425.6,则实际所需电线长度约为7 425.6 m.18.解析: 原不等式即(2x -a -1)(x +2a -3)<0,由x =0,适合不等式,故(0-a -1)(2a -3)<0,即(a +1)(2a -3)>0,∴a >32或a <-1.若a >32,则-2a +3-a +12=52(1-a )<-54,∴不等式的解集为⎝⎛⎭⎪⎫3-2a ,a +12; 若a <-1,则-2a +3-a +12=52(1-a )>5,∴不等式的解集为⎝ ⎛⎭⎪⎫a +12,3-2a .综上,a 的取值范围是(-∞,-1)∪⎝ ⎛⎭⎪⎫32,+∞.当a >32时,不等式的解集为⎝ ⎛⎭⎪⎫3-2a ,a +12.当a <-1时,不等式的解集为⎝ ⎛⎭⎪⎫a +12,3-2a .19.解析: (1)由题设知公差d ≠0,由a 1=1,a 1,a 3,a 9成等比数列得1+2d 1=1+8d1+2d,解得d =1,d =0(舍去),故{a n }的通项a n =1+(n -1)×1=n .(2)由(1)知2a n =2n ,由等比数列前n 项和公式得S n =2+22+23+ (2)=2(1-2n)1-2=2n +1-2.20.解析: 设矩形温室的左侧边长为a m ,后侧边长为b m ,则ab =72,蔬菜的种植面积S =(a -4)(b -2)=ab -4b -2a +8=80-2(a +2b )≤80-42ab =32(m 2)当且仅当a =2b ,即a =12,b =6时,S max =32.答:矩形温室的边长为6 m,12 m 时,蔬菜的种植面积最大,最大种植面积是32 m 2. 21.解析: 设空调机、洗衣机的月供应量分别是x ,y 台,总利润是z ,则z =6x +8y由题意有⎩⎨⎧30x +20y ≤300,5x +10y ≤110,x ≥0,y ≥0,x ,y 均为整数.由图知直线y =-34x +18z 过M (4,9)时,纵截距最大.这时z 也取最大值z max =6×4+8×9=96(百元).故当月供应量为空调机4台,洗衣机9台时,可获得最大利润9 600元. 22.解析: (1)当n ≥2时,a n =S n -S n -1=2n 2-2(n -1)2=4n -2, 当n =1时,a 1=S 1=2满足上式,故{a n }的通项式为a n =4n -2.设{b n }的公比为q ,由已知条件b 2(a 2-a 1)=b 1知,b 1=2,b 2=12,所以q =14,∴b n =b 1q n -1=2×14n -1,即b n =24n -1.(2)∵c n =a n b n=4n -224n -1=(2n -1)4n -1,∴T n =c 1+c 2+…+c n =[1+3×41+5×42+…+(2n -1)4n -1]. 4T n =[1×4+3×42+5×42+…+(2n -3)4n -1+(2n -1)4n ]. 两式相减得:3T n =-1-2(41+42+43+…+4n -1)+(2n -1)4n =13[(6n -5)4n +5].∴T n =19[(6n -5)4n +5].高中数学必修5模块期末综合测试卷二一、选择题(本大题共12小题,每小题5分,共60分. 1.在△ABC 中,a =5,b =15,A =30°,则c 等于( ) A .25 B.5C .25或 5 D .3 5 2.当0<a <b <1时,下列不等式正确的是( )A .(1-a )1b >(1-a )bB .(1+a )a >(1+b )bC .(1-a )b >(1-a )b2D .(1-a )a >(1-b )b3.已知点(3,1)和(-4,6)在直线3x -2y +a =0的两侧,则a 的取值范围是( ) A .a <-7或a >24 B .a =7或a =24C .-7<a <24 D .-24<a <74.数列1,3,7,15,…的通项公式a n 等于( ) A .2n B .2n +1 C .2n -1D .2n -15.△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,如果a ,b ,c 成等差数列,B =30°,△ABC 的面积为32,那么b =( )A.1+32 B .1+3C.2+32D .2+ 36.若数列{x n }满足lg x n +1=1+lg x n (n ∈N *),且x 1+x 2+x 3+…+x 100=100,则lg(x 101+x 102+…+x 200)的值为( )A .102 B .101C .100 D .997.在△ABC 中,角A 、B ,C 所对的边长分别为a ,b ,c ,若∠C =120°,c =2a ,则( ) A .a >b B .a <b C .a =b D .a 与b 的大小关系不能确定8.设变量x ,y 满足约束条件⎩⎨⎧x ≥0,x -y ≥0,2x -y -2≤0,则z =3x -2y 的最大值为( )A .0B .2C .4D .69.函数f (x )=1x ln(x 2-3x +2+-x 2-3x +4)的定义域为( )A .(-∞,-4]∪[2,+∞)B .(-4,0)∪(0,1)C .[-4,0)∪(0,1]D .[-4,0)∪(0,1) 10.已知x ≥52,则f (x )=x 2-4x +52x -4有( )A .最小值54B .最大值54C .最小值1D .最大值111.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6.则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( )A.158或5B.3116或5C.3116D.15812.已知各项均为正数的等差数列{a n }的前20项和为100,那么a 3·a 18的最大值是( ) A .50 B .25 C .100 D .220二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 13.在△ABC 中,已知a =4,b =6,C =120°,则sin A 的值是________. 14.设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=24,则a 9=________.15.某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与仓库到车站的距离成正比,如果在距离车站10 km 处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站________处.16.已知关于x 的不等式(a 2-4)x 2+(a +2)x -1≥0的解集为空集,则实数a 的取值范围是________.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分12分)在△ABC 中,a ,b ,c 分别是A ,B ,C 的对边,且2sin A =3cos A .(1)若a 2-c 2=b 2-mbc ,求实数m 的值; (2)若a =3,求△ABC 面积的最大值.18.(本小题满分12分)数列{a n }中,a 1=13,前n 项和S n 满足S n +1-S n =⎝ ⎛⎭⎪⎫13n +1(n ∈N *).(1)求数列{a n}的通项公式a n以及前n项和S n;(2)若S1,t(S1+S2),3(S2+S3)成等差数列,求实数t的值.19.(本小题满分12分)已知全集U=R,集合A={x|x2+(a-1)x-a>0},B={x|(x+a)(x+b)>0(a≠b)},M={x|x2-2x-3≤0}.(1)若∁U B=M,求a,b的值;(2)若-1<b<a<1,求A∩B;(3)若-3<a<-1,且a2-1∈∁U A,求实数a的取值范围.20.(本小题满分12分)某人有楼房一幢,室内面积共180 m2,拟分隔成两类房间作为旅游客房.大客房每间面积为18 m2,可住游客5名,每名游客每天住宿费为40元;小房间每间15 m2,可住游客3名,每名游客每天住宿费为50元;装修大房间每间需1 000元,装修小房间每间需600元.如果他只能筹款8 000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,才能获得最大收益?21.(本小题满分12分)森林失火,火势以每分钟100 m2的速度顺风蔓延,消防站接到报警后立即派消防员前去,在失火5分钟到达现场开始救火,已知消防员在现场平均每人每分钟可灭火50 m2,所消耗的灭火材料、劳务津贴等费用平均每人每分钟125元,所消耗的车辆、器械和装备等费用平均每人100元,而每烧毁1 m2的森林损失费为60元,设消防队派x名消防队员前去救火,从到现场把火完全扑灭共用n分钟.(1)求出x与n的关系式;(2)求x为何值时,才能使总损失最少.22.(本小题满分14分)已知等差数列{a n }满足:a 3=7,a 5+a 7=26.{a n }的前n 项和为S n . (1)求a n 及S n ; (2)令b n =1a n 2-1(n ∈N *),求数列{b n }的前n 项和T n .高中数学必修5模块期末综合测试卷二一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.解析: 由余弦定理:cos A =b 2+c 2-a 22bc ,∴32=15+c 2-52×15×c,即c 2-35c +10=0,∴c =5或25,经检验,a ,b ,c 能构成三角形.故选C.2.解析: 特值法.取a =14,b =12,则(1-a )1b =⎝ ⎛⎭⎪⎫1-142=⎝ ⎛⎭⎪⎫342=916.(1-a )b =⎝ ⎛⎭⎪⎫1-1412=32.∴(1-a )1b <(1-a )b .故排除 A.同理可排除B ,C.答案: D3.解析: (3×3-2×1+a )·(-3×4-2×6+a )<0⇔-7<a <24.答案: C4.解析: 取n =1时,a 1=1,排除A 、B ,取n =2时,a 2=3,排除D.答案: C 5.解析: 2b =a +c ,S =12ac sin B =32∴ac =6又∵b 2=a 2+c 2-2ac cos B ∴b 2=(a +c )2-2ac -2ac cos 30°∴b 2=4+23,即b =1+3,故选B6.解析: 由lg x n +1=1+lg x n 得x n +1x n =10,∴数列{x n }是公比为10的等比数列,又x 101=x 1·q 100,x 102=x 2·q 100,…,x 200=x 100·q 100,∴x 101+x 102+…+x 200=q 100(x 1+x 2+…+x 100) =10100·100=10102.∴lg(x 101+x 102+…+x 200)=102.答案: A 7.解析: 由正弦定理得a sin A =c sin C 即a sin A =2a sin 120°∴sin A =64>12∴A >30°,则B <30°故A >B ,∴a >b 答案: A8.解析: 作出可行域如图所示目标函数y =32x -12z 易知过A (0,-2)时z max =4答案: C9.解析: 由已知得⎩⎨⎧x 2-3x +2≥0,-x 2-3x +4≥0,x 2-3x +2+-x 2-3x +4>0,x ≠0.⇔⎩⎨⎧x ≤1或x ≥2,-4≤x ≤1,x 2-3x +2+-x 2-3x +4>0,x ≠0.⇔x ∈[-4,0)∪(0,1).答案: D10.解析: f (x )=(x -2)2+12(x -2)=(x -2)2+12(x -2).∵x ≥52,∴x -2>0,∴f (x )≥214=1.当且仅当x -22=12(x -2),即x =3时,取等号.答案: C11.解析: 9S 3=S 6而S 6=S 3+a 4+a 5+a 6∴8(a 1+a 2+a 3)=a 4+a 5+a 6即q 3=8∴q =2 ∴数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公比的等比数列.S ′5=1·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1251-12=3116.答案: C12.解析: 由题可知S 20=20(a 1+a 20)2=20(a 3+a 18)2=100,所以a 3+a 18=10,故a 3·a 18≤⎝⎛⎭⎪⎫a 3+a 1822=25. 13.解析: 根据余弦定理c 2=a 2+b 2-2ab cos C =42+62-2×4×6cos120°=76.所以c =219,根据正弦定理,得sin A =a sin C c =4sin 120°219=5719.14.解析: 由⎩⎨⎧S 3=3S 6=24知⎩⎪⎨⎪⎧3a 1+3×(3-1)2d =36a 1+6(6-1)2d =24即⎩⎨⎧ a 1+d =12a 1+5d =8,∴⎩⎨⎧a 1=-1d =2∴a 9=-1+8×2=1515.解析: 由已知得y 1=20x ,y 2=0.8x (x 为仓库与车站的距离).费用之和y =y 1+y 2=0.8x +20x ≥20.8x ·20x =8,当且仅当0.8x =20x 即x =5时等号成立.16.解析: 当a =-2时,原不等式可化为0·x 2+0·x -1≥0,解集为空集,符合题意. 当a =2时,原不等式可化为0.x 2+4x -1≥0,解集不能为空集.当⎩⎨⎧a 2-4<0Δ=(a +2)2+4(a 2-4)<0,不等式的解集为空集.∴-2<a <65综上-2≤a <65. 17.解析: (1)将2sin A =3cos A 两边平方,得2sin 2A =3cos A ,即(2cos A -1)(cos A +2)=0.解得cos A =12>0,∵0<A <π2,∴A =60°.a 2-c 2=b 2-mbc 可以变形得b 2+c 2-a 22bc =m 2.即cos A =m 2=12,∴m=1.(2)∵cos A =b 2+c 2-a 22bc =12,∴bc =b 2+c 2-a 2≥2bc -a 2,即bc ≤a 2.故S △ABC =bc 2sin A ≤a 22×32=334.∴△ABC 面积的最大值为34 3.18.解析: (1)由S n +1-S n =⎝ ⎛⎭⎪⎫13n +1得a n +1=⎝ ⎛⎭⎪⎫13n +1(n ∈N *);又a 1=13,故a n =⎝ ⎛⎭⎪⎫13n (n ∈N *).从而,S n =13×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n 1-13=12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n (n ∈N *).(2)由(1)可得S 1=13,S 2=49,S 3=1327.从而由S 1,t (S 1+S 2),3(S 2+S 3)成等差数列可得 13+3⎝ ⎛⎭⎪⎫49+1327=2×⎝ ⎛⎭⎪⎫13+49t ,解得t =2. 19.解析: 由题意,得A ={x |(x +a )(x -1)>0},∁U B ={x |(x +a )(x +b )≤0},M ={x |(x +1)(x-3)≤0}.(1)若∁U B =M ,则(x +a )(x +b )=(x +1)(x -3),所以a =1,b =-3,或a =-3,b =1. (2)若-1<b <a <1,则-1<-a <-b <1,所以A ={x |x <-a 或x >1},B ={x |x <-a 或x >-b }.故A ∩B ={x |x <-a 或x >1}.(3)若-3<a <-1,则1<-a <3,所以A ={x |x <1或x >-a },∁U A ={x |1≤x ≤-a }.又由a 2-1∈∁U A ,得1≤a 2-1≤-a ,即⎩⎨⎧a 2-2≥0a 2+a -1≤0,解得-1-52≤a ≤- 2.20.解析: 设隔出大房间x 间,小房间y 间,获得收益为z 元,则⎩⎨⎧18x +15y ≤180,1 000x +600y ≤8 000,x ≥0,y ≥0,且x ,y ∈N即⎩⎨⎧6x +5y ≤60,①5x +3y ≤40,②x ≥0,y ≥0,且x ,y ∈N.目标函数为z =200x +150y 画出可行域如图阴影部分所示.作出直线l :200x +150y =0,即直线4x +3y =0.当l 经过平移过可行域上的点A ⎝ ⎛⎭⎪⎫207,607时,z 有最大值,由于A 的坐标不是整数,而x ,y ∈N ,所以A 不是最优解.调整最优解: 4x +3y ≤37,令4x +3y =37,即y =37-4x3,代由x ,y ∈N ,知z ′=解得52≤x ≤3.入约束条件①,②,可但此时y =253∉N.再次调整最优解: 由于x ∈N ,得x =3,令4x +3y =36,即y =36-4x3,代入约束条件①,②,可解得0≤x ≤4(x ∈N).当x =0时,y =12;当x =1时,y =1023;当x =2时,y =913;当x =3时,y =8;当x =4时,y =623.所以最优解为(0,12)和(3,8),这时z ′max =36,z max =1 800.所以应隔出小房间12间或大房间3间、小房间8间,可以获得最大收益. 21.解析: (1)由已知可得50nx =100(n +5),所以n =10x -2(x >2).(2)设总损失为y 元,则y =6 000(n +5)+100x +125nx =6 000⎝ ⎛⎭⎪⎫10x -2+5+100x +1 250x x -2=62 500x -2+100(x -2)+31450≥26250 000+31 450=36 450,当且仅当62 500x -2=100(x -2),即x =27时,y 取最小值.答:需派27名消防员,才能使总损失最小,最小值为36 450元.22.解析:(1)设等差数列{a n}的首项为a1,公差为d,由于a3=7,a5+a7=26,所以a1+2d=7,2a1+10d=26,解得a1=3,d=2.由于a n=a1+(n-1)d,S n=n(a1+a n)2,所以a n=2n+1,S n=n(n+2).(2)因为a n=2n+1,所以a n2-1=4n(n+1),因此b n=14n(n+1)=14⎝⎛⎭⎪⎫1n-1n+1.故T n=b1+b2+…+b n=14⎝⎛⎭⎪⎫1-12+12-13+…+1n-1n+1=14⎝⎛⎭⎪⎫1-1n+1=n4(n+1)所以数列{b n}的前n项和T n=n4(n+1).。

高中数学必修5综合测试题及答案(3份)

高中数学必修5综合测试题及答案(3份)

1高中数学必修5综合测试(1)一、选择题:1.如果33log log 4m n +=,那么n m +的最小值是( ) A .4 B .34C .9D .18 2、数列{}n a 的通项为n a =12-n ,*N n ∈,其前n 项和为n S ,则使n S >48成立的n 的最小值为( )A .7B .8C .9D .103、若不等式897x +<和不等式022>-+bx ax 的解集相同,则a 、b 的值为( ) A .a =﹣8 b =﹣10 B .a =﹣4 b =﹣9 C .a =﹣1 b =9D .a =﹣1 b =2 4、△ABC 中,若2cos c a B =,则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .锐角三角形5、在首项为21,公比为12的等比数列中,最接近1的项是( ) A .第三项 B .第四项 C .第五项 D .第六项 6、在等比数列{}n a 中,117a a ⋅=6,144a a +=5,则1020a a 等于( )A .32B .23C .23或32D .﹣32或﹣237、△ABC 中,已知()()a b c b c a bc +++-=,则A 的度数等于( )A .120 B .60 C .150 D .308、数列{}n a 中,1a =15,2331-=+n n a a (*N n ∈),则该数列中相邻两项的乘积是负数的是( ) A .2221a a B .2322a a C .2423a a D .2524a a9、某厂去年的产值记为1,计划在今后五年内每年的产值比上年增长10%,则从今年起到第五年,这个厂的总产值为( )A .41.1B .51.1 C .610(1.11)⨯- D . 511(1.11)⨯-10、已知钝角△ABC 的最长边为2,其余两边的长为a 、b ,则集合{}b y a x y x P ===,|),(所表示的平面图形面积等于( )A .2B .2-πC .4D .24-π 二、填空题:11、在△ABC 中,已知BC=12,A=60°,B=45°,则AC= 12.函数2lg(12)y x x =+-的定义域是13.数列{}n a 的前n 项和*23()n n s a n N =-∈,则5a =14、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为15、已知数列{}n a 、{}n b 都是等差数列,1a =1-,41-=b ,用k S 、'k S 分别表示数列{}n a 、{}n b 的前k 项和(k 是正整数),若k S +'k S =0,则k k b a +的值为三、解答题:16、△ABC 中,c b a ,,是A ,B ,C 所对的边,S 是该三角形的面积,且cos cos 2B bC a c=-+ (1)求∠B 的大小;(2)若a =4,35=S ,求b 的值。

北师大高中数学必修5综合测试卷及答案

北师大高中数学必修5综合测试卷及答案

必修五综合测试卷姓名: 学号: 得分:一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有 一项是符合题目要求的.1.已知等差数列{}n a 的首项为3,公差为2,则7a 的值等于( ) A .1B .14C .15D .162.∆ABC 中,AB45A =︒,C =75︒则BC=( ) A .3-BC .2D .3.已知等差数列{}n a 中,前n 项和为S n ,若3a +9a =6,则S 11=( )A .12B .33C .66D .994.对于任意实数a ,b ,c ,d ,以下四个命题中①ac 2>bc 2,则a >b ;②若a >b ,c >d , 则a c b d +>+;③若a >b ,c >d ,则ac bd >;④a >b ,则1a >1b其中正确的有( ) A .1个 B .2个 C .3个 D .4个5.某船开始看见灯塔在南偏东30︒方向,后来船沿南偏东60︒的方向航行45km 后,看见灯塔在正西方向,则这时船与灯塔的距离是( ) A .15kmB .30kmC .15D .km6.已知等比数列{}n a ,若1a +2a =20,3a +4a =80,则5a +6a 等于( ) A .480B .320C .240D .1207.在∆ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若()cos cos sin a C c A B +=,则角B 的值为( ) A .6πB .3πC .6π或56π D .3π或23π8.数列{}n a 满足a 1=1,()1122n n n a a n a --=≥+,则使得12009k a >的最大正整数k 为( )A .5B .7C .8D .109.f x ax ax ()=+-21在R 上满足f x ()<0,则a 的取值范围是 ( )A .a ≤0B .a <-4C .-<<40aD .-<≤40a10.设S n 是等差数列{}n a 的前n 项和,若5359a a =,则95S S 的值为A .1B .-1C .2D .21二、填空题(本大题共5个小题,每小题5分,共25分,将答案填在题后的横线上) 11.在钝角三角形ABC ∆中a=1,b=2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修五综合测试题
一.选择题
1.已知数列{a n }中,21=a ,*11()2
n n a a n N +=+∈,则101a 的值为 ( ) A .49 B .50 C .51 D .52
2121,两数的等比中项是( )
A .1
B .1
C .1
D .12 3.在三角形ABC 中,如果()()3a b c b c a bc +++-=,那么A 等于( )
A .030
B .060
C .0120
D .0150
4.在⊿ABC 中,B
C b c cos cos =,则此三角形为 ( ) A .直角三角形B. 等腰直角三角形 C. 等腰三角形 D.等腰或直角三角形
5.已知n a 是等差数列,且a 2+a 3+a 10+a 11=48,则a 6+a 7= ( )
A .12
B .16
C .20
D .24
6.在各项均为正数的等比数列
{}n b 中,若783b b ⋅=, 则3132log log b b ++……314log b +等于( )
(A) 5 (B) 6(C)7 (D)8 7.已知b a ,满足:a =3,b =2,b a +=4,则b a -=( )
A B C .3 D 10
8.一个等比数列}{n a 的前n 项和为48,前2n 项和为60,则前3n 项和为( )
A 、63
B 、108
C 、75
D 、83
9.数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N +),那么a 4的值为().
A .4
B .8
C .15
D .31
10.已知△ABC 中,∠A =60°,a =6,b =4,那么满足条件的△ABC 的形状大小().
A .有一种情形
B .有两种情形
C .不可求出
D .有三种以上情形
11.已知D 、C 、B 三点在地面同一直线上,DC=a ,从C 、D 两点测得A 的点仰角分别为α、β(α>β)则A 点离地面的高AB 等于()
A .)sin(sin sin βαβα-a
B .)
cos(sin sin βαβα-a C .
)sin(cos cos βαβα-a D .)
cos(cos cos βαβα-a
12.若{a n }是等差数列,首项a 1>0,a 4+a 5>0,a 4·a 5<0,则使前n 项和S n >0成立的最大自然数n 的值为().
A .4
B .5
C .7
D .8
二、填空题
13.在数列{a n }中,其前n 项和S n =3·2n +k ,若数列{a n }是等比数列,则常数k 的值为
14.△ABC 中,如果A a tan =B b tan =C
c tan ,那么△ABC 是 15.数列{}n a 满足12a =,112
n n n a a --=
,则n a = ; 16.两等差数列}{n a 和}{n b ,前n 项和分别为n n T S ,,且,327++=n n T S n n 则15
7202b b a a ++等于_ 三.解答题 (解答应写出文字说明、证明过程或演算步骤)
17.分已知c b a ,,是同一平面内的三个向量,其中a ()1,2=.
(1)若52=c ,且c //a ,求c
的坐标; (2) 若|b |=,2
5且b a 2+与b a -2垂直,求a 与b 的夹角θ. 18.△ABC 中,BC =7,AB =3,且B C sin sin =5
3. (1)求AC ; (2)求∠A .
19. 已知等比数列{}n a 中,45,106431=
+=+a a a a ,求其第4项及前5项和. 20. 在ABC ∆中,cos ,sin ,cos ,sin 2222C C C C ⎛
⎫⎛⎫==- ⎪ ⎪⎝⎭⎝
⎭m n ,且m 和n 的夹角为3π。

(1)求角C ;(2)已知c =2
7,三角形的面
积s =,求.a b + 21.已知等差数列{a n }的前n 项的和记为S n .如果a 4=-12,a 8=-4.
(1)求数列{a n }的通项公式;
(2)求S n 的最小值及其相应的n 的值;
22.已知等比数列n a 的前n 项和为n S ,且n a 是n S 与2的等差中项,
等差数列n b 中,1
2b ,点1(,)n n P b b 在一次函数2y x =+的图象上.
⑴求1a 和2a 的值; ⑵求数列,n n a b 的通项n a 和n b ;
⑶ 设n n n b a c ⋅=,求数列{}n c 的前n 项和n T .
必修五综合测试题
一.选择题。

1-5 DCBCD 5-10 CDACC 11-12 AD
二.填空题
13. -3 14. 等边三角形 15. 51()22
n - 16. 24149 三.解答题
17.解:⑴设),,(y x c =x y y x a a c 2,02),2,1(,//=∴=-∴= …………2分 20,52,52|2222=+∴=+∴=y x y x c ,20422=+x x
∴⎩⎨⎧==42y x 或 ⎩⎨⎧-=-=4
2y x ∴)4,2(),4,2(--==或…………4分 ⑵0)2()2(),2()2(=-⋅+∴-⊥+
0||23||2,0232222
2=-⋅+∴=-⋅+b b a a b b a a
,45)25(||,5||222=== 代入上式, 2
50452352-=⋅∴=⨯-⋅+⨯∴b a b a …………6分 ,125
525cos ,25||,5||-=⋅-
==∴==b a θ
πθπθ=∴∈],0[ …………8分
18.解:(1)由正弦定理得
B A
C sin =C AB sin ⇒AC AB =B
C sin sin =53⇒AC =335⨯=5. (2)由余弦定理得
cos A =AC AB BC AC AB ⋅-+2222=5
3249259⨯⨯-+=21-,所以∠A =120°. 19.解:设公比为q , ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1分
由已知得 ⎪⎩
⎪⎨⎧=+=+45105131211q a q a q a a ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 3分 即⎪⎩
⎪⎨⎧=+=+ 45)1(①10)1(23121 q q a q a ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 5分 ②÷①得 21,813==
q q 即 , ┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 7分 将2
1=q 代入①得 81=a , ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 8分 1)2
1(83314=⨯==∴q a a , ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 10分 2312
11)21(181)1(5515=-⎥⎦⎤⎢⎣⎡-⨯=--=q q a s ┄┄┄┄┄┄┄┄┄┄ 12分 20(1)C=3π. (2)a b =6,a +b =2
11 21.解:(1)设公差为d ,由题意,
⎩⎨⎧⇔⎩
⎨⎧ 解得⎩⎨⎧ 所以a n =2n -20.
(2)由数列{a n }的通项公式可知,
当n ≤9时,a n <0,
当n =10时,a n =0,
当n ≥11时,a n >0.
所以当n =9或n =10时,S n 取得最小值为S 9=S 10=-90.
a 4=-12 a 8=-4 a 1+3d =-12 a 1+7d =-4
d =2 a 1=-18
22.解:(1)由22+=n n S a 得:2211+=S a ;2211+=a a ;21=a ; 由22+=n n S a 得:22221+=S a ;22211++=a a a ;42=a ;
(2)由22+=n n S a ┅①得2211+=--n n S a ┅②;(2≥n )
将两式相减得:1122---=-n n n n S S a a ;n n n a a a =--122;12-=n n a a (2≥n ) 所以:当2≥n 时: n n n n a a 2242
222=⨯==--;故:n n a 2=; 又由:等差数列n b 中,1
2b ,点1(,)n n P b b 在直线2y x =+上. 得:21+=+n n b b ,且1
2b ,所以:n n b n 2)1(22=-+=; (3)12+==n n n n n b a c ;利用错位相减法得:42)1(2---=+n n n T ;。

相关文档
最新文档